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SUMMARY

In this paper, nine adaptive control algorithms are
compared. The best two of them are tested experimen-
tally. It is shown that the Adaptive FeedForward
Controller (AFFC) is well suited for lcarning the
parameters of the dynamic equation, even in the
presence of friction and noise. The resulting control
performance is better than with measured parameters for
any trajectory in the workspace. When the task consists
of repeating the same trajectory, an adaptive look-up-
table MEMory, introduced and analyzed in this paper, is
simpler to implement and results in even better control
performance.

KEYWORDS: Adaptive controllers; Nonlinear; Control algo-
rithms; Trajectories; Parameters.

1. INTRODUCTION

Many new manipulators, for example fast and light
parallel manipulators,'* have highly nonlinear dynamics.
These dynamics have to be compensated in order to
increase the precision of such robots. The rigid body
model equation is mostly used as compensator. Onc
generally determines its parameters by calculating them
from the CAD map. If a higher precision is required, one
normally disassembles the manipulator and measures the
lengths, masses and moments of inertia of the different
mechanical parts.

For about 10 years, many schemes have been proposed
for learning the nonlinear dynamics of manipulators
during the movements in a non-invasive way, and
compensating for it.*'* These schemes arose not only
from robotics, but also from the field of neural networks,
motivated by the adaptive properties of human
movements.' In these schemes, the robot is controlled
using linear joint feedback controllers, and the error
during motion is used to dectermine a model of the
dynamics. The mathematical propertics of these adaptive
controllers have been cxtensively studied.'”'*

Despite this intense activity, only a few implementa-
tions have been performed, and to our knowledge there
exists no industrial application. However, the results of
some implementations are very promising.'>'” Our aim is
to compare different nonlinear adaptive controllers
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developed so [ar
implications.

An adaptive control scheme is worth using instead of
the usual dynamic compensation technique (i.e. using the
rigid body model equation and measuring its parameters)
only if

and to evaluate their practical

* it is simple to implement,

¢ the control is stable and robust to noise,

* it is able to identify parameters varying over time,
e.g. friction,

* the learning is fast, and

* the resulting control performance is similar or better
than with the conventional technique.

In this paper, we study how representative adaptive
control schemes proposed in robotics and neural network
fulfill these conditons. Two tasks will be considered:
(i) improving the control of arbitrary trajectories; and
(ii) improving the control along a repeated trajectory. It
is obvious that the first task is useful, but the second is
also of great practical interest: most manipulators used
for assembly or paletisation repeat a single movement.

As many effects must be neglected theoretically or in
simulations, experiments will be performed on the two
best schemes. In particular, their ability for identifying
the friction and their robustness to noise will be
examined. The experiments are performed using a
parallel manipulator (Figure 1) with highly nonlinear
dynamics and coupling between the axes.

Fig. 1. Photograph of the manipulator used to test the AFFC
and MEMory controllers. Each of the 6 limbs is 0.12 [m] long.
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The paper is organized as follows: in section 2, nine
control algorithms will be briefly presented, compared
and evaluated, based on results from the literature. The
best algorithm for compensating the dynamics for
arbitrary trajectories, the Adaptive FeedForward Con-
troller (AFFC), will then be tested experimentally in
section 3. The best algorithm for compensating the
dynamics along a repeated trajectory, the MEMory, will
be examined in section 4. Its mathematical properties
will first be shown, and experiments will be performed.
Combining MEMory and AFFC will also be investigated.

2 COMPARISON OF CONTROL SCHEMES

Most industrial manipulators are controlled using linear
feedback controllers. The simplest possibility is to use a
proportional derivative controller at each joint. This
gives the control law

T=Trp = DS, s=é+ AC), (1)

where e =q, — ¢ is the error vector between the desired
and actual joint positions, D and A are positive definite
quadratic matrices (Figure 2).

In order to improve the trajectory tracking, the
manipulator dynamics have to be compensated. In the
adaptive control paradigm, this compensation is learned
during the motion.

Most adaptive controllers are determined by the three
following features:

¢ The model of the inverse dynamics used in order to
compensate for the dynamics.

* The control structure, i.e. how the input, feedback
and output are related together.

» The adaptation criterion used to modify the model
and improve the control.

In the subsection 2.1, the different models, control
structures and adaptation criteria will be described. The
controllers will be defined in subsection 2.2 and
evaluated in subsection 2.3.

2.1. Characteristics of nonlinear adaptive control schemes
2.1.1. Possible models of the inverse dynamics. All the
models are determined by a parameters vector or weights
vector w, and can be modified by changing the value of
its coefficients. The learning law is

1’,{)ncw = Wold + AW; (2)
where Aw is the correction term.
There are principally two kinds of models: the

parametric one, established using physical knowledge and
defined by a few parameters which have to be identified,

(qd, d) (e, &) s T (9, q)
e i

0, @

Fig. 2. Functional scheme of a feedback controller. ¢ =g, — q is
the error between desired and actual joint positions, s =é + Ae,
F is the dynamics of the plant, 7 the torque, D and A are
positive quadratic definite matrices.
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and the nonparametric one, in which the function from
the state (q, ¢, §) to the corresponding torque, or the
torque along a trajectory, is stored in a memory.

Parametric models: The most obvious parametric model
of the dynamics of robot manipulators is the rigid body
model equation. The most important features of this
model are presented in this paragraph.

The dynamic equation of a system of rogid bodies can
be described by the equation

T=H(q)j + C(q, 4)4 + G(q), (3)

where g is the vector of joint angles.'® In this equation,
H(q)§ is the inertia term, C(gq,q¢)4§ the torque
corresponding to Coriolis- and centrifugal forces, and
G(qg) the gravity term. If one considers that each joint i
has a friction b,(¢;) modeled by

bi(4;) =b;1q; + by sign (¢,), 4
then the system’s dynamics can be described by

t=H(q)j + C(q, §)§ + G(g) + B(9),
B(G)=(b1(41), - - -, ba(gn))".

