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Acoustic streaming in high-speed compressible channel flow and its impact on heat
and momentum transfer is analysed numerically at two different Mach numbers,
Mb = 0.75 and 1.5, and moderate Reynolds numbers, Reb = 3000 and 6000. An
external time-periodic forcing function is implemented to model the effect of acoustic
drivers placed on the sidewalls. The excitation frequency is chosen according to the
linear stability analysis of the background (unexcited) flow. High-fidelity numerical
simulations performed at the optimal resonant condition reveal an initially exponential
growth of perturbations followed by a nonlinear regime leading to the limit-cycle
oscillations. In the last stage, we observe an acoustic (steady) streaming appearing
as a result of nonlinear interactions between the periodic external wave and the
background flow. This causes a steady enhancement in heat transfer at a rate higher
than the skin-friction augmentation. We also show that perturbations of similar
amplitude, but at suboptimal frequencies, may not lead to such limit-cycle oscillations
and cannot make any noticeable modifications to the time-averaged flow quantities.
The present research is the first study to demonstrate the acoustic streaming in
compressible turbulent flows, and it introduces a novel technique towards enhancing
the heat transfer with minimal skin-friction production.

Key words: compressible boundary layers, turbulence control, boundary layer stability

1. Introduction

When an acoustic wave passes over a solid boundary, a thin region is observed
near the wall wherein the viscous effect on the wave decays exponentially. This
layer is known as the Stokes layer, and its thickness is δs =

√
2ν/ωf , where ν and

ωf are the kinematic viscosity and angular velocity of the wave, respectively. Under
favourable conditions, such acoustic waves can lead to steady (acoustic) streaming,
i.e. a non-zero steady fluid motion appearing as a result of nonlinear interaction of
waves and background flow. This process has been widely investigated in the past
few decades thanks to its abundant applications across various disciplines, including
microfluidics (Wiklund, Green & Ohlin 2012), ocean engineering (Scandura 2007)
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and thermoacoustics (Bailliet et al. 2001). Extensive reviews on different mechanisms
driving the acoustic streaming are given in Riley (2001) and Boluriaan & Morris
(2003). In the present research, we focus on the steady streaming that appears in
straight channels due to the external pulsations.

Lord Rayleigh (1884) numerically studied the acoustic streaming formed between
two parallel plates, driven by a longitudinal standing wave. He essentially focused
on the region outside of the boundary layer and found the outer streaming velocity
to be proportional to M2

a , where Ma = Ũ/c0 is the acoustic Mach number, Ũ is
the amplitude of velocity oscillations at the source and c0 represents the speed of
sound. Later, Schlichting (1932) extended this work to analyse the streaming within
an incompressible oscillating boundary layer and suggested that the inner streaming
velocity is also O(M2

a). These theoretical approaches were derived only for very small
oscillation amplitudes. To assess if the nonlinear effects due to large oscillations
are significant, Menguy & Gilbert (2000) introduced a nonlinear Reynolds number,
Renl=2M2

a/Sh2, where Sh= δs/(
√

2δ) is the shear number and δ represents the channel
half-width (half the distance between the two parallel plates). The theoretical findings
on the streaming velocity mentioned above are valid only if Renl� 1. Therefore, in
practical cases, employing a direct simulation of the Navier–Stokes equations may
be necessary. Yano (1999) solved the two-dimensional compressible Navier–Stokes
and energy equations to simulate the streaming in a half-wavelength standing-wave
resonator. This study showed that, unless at very high frequency or in highly viscous
fluids, the amplitude of oscillations initially grows at the rate of O(Mat) and reaches
a quasi-steady state with periodic shock waves of amplitude O(

√
Ma). In this case,

the streaming velocity is proportional to Ma.
Acoustic streaming has also been used for heat transfer enhancement. Vainshtein,

Fichman & Gutfinger (1995) considered a longitudinal standing wave formed between
two parallel plates kept at different temperatures and studied the effect of streaming
on the heat transfer in this gap. They observed that such a mechanism can enhance
the heat transfer up to one order of magnitude compared to the case with only
conduction. Aktas, Farouk & Lin (2005) studied the heat transfer in a shallow
enclosure in which the horizontal walls are adiabatic and the sidewalls are kept at
different temperatures, where one sidewall oscillates at the resonant and off-design
frequencies. Under the resonant conditions, the streaming velocity becomes significant,
and the time-averaged heat transfer coefficient (h) near the stationary wall increases by
almost one order of magnitude. On the contrary, off-design oscillations fail to create
a noticeable streaming velocity or a considerable change in h, therefore indicating
the significance of resonance in creating time-averaged changes in the flow. Aktas
& Ozgumus (2010) extended this work to higher Renl and observed shock-wave
oscillations (similar to Yano (1999)) in the channel. They also investigated how the
formation of the streaming pattern can enhance the heat transport between two fixed
horizontal parallel plates.

All the aforementioned studies were carried out for the purely oscillatory cases,
while in pulsating flows, the Stokes layer interacts with the background hydrodynamic
and thermal boundary layers in a nonlinear fashion. Two dimensionless parameters are
conventionally introduced to study such a phenomenon: the ratio of the external wave
amplitude to the bulk velocity of the background flow, aw= Ũ/Ub; and the normalized
wave frequency, ωf

+
= ωfν/u2

τ , where uτ =
√
τw/ρ is the friction velocity. As long

as aw is less than 1, the parameter ωf
+ mainly determines the flow regime (Lodahl,

Sumer & Fredse 1998; Scotti & Piomelli 2001). Generally, low-frequency pulsations
(where 0.003 . ω+ . 0.006) create a thick Stokes layer whose edge may reside
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xz
y

Ly = 2∂
Lf Lz = 1.5π∂

Lx = 4π∂

FIGURE 1. Schematic view of the proposed set-up. The computational domain is of size
(Lx, Ly, Lz) = (4πδ, 2δ, 1.5πδ). The shaded area of width Lf in each unit indicates the
region where the effect of acoustic drivers mounted on the sidewalls is modelled via a
forcing function of form (2.1).

in the buffer layer where turbulent mixing is important. As such, a portion of the
acoustic energy is extracted from the wave and distributed among the smaller turbulent
structures (Weng, Boij & Hanifi 2016). This nonlinear process greatly impacts the
oscillatory wave, under specific conditions, and may alter the time-averaged velocity
and temperature profiles (Lodahl et al. 1998). On the other hand, high-frequency
acoustic waves (where 0.02 . ω+ . 0.04) create a very thin Stokes layer confined
within the viscous sublayer. In this region, turbulent mixing is minimal, and the
external wave interacts only with the mean background flow. In other words, the
period of oscillations is shorter than turbulence time scales; therefore, such waves
may not be altered by turbulent processes. A very high-frequency regime (0.04.ω+)
has been identified where pulsations can make critical changes in time-averaged
turbulent flow properties. Several studies, including Tardu, Binder & Blackwelder
(1994) and Scotti & Piomelli (2001), attributed such behaviour to the pairing of
pulsation frequency and bursting frequency of coherent structures in the inner layer
suggested by Mizushina, Maruyama & Shiozaki (1974). This observation is supported
by the results of Havemann & Narayan Rao (1954), Said et al. (1998) and Habib
et al. (1999).

