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Steady-state availability has long been a popular descriptor of effectiveness for
repairable systems because it captures both the operability and repairability aspects
of the systemA related measure of effectiveness is the availability of continuous
service which is particularly relevant for safety critical applicatiofsthis article

two different measures of this quantity are described for a repairable system whose
state is described by an ergodic finite-state-space continuous-time Markov chain
Using these ideagormulas for computing system long-run mean time between
failures and the long-run system reliability function are derived

1. INTRODUCTION AND BACKGROUND
Consider a repairable system that may be in any one of the stees{f,1,..., J},
J a nonnegative integeand suppose that the system state at tifisegiven by an
irreducible homogeneousontinuous-time ergodic Markov procegs(t), t = 0}
with state spac&. This process begins in an initial state S remains there for a
random amount of time that is exponentially distributed with meap & (0,0),
then transitions independently to stateith probability Q(i, ), and continues in
this fashionThe rows of the matri = (Q(i, j )) define probability distributions on
S and the diagonal elements@fare all Q Denote the infinitesimal parametedie.,
one-step transition ratgfor this process by

My = g Q(i,]), i %],

i = —q (1.1)
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and the transition probabilities Ipy (t) = P{X(t + s) = j | X(s) =i }. Denote byA =

(rj) the matrix of infinitesimal parameters defined in.EQ1), and byP(t) = (p; (t))

the matrix of transition probabilitiest is well known (see Ros§13] or Cinlar[5])

that the transition probabilities satisfy the Kolmogorov backward and forward
equations

pi(t) = X M (1) = X pil(t)ryg, (1.2)

kes kes

which may be written compactly in matrix form as

P’'(t) = AP(t) = P(t)A (1.3)
with initial condition P(0) = I. It follows that the transition probabilities may be
expressed by the matrix exponential

P(t) = exp(At) (1.4)

and thatbecause the process is assumed irreducible and erdloelie exists a sta-
tionary distributionsr on Ssuch that for every € S

t—oo

that is 7 represents the “steady-state” or limiting state-occupancy probabhilities
follows under these assumptions that (g, 74,...,7;) is the unique solution to

A =0,
2877]- =1. (1.6)
je

Efficient methods for approximating E@L.4) are described in Ro$41] and Angus
[1]. Finding# in Eq. (1.5) by solving Eq (1.6) can often be carried out analytically
to yield a closed-form solution for many systems of intefesi., parallel k-out-
of-n, and series systems under various standby and repair assumpidmen a
closed-form solution is not possiblefficient and accurate numerical algorithms are
known (see Stewarit14], for example.

The state spac8 can be partitioned into mutually exclusive s€&sandF, the
states inO representing operational states in which the system is providing a hom-
inal level (or bettej of service(i.e, “up” states and the states iff representing
failure states in which the system has failed to provide selviee“down” states.

To avoid trivial casedt is assumed that both andSare nonemptyl he steady-state
availability of the system is then given by

A= m (1.7)

jeEOo

and is interpretable both as the limiting probability of finding the system in one of
the states ifD and as the long-run fraction of time that the system will be in one of
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the states iiD. To see thaf may be interpreted both wayisis instructive to recall
the following resultwhose proof may be found in Norri40, p. 126].

THEOREM 1.1: Let{X(t),t= 0} beirreducible and positive recurrent with invariant
distributionr, and let f be a bounded function defined on S. Then,

1t _
P{Iim YJ f(X(u)) du= f} =1, (1.8)
t—oo 0
where
f=>mf). (2.9
ies
By applying the theorem with(i) = 1 if i € O and 0 otherwisgt follows that
1 t
t“m ?J‘ l{x(u)eo}du = A (110)
— 00 0

with probability 1; that is Ais interpretable as the long-run fraction of time that the
system will be inO.

Alternatively letU,,U,, ... denote the successive system sojourn tim&sand
D,,D,,... denote the successive system sojourn times;ithat is assuming the
system starts in an operational state initialhe system spends, time units oper-
ational followed by D, time units failed followed by U, time units operational
followed byD, time units failed and so on throughout time