The first term of equation (4) is named viscous friction
and the second term kinetic friction."®
Equation (5) can be written as a linear function

=g, q,4)w (6)

of a parameters vector or weights vector w.'""'"?" The
coefficients of this vector are (nonlinear) combinations of
the lengths, masses and moments of inertia of the
different links and joints. The coefficients of the dynamic
matrix W(q, ¢, ¢) are (nonlinear) functions of ¢, ¢ and §.
As will be seen below, this linear representation of the
dynamic equation permits to identify its parameters on a
simple way.

)

Nonparametric models: For storing the function from a
state (g, ¢, ¢ ) to the corresponding torque or the torques
along a trajectory, any memory with continuous input
and output can be used. Possible choices are then a
simple look-up-table,**?' radial basis functions net-
works,” a CMAC neural network,” a feedforward neural
network.”

2.1.2. Control structures. Amongst the many nonlinear
control structures proposed so far, two typical and

successful structures are the feedforward and the
computed torque.*** We will now describe these
structures.

The feedforward structure is depicted in Figure 3. In
this structure, the model of the inverse dynamics is used
in order to compute the torques necessary to realize the
desired trajectory. The corresponding control law is

T= ﬁil(qd’ qd) qd) + Tlv‘lx‘; (7)
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Fig. 3. Functional scheme of a feedforward controller.
e=q,—q is the error between desired and actual joint
positions, s = ¢ + Ae, F the dynamics of the plant, F~' a model
of the inverse dynamics, 7 is the torque, D and A are positive
definite matrices.

where F~'is a model of the inverse dynamics.* In this
scheme, the linear feedback 7, is used only to correct
for unmodeled dynamics.

In the computed torque control structure, not the
torque, but the acceleration is corrected by linear
feedback controllers (Figure 4). The control law is then:

T: Fﬁl(q’ q" q*)’
s=¢é+ Ae,

q* = qd + DS}
€= CI(] - q.
This scheme presents the advantage that the feedback
control is performed homogeneously, i.e. does not
depend where in the space (g, 4, ) the control is
performed.

Several variations of these two control structures will
be encountered in the description of the nine controllers
below.

®)

2.1.3. Different adaptation criteria. The model of the
inverse dynamics can be modified in at least two different
ways: directly, by improving the model identification or
indirectly, by reducing the tracking error. Thus, the
adaptation criterion is either the minimization of the
identification error (corresponding to the ‘“Model-
Reference Adaptive Control”!”> or to the “inverse
dynamic learning”?®) or the minimization of the tracking
error (corresponding to the “Self-Tuning Control”"” or
to the “feedback error learning””).

Let us now give the equations for the correction terms
in the case that the dynamic equation is used as a

(qd, 4d, 4a)

(qd, Gd)

(e, &) 1 (a.9,9)

Fr>F

(9, @ (9, 0)

Fig. 4. Functional scheme of the computed torque control.
¢e=q,—q is the error between desired and actual joint
positions, s =¢ + Ae, F represents the plant dynamics, F ' a
model of its inverse dynamics, D and A are symmetrical

positive quadratic definite matrices, and 7 the motor torques.

* Over a variable indicates that this variable is an estimation of
the real one.
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(parametric) model. In this case, the identification with a
least-square estimator corresponds to the minimization
of

f lef*dr, e=1-Ww, 9)
0

where 7 is the actual torque. In order to approximate 7,
the trajectory is driven using only a linear controller and
the corresponding feedback is used as 7. Minimization of
equation (9) leads to the correction term

Aw = —P(OW" (1) Ty, (10)
with

P@”Efqﬂwm,
0

Trp = DS, s=é+ Ae.

When the dynamic equation is used as model, the
minimization of tracking error is realized using the
gradient descent of the tracking error function

E=(1—14) (11)

where 7 is in the linear form (6). This gives the
correction term
Aw =TW’s, (12)

where I is a positive definite matrix composed of the
learning factors. Obviously equations (10) and (12) are
similar, but the calculation of equation (12) requires
much less computation than those of equation (10).

2.2. Definition and properties of the controllers
The different controllers are defined in Table I. These
are, in our opinion, representative parametric and

Table 1. Description of the different controllers compared in

this section. The first six controllers on the top use the rigid

body model as (parametric) model of the inverse dynamics, the
others a nonparametric one

Inverse Control Adaptation
dynamic structure criterion
model minimization
of the error by:
L-S*'"  rigid body feedforward  model
equation
Cr88° ridig body  computed tracking
equation torque
SI187' rigid body  modified tracking
equation feedforward
AFFC"*  rigid body  feedforward  tracking
equation
SI91' rigid body  modified tracking
equation comp. torque
CAC"  rigid body  modified tracking & model
equation comp. torque :
CMAC® CMAC feedforward  model
neural net
188 teedforward feedforward  tracking & model
neural net
MEM table feedforward  tracking
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nonparametric nonlinear adaptive controllers. We
describe them below in more detail:

2.2.1. Parametric controllers. LS The least-squarc scheme
is the first non-invasive scheme that was proposced for
identifying the parameters of the dynamics cquation.*'’
It corresponds to the equations (9) and (10). Both the
feedforward control structure (equation (7)) and
computed torque control structure (equation (8)) can be
used in this scheme. It has been shown theoretically that
this scheme is robust to noise."”