In the present research, in order to maximize the effect of acoustic pulsation on the
flow, we identify the specific conditions required for the external wave to acoustically
resonate within the domain. This is achieved using linear stability analysis of the
background flow without the excitation. Such information is used to select the
frequency and shape of the external acoustic field for making desirable changes in
the flow. This resonant frequency is close to the bursting frequency suggested to be
able to modify the time-averaged Nusselt number (Nu) and skin friction (Cf ) upon
pulsation. Moreover, the sensitivity of the flow response to the resonant frequency
is assessed by applying external waves of identical amplitude and shape but at
off-resonance frequencies. The present research is the first study to achieve ‘acoustic
streaming’ in compressible flows, and it opens new avenues towards enhancing the
heat transfer without excessive skin-friction losses.

2. Problem formulation
The proposed test case comprises repeating identical sections of length Lx, where

each one includes a duct with an array of acoustic drivers mounted on the sidewalls.
Figure 1 shows a schematic view of the set-up. By exploiting the geometrical
symmetry, we only simulate one unit and impose a periodic boundary condition
in the streamwise direction. To avoid complexities associated with the corners and
the boundary layer formed on the sidewalls, we focus on the midspan region and
implement the periodic boundary condition in the spanwise direction. The effect of
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acoustic drivers is modelled with an external forcing following a bell-shaped function,

f f (x, t)= Af exp
(
−
(x− xm)

2

L2
f

)
sin(ωf t) ex, (2.1)

where Af is the forcing amplitude, Lf represents the length scale of the forcing region
with midpoint xm, and ωf sets the frequency of excitation. This force is added to the
momentum equation as the source term, and the work performed by this source on
the flow is considered in the energy equation following f f · u.

3. Numerical methodology
The fully compressible continuity, momentum and energy equations in the Cartesian

coordinate system take the non-dimensional forms

∂ρ

∂t
+

∂

∂xj
(ρuj)= 0,

∂

∂t
(ρui)+

∂

∂xj
(ρuiuj)=−

∂p
∂xi
+

1
Re

∂

∂xj
(τij)+ fiδ1i,

∂E
∂t
+

∂

∂xj
[(E+ p)uj] =

1
Re

∂

∂xj

(
k
∂T
∂xj

)
+

1
Re

∂

∂xk
(τjkuj)+ fiuiδ1i,


(3.1)

where (x1, x2, x3)= (x, y, z) represent streamwise, wall-normal and spanwise directions,
and fiδ1i indicates a volume forcing in the x-direction. At each time step, the bulk
velocity Ub is locally computed following

Ub(x, z)=

∫ Ly

0
ρu dy∫ Ly

0
ρ dy

.

Then, the spatially averaged bulk velocity in the entire domain is calculated via

Ub,tot =

∫ Lz

0

∫ Lx

0
Ub(x, z) dx dz

LxLz
.

If Ub,tot is different from the target value, Ub,target, a uniform forcing term is added
to the entire domain, in order to retain the target value that corresponds to a constant
mass flow rate. This is a common practice when simulating turbulent channel flow,
which is followed by Coleman, Kim & Moser (1995) for compressible case, and
by Lévêque et al. (2007) in the incompressible case. Such a forcing strategy allows
the pressure gradient to take any non-uniform distribution within the domain (for
example, in the pulsating case), given that the overall mass flow rate is constant. For
non-dimensionalization purposes, the reference temperature, velocity and length scales
are, respectively, the wall temperature (Tw), speed of sound at the wall temperature
(cw) and channel half-width (δ). Therefore, the amplitude of forcing in (2.1) is
non-dimensionalized by ρc2

w/δ. The total energy (E) and viscous stress tensor (τ ij)
read

E=
p

γ − 1
+

1
2
ρuiui, τij =µ

(
∂ui

∂xj
+
∂uj

∂xi
−

2
3
∂uk

∂xk
δij

)
, (3.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

69
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2020.69


Acoustic streaming in compressible channel flow 889 A2-5

where the molecular dynamic viscosity follows the exponential form µ/µw= (T/Tw)
0.7.

This set of equations along with the equation of state for the perfect gas p= (1/γ )ρT
are discretized in space using a sixth-order staggered finite difference method
(Nagarajan, Lele & Ferziger 2003). A third-order Runge–Kutta method is employed
for time advancement.

Linear stability analysis (LSA) is a widely popular tool to identify and control low-
frequency unsteadiness in laminar flows (Schmid & Henningson 2000). On the other
side, turbulent flows experience broadband fluctuations in all quantities, accompanied
by low-frequency structures responsible for significant coherent changes in the domain.
Several authors have studied LSA of the time-averaged flow quantities in a turbulent
channel flow in order to analyse the turbulent coherent structures, including Reynolds
& Tiederman (1967), Reynolds & Hussain (1972) and Jimenez et al. (2001). The
present research follows the same approach to analyse the unexcited (background)
turbulent channel flow and identify the optimal excitation frequency.

Linearized Navier–Stokes equations are derived by first-order expansion of flow
variables about the equilibrium state, i.e. q(x, t)= q(x)+ εq′(x, t)+O(ε2). Substituting
this form in the compressible Navier–Stokes equations (3.1) gives

dq′

dt
=Lq′, (3.3)

where L is an operator of time-averaged quantities and spatial derivatives, and
therefore independent of time (Malik 1990). Here, we have used the spectral
Chebyshev method to discretize these spatial derivatives (Trefethen 2000). The
solution of this ordinary differential equation may take the form q′(x, t) = q̂(x)
exp(−jωt) allowing the modal analysis of the perturbation dynamics. Applying this
form to (3.3) results in an eigenvalue problem,

Aq̂=ωq̂, (3.4)

where ω is the complex angular velocity. In the present work, the base flow as well as
boundary conditions are homogeneous in the streamwise and spanwise directions, and
therefore the perturbation form is simplified to q′(x, t)= q̂(y)ej(kx+βz)e−jωt, where k and
β are spatial wavenumbers in the streamwise and spanwise directions, respectively.

