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Steady-state availability has long been a popular descriptor of effectiveness for
repairable systems because it captures both the operability and repairability aspects
of the system+ A related measure of effectiveness is the availability of continuous
service,which is particularly relevant for safety critical applications+ In this article,
two different measures of this quantity are described for a repairable system whose
state is described by an ergodic finite-state-space continuous-time Markov chain+
Using these ideas, formulas for computing system long-run mean time between
failures and the long-run system reliability function are derived+

1. INTRODUCTION AND BACKGROUND

Consider a repairable system that may be in any one of the states inS5 $0,1, + + + , J%,
J a nonnegative integer, and suppose that the system state at timet is given by an
irreducible, homogeneous, continuous-time ergodic Markov process$X~t !, t $ 0%
with state spaceS+ This process begins in an initial statei [ S, remains there for a
random amount of time that is exponentially distributed with mean 10qi [ ~0,`!,
then transitions independently to statej with probability Q~i, j !, and continues in
this fashion+ The rows of the matrixQ5 ~Q~i, j !! define probability distributions on
S, and the diagonal elements ofQ are all 0+Denote the infinitesimal parameters~i+e+,
one-step transition rates! for this process by

rij 5 qi Q~i, j !, i Þ j,
rii 5 2qi (1.1)
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and the transition probabilities bypij ~t ! 5 P$X~t 1 s! 5 j 6X~s! 5 i %+ Denote byL 5
~rij ! the matrix of infinitesimal parameters defined in Eq+ ~1+1!, and byP~t !5 ~ pij ~t !!
the matrix of transition probabilities+ It is well known~see Ross@13# or Cinlar@5# !
that the transition probabilities satisfy the Kolmogorov backward and forward
equations:

pij
' ~t ! 5 (

k[S

rik pkj ~t ! 5 (
k[S

pik~t !rkj , (1.2)

which may be written compactly in matrix form as

P'~t ! 5 LP~t ! 5 P~t !L (1.3)

with initial condition P~0! 5 I+ It follows that the transition probabilities may be
expressed by the matrix exponential

P~t ! 5 exp~Lt ! (1.4)

and that, because the process is assumed irreducible and ergodic, there exists a sta-
tionary distributionp on Ssuch that for everyj [ S,

lim
tr`

pij ~t ! 5 pj . 0; (1.5)

that is, p represents the “steady-state” or limiting state-occupancy probabilities+ It
follows under these assumptions thatp 5 ~p0,p1, + + + ,pJ! is the unique solution to

pL 5 0,

(
j[S

pj 5 1+ (1.6)

Efficient methods for approximating Eq+ ~1+4! are described in Ross@11# and Angus
@1# + Findingp in Eq+ ~1+5! by solving Eq+ ~1+6! can often be carried out analytically
to yield a closed-form solution for many systems of interest~e+g+, parallel, k-out-
of-n, and series systems under various standby and repair assumptions!+ When a
closed-form solution is not possible, efficient and accurate numerical algorithms are
known~see Stewart@14# , for example!+

The state spaceScan be partitioned into mutually exclusive setsO andF, the
states inO representing operational states in which the system is providing a nom-
inal level ~or better! of service~i+e+, “up” states! and the states inF representing
failure states in which the system has failed to provide service~i+e+, “down” states!+
To avoid trivial cases, it is assumed that bothOandSare nonempty+The steady-state
availability of the system is then given by

A [ (
j[O

pj (1.7)

and is interpretable both as the limiting probability of finding the system in one of
the states inO and as the long-run fraction of time that the system will be in one of
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the states inO+ To see thatA may be interpreted both ways, it is instructive to recall
the following result, whose proof may be found in Norris@10, p+ 126# +

Theorem 1.1: Let$X~t !, t $ 0% be irreducible and positive recurrent with invariant
distributionp, and let f be a bounded function defined on S. Then,

PH lim
tr`

1

t
E

0

t

f ~X~u!! du 5 NfJ 5 1, (1.8)

where

Nf 5 (
i[S

pi f ~i !+ (1.9)