Cr88: Craig® introduced the first adaptive controller
bascd on the minimization of the tracking error. The
control structure used is the computed torque, which
gives the control law

t=F""(q, 4, 4*)=H(q)j* + C(q, §)G + G(q) + B(§)

=W(q, 4, G¥)w, §*=ij+ Ds. (13)
The correction term is
AW = l‘ly'/‘(q’ (J; q *)H lTI"I% (]4)

The additional H ™' (additional relative to equation (12))
comes from the fact that in the computed torque
structure, the lincar [eedback providing stability acts at
the acceleration level and not at the torque level. The
calculation of H' ' rcquires that the corresponding
starting parameters be close to the real one. Exponential
stability during learning has been proved for this
controller.

SI187: Slotine and Li designed thc controller SI187'? in
order to deal with the two drawbacks of Cr88: SI87 can
use arbitrary starting values for the parameters, and the
actual acceleration is not required. The control law is
given by
t=H(q)j, + C(q, 4)d, + G(q) + B(g) + Ds
= \p(q’ (“}) q” (IV)W + DS’ (15)

with the reference position
{
q,.Eq,,+AJ edrt (16)
0

used to reduce the steady state error. The corresponding
correction term is

Aw =1'W"(q, 4, q,, i,)s. (17)

We note that equation (17) is simpler than cquation (14):
the calculation of H ' is not needed.

AFFC: Parallel to the developments of LS, Cr88 and
SI87, Kawato™?® proposed a neural network which
corresponds to the Adaptive FeedForward Controller
(AFFC) of reference 11. It used the control law

T= F l(qu’ qus éjd) + T + af
= Ip(q(/) qu) q(/)W + DS + af

= ]:[(q(l)éj(/ + é(qui qd)qd + G((J(/) + E(qu) + Ds + af"
fle,é)=e, a>0. (18)
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The correction term is given by

Aw = Flprr((ld; Gar Ga)Trn (19)

The stability during learning and the robustness to noise
have been shown analytically.''

S191: Slotine and Li proposed another scheme which is
similar to SI87, but whose control structure is close to the
computed torque structure. The control law is

T=H(g)§, + As)+ C(q, §)4, + G(q) + B(¢) + Ds

=W(g, 4, 4., G, s)w, A=Al sé+ Ae (20)
Le.
T H@T+ Cla e+ G+ B
G, =q,+Ae, §*=q,+21é+ Ne=¢,+ Ds.
The correction term is given by
Aw =TW"(q,4q, g, i, S)s. (22)

As for SI87, the drawbacks of Cr88 are corrected in this
schemc (this is also true for the controllers introduced in
references 13, 27). However, as appears in equation (21),
the control structure is very similar to computed torque,
and in fact exponential stability can also be proved for
this scheme."”

CAC: The Composite Adaptive Controller of Slotine
and Li" combines the minimization of tracking error
with the minimization of identification error, and possess
the theoretical advantages of both methods, i.e. the
stability during learning and the robustness to noise. The
control law is equation (15) and the correction term is
given by

Aw =P(6)(W's + W'R(1)e), (23)

where e is defined in equation (9) and R(¢) is the factor
controling the relative importance of the tracking error
to identification error in the minimization process. The
calculation of this correction term is computationally
intensive and must generally be performed off-line.

2.2.2. Nonparametric controllers

CMAC: The CMAC neural network® is formed by a
preprocessing and a linear network. The preprocessing
consists of a geometrical partition corresponding to
virtual memories, which are projected to a smaller table
of physical memories using a hash function. These
memories in which are stored the weights of the linear
nctwork, are adapted using the “‘perception rule”.?
Albus used the CMAC neural network for storing the
dynamics of manipulators.’ In his controller, the input is
(9.4, d) and the teacher for the output T = T + Tpy.
A CMAC model of this inverse dynamics can also be
adapted by minimizing the tracking error.”

J88: Jordan™ proposed to store the dynamics in a
“feedforward ncural network” or “multilayers Per-
ceptron” using the “backpropagation learning rule”.” In
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a first step, the dynamics are stored, thus the input is the
motor torque vector 7 and the teacher for the output the
resulting trajectory (g, ¢, ¢). In a second step, the inverse
dynamics function can be stored, i.e. (¢4, 44, ) is used
as input and 7 as teacher for the output.

MEMory (MEM): To store the dynamics of a manipu-
lator in a table generally requires a too large table, and a
too long time for learning. However, when the task
consists of repeating a single trajectory, it is possible to
correct for the dynamics only along this trajectory.”’ In
designing the MEM, we tried to realize this in the most
simple way. We used a feedforward control scheme and
the correction term

Aw =T1,,. (24)

This scheme will be described in more details in section
4.

We note that all the nonparametric models were used
so far only with a feedforward control structurc. They
could however be used with computed torque structure
also.

2.3. Comparison and evaluation of the controllers

2.3.1. Compensation of arbitrary trajectories. We first
discuss the performances of the controllers for learning
the dynamics in the whole space (g, ¢, §).

Nonparametric versus parametric schemes: All the con-
trollers defined above except MEMory can in principle
be used for this task. The nonparametric schemes had
the advantage that they can be used for arbitrary
dynamics, i.e. also when the plant is difficult to model by
a dynamic equation. However, we showed by simulating
a two-link planar (SCARA) manipulator that CMAC
and J88 have much worse performances than methods
using the rigid body model equation.’

From the theoretical point of view, if one can prove
the convergence of nonparametric model based control
schemes (see section 4.2), no result exists concerning
their stability. For the parametric schemes, strict stability
and robustness results have been proved.>'!!>1¢

In summary nonparametric methods should be avoided
for storing the dynamics for arbitrary trajectories. This
means that they should be used only if the parametric
methods fail.