We consider the time-averaged quantities of the unexcited case as the equilibrium
state solution, q(x). The validity of this choice can be justified by analysing the
time scale of different terms involved in the equation for the evolution of turbulent
fluctuations. As explained by Lee, Kim & Moin (1990) and Jiménez (2013), in the
regions where the time scale of nonlinear terms is much larger than that of the
linear terms, the effect of nonlinear components would be minimal, and therefore the
linearized Navier–Stokes equations can represent the dynamics of fluctuations. The
time scale of the linear terms is O(1/S), where S is the mean shear, and the time
scale of the nonlinear terms is suggested to be O(lε/(u′iu′i)1/2), where lε = (u′iu′i)3/2/ε
is the dissipation length scale and ε = ν∂u′i/∂xj∂u′i/∂xj is the dissipation rate of
turbulent kinetic energy. The ratio of these two time scales is known as the shear
parameter, S∗ = (Su′iu′i)/ε, which should be large enough to assume the linearization
to hold. This condition is met near the wall (S∗ remains around 10 up to y/δ . 0.6),
whereas on approaching the channel core where the magnitude of shear decreases,
this assumption may not be valid (Jiménez 2013). It should also be noted that we
only include the molecular viscosity (µ) in the L operator of (3.3).
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(a) (b) (c) Mb = 1.5: Colemann et. al (1995)
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FIGURE 2. Time-averaged (a) streamwise velocity, and (b) temperature and density, and
(c) root-mean-square fluctuating velocity components at Reb= 3000 and two different bulk
Mach numbers along the channel height. Results of the present simulations at Mb = 1.5
(——), Coleman et al. (1995) at Mb = 1.5 (E), and present study at Mb = 0.75 (– – – –).

In the present study, we apply the forcing (2.1) to the bulk of the flow in the
streamwise direction, i.e. only fx 6=0. Studying the cases where β 6=0 requires a source
(of fx) with variable strength in the spanwise direction. Creating such forcing near the
wall is a common practice (via Lorentz forces or by roughness elements); however,
this is not the case where we need to apply such forcing to the bulk of the flow,
which is the objective of the present paper. Therefore, we have decided to analyse
only the cases with β = 0.

4. Results and discussion
This section first focuses on the simulation of the flow field without external

excitation. These results are compared with the literature to assess the accuracy of
our computational tool. Time-averaged flow quantities serve as the base flow for the
linearized Navier–Stokes analysis. Thereafter, we investigate the effect of acoustic
excitation in the same flow configurations and analyse the modified boundary layer
characteristics.

4.1. Unexcited flow simulation
The computational set-up consists of two parallel isothermal plates of size Lx × Lz =

4πδ × 1.5πδ separated by a distance Ly = 2δ. The Reynolds number based
on bulk velocity is Reb = ρUbδ/µw = 3000 and, to analyse the effect of flow
compressibility on the results, two Mach numbers corresponding to the subsonic
(Mb = Ub/cw = 0.75) and supersonic (Mb = 1.5) regimes are considered. The
computational domain is discretized using Nx × Ny × Nz = 144 × 128 × 96
cells, resulting in (1x+, 1y+min, 1z+) ≈ (19, 0.24, 10.7) for the supersonic and
(1x+,1y+min,1z+)≈ (17, 0.21, 9.7) for the subsonic cases. Calculations on a finer grid,
with 1.5 times more points in each direction, show little to no variations in temporal
statistics. Time-averaged streamwise velocity, density and temperature profiles as
well as the root-mean-square (r.m.s.) values of fluctuating velocity components are
illustrated in figure 2. The supersonic case is identical to the set-up studied by
Coleman et al. (1995). Comparing the results of the present simulation with the
reference values (Coleman et al. 1995) in figure 2 shows a good agreement in terms
of the first- and second-order statistics. One significant effect of compressibility
is observed in the temperature profiles, where the viscous heating increases the
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FIGURE 3. Eigenvalue spectra of compressible channel flow at Reb = 3000 (a,e) along
with the shear stress ûv and heat flux T̂v associated with modes R1 (d,h), W1 (c,g) and
L1 (b, f ). Panels (a–d) correspond to the supersonic case Mb= 1.5 and (e–h) represent the
subsonic case Mb= 0.75. Streamwise wavenumber is k= 0.5. Labels R1 and L1 denote the
fast and slow acoustic modes, respectively, while W1 and W2 are wall modes.

centreline temperature following Tc − Tw ∝Mb
2. As such, the core region of the flow

is approximately 8.7 % and 37 % hotter than the walls in the subsonic and supersonic
cases, respectively. This is expected to provide a proper contrast when analysing the
effect of acoustic excitation on the heat transfer characteristics.

4.2. Linearized Navier–Stokes analysis
We solve the linearized Navier–Stokes equations (3.3) in order to investigate different
families of modes present in this flow configuration and identify the ones that are
expected to create an effective increase in wall heat transfer throughout the channel.
The streamwise wavenumber is considered to be k= 0.5 corresponding to the largest
wave fitting in the domain of length Lx = 4π.

The eigenvalue spectra in both subsonic and supersonic cases are shown in
figure 3(a,e). This figure focuses on the most unstable modes in the spectrum.
The operators Re{·} and Im{·} return the real and imaginary parts of a variable. The
horizontal axis represents the propagation speed of each mode and the vertical axis
shows the associated growth rate. The dashed line specifies the threshold of neutrally
stable modes, so that modes closer to this line experience slower decay rate. All
modes are stable, in the absence of external forcing. Similar results are also reported
by Friedrich & Bertolotti (1996) using the parabolized stability equations. These
findings are consistent with those of Reynolds & Hussain (1972), who observed that
LSA of mean profiles corresponding to an incompressible turbulent channel flow
remains stable up to Reτ = O(1000). As studied by Jimenez et al. (2001) and Del
Alamo & Jimenez (2006), we can link the stable modes with the largest temporal
growth rates to the near-wall coherent structures. Here, we use the information
provided by the LSA to decide which mode should be excited to create the target
changes in the flow.