Because of the strong Markov property tHxi(t),t = 0} enjoys U, U,,...
are independent an,, D,,... are independenglthough neither sequence need
be identically distributedHowever each sequence has a limit distribution with
finite mean(i.e., a steady-state distributipras demonstrated by following prob-
lem 534 of Rosg12]. Moreover in both casesthe sequences are stochastically
bounded by random variables with finite medns., their survivor functions are
uniformly bounded above by the survivor function of the respective bounding
random variablg To see this consider firstU,,. By considering the process to
start in staté € O at time Q we can compute the distribution of the first passage
time out of the se© by making the seF absorbing The survivor function of this
distribution R;(-), is the reliability function starting in statec O, and methods
for computing it and its mean will be given in Eq4.16)—(1.21). Regardless of
where the process enter@dfor the nth time the time the process could spend in
O is always stochastically smaller than the random variable that has a distribution
function which is the convolution of all the distributions corresponding to the
reliability functionsR;(-), i € O, and the mean of this stochastically bounding
random variable is the sum of the meahs= [;°R;(t) dt overi € O. By inter-
changing the role of up states and down statieis argument exhibits a stochas-
tically bounding random variable fdp,, having finite meanlt therefore follows
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using the dominated convergence theorem as in the proof of Theorem 1[8f Mi
and Lemma 1 of M{ 8] that the limits

12 1.2
6= lim =S EU)=lm =S U,
ni:]_ n—)ooni:]_

n—oo

12 12
r=lim =Y E(D;) = lim = > D, (1.11)
Ni=1 n—ce Nj=1

n—oo — 00

exist with probability 1 and are finite and thédeindr are the means of the limiting
distributions olJ, andD,, respectivelyExplicit formulas ford andr will be derived
later, but for now these can be related to the steady-state availability via

0

A= .
0+

(1.12)

To see why this is trudor t = 0 andn = 0, let N(t) = n on the set wher& -, (U, +
D)) =t < 3MHU; + D), where a sum with an upper limit of 0 is defined to he 0
Thus assuming that the process starts in a state at time Q N(t) is the number
of complete up—down cycles during the time perfiogt ]. Obviously N(t) — oo as

t — oo with probability 1 because the process is ergpditd moreover

N(t) N(t)+1

Z(Ui+Di) ) Z (Ui + Dy)

= = 1.13
NO OND T N 19
Takingt — co and applying Eqs(1.11) shows thatwith probability 1
- N@®) 1
im — = . (1.14)
t—oo t 9 + T
Next, for t sufficiently large thatN(t) > O, the inequalities
N(t) N(t)+1
Ui Ui
i:zl N(t)<1J‘1 = 21 N(t) +1 115
NO t ot s TN Tt (1.15)

hold, sq again lettingt — oo and applying Eqs(1.10) and (1.11), the result
[Eq. (1.12)] follows. See Ros$13] or Barlow[2], for example for further discus-
sions along these lines in the reliability context

In reliability characterization term$®oth A andd are common measures of a
system'’s effectivenes$he parametef is the long-run(or steady stajemean time
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between failure$sMTBF) for the systemandr is the long-run mean time to repair
(MTTR) the systemTypically, the qualifier “long run” is droppedout it is impor-
tant to remember thain general the sequencé,,U,, ... is not independent and
identically distributedand similarly for the sequend®,, D,,...). Cases where the
sequencgU; } is indeed independent and identically distributatieast after = 1)
occur when the instantaneous transition out of a state of failure into an operating
state always leaves the system in the same operating tdkés casethe reentry
into operation from failure constitutes a regeneration point for the protéemsy
structures that fit into this category have been analyzed and closed-form expressions
for Aandf have been worked ouSee Kozlov and UshakdV], for examplefor an
encyclopedia of serieparalle] andk-out-of-n structures in the Markov cas@/hen
the system is not necessarily Markovian but the individual components are statisti-
cally independent with respect to failures and repdisss 13] or Barlow[2] give
general formulas foA andé in terms of the system reliability functiofi.e., theh
function) and the individual component mean lives and mean repair times

The parametet is often confused with the mean time(fast) failure (MTTF),
the latter usually signifying the mean time to failure after starting at time 0 in some
fixed initial statej € O. GenerallyMTTF is not equal to MTBFbut in the case just
describedwhere instantaneous reentry into operation from failure always leaves the
system in the same operating stake two would be equal if the initial system state
is chosen to be that operating stdthis is in fact, how MTBF is computed for those
special case@vhich include those treated in Kozlov and Ushak@y). When re-
entry to the operating stat€scan occur at more than one statee computation of
0 is not as straightforwardn any casghaving expressions féxandd immediately
yields7 from Eq (1.12).