Minimization of the wmodel errorfof the tracking
error: From the parametric methods, those based on the
minimization of the model error (i.e. LS, CAC) require
an intensive computation and must gencrally be
performed off-line. In contrast, by the methods based on
the minimization of the tracking error (AFFC, SIg§7,
S191), the learning requires only a few additional
computation (see equation (12)) because the dynamic
matrix W must be computed anyway for compensating
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the dynamics. Cr88 requires more computation than
these three. AFFC, SI87 and S191 are thus the schemes
which have the largest chance to be used on-line, which
is critical for identifying parameters varying over time.
We note that compact formulations have been found for
these algorithms. 7"

Concerning the convergence against the true model,
the schemes based on the minimization of the model
error (Cr88, CAC) are by nature superior than those
based on the minimization of the tracking error.
However, the mathematical conditions for the conver-
gence in the latter schemes are similar to those on the
first schemes, and not much stronger:'>*' they all depend
on the “excitation level” of the trajectory, i.e. on the
condition number of the matrix fW'W along the
trajectory. The very good theoretical properties of CAC,
which combines the advantages of the minimization of
the tracking and model errors, do not justify the
intensive computation required.

Comparison between the schemes minimizing the tracking
error: Finally, Whitcomb et al."’ compared experimen-
tally AFFC, SI87 and an improved version of Cr88. They
showed that nonlinear controllers clearly out perform
linear controllers, and adaptive nonlinear controllers out
perform their nonadaptive counter-parts. They also
found that the simplest one, the Adaptive FeedForward
Controller (AFFC), has the best control performances.
We verified these results in a preliminary experiment.*
This is probably due to the fact that with the AFFC the
dynamics are computed using the desired trajectory and
not the (noisy) actual trajectory.

Conclusion: The nonparametric schemes seem ill suited
for storing the dynamics over the whole space (g, ¢, §).
Amongst the parametric schemes, the simplest one
(AFFC) has as strong theoretical results regarding the
stability as the other methods, and experimentally better
performances.

2.3.2. Compensation along a repeated trajectory. Para-
metric controllers require {inding the dynamic equation.
This can be a rather complex task, particularly for
parallel manipulators.”’ Parametric methods also require
an ‘“‘exciting” trajectory. When the task consists of
driving a repeated trajectory, it is possible that this
trajectory does not excite the whole dynamics, and that
the dynamics must be learned along another trajectory.
In contrast, nonparametric schemes simply store the
motor torques along the repeated trajectory. They are
therefore ideal candidates for this task.

We showed in simulations that, among the nonpara-
metric methods, MEMory is more robust to noise than
CMAC and J88 and about so robust as the AFFC.
MEMory also is the most simple of the three nonpara-
metric methods studied.

2.3.3. Additional experimental tests required. The analy-
sis of previous subsections suggests that: (i) The AFFC is
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the most suitable existing adaptive controller for learning
and compensating the dynamics in arbitrary trajectories;
(i) MEMory is the simplest controller for compensating
the dynamics along a repeated trajectory.

In order to complete the analysis of Whitcomb et al."
and test the practical utility of the AFFC for identifying
the dynamics of manipulators, several additional experi-
ments have to be performed:

e The control performance after learning must be
tested on trajectories different than the trajectory
used for learning.

It must be examined if the AFFC is able to identify
the friction (the friction is varying over time and
difficult to identify).

* The robustness to noise must be experimentally
investigated. Most of the real plants have noise, but
this is difficult to simulate realistically.

We performed these tests and will report the corre-
sponding results in section 3.

In section 4, we will investigate the mathematical
properties of MEMory and test experimentally its ability
to identify a plant with friction, the resulting control
performance and its robustness to noise. We will also
examine how MEMory and AFFC can be combined.

3. EXPERIMENTS WITH THE AFFC

3.1. Experimental apparatus

The manipulator used for the experiment is the planar
parallel manipulator shown in Figure 1. This manipulator
is driven by two direct drive DC-motors and can move
with high speeds, inducing highly non-linear dynamic
effects and coupling. The joint positions are measured by
two optical encoders. The robot is controlled by a
VME-68040 board enabling a sampling frequency of
333.3 Hz.

Nonlinear controllers

If the velocities are differentiated from the encoder
position, this causes a large noise (Figures 5 and 13). In
most of our experiments, the joint velocities were instead
determined with velocity sensors using potentiometers
and an analog differentiator.”” In order to test experi-
mentally the robustness to noise of the learning
algorithm, some trials used the velocities differentiated
from the encoder position.

3.2. Model of the manipulator
The manipulator is schematized in Figure 7. Its dynamic
equation is given by equation (5) with 32

=" 1,
hay hy
hll = Jmot + 3J + lzm(,' + %‘lzm7
hin = hyy = —cp(me + 3m),

By =Joor + 3 + P(me + my) + 5Pm,

sp=sin(q, + q»),

, 0 Cg
Cla. )= [cq 0
1

(25)
ca=cos (g1 + q2),

]) C = 12512(”1(1 + %m)y

bi1g, + byysign (CII)]

G(g)=0, B(g E[
@) @) b11G, + by sign (§,)

{, m and J are the length, mass and moment of inertia of
each of the 6 links which are considered to be equal
(Figure 7). m is the mass of the end effector, J,,, the
moment of inertia of each of the 2 motors, and m, is the
mass of the plate located at the right elbow. B(q)
corresponds to the friction at the motors, modelled as
kinetic and viscous friction. The physical parameters can
be found in Table II.