In the present configuration, four major families of modes are observed: the ‘bulk’
modes that form a hook shape and travel downstream with the bulk velocity of the
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flow, the ‘fast acoustic’ modes (e.g. R1) that are positioned on the right and the
‘slow’ modes (e.g. L1) appearing on the left side of the bulk modes, along with the
other two isolated modes shown in figure 3 representing the wall modes W1,2. To
further analyse these modes’ properties, two parameters are defined based on their
corresponding eigenfunctions:

ûv =
2
T

∫ T

0
Re{u′}Re{v′} dt=Re{û v̂∗} mode shear stress,

T̂v =
2
T

∫ T

0
Re{T ′}Re{v′} dt=Re{T̂ v̂∗} mode heat flux,

 (4.1)

where T represents the period, û, v̂ and T̂ are streamwise velocity, wall-normal
velocity and temperature eigenfunctions and superscript ∗ denotes complex conjugate.
Figure 3 illustrates these quantities for three modes R1, W1 and L1 at two different
Mach numbers. Modes belonging to the same family exhibit similar behaviour;
however, near-wall changes are more pronounced in the supersonic case due to larger
mean flow gradients in this condition.

Wall modes Wi have a large decay rate and, in the case of excitation, can only
affect the near-source region. Moreover, their corresponding added shear stress is
significantly higher than the added heat flux, and therefore they cannot be the ideal
mode for making an effective heat transfer enhancement. Applying an external forcing
activated only near the wall or modifying the wall boundary condition, for instance by
employing a Darcy-type porous medium (Tilton & Cortelezzi 2008; Rahbari & Scalo
2017a) or acoustic liners (Rahbari & Scalo 2017b), often results in the excitation of
this mode.

Slow acoustic (or left-running) modes L1 experience a faster decay rate than the
R1 modes, limiting their ability to make a global change in the flow. This mode’s
corresponding heat flux is still less than the associated shear stress while also showing
a 180◦ phase difference.

Mode R1, on the other hand, has the largest imaginary part, which translates into
the lowest decay rate and therefore, if excited, can make a lasting change in the flow.
Moreover, the heat flux corresponding to this mode is comparable with its shear stress
near the boundaries. Therefore, the R1 mode is chosen as the ‘resonant mode’ for the
acoustic excitation.

Estimation of mode R1’s velocity in the present test case may not be straightforward
since the temperature rises up to 37 % (in case C1: Mb= 1.5) and 8.7 % (in case C2:
Mb= 0.75) from the wall to the centreline, and therefore the speed of sound changes
considerably across the channel. In case C1, Ūcentreline+ c̄centreline= 2.91, while the LSA
gives cR1 = 2.73. In case C2, Ūcentreline+ c̄centreline= 1.91, whereas the LSA shows cR1 =

1.81.
The optimal wall-normal distribution of forcing term (Af in (2.1)) can be determined

following the method of Lagrangian multipliers developed by Browne et al. (2014)
in the discrete framework. However, in the present study, Af is assumed to be
uniform along the channel height for simplicity and ease of future experimental
implementation.

4.3. Fully nonlinear Navier–Stokes simulations
After selecting the excitation frequency, fully nonlinear Navier–Stokes equations are
solved considering the forcing function of form (2.1). Given the equation (3.1), the
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Case Mb Reb Reτ Af ωf Lx Nx ×Ny ×Nz δ+s = δsuτ/νw

C1 1.50 3000 215 0.50 2π/4.59 4π 144× 128× 96 4.30
C2 0.75 3000 197 0.25 2π/6.94 4π 144× 128× 96 4.23

C3 1.50 3000 215 0.50 2π/4.00 4π 144× 128× 96 4.01
C4 1.50 3000 215 0.50 2π/5.00 4π 144× 128× 96 4.49

I1 0.75 6000 363 0.25 2π/6.95 4π 288× 256× 192 6.04

A1 0.75 3000 197 0.125 2π/6.94 4π 144× 128× 96 4.23
A2 0.75 3000 197 0.0625 2π/6.94 4π 144× 128× 96 4.23
A3 0.75 3000 197 0.03125 2π/6.94 4π 144× 128× 96 4.23

D1 0.75 3000 197 0.25 2π/10.41 6π 216× 128× 96 6.34
D2 0.75 3000 197 0.25 2π/13.89 8π 288× 128× 96 8.46

TABLE 1. Simulation parameters for the acoustically excited cases. The length of the
forcing region in all cases is set to Lf = 0.447δ.

periodic forcing acts as a pulsating pressure gradient with a Gaussian distribution
function applied only in the forcing region, in which the maximum-to-minimum
amplitude equals 2Af . In addition to studying the acoustic excitation at the resonant
frequency at each Mach number, two more cases (labelled as C3 and C4) are
also investigated in order to analyse the effect of off-design excitation on the
flow. Moreover, we study three cases, namely A1 to A3, identical to C2 but at
different forcing amplitudes, to reveal the impact of Af on the perturbation dynamics
and time-averaged flow quantities. Simulations D1 and D2 explore the resonance
phenomenon at lower frequencies by considering larger domain lengths, i.e. Lx = 6π
and 8π (corresponding to k= 2/3 and k= 1/4). Extension of the results obtained in
case C2 to a higher Reynolds number, namely at Reb = 6000, is investigated in case
I1. The simulation parameters for all the aforementioned cases are summarized in
table1.

The non-dimensional Stokes layer thickness in all cases is very close to the buffer
layer threshold of y+ ≈ 5. The selected range for the excitation frequencies includes
the lowest ‘resonant’ frequency that fits in the studied computational domain. In C1
to C4 and A1 to A3, a computational domain identical to the unexcited case (§ 4.1)
is adopted. To assess the sensitivity of findings to the computational grid, case C1
is repeated with grid size Nx × Ny × Nz = 216× 192× 144 (1.5 times grid points in
each direction compared to the initial set-up), and little to no variation is observed
in temporal statistics. Similarly, the effect of domain size on the results is studied by
simulating a channel of length 2Lx with two identical acoustic drivers separated by
distance Lx. This case also reproduced temporal statistics that closely follow those of
case C1, therefore indicating that the box size is sufficiently long in this analysis.