Starting at time 0 in state€ O, let T = inf{t = 0: X(t) € F}. Of coursethe
MTTF starting in statg is

6, = E(T|X(0) = ). (1.16)

Also useful is the reliability of the system startingjimt time Q This function is
defined by

R (t) = P{T > t|X(0) = . (1.17)

The functionsRR;, j € O, are not difficult to find in principleOne simply replaces;
by 0inA for all k € Sfor eachi € F, solves either Eq(1.2), (1.3), or (1.4) for p(t)
forallj,k € O, and then setR;(t) = 2o Pi(t). By doing this we have effectively
lumped all of the down states into one absorbing down stateonce the process
enters itit cannot get outand then computed the probability thstarting in an up
state the process is i at timet. Since entering the down state priorttavould
render itimpossible to be in an up state at titythis is then the probability that the
process transitions entirely among up states throughout the time p@rtddwhich,

in turn, represent®{T > t|X(0) = j}. Following this recipeit is not difficult to
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show that the functiong;, j € O, are the unique solution to the system of first-order
linear differential equation@nalogous to the Kolmogorov backward equatjons

Ri(t) = > Ik R (), j €0,
Kkeo

RO=1 je€oO. (1.18)

By rearranging the state labglge can assume without loss of generality tBet
{0,1,...,k} andF = {k + 1,..., J} and that the matri\ is partitioned as

Aoo Aof
A= , (1.19)
Afo Aff

whereA o, represents transitions from operating states to operating staje®p-
resents transitions from operating states to failed statggepresents transitions
from failed states to operating stataadA ¢ represents transitions from failed states
to failed statesThen viewing R as the column vector of the functiofs, j € O,

Eqg. (1.18) can be expressed as

R(t) = AgR(), RO =(L1...,)7 (1.20)

Integrating Eq (1.20) and setting® = (6,,64,...,6,)", it is seen that the column
vector of mean times to failure solves

Aoo® = —(1L,1,...,1)T. (1.21)

2. AVAILABILITY OF CONTINUOUS SERVICE

In modern safety critical systemis is necessary to know how frequentlgr with
what probability the system is in a state which is not only a nominal “up” statg
for which there is some assurance that it will remain in an up state for a “comfort-
able” period of timeFor examplein air traffic control or civil aviation navigation
systemsthe critical phase of a so-called “Category I” precision approach lasts for
150 s during which highly trusted and accurate navigation must prevail continu-
ously with high probability that is for applications like thissome measure of the
“availability of continuous service” is needed

The concept of the probability of having assurance of continuous service is not
new One version has been variously described as the “interval reliabitgg Bar-
low and Proschafé]) and “interval availability”(see Mi[9]), although the latter
term is normally reserved to describe the fraction of time during an interval that the
system s in one of its up statds either casgit is desirable to know the probability
of finding the system up at timteand that it continues to remain up without entering
a down state throughout the ensuigtime units In the context of the model used
here assuming the system starts in statéhis would be

P{X(s) € O,t=s=t+ At|X(0) =i} (2.1)
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and it follows from the Markov property that this is given by
P{X(s) €O, t=s=t+ At|X(0) =i}
= > pi()P{X(s) € O, 0=s=At|X(0) =j}. (2.2)

jEO
Typically, the interest is in the steady statetas> oo, and in this limit Eq. (2.2)
becomes

Ai(At) = X 7 R (At), (2.3)
jeo

whereR; is the reliability of the system when it starts in stat time Q

Because the Markov process is ergodie measuré\;(At) is the steady-state
probability of being operational at a given point in time and remaining operational
for the ensuing\t time units and it also represents the long-run fraction of total time
that the system spends@for which the exit time fronO is at leastAt time units
That the latter interpretation is valid is made clear later when(E8) is related to
the results of M[9]. Thus this is one measure that fulfills the aforementioned need
in safety critical systems

One practical disadvantage of the approach leading to the meaguxe) is
that one cannot at any given instant in time look at the system and instantaneously
determine if the system is operatioraddwill remain so for the nexat time units
An alternative approach to alleviate this difficulty is to define the availability of
reliable serviceThis measure is defined like the usual steady-state availaglgikty
cept that only certain operational states are included in the[ Egn(1.7)]; specif-
ically, only operational statgs= O for whichR;(At) = c are includedwherecis a
prespecifiedusually high probability Mathematicallythe availability of reliable
service is defined as

Ac(At) = X LR av=c}- (2.4)
jeo

This is just steady-state availabilignly with operational states redefined to require
notonly thaj € Obutalso thaR;(At) = c. Whencis high this usually has the effect
of limiting the operational states to only those in which there remains some level of
component redundandy.e., in which a single component failure will not cause
system failurg¢ and this makes this measure particularly attractive for specifying
performance in safety critical systenhis measure also overcomes the disadvan-
tage of the measum,(At) because it can be determined a priarhich states that
j € O satisfyR;(At) = c.