By measuring the velocity obtained with different
constant motors torques (Figure 6), it was verified that

velocity [m/s], numerical (-.) and analog (-) derivative

. " - M
5 =
0_2_ ................... .................. N B
04 ...........................
06k vvvvvv ........................
08F L D R
I 1 ] 1 | 1 l 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time [s]

Fig. 5. Comparison between the joint velocity obtained with the velocity sensor (dashed-dotted line) and by differentiating
numerically the position measured by the encoder (continuous line).
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0.02 T T =1 T
0.015 -
0.01

0.005}-

joint1: torque [Nm]

-0.005

-0.01

-0.015 ) i 5 !
30 40 30 20 -10

velocity {rad/s]

Fig. 6. Friction torque of one motor of the manipulator measured using a velocity controller. The other motor has a similar friction.

the modeled friction is similar to real friction. However,
the friction parameters b; vary greatly, depending on the
moment the measurement is performed, i.e. if the motor
was running a long time or not.

The linear representation of our manipulator used in
the experiments is given by equation (6) by

5'12‘1%“'12672"'51'1 312(1'%"02(']'14?(12
%(Slzqg”clzqz)‘l'%fil %(‘YIZq%_C12q1)+Z¢(12
G G2
W i 0
i 0
sign (d) 0
0 q»
] 0 sign (d2) ]
(26)
end effector
X

2 motors

Fig. 7. A top view of the manipulator used to test the nonlinear
adaptive controllers.
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and

w= (lzmc, lzm, 37+ Taots lzm/\, b, bz, by, bzz)'["

3.3. Learning strategy and experiments
A periodical learning trajectory was used. It is formed of
six smoothly joined fifth order polynomials. The
corresponding path is shown in Figure 8. The maximal
velocity is about 4.5 rad/s and the maximal acceleration
about 45rad/s>. The mean condition number along this
trajectory is relatively high.*> Thus, this trajectory is
likely to be favorable for the identification of the
dynamics.
We use as matrix of learning factors

33,34

s Vx)- (27)

In this equation, the ;>0 are chosen so that all the
parameters w; converge approximately at the same time,
and

I'=¢-diag(y,,...

E=E+ &, (28)

Table IIL. Comparison between the measured and learned
parameters. The measured length of each limb is 0.132 m. All
the units are SI units: mass in kilograms, lengths in meters, . ...
The 0?°s indicate that the value of the dynamic friction could
not clearly be identified using the measurement (see Figure 6)

Weight Corr. phys. par. Measured Learned
w107 Pmg. 1.21 115
w, 107 m 1.50 1.03
wsy 10° 3 +Joe 8.30 1.32
w, 10° ’m, 2.50 3.33
ws 10° by 0? 8.28
w, 10° b 6.50 8.62
w, 10° b, 0? 2.88
wy 10° b, 10.00 5.65
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y [m]

x [m]

-0.1 -0.05 0.05 0.1

Fig. 8. The trajectory used for identifying the dynamics.

with &, >0 decreasing exponentially and £,>0 a small
constant. An alternative but computationaally more
requiring choice is

,
l=¢-P, P zf W dr, (29)
0

This choice should be good, as it corresponds to the
least-square solution (see equations (10) and (12)).

We showed that the last term «f (e, é) of the control
law (18) is not necessary for assuring the stability and
convergence provided that D > C, i.e. if the matrix D
multiplicating the feedback is much higher (in norm)
than the matrix of the velocity dependent forces C.** In
this case, the term af is only adding noise. In preliminary
experiments, we tested both with and without this term,
and found a better performance without it. We therefore
chose to neglect it.

Beginning without knowledge of their value (w =0),
the parameters are learned along the trajectory of Figure
8. The control performance without and with noise are

Nonlinear controllers

then tested along the learning trajectory and other (test)
trajectories. As adaptive control is particularly attractive
for parameters varying over time, we finally measure the
time required for learning, when only the friction or the
mass of the end-effector are identified.

3.4. Results

* The position and velocity errors decrease to the
minimal value in about 5sec (Figure 9). The 8
weights convege to their true value in about 1 min
(Figure 10). The learned parameters are of the same
order than the measured one, but have different
values (Table 1I).

» With the measured and learned dynamics, most of
the feedback error is corrected by the feedforward
prediction (Figure 11). The errors in position and
velocity are slightly smaller with the learned
parameters than with the measured ones (Table III).
This holds true for the learning trajectories and for
arbitrary test trajectories. This implies in particular
that the friction has been identified well.

» The open-loop contol (i.e. without the feedback) is
good (Figure 12). The open-loop performances are
better with the learned than with the measured
weights,* for the learned trajectory as well as for
the test trajectories.

» The noise does not disturb learning. The position
and velocity errors decrease as quickly without
noise. The identification of the parameters needs a
slightly longer time. The resulting control is also
good (Figure 13).

« When only the friction is identified, the convergence
time is about 40 sec, i.e. 2/3 of the time needed to
learn the whole dynamics.™

* Identifying the mass of the end effector only needs

0.03 T T

0_025 Lo , ................ ......

0.02¢ -

joint1: position error

0.005

Q.01 v R, .....

1

o ; ;
0 50 100

1
150 200 250

time [s]

Fig. 9. AFFC: Evaluation of the position error [, e} of joint 1 during learning. The curve corresponding to joint 2 is similar.
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1 ................................
0 . .
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Fig. 10. AFFC: Evolution of the four first weights during learning (the other curves are similar). The identification is completed in
about 1 min. Note that it requires about 10 times longer to complete the adaptation of the weights than to reduce thr tracking error.

about 0.7 sec, i.e. about 100 times faster than for the
whole dynamics (this time could probably still be
reduced).”

In conclusion, the AFFC was able to learn the dynamics
of our parallel manipulator fast, even in presence of a
large noise. The friction could be identified well, and the
learned dynamics compensated the real dynamics for

arbitrary trajectories better than when the parameters
were measured, i.e. the technique commonly used.