In order to analyse the system response to the external fluctuations, we need to
clearly differentiate the externally induced perturbations from the background turbulent
field. To this aim, we perform two separate sets of simulations for each case, one
with the forcing (referred to as the ‘excited’ case) and the other without any external
fluctuations (‘unexcited’ case). Both simulations are initialized with identical flow
fields, and all other simulation parameters, including the grid and time step size, are
kept unchanged. The perturbation field (δq) reads

δq(x, t)= qexc(x, t)− qunexc(x, t), (4.2)
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FIGURE 4. History of temperature perturbation δT = Texc − Tunexc at the centre of the
forcing region at Reb= 3000 and two Mach numbers: (a) case C1, Mb= 1.5, and (b) case
C2, Mb = 0.75. The results are downsampled to eight instants per period.

where qexc represents a generic flow quantity in the excited configuration and qunexc

corresponds to the same quantity in the unexcited case.
Figure 4 shows the temporal evolution of the temperature perturbations at the

channel centre spatially averaged within the forcing region. In the supersonic case,
C1 (figure 4a), the external forcing is translated into temperature perturbations of
amplitude 2 % of Tw in the first cycle. Thereafter, this amplitude grows in three
different stages. Initially, we observe an exponential growth. Dashed lines show
this trend and the detailed view of region (i) suggests the pure sinusoidal form
of the perturbations representing a linear (modal) process. In the second stage,
the growth rate decreases followed by a steepening in the acceleration phase of
the forcing period, which indicates a weakly nonlinear process. Distortions in the
pure sinusoidal form of the perturbations manifest higher-frequency waves that
appear as a result of nonlinear interactions. Finally, after 10 cycles, the perturbation
amplitude remains nearly constant, which marks the limit-cycle region. In this section,
immediately after starting each period, the temperature perturbation rises significantly
and dissipates gradually. This implies the broadband response of the system to a
single-frequency force, which, in turn, demonstrates the highly nonlinear nature of
this region (see region (ii)). Similar behaviour is observed in subsonic configuration,
C2 (figure 4b). Although the amplitude of δT in this case is always smaller than
that of the supersonic configuration, the limit cycle is achieved in fewer periods,
suggesting that the nonlinear process starts earlier.

The next step is to analyse the effect of acoustic excitation on the heat and
momentum transfer near the wall. Two parameters, shear enhancement factor (SEF)
and thermal enhancement factor (TEF), are defined based on the space-averaged
skin-friction coefficient (Cf ) and Nusselt number (Nu) to quantitatively study this
process:

SEF=
Cf ,exc

Cf ,unexc
and TEF=

Nuexc

Nuunexc
, (4.3)

where

Cf =

µw
∂U
∂y

∣∣∣∣
w

0.5ρU2
b

and Nu=

∂

∂y
(T − Tw)

∣∣∣∣
w

(Tb − Tw)/δ
,
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FIGURE 5. History of the space-averaged SEF and TEF at Reb = 3000 and two Mach
numbers: (a) C1, Mb= 1.5, and (b) C2, Mb= 0.75. The results are downsampled to eight
instants per period. EF, enhancement factor.

and the bulk temperature (Tb) is calculated following the same procedure as described
for computing the total bulk velocity Ub,tot. This quantity is calculated at each time
step for all cases separately. Considering the modified Reynolds analogy (Chilton–
Colburn equation),

Cf =
Nu

Reb Pr1/3 ,

one may find the Nusselt number as a linear function of the skin friction (or vice
versa). In the unexcited condition, this relationship holds at Reb= 3000 and Mb= 1.5
with less than 1 % error, and at the same Reynolds number and Mb = 0.75, with less
than 3 % error. If we assume this analogy to be valid in the excited flow configuration
as well,

Cf ,exc =
Nuexc

Reb Pr1/3 .

Hence, Cf ,exc/Cf ,unexc = Nuexc/Nuunexc. Given the definitions of shear and thermal
enhancement factors (4.3), this implies SEF = TEF. Therefore, we expect SEF and
TEF to closely follow each other, and comparing these two quantities is appropriate.
In regions where an offset is observed between these two quantities, one may conclude
that the Reynolds analogy (or any simple linear relationship between Cf and Nu) does
not hold.

At different Mach numbers, we have different heat loads (Tb−Tw)∝M2
b ; essentially,

the heat load at Mb = 0.75 is four times smaller than that at Mb = 1.5. Since the
amplitudes of the excitation (δT) in both cases are similar, we expect the heat transfer
process at the smaller Mb to experience stronger alteration due to the excitation.
Figure 5 presents the history of SEF and TEF over 50 periods for both C1 and
C2 cases. These two quantities share similar trends; they both start from unity
(by definition), grow rapidly in time and finally oscillate around some mean value.
Acoustic excitation leads to higher thermal enhancement compared to the skin-friction
augmentation. The difference between SEF and TEF is significantly more pronounced
in the subsonic configuration (C2), although having smaller δT amplitude. Averaging
these quantities over 100 excitation periods shows TEF= 1.101 and SEF= 1.084 for
the supersonic case (C1) and TEF = 1.109 and SEF = 1.053 for the subsonic case
(C2). Therefore, heat transfer enhancement due to the excitation is 20 % higher than
the skin-friction augmentation in C1, while in C2 configuration, acoustic excitation
enhanced the heat transfer almost twice as much as the skin friction.
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FIGURE 6. Instantaneous temperature perturbation field (δT) for acoustically excited
supersonic turbulent boundary layer. A top view at the bottom wall y+≈4 for four instants
of one period. Panels (a–d) and (e–h) respectively correspond to one cycle within regions
(i) and (ii) in figure 4.

The adiabatic wall temperature Taw is defined as the temperature that a wall
would acquire if it were thermally insulated. Here, we estimate this quantity via
Taw = Tc[1 + Pr1/3((γ − 1)/2)M2

c ], where Tc and Mc are static temperature and local
Mach number at the channel centre (White & Corfield 2006). This quantity for the
supersonic case is approximately Taw = 1.91, and for the subsonic case is ≈1.22,
while the wall temperature in both cases is constant at Tw = 1. Upon finding Taw,
one may calculate the heat transfer coefficient as h = q′′/Taw − Tw. According to
Maffulli & He (2014), q′′ is not a linear function of Taw − Tw; instead, the slope
∂q′′/∂(Taw − Tw) decreases as (Taw − Tw) becomes smaller. Therefore, in response to
a constant change in wall temperature (δTw), one may observe a larger change of
heat flux in the supersonic case. On the other hand, in the case of a constant change
in heat flux (δq′′), for example due to the excitation, the variation of this slope, i.e.
h, may be more pronounced in the subsonic condition. Hence, we expect that the
acoustic pulsation with similar amplitude would be more effective in modifying the
TEF of the subsonic case compared to the supersonic counterpart.