WhenAt is small Eqgs (2.3) and(2.4) can often be adequately approximated by
substituting

R(At) ~ 1+ R(0H)At=1— > rj At (2.5)

keF
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by Eq (1.18) (since the rows of\ sum to Q. In this case

Ac(At) ~ 2 | 1{Ek€,: rxAt=1-—c} (26)
jeo
and
jeo  keF

In fact, it will be seen latefby combining Eqs(1.12) and(3.6)) that the right-hand
side of Eq(2.7) is actuallyA(1 — At/6).

The measuré\.(At) is specified for examplein the Federal Aviation Admin-
istration’s Wide Area Augmentation SysteiwAAS) specification(seg[15]), and
is sometimes referred to in engineering jargon as the availability of continuity-of-
function (or continuity-of-servicg The WAAS system is designed to augment the
Global Positioning System for use in providing safe and accurate navigation in
civil aviation. In that specificatior(for the first phase of the systenthe number
c=1-10"%andAt =1 h for en route and nonprecision approach modes of
flight, andc = 1 — (5.5 X 107°) and At = 150 s for the Category | precision
approachUsing these numberghat specification requires that the availability of
reliable service be.999 for en route and nonprecision approach modes of flight
and Q95 for precision approach

To illustrate and compare these measpoessider a simple parallel system
with two statistically independent and identical uriiiss components each having
a constant failure rat@ and each with constant repair rateWe will assume that
units are switched ofwhen not failed, repair is unlimitedi.e., that there are enough
repair resources to simultaneously work on repairing both units if negdibe that
this system is nominally operational as long as at least one unit is functioveg
shall denote the nominally operating statestas- {0,1} and the failure state as
F = {2}. The transition rate matrix for this system is

—2A 2A 0
A= B —QA+p A (2.8)
0 2u —2u

and the steady-state probabilities are

oW 20 S ”0
T wewr Mot T e (29)
so that the steady-state availability is
U2 + 2An
= W (2.10)
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The matrixA o, is
—2A 2A
Aoo = ( L~ Ll)) (2.11)
and the solution t&'(t) = Ay, R(t) gives the reliability functions

Ri(t) = c e*t + c,e%2!,

Ro(t) = dl ealt + dz eazt, (212)
where
—(BA+ W) + VA2 + BAp+ 2
= ( 1) . Mt , (2.13)
—(BA+ ) — VA2 + 6Ap + P2
o= ( H) ) Ht U , (2.14)
A+ a, —a;— A
C, = N Co=——", (215)
Qp — ag Qp — g
o —a
dy=—>—, d,= L (2.16)
Ay — (g Ay — (g

Typical values for the parameters are 0.001 per hour and =1 per houyyielding

the value for availabilityhA=1—107% Usingc=1—10"%andAt =1 h, it turns out
thatA;(At) = 0.999997 not far below the availabilityApplying the above formulas

for the reliabilities Ry(1) = 0.999999265 an®, (1) = 0.9993679and sCA (At) =

o= 0.998 Note that this measure is considerably more conservative than the oth-
ers There is no credit for the nominal operating state 1 because starting in that state
the probability of survivig 1 h is too lowIn order to boosA.(At) above 0999 an
additional redundant unit would be needed

3. LONG-RUN MTBF, MTTR, AND RELIABILITY

Despite the importance and usefulness of the long-run MTBF and M(BTeRd )

for describing system effectivenes®me of the most popular mathematical relia-
bility sources(e.g., Hoyland and Rausar{@], Barlow and Proscha8,4], Kozlov

and Ushakoy7]) do not present formulas for computing them for the case where the
system state follows a continuous-time Markov process as discusse@igrably

the most commonly assumed case in industExpressions for thesahich do not
seem to be widely known among reliability engineen® derived in this sectioft

will be seen shortly that the computations of long-run MTBH TR, and system
reliability can be accomplished surprisingly easily by making a connection with the
steady-state availability of continuous serviés. (2.3)], a connection facilitated

by the work of Mi[9], who gives a fairly general treatment of interval availability
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Let Rs denote the long-run system reliability functire., the limiting distri-
bution ofU,,asn — o). By Eq. (1.11) and the justifying discussions in the paragraph
preceding it conditions(i) through(iv) of Theorem 1 of Mi hold true for the se-
quenced);,U,,... andD,, D,,... . It then follows from Theorem 2 of Mi9] that