4. MEMORY: STORING THE DYNAMICS
ALONG A REPEATED TRAJECTORY

If a manipulator is well controlled by a linear feedback
controller, it approximately follows the desired trajec-

feedforward:-, actual..., feedback:-.
S o © © o o
N —_ o - N w -y

o
w

S
o

joint1: torques [Nm].

o

tn
o
oL
n
L

1.5 2 25 3
time [s]

Fig. 11. AFFC: Resulting torques after learning along the learning trajectory. Continuous line: learned feedforward torque; dashed
dotted line: feedback torque; dots: total torque. The results are similar for the other joint.
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Table 111. Errors along the learning trajectory and along a test
trajectory with the merasured and the learned dynamics. The
test trajectory used here is depicted in figure 12.

Learning trajectory Test trajectory

Measured Learned Measured Learned
Error parameters parameters — parameters parameters

102fe% 4.0 3.8 1.5 1.4

1()2fe§ 2.8 2.7 1.0 1.0

107! Je’% 7.5 7.1 3.1 3.0

107! Je% 5.5 5.4 21 2.1

10? f (i”’"‘)z 2.0 1.9 45 3.7
FI1

10? f (i”’”)z 27 22 39 3.6
Fr2

tory. This means that the feedback torque approximately
correspond to the manipulator dynamics. The idea of the
MEMory controller is, by a repeated movement, to store
the feedback torque and use it as feedforward torque for
the next run. Because the feedback torque corresponds to
the manipulator dynamics, the new feedback contribu-
tion should be smaller.

As feedback always incorporates a delay, it does not
correspond exactly to the manipulator dynamics. To
avoid unstability,*>only a part of this feedback signal is
memorized at each step (Figure 14).

Nonlinear controllers

4.1. Description

Let us now describe the algorithm mathematically. We
model the irreproducible part of the manipulator
dynamics by a random noise term

k+M
N(k),k=1---K, sothat IM, > N(m)=0Vk
m=k—M
(30)
The total torque 7 is then given by
(k) = tp(k) + N(k) Vk, (31)

where 7p(k), k=1--- K, is the reproducible part of the
torque.
The control law for the i-th run is

r(i)(k) = rSfl}.(k) + TSf},(k) Yk, (32)
where

tiyk), k=1---K (33)

is the torque function for the i-th run of the trajectory
and k the discrete time index. From the equations (31)
and (32), it follows that

tih(k) = Tp(k) + N(k) — Ti(k)  Vk. (34)

We define the learning rule as follows:

Vk=1, tik)=0,
. . keM (35)
ol D) = k) + ey 20 Tiia(m),

where A, 0= A =2, is the learning factor. The sum in (35)

1.5

-

position [rad] qd:- g:--
o
W

time [s]

Fig. 12. AFFC: Open-loop movement along a trajectory different from the learning trajectory. Continuous line: desired trajectory;
dashed line: actual trajectory.
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o o o
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joint1: torques [Nm), feedforward:-, actual....
[

-0.1

-0.2

-0.3 :

-0.4

0% 05 1 15 é 255 3
time [s]

Fig. 13. AFFC: Resulting torques after learning along the learning trajectory, when the system was disturbed by noise. Continuous
line: learned feedforward torque; dots: total torque. The feedforward is in the middle of the noisy total torque curve. The results of

the other joint are similar.

smoothes the feedback signal and eliminates the noise
(Figure 15):

k+M )
IM + 1 EM Tiip(m)
/\ k+M k4+-M k+M
= Tp(m) + N(m) — T(f),~m>
2M+1<§M sm)+ 3 Nem) = 5, wm)

= A(zp(k) — TH(K)).

The first equality results from equation (34), the second
from equation (30) and the fact that 7,(k) and t%).(k) are
almost linear over the time interval [k — M, k + M].*
Note that the sum in equation (35) constitutes a
noncausal filter (Figure 15). We did not use a common
(causal) filter (as for example a filter first order [6] or
second order, see further reference 21), because this
would induce a delay which can cause instability.*

* This assumption is obviously not verified in the isolated points
where 7, is not continuous. At these points, the sum over the m
points smooths the torque signal p,.

time

> Ter

Fig. 14. The control scheme of the MEMory controller. MP
stands for motion planner, e =g, —¢g is the error between
desired and actual joint positions, F represents the plant
dynamics, 7., the memorized torques stored in the table, D and
A are symmetrical positive definite matrices, and 7 the motor
torques. A, 0 <A <2, is a multiplicative learning factor.
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4.2 Mathematical properties
From equations (35) and (36) an iterative equation for
the feedforward torque can be derived:

iy (k) = Tii(k) + Ap(k) = Tf(k)).

By induction, we arrive at the result

(37)

TiHk) = A 2] A =AY1p(k) = (1= (1= A))Tp(k). (38)

j=0
It follows that
(39)

i.e. the memorized torque converges to the reproducible
part of the dynamics when the movement is repeated,
and the feedback controller then corrects only for the
irreproducible part of the dynamics.

We note that the above proof of convergence can also
be used with slight changes as convergence proof for the
CMAC.?

D1, i

4.3. Experiments and results

The above algorithm has been implemented with the
same manipulator as in section 3 and along the same
trajectories. The robustness to noise has been again
tested using the numerically differentiated velocity.