We investigate the effect of acoustic excitation on the near-wall turbulent structures
by analysing the temperature perturbation field. Since both C1 and C2 show a similar
behaviour, discussion in this section is limited to the supersonic set-up (C1). Figure 6
illustrates the instantaneous temperature perturbations near the bottom wall (at y+≈ 4)
for two separate forcing cycles. Figure 6(a–d) correspond to an earlier stage of the
excitation process, i.e. region (i) of figure 4, and show the variation of δT at four
different instants of one period. The prescribed forcing is translated into the passage
of a travelling wave with an amplitude of ≈ 5.5 % Tw. Weakly nonlinear interaction
of the acoustic wave and near-wall streamwise streaks is noticeable in the form of
fluctuations superimposed on the spatial sinusoidal pattern and excessively hot or
cold spots. Figure 6(e–h) show the passage of an acoustic wave in the limit-cycle
region. The wave front creates a strong spanwise structure travelling downstream with
speed cx = 4π/T = 2.73 (non-dimensionalized by cw) followed by a wake of weaker
rollers. In this case, the amplitude of perturbations increases up to 22 % Tw, with
several locations experiencing unusually high and low temperatures. Classic near-wall
turbulent structures are more evident in these panels by streamwise low-speed streaks
disrupting the wave front and significantly modulating the region behind it.

Figure 7 displays the time–space temperature field averaged in the spanwise
direction once the perturbations are saturated, i.e. in region (ii) in figure 4(a). This
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FIGURE 7. Time–x representation of the spanwise-averaged temperature field near the
bottom wall at y+ ≈ 4 (a) and at the channel centre (b), over one pulsation cycle in the
limit-cycle region.
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FIGURE 8. Contours of streaming velocity Ust (a) and temperature Tst (b) for an
acoustically excited supersonic channel flow at Reb= 3000 and Mb= 1.5 with Af = 0.5 and
ωf = 2π/4.59 over t/T ∈ [10, 90]. Time averaging is taken for eight snapshots per period,
therefore deliberately neglecting the contribution of wavenumbers greater than four.

representation allows one to identify the different speeds at which perturbations
evolve. Near the bottom wall at y+ ≈ 4 (figure 7a), the wave front is visible along
with the rollers that appear in the wake region, retaining a constant speed across
the domain. At the channel centre (figure 7b), after the passage of the wave front,
one can observe relatively strong waves that propagate downstream at very slow
rates (high slopes in the t–x plane), and therefore, over one pulsation period T , are
confined within a narrow region in x. This suggests the formation of structures with
time scale � T and length scale � Lx, which can drive the streaming process.

Streaming velocity and temperature, defined as Ust = Uexc − Uunexc and Tst =

Texc − Tubnexc, for case C1 are illustrated in figure 8. Time averaging is performed
within t/T ∈ [10, 90] so as to include only the limit-cycle oscillations. Moreover, only
eight snapshots per period are used for time averaging, which consequently neglects
the contribution of wavenumbers greater than four in the results. This procedure
is adopted to give a generic view of streaming flow features. As a result of the
nonlinear interaction between the perturbations and the background flow, as well
as among perturbations themselves, a periodic pattern appears in both Tst and Ust.
The regions with positive streaming values appear to take larger magnitudes and
stay closer to the wall; therefore, one may qualitatively infer that the SEF and TEF
(spatially averaged along the channel length) would be greater than unity. Larger TEF
compared to SEF for this flow condition may also be attributed to the locations of
positive Tst, which reside at shorter distances from the wall compared to those of Ust.
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FIGURE 9. Phase-locked averaged temperature contours (at t/T = 1/4) for (a) supersonic
(C1) and (e) subsonic cases (C2). Maximum and minimum values are truncated for better
visualization. (b, f ) Spatial DFT of this field. (c,g) The amplitude of the dominant mode
(k = 0.5) along with the temperature eigenfunction of the most unstable mode identified
by LSA. (d,h) The same procedure repeated for the streamwise velocity.

4.4. On the efficacy of linear stability analysis in selecting the optimal modes
An instantaneous quantity φ(x, t) can be decomposed into ‘steady’, ‘harmonic’ and
‘random’ components, i.e. φ(x, t)= φ(x)+ φ̃(x, t)+ φ′(x, t). The harmonic term is

φ̃(x, t)= 〈φ(x, t)〉 − φ(x) where 〈φ(x, t)〉 =
1
N

N∑
n=0

φ(x, t+ nT ). (4.4)

The term 〈φ(x, t)〉 represents the phase-locked averaging and T = 2π/ωf is the
period of excitation. Figures 9(a) and 9(e) illustrate the harmonic component of
temperature, T̃ , at phase t/T = 1/4 in both supersonic (C1) and subsonic (C2) cases.
These components are calculated by averaging in the spanwise direction as well
as temporally within t/T ∈ [0, 50]. The results share fundamental similarities, e.g.
a significant change in the bulk of the flow accompanied by near-wall spanwise
structures whose sizes strongly depend on Mb. If no nonlinear interactions were
involved, either among the superimposed waves or between the waves and the
background turbulent field, we would expect to observe a single-frequency harmonic
field; however, the present results suggest the presence of higher-frequency changes.
A spatial discrete Fourier transform (DFT) is employed to extract the components
corresponding to different wavenumbers. The highest amplitude is associated with
k = 0.5, the wavenumber we set in the LSA. Higher-frequency components possess
several times smaller amplitudes and are created as a result of nonlinear interactions
in the flow. We also compare the amplitude of T̃ and Ũ (harmonic component of
streamwise velocity) corresponding to k = 0.5 against the mode shapes predicted by
the LSA (performed on time-averaged unexcited flow quantities) in figure 9(c,d) for
C1 and figure 9(g,h) for C2. The results show an excellent agreement between these
two profiles, suggesting that the proposed technique resulted in exciting the specific
mode identified by LSA.