J Rs(u) du
1 (7 t
T . Lix(s)co,u=s=u+t} AU —> 0+ — (3.2)
with probability 1 and
f Rs(u) du
1 (7 . t
EllT . Lix(sco,u=s=utty AU || X(0) = i AT YV (3.2)

asT — oo. However since the integrand is everywhere nonnegatieini’s theo-
rem gives

1 T
E[(? f 1{X(S)EO,uSs§u+t} dU)
(0]

1 (7 .
= 2 | ElscouunIX© = ilau (3.3)
0

X(0) = i}

1 (7 .
== | X pj(u)P{X(s) € 0,0=s=At|X(0)=j}du

T Jy jco

- > mR(t) (3.4)
jeo

asT — oo. Relation Eq (3.4) follows by Eqgs (2.2) and (2.3) and the fact that
(1/T)f0Tf(u) du— c asT — oo wheneveff is integrable and(u) — c asu — co.
This shows that the measurg (t) does indeed have the interpretation as the
long-run fraction of total time that the system spend®ifor which the exit time
from O is at least time units Accordingly combining Eqs(3.2)—(3.4), it follows
that

[e’e}

Rs(u) du
A =S mR(t) = ———. (3.5)

jeo 0+rT1
Differentiating this at = 0+ gives using Eq (1.18),
1

ZWi 2 lik = :_E”i E Fiks (3.6)

ico  keo 0+ i€E0  keF
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which, after applying Eq(1.12), yields

2 i E T
9= _ ieo _ €0 (3 7)
ZWiErik EmErik
ieo0  keo €0 keF

The second equality above and the second equality if3&g) follows by simply
noticing that the limiting probability7;,i € S} must satisfy Eq(1.6) and the rows
of A each sum to 0so

E’iTiZFikZ—Z’iTiErikzz'ﬂizril« (3.8)

ieo keF ieo keo ier keo

Now, from the relationshigl.12), the long-run MTTR is seen to be

1- 2 i 2 i
B =) B = (3.9)
T= = . .
EWiErik ZWiEVik
i€0  keF ieF  keo

Also, differentiating Eq(3.5) att+ and using Eqg1.18), (3.7), (3.8), and(3.9)

yields
Do 2 Re(t) D ) ricRl(t)
ico  keo ieF  keo
Rs(t) = — = (3.10)
° Ewizrik Zﬂizrik
€0  keF iEF  keo

as the long-run system reliability functidne., the steady-state reliability function
for the sojourn time in the s&€).

If To represents the sojourn time in the €eat steady statghen the previous
analysis shows tha&s(t) = P{To > t} andE(Ty) = 6. Arelated quantity is the exit
time from the seD, given the process is somewhere in the@elf at steady state
this quantity is denoted by, then

P{T, >t} = lim P{X(s) € O,u=s=u+t|X(u) € O} (3.11)

and it follows from the relation

P{X(s) eQ,u=s=u+t}
=P{X(s) € O,u=s=u+t|X(u) € O}P{X(u) € O} (3.12)
along with Egs(3.11), (2.2), and(2.3) that

> 7 Ri(t) = AP{T, > t}. (3.13)

jeo
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Using this in Eq (3.5) and applying Eq(1.12) gives

oo

Rs(u) du

P{T, >t} = tT, (3.14)

and integrating Eqg3.13) and(3.14) gives

E(T0) _ p-s S 76, (3.15)

BT = e () &

whered is the MTTF starting in state€ O, given in Eq (1.21). This also serves to
provide a formula for the second momentT@f and to show thaT, has the same
relation to Ty as the steady-state excess or residual life has to the time between
renewals in a renewal proce$%oss[12, Proh 5.34] also points out this structural
similarity and gives an outline of(@iffereny multistep approach to find the steady-
state distribution and mean of the sojourn time in an arbitrary set of 8ates(i.e.,

the time spent ifB during a visi}. TakingB = O gives these measures the interpre-
tation of steady-state reliability and MTBfespectivelyand those results then match
Eqgs (3.7) and(3.10).

4. SUMMARY AND FINAL REMARKS

Two availability measures appropriate for safety critical applications have been dis-
cussed and illustrated for systems whose state evolves according to a continuous
Markov processthe availability of continuous service and the availability of reli-
able serviceBoth measures are computationally straightforward and are particu-
larly relevant to safety critical application&t the same timggeneral expressions

for the long-run values of MTBAMTTR, and system reliability have been derived

as easy consequences of applying the concept of steady-state availability of contin-
uous serviceThese formulas are not widely exposed in popular reliability method-
ology sourcesand this discussion serves to make them accessible to practitioners
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