The algorithm is so trivial that the implementation was
realised very quickly. The convergence of the error to its
minimum value is about as fast as with AFFC (about
30sec). The resulting position and velocity errors were
approximately twice smaller. We do not show here many
figures, because they are similar to these for the AFFC.
We only show in Figure 16 the astonishing open-loop
performance, which prove that a better model of the
inverse dynamics has been learned (compare Figure 16
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Torque

-3t 1 1
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0 50 100 150

1 L 1 1 |
200 250 300 350 400

Time step

Fig. 15. MEM: Torque of one joint measured along a movement (dotted line), and two filtered versions: with a second order
Butterworth filter (continuous line) and a noncausal filter like in our algorithm. The measurement has been performed with a
manipulator similar than those of Figure 1, but bigger (limb length: 80 cm) and with higher compliance.

with Figure 12). Further, the learning is not disturbed by
the noise (Figure 17). In the presence of noise, the
adaptation is about twice slower.

4.4. Hybrid controller

Because the MEMory controller provides a better
tracking than the AFF controller, there probably is a
reproducible part of the dynamics which was identified
by MEMory but not modelled in the rigid body equation.

Is it yet possible to identify this part using MEMory after
an AFFC has been used to learn the dynamics? Would it
lead to better results compared with the MEMory only?
In the resulting hybrid controller, the feedforward
compensator is composed of a model incorporating the
rigid body equations and a look-up-table, and the
feedback part is given by the feedback controller. This
corresponds simply to use MEMory when the dynamics
are already compensated with the rigid body equation.

1.8 T T
1.6F

1.4

o o =
o [ - o

position [rad] qd:-, q:--

©
Y

1.5 2 2.5 3

time [s]

Fig. 16. MEM: Position function of one joint for a movement performed open-loop (the other joint shows a similar function). Note
that contrary to the corresponding figure of last section, the error increases very slowly. This shows that the MEMory has stored a
better model of the dynamics than the AFFC.
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joint1: position error
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Fig. 17. MEM: Position error [, e; during learning with a noisy velocity signal.

At the beginning the manipulator is controlled uniquely We implemented and tested the hybrid controller. It
by the feedback controller. Then the parameters of the  resulted that:
rigid body model are learned along an exciting trajectory.

Finally, for a repeated movement, the remaining » The additional MEMory is able to improve the
reproducible dynamics are stored in the adaptive look- control relative to the learned rigid body model.
up-table. This means that the reproducible part of the

A similar hybrid controlier was proposed and dynamics not modelled by the rigid body dynamic
simulated in reference 6, but to our knowledge no equation has been identified.
implementation of this method was done. Another * Most of the systematic errors have been eliminated
adaptive controller using a model and a look-up-table (compare for example Figure 11 at time 0.6 sec with
was proposed in reference 4. Figure 18 at time 2.8 sec).

0.5 T T T T T

.., feedback:-.
o o =4 o
— N w S

o

S
o

S
w

joint1: torques [Nm), feedforward:-, actual:.
=

©
»

o
o

1.5 2 2.5 3
time [s]

=}
o
(4}
~

Fig. 18. MEM: Resulting torques after learning with the hybrid controller along the trajectory of Figure 8. Continuous line: learned
feedforward torque, dashed dotted line: feedback torque, points: total torque. The results are similar for the other joint.
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* The remaining errors are of the same order of
magnitude than when using MEMory only. The
control performances are also similar. Thus it is not
necessary to identify the dynamics in a first step or
even to use a rigid body dynamic model,
contradicting the claim of reference 4.

5. CONCLUSIONS

In this paper we analyzed practical issues critical for the
application of nonlinear adaptive control in robotics.
Based on results found in the literature, we selected the
best algorithms, which we then tested experimentally
with a 2-dof planar parallel robot.

The Adaptive FeedForward Controller (AFFC)''
was selected as the best algorithm for learning and
compensating the dynamics in arbitrary trajectories. It
was shown that the AFFC is stablc and robust to noise,
enables identification of the friction, and results in better
control performance than when the parameters of the
dynamic equation are measured. In addition, the AFFC
requires a very few computation and is non-invasive. It is
thus currently the most practical way to perform the
dynamic calibration of robots.

If the task consists in repeating a single movement, it is
not necessary to derive the rigid body dynamic model
and idenlify its parameters. It is simpler to use the
adaptive look-up table MEMory introduced in this paper
for learning and compensating for the dynamics along
the repeated trajectory. An advantage of MEMory is that
it can also be used when the dynamics are difficult to
model with a dynamic equation. It was shown that this
controller is robust to noise and results in an almost
perfect compensation of the dynamics.

We have recently extended the above methods to
arbitrary manipulators,” and successfully applied them
to parallel 3-dof*® and 6-dof” manipulators. Together
with the above results, this suggests that AFFC -and
MEMory are mature enough to be used in industrial
applications.

ACKNOWLEDGMENTS
Many thanks to B. Gruehl, J. Luthiger, M. Nuttin, A.
Schmid and B. Sprenger for their valuable contributions.

References

1. A. Codourey, “Contribution a la commande des robots
rapides et précis, application au robot Delta a entraine-
ment direct” PhD thesis (Ecole Polytechnique Fédérale de
Lausanne, 1991).

2. M. Honegger, A. Codourcy and E. Burdet, “Adaptive
control of the Hexaglide, a 6 dof parallel manipulator”
IEEE International Conference on Robotics and Automa-
tion (1997) pp. 543-548.

3. J.S. Albus. A new approach to manipulator control: the
cerebellar model articulation controller. J. Dynamical
Systems, Measurements, and Control 97, 220-227 (1975).

4. C.H. An, C.G. Atkeson and J.M. Hollerbach, Model-Based
Control of a Robot Manipulator (MIT Press, Cambridge,
Mass., 1988).

5. E. Burdet and J. Luthiger, “Three learning architectures to
improve robot control: a comparison” 3rd Furopean
Workshop on Learning Robots, 8th European Conference
on Machine Learning (1995).