We consider two additional cases, C3 and C4, excited at off-optimal frequencies,
namely ω3 = 2π/4.00 and ω4 = 2π/5.00, in order to assess the role of LSA in
selecting the optimal excitation frequency. In both cases, the Stokes layer thickness
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FIGURE 10. (a) History of SEF and TEF as well as (b) temperature perturbation δT at
the centre of the forcing region at Mb= 1.5 subjected to off-design excitation frequencies.
Case C3 in table 1 with ωf = 2π/4.00 is represented by black and case C4 with ωf =

2π/5.00 is shown as grey. On the left SEF (— · · —) and TEF (——) overlap throughout
the process. The results are downsampled to eight instants per period.

as well as the forcing amplitude are similar to the case C1; however, the acoustic
resonance may not take place according to the LSA. Figure 10 reports the history of
SEF and TEF as well as temperature perturbations. The growth rate of perturbations,
δT , in these cases is significantly smaller than what was observed in the corresponding
resonant condition C1. Following a few excitation periods, the larger-amplitude
fluctuations interact nonlinearly with the background flow, which can either lead
to the limit-cycle oscillations (in the optimal condition), or experience stabilization.
The latter is observed in the off-design frequencies through a periodic growth and
decay in the perturbation amplitude. Moreover, SEF and TEF (figure 10a) are tightly
coupled and, although they both experience regions with values greater or smaller
than unity, time averaging over 50 cycles shows a minimal modification (≈1 %) in Cf

and Nu. This highlights the need for applying the acoustic excitation at the optimal
‘resonant’ frequency determined by LSA.

4.5. The effect of forcing amplitude on the resonance and streaming quantities
The amplitude of acoustic forcing, i.e. Af in (2.1), plays a critical role in the formation
of acoustic pulsations, their strength and possible interactions with the background
turbulence. Here, in addition to the case C2, we introduce three extra scenarios,
A1–A3, wherein the parameter Af is varied in [0.125, 0.0625, 0.03125] while
keeping the forcing frequency constant at ωf = 2π/6.94. These simulations are
performed at Reb = 3000 and Mb = 0.75, starting from the same initial flow fields
as the case C2, and with a similar time step size. Figure 11(b,d, f,h) illustrates the
temperature perturbations, δT , in the first 25 excitation periods at the centre of
the forcing region (y = 1). This quantity, similar to figure 4, is averaged within
the forcing region x ∈ [1.87–2.37] and along the spanwise direction. Wave heights
(minimum-to-maximum distance) in the first pulsation period, as well as in the
limit-cycle oscillations, are reported in all four cases. This quantity in the start-up
phase is linearly correlated with the forcing amplitude. For instance, Af in case A3
(shown in figure 11f ) is twice the forcing amplitude associated with case A2 (shown
in figure 11h), and the wave height in the start-up region is also approximately
twice as high as the case A2. As such, in cases with high values of Af , the initial
perturbation amplitude is more significant. Therefore, the nonlinear effects dominate
the oscillation dynamics faster and, subsequently, the limit-cycle oscillations appear
in fewer pulsation periods. In this region, however, the wave height approximately
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FIGURE 11. (b,d, f,h) Temporal evolution of temperature fluctuations (δT) at the centre of
the forcing region, y = 1, at four different forcing amplitudes. This quantity is spatially
averaged within x ∈ [1.87–2.37] and z∈ [0, 1.5π]. Wave heights in the start-up as well as
the limit-cycle regions are reported on the plots. (a,c,e,g) History of SEF (— · · —) and
TEF (——) presented as a function of pulsation period. Panels (a,b) represent the case C2
with Af = 0.25, and (c,d) refer to the case A1 with Af = 0.125. Panels (e, f ) and (g,h) are
respectively associated with the cases A2 where Af = 0.0625 and A3 where Af = 0.03125.
Also reported on the graphs are TEF (· · · · · · (red)) and SEF (· · · · · · (blue)) taken over
the last 25 cycles along with the offset between these two quantities. In all plots, the
results are downsampled to eight instants per period.

scales with ≈
√

Af . These results are in line with findings of Yano (1999) regarding
the formation of periodic shock waves and scaling of their amplitudes.

We also investigate the overall effect of excitation amplitude on the near-wall heat
and momentum transport by looking at the history of thermal and shear enhancement
factors, respectively, shown by solid and dash-dotted lines in figure 11(a,c,e,g). In
the case A3, with the smallest excitation amplitude, Af = 0.03125, SEF and TEF
exhibit almost identical behaviour in time, which indicates that the momentum and
heat transport processes, under the corresponding condition, are tightly coupled.
By increasing the excitation amplitude (from bottom to top), these two parameters
gradually detach, although following a similar trend. This suggests that such excitation
can effectively energize the heat transfer process while affecting the momentum
transport to a lesser degree.

Figure 12 demonstrates the second-order turbulent statistics associated with the
above-mentioned cases, as well as the unexcited flow, along the channel height.
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FIGURE 12. Second-order turbulent statistics at Reb = 3000 and Mb = 0.75 subjected to
excitation at different forcing amplitudes; unexcited case (– – – –), A3 with Af = 0.031 (u),
A2 with Af = 0.062 (p), A1 with Af = 0.125 (q) and C1 with Af = 0.250 (f). Time
averaging is taken over the first 50 pulsation periods and spatially averaged in streamwise
and spanwise directions.

Among all velocity fluctuation components, the prescribed acoustic excitation affects
the streamwise component the most, where both the maximum value of u′u′ and its
magnitude at the channel centre increase sharply by amplifying the forcing amplitude.
This is expected, as the forcing function (2.1) is only applied in the streamwise
direction. The impact of such forcing on v′v′ and w′w′ is mainly visible near the
peak value and fades away closer to the channel centre.

The most substantial impact of acoustic forcing is on the temperature fluctuations
(figure 12d). Therefore, we expect the turbulent heat flux T ′v′ to be more positively
correlated with the amplitude of excitation than the Reynolds stress term u′v′. This is
reflected in figure 12(e, f ). Both panels in the near-wall region, magnified in the insets,
show a kink visible at large forcing amplitudes that are more pronounced in the T ′v′
term and represent the dissipation introduced by near-wall periodic weak shock waves.