By applying the theorem withf ~i ! 5 1 if i [ O and 0 otherwise, it follows that

lim
tr`

1

t
E

0

t

1$X~u![O% du 5 A (1.10)

with probability 1; that is, A is interpretable as the long-run fraction of time that the
system will be inO+

Alternatively, letU1,U2, + + + denote the successive system sojourn times inOand
D1,D2, + + + denote the successive system sojourn times inF; that is, assuming the
system starts in an operational state initially, the system spendsU1 time units oper-
ational, followed by D1 time units failed, followed by U2 time units operational,
followed byD2 time units failed, and so on throughout time+

Because of the strong Markov property that$X~t !, t $ 0% enjoys, U1,U2, + + +
are independent andD1,D2, + + + are independent, although neither sequence need
be identically distributed+ However, each sequence has a limit distribution with
finite mean~i+e+, a steady-state distribution! as demonstrated by following prob-
lem 5+34 of Ross@12# + Moreover, in both cases, the sequences are stochastically
bounded by random variables with finite means~i+e+, their survivor functions are
uniformly bounded above by the survivor function of the respective bounding
random variable!+ To see this, consider firstUn+ By considering the process to
start in statei [ O at time 0, we can compute the distribution of the first passage
time out of the setO by making the setF absorbing+ The survivor function of this
distribution, Ri ~{!, is the reliability function starting in statei [ O, and methods
for computing it and its mean will be given in Eqs+ ~1+16!–~1+21!+ Regardless of
where the process enteredO for thenth time, the time the process could spend in
O is always stochastically smaller than the random variable that has a distribution
function which is the convolution of all the distributions corresponding to the
reliability functionsRi ~{!, i [ O, and the mean of this stochastically bounding
random variable is the sum of the meansui 5 *0

`Ri ~t ! dt over i [ O+ By inter-
changing the role of up states and down states, this argument exhibits a stochas-
tically bounding random variable forDn having finite mean+ It therefore follows
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using the dominated convergence theorem as in the proof of Theorem 1 of Mi@9#
and Lemma 1 of Mi@8# that the limits

u 5 lim
nr`

1

n (
i51

n

E~Ui ! 5 lim
nr`

1

n (
i51

n

Ui ,

t 5 lim
nr`

1

n (
i51

n

E~Di ! 5 lim
nr`

1

n (
i51

n

Di (1.11)

exist with probability 1 and are finite and thatu andt are the means of the limiting
distributions ofUn andDn, respectively+Explicit formulas foru andt will be derived
later, but for now, these can be related to the steady-state availability via

A 5
u

u 1 t
+ (1.12)

To see why this is true, for t $ 0 andn $ 0, let N~t ! 5 n on the set where(i51
n ~Ui 1

Di ! # t , (i51
n11~Ui 1 Di !, where a sum with an upper limit of 0 is defined to be 0+

Thus, assuming that the process starts in a state inO at time 0, N~t ! is the number
of complete up–down cycles during the time period@0, t # +Obviously, N~t ! r` as
t r ` with probability 1 because the process is ergodic, and moreover,

(
i51

N~t !

~Ui 1 Di !

N~t !
#

t

N~t !
#

(
i51

N~t !11

~Ui 1 Di !

N~t !
+ (1.13)

Taking t r ` and applying Eqs+ ~1+11! shows that, with probability 1,

lim
tr`

N~t !

t
5

1

u 1 t
+ (1.14)

Next, for t sufficiently large thatN~t ! . 0, the inequalities

(
i51

N~t !

Ui

N~t !

N~t !

t
#

1

t
E

0

t

1$X~u![O% du#

(
i51

N~t !11

Ui

N~t ! 1 1

N~t ! 1 1

t
(1.15)

hold, so, again, letting t r ` and applying Eqs+ ~1+10! and ~1+11!, the result
@Eq+ ~1+12!# follows+ See Ross@13# or Barlow @2# , for example, for further discus-
sions along these lines in the reliability context+

In reliability characterization terms, both A andu are common measures of a
system’s effectiveness+ The parameteru is the long-run~or steady state! mean time

372 J. E. Angus

https://doi.org/10.1017/S0269964801153064 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964801153064


between failures~MTBF! for the system, andt is the long-run mean time to repair
~MTTR! the system+ Typically, the qualifier “long run” is dropped, but it is impor-
tant to remember that, in general, the sequenceU1,U2, + + + is not independent and
identically distributed~and similarly for the sequenceD1,D2, + + + !+ Cases where the
sequence$Ui % is indeed independent and identically distributed~at least afteri 51!
occur when the instantaneous transition out of a state of failure into an operating
state always leaves the system in the same operating state+ In this case, the reentry
into operation from failure constitutes a regeneration point for the process+ Many
structures that fit into this category have been analyzed and closed-form expressions
for A andu have been worked out+ See Kozlov and Ushakov@7# , for example, for an
encyclopedia of series, parallel, andk-out-of-n structures in the Markov case+When
the system is not necessarily Markovian but the individual components are statisti-
cally independent with respect to failures and repairs, Ross@13# or Barlow@2# give
general formulas forA andu in terms of the system reliability function~i+e+, theh
function! and the individual component mean lives and mean repair times+

The parameteru is often confused with the mean time to~first! failure~MTTF!,
the latter usually signifying the mean time to failure after starting at time 0 in some
fixed initial statej [ O+Generally,MTTF is not equal to MTBF, but in the case just
described,where instantaneous reentry into operation from failure always leaves the
system in the same operating state, the two would be equal if the initial system state
is chosen to be that operating state+This is, in fact, how MTBF is computed for those
special cases~which include those treated in Kozlov and Ushakov@7# !+ When re-
entry to the operating statesO can occur at more than one state, the computation of
u is not as straightforward+ In any case, having expressions forA andu immediately
yieldst from Eq+ ~1+12!+

Starting at time 0 in statej [ O, let T 5 inf $t $ 0 :X~t ! [ F%+ Of course, the
MTTF starting in statej is

uj 5 E~T 6X~0! 5 j !+ (1.16)

Also useful is the reliability of the system starting inj at time 0+ This function is
defined by

Rj ~t ! 5 P$T . t 6X~0! 5 j %+ (1.17)

The functionsRj , j [ O, are not difficult to find in principle+One simply replacesrik

by 0 inL for all k [ Sfor eachi [ F, solves either Eq+ ~1+2!, ~1+3!, or ~1+4! for pjk~t !
for all j, k [ O, and then setsRj ~t ! 5(k[O pjk~t !+ By doing this,we have effectively
lumped all of the down states into one absorbing down state~i+e+, once the process
enters it, it cannot get out! and then computed the probability that, starting in an up
state, the process is inO at time t+ Since entering the down state prior tot would
render it impossible to be in an up state at timet, this is then the probability that the
process transitions entirely among up states throughout the time period@0, t # ,which,
in turn, representsP$T . t 6X~0! 5 j %+ Following this recipe, it is not difficult to
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show that the functionsRj , j [ O, are the unique solution to the system of first-order
linear differential equations~analogous to the Kolmogorov backward equations!:

Rj
'~t ! 5 (

k[O

rjk Rk~t !, j [ O,

Rj ~0! 5 1, j [ O+ (1.18)

By rearranging the state labels, we can assume without loss of generality thatO 5
$0,1, + + + , k% andF 5 $k 1 1, + + + , J% and that the matrixL is partitioned as

L 5 SLoo Lof

L fo L ff
D, (1.19)

whereLoo represents transitions from operating states to operating states, Lof rep-
resents transitions from operating states to failed states, L fo represents transitions
from failed states to operating states, andLff represents transitions from failed states
to failed states+ Then, viewing R as the column vector of the functionsRj , j [ O,
Eq+ ~1+18! can be expressed as

R'~t ! 5 LooR~t !, R~0! 5 ~1,1, + + + ,1!T+ (1.20)

Integrating Eq+ ~1+20! and settingQ 5 ~u0,u1, + + + ,uk!
T, it is seen that the column

vector of mean times to failure solves

LooQ 5 2~1,1, + + + ,1!T+ (1.21)

2. AVAILABILITY OF CONTINUOUS SERVICE

In modern safety critical systems, it is necessary to know how frequently~or with
what probability! the system is in a state which is not only a nominal “up” state, but
for which there is some assurance that it will remain in an up state for a “comfort-
able” period of time+ For example, in air traffic control or civil aviation navigation
systems, the critical phase of a so-called “Category I” precision approach lasts for
150 s, during which highly trusted and accurate navigation must prevail continu-
ously with high probability; that is, for applications like this, some measure of the
“availability of continuous service” is needed+

The concept of the probability of having assurance of continuous service is not
new+One version has been variously described as the “interval reliability”~see Bar-
low and Proschan@4# ! and “interval availability”~see Mi@9# !, although the latter
term is normally reserved to describe the fraction of time during an interval that the
system is in one of its up states+ In either case, it is desirable to know the probability
of finding the system up at timet, and that it continues to remain up without entering
a down state throughout the ensuingDt time units+ In the context of the model used
here, assuming the system starts in statei, this would be

P$X~s! [ O, t # s# t 1 Dt 6X~0! 5 i % (2.1)
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and it follows from the Markov property that this is given by

P$X~s! [ O, t # s# t 1 Dt 6X~0! 5 i %

5 (
j[O

pij ~t !P$X~s! [ O, 0 # s# Dt 6X~0! 5 j %+ (2.2)

Typically, the interest is in the steady state ast r `, and in this limit, Eq+ ~2+2!
becomes

A1~Dt ! [ (
j[O

pj Rj ~Dt !, (2.3)

whereRj is the reliability of the system when it starts in statej at time 0+
Because the Markov process is ergodic, the measureA1~Dt ! is the steady-state

probability of being operational at a given point in time and remaining operational
for the ensuingDt time units and it also represents the long-run fraction of total time
that the system spends inO for which the exit time fromO is at leastDt time units+
That the latter interpretation is valid is made clear later when Eq+ ~2+3! is related to
the results of Mi@9# + Thus, this is one measure that fulfills the aforementioned need
in safety critical systems+

One practical disadvantage of the approach leading to the measureA1~Dt ! is
that one cannot at any given instant in time look at the system and instantaneously
determine if the system is operationalandwill remain so for the nextDt time units+
An alternative approach to alleviate this difficulty is to define the availability of
reliable service+ This measure is defined like the usual steady-state availability, ex-
cept that only certain operational states are included in the sum@Eq+ ~1+7!#; specif-
ically, only operational statesj [ O for whichRj ~Dt ! $ c are included, wherec is a
prespecified~usually high! probability+ Mathematically, the availability of reliable
service is defined as

Ac~Dt ! 5 (
j[O

pj 1$Rj ~Dt !$c% + (2.4)

This is just steady-state availability, only with operational states redefined to require
not only thatj [ Obut also thatRj ~Dt ! $ c+Whenc is high, this usually has the effect
of limiting the operational states to only those in which there remains some level of
component redundancy~i+e+, in which a single component failure will not cause
system failure!, and this makes this measure particularly attractive for specifying
performance in safety critical systems+ This measure also overcomes the disadvan-
tage of the measureA1~Dt ! because it can be determined a priori, which states that
j [ O satisfyRj ~Dt ! $ c+

WhenDt is small, Eqs+ ~2+3! and~2+4! can often be adequately approximated by
substituting

Rj ~Dt ! ' 11 Rj
'~01!Dt 5 1 2 (

k[F

rjk Dt (2.5)
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by Eq+ ~1+18! ~since the rows ofL sum to 0!+ In this case,

Ac~Dt ! ' (
j[O

pj 1$(k[F rjk Dt#12c% (2.6)

and

A1~Dt ! ' A 2 (
j[O

pj (
k[F

rjk Dt+ (2.7)

In fact, it will be seen later~by combining Eqs+ ~1+12! and~3+6!! that the right-hand
side of Eq+ ~2+7! is actuallyA~12 Dt0u!+

The measureAc~Dt ! is specified, for example, in the Federal Aviation Admin-
istration’s Wide Area Augmentation System~WAAS! specification~see@15# !, and