6. 1.J. Craig, Adaptive Control of Mechanical Manipulators

https://doi.org/10.1017/50263574798000150 Published online by Cambridge University Press

9.

10.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. L.L. Whitcomb,

. R.  Shadmehr

Nonlinear controllers

(Addison-Wesley, Reading, Mass., 1988).

D.M. Gorinevsky, “Modelling of direct motor program
lcarning in fast human arm motions” Biological Cyber-
netics 69, 219-228 (1993).

. M.I. Jordan, T. Flash and Y. Arnon, “A model of the

learning of arm trajectories from spatial deviations™ J.
Cognitive Neuroscience 6(4), 359-376 (1994).

H. Kano and K. Takayama, “Learning control of robotic
manipulators based on neurological model CMAC” [1th
International Federation of Automatic control Congress
(1990) pp. 268-273.

P.K. Khosla, “Rcal-time Control and Identification of
Direct-drive Manipulators” PAD thesis (Carnegie-Mellon
University, 1986).

. N. Sadegh and R. Horowitz, “Stability and robustness

analysis of a class of adaptive controller for robotic
manipulators”™ Int. J. Robotics Research 9(3) 74-92 (1990).

. J.-J.E. Slotine and W. Li, ““‘Adaptive manipulator control, a

case study” [EEE International Conference on Robotics
and Automation (1987) pp. 1392-1400.

A.A. Rizzi and D.E. Koditschek,
“Comparative experiments with a new adaptive controller
for robot arms” IEEE Transactions on Robotics and
Automation 9(1) 59-70 (1993).

and F. A. Mussa-lvaldi, ‘“Adaptive
representation of dynamics during learning of a motor
task” J. Neuroscience 14(5) 3208-3224 (1994).

. J-J.E. Slotine and W. Li, Applied Nonlinear Control

(Prentice-Hall International Editions, Inc., 1991).

. F.L. Lewis, C.T. Abdallah and D.M. Dawson, Control of

Robot Manipulators (Macmillan, London, 1993).

. G. Niemeyer and J.-J.E. Slotine, “Performance in adaptive

manipulator control” [nt. J. Robotic Research 10(2)

149-161 (1991).

. B. Armstrong, Control of Machines with Friction (Kluwer

Academic, Holland, 1991).

W. Khalil and J.F. Kleinfinger, “Minimum operations and
minimum parameters of the dynamic models of tree
structure robots” [EEE Transactions on Robotics and
Automation, 3(6) 517-526 (1987).

A. Codourey and E. Burdet, “A body-oriented method for
finding a linear form of the dynamic equaton of fully
parallel robots” IEEF International Conference on robotics
and Automation (1997) pp. 1612-1618.

A. Arimoto, Learning control. In M.W. Spong, F.L. Lewis
and C.T. Abdallah (editors) Robot Control (IEEE Press,
1993) pp. 185-188.

R. Sanner and J.-J.E. Slotine, “Gaussian networks for
direct adaptive control” IEEE Transactions on Neural
Networks 3(6) 837-863 (1992).

D.E. Rumelhart, J.L.. McClelland and the PDP Research
Group, Parallel Distributed Processing (MIT Press, Cam-
bridge, Mass., 1986).

1.J. Craig, Introduction to Robotics, Mechanics and Control
(Addison-Wesley, Reading, Mass., 1989).

H. Miyamoto and M. Kawato, “Feedback-error-learning
neural networks for trajectory control of a robotic
manipulator” Neural Networks 1, 251-265 (1988).

M. Kawato, K. Furukawa and R. Suzuki, ““A hierarchical
neural-network model for control and learning of voluntary
movement” Biological Cybernetics 57, 169-185 (1988).
K.A. ElSerafi, “Contributions a la commande Adaptative
des Robots Manipulateurs” PhD thesis (Université de
Nantes, 1991).

J.S. Albus, “Data storage in the cerebellar model articu-
lation controller” J. Dynamical Systems, Measurement, and
Control 97(3) 228-233 (1975).

H. Ritter, T. Martinez and K. Schulten, Neuronale Neize
(Addison-Wesley, Reading, Mass., 1991).

M.I. Jordan, “Supervised learning and systems with excess
degrees of freedom” Technical Report (Department of
Computer Science and Information, University of Mas-
sachusetts, 1988).


https://doi.org/10.1017/S0263574798000150

Nonlinear controllers

31. B.D.O. Anderson, ‘“Exponential stability of linear systems
arising from adaptive identification” I[EEE Transactions on
Automatic Control 22(1) 83-88 (1977).

32. A. Schmid and M. Zaugg, “Balancieren von invertiertem
Einfach- und Doppelpendel mit einem 2D-Deltaroboter”
Technical Report (Institut fuer Robotik, ETH-Zuerich,
1995).

33. B. Armstrong, “On finding “exciting” trajectories for
identification experiments involving systems with nonlinear
dynamics” IEEE International Conference on Robotics and
Automation (1987) pp. 1131-1139.

34, A.P. Morgan and K.S. Narendra, “On the uniform

https://doi.org/10.1017/50263574798000150 Published online by Cambridge University Press

73

asymptotic stability of certain linear nonautonomous
differential equations” S.I.A.M. Journal of Control and
Optimization 15(1) 5-24 (1977).

35. E. Burdet, J. Luthiger, M. Nuttin, G. Schweitzer and H.

Van Brussel “A comparison of adaptive and learning
control schemes for trajectory control of robot manipu-
lators” Technical Report (Institut fuer Robotik, ETH-
Zuerich, 1995).

36. E. Burdet, L. Rey and A. Codourey, “A trivial method of

learning control”, IFAC Symposium on Robot Control
(1997).


https://doi.org/10.1017/S0263574798000150