Figure 13 explores the acoustic excitation and its effect on the background flow
from a different perspective by considering the configuration where, in case C1, the
forcing term is turned off after reaching the limit-cycle oscillations. Figure 13(b)
shows the temperature perturbation, δT , and figure 13(a) presents the history of SEF
and TEF, highlighting the impact of excitation on heat and momentum transport
near the wall. The vertical line at t/T = 50 marks the instant where the forcing is
deactivated. Prior to this line, these two plots are identical to figure 11(a,b), whereas
upon crossing this point, the amplitude of perturbations decays exponentially. The
inset shows the level of temperature perturbations δT , 40 cycles after disabling the
forcing term. Although the amplitude of perturbations is significantly reduced, sharp
jumps at the starting instant of each cycle suggest the continuation of weak periodic
shock waves even after cutting off the external source of pulsations. In terms of the
enhancement factors, there is a clear offset between SEF and TEF as long as the
excitation persists. Even after setting Af to zero, there is a relaxation period where
TEF remains larger than SEF for approximately five cycles (highlighted with red
shadow), indicating that we can still obtain positive streaming effects by periodic
activation and deactivation of the external source to minimize the energy input. After
this period, the heat and momentum transport exhibit a strong pairing, similar to the
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FIGURE 13. Response of an acoustically excited channel flow at Reb = 3000 and Mb =

0.75 to sudden deactivation of forcing source. The system is initially subjected to the
acoustic excitation at Af = 0.25 and ωf = 2π/6.94. History of temperature perturbations
δT (b) and SEF and TEF (a). In both panels, the results are downsampled to eight instants
per period.

case with low excitation amplitude, e.g. figure 11(e, f ), which theoretically approaches
unity for both quantities.

4.6. Acoustic resonance at higher Reynolds number

Although all the simulations presented above are performed at Reb = 3000, the
conclusions drawn regarding the resonance and its impact on the heat and momentum
transport are not limited to this specific condition. To elaborate more on this, case I1
has been selected where the Reynolds number is increased to Reb = 6000, and Mach
number is constant at Mb= 0.75. The domain size is identical to the case C2, and to
ensure a comparable spatial resolution, the number of grid points is doubled in each
direction, i.e. Nx ×Ny×Nz = 288× 256× 192. Performing the LSA on time-averaged
quantities identifies the optimal excitation frequency at ωf = 2π/6.954, which is close
to the value obtained for case C2, indicating that this mode is not too sensitive to
Reb, unlike Mb. Figure 14 displays the history of enhancement factors as well as
the temperature perturbations that result from applying a forcing identical to the one
used for case C2. Time averaging in the last 10 cycles shows TEF = 1.105 and
SEF = 1.033, suggesting a net positive heat transfer enhancement compared to the
skin friction. Moreover, comparing the levels of δT in both start-up and limit-cycle
regions with case C2 (figure 11b) shows that the behaviour of perturbations has
remained mainly unchanged. Figure 15 shows the near-wall turbulent structures, by
looking at the temperature field at y+ ≈ 4, in both the excited and unexcited cases
at four different instants of one period. Long streamwise streaks are clearly visible
in the unexcited case (a–d). However, the strong wave front, created as a result of
resonance in the excited flow, followed by the weaker waves, pass through these
structures and reshape them substantially. Between the passage of two wave trains,
there are some instants wherein the turbulent flow relaxes towards its original state.
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FIGURE 14. History of space-averaged enhancement factors (a) and temperature
fluctuations at the channel centre within the forcing region (b) at Reb = 6000 and
Mb = 0.75. The forcing function is shown in (2.1) with Af = 0.25 and ωf = 2π/6.954.
SEF (– – – –), TEF (——), TEF (· · · · · · (red)) and SEF (· · · · · · (blue)). The results are
downsampled to eight instants per period.
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FIGURE 15. Instantaneous temperature field for an acoustically excited subsonic turbulent
channel flow at Reb = 6000 and Mb = 0.75. Top view at the bottom wall y+ ≈ 4 at four
instants of one period. Panels (a–d) and (e–h) respectively correspond to the unexcited
and excited cases.

5. Concluding remarks

We numerically investigated the process of applying an external time-periodic
acoustic wave to a compressible turbulent flow in a channel geometry. The external
wave was designed to acoustically resonate within the prescribed domain, according to
the linear stability analysis of the unexcited base flow. The results show an initially
exponential growth in the perturbation’s amplitude, which eventually leads to the
limit-cycle oscillations. The nonlinear mechanism driving such oscillations creates a
steady streaming within the background flow, which enhances the heat transfer with
minimal skin-friction losses.

Applying external waves of similar strength at off-design frequencies did not make
any noticeable modifications to time-averaged flow quantities, emphasizing the role
of resonance in giving rise to nonlinear interactions. The present study introduces
a new approach to enhance the heat transfer efficiency of the ‘existing’ thermal
machinery without excessively increasing the skin-friction losses. For instance, the
pressure fluctuations due to blade–row interaction can readily be utilized to modulate
the time-averaged heat transfer in both external turbine surfaces and internal cooling
passages.
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FIGURE 16. History of shear and thermal enhancement factors (a,c) as well as
temperature perturbations δT at the channel centre within the forcing region (b,c) for
acoustically excited channels with length Lx = 6π (a,b) and 8π (c,d). In panels (a,c), the
solid line refers to the TEF and the dash-dotted line shows the SEF. Time-averaged values
of these two quantities, taken over the last 10 cycles, are plotted with red and blue dotted
lines, respectively. Both cases show the resonance and a higher TEF compared to SEF. In
all plots, the results are downsampled to eight instants per period.
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Appendix. Resonance in longer domains

We have considered two additional cases, namely D1 and D2 in table 1, to study the
acoustic resonance in longer domains. In these simulations, the operating conditions
are similar to case C2, i.e. Reb = 3000 and Mb = 0.75; however, the domain length
Lx is extended to Lx = 6π and 8π and the number of grid points in the x-direction
is also increased accordingly. A forcing function of the form (2.1) is used with
Af = 0.25, identical to case C2, and ωf is found via the LSA described in § 4.2. The
history of temperature perturbations, δT , at the channel centre, spatially averaged
within the forcing region, is plotted in figure 16(b,d). Both cases show a transient
growth in the amplitude of δT that quickly reaches the limit-cycle oscillations within
10 pulsation periods. Shear and thermal enhancement factors for these cases are
plotted in figure 16(a,c), where the solid line refers to the TEF and dash-dotted
line shows the SEF. For the purpose of comparison, time averaging is taken over
the last 10 pulsation cycles for these two quantities, and results are shown with
red and blue dotted lines, respectively. A clear separation is observed in both cases,
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suggesting the larger enhancement in Nu compared to the increase in Cf , because
of the acoustic excitation. For case D1, TEF = 1.100 and SEF = 1.050, while for
case D2, TEF = 1.082 and SEF = 1.038. The offset in case D1 is slightly more
pronounced; however, this may fall within the time averaging uncertainty.

One may conclude that, by increasing the domain length, at least within the range
studied in the present research, the impact of acoustic pulsations on the near-wall heat
and momentum transport remains relatively intact, as long as the excitation frequency
is adjusted accordingly.
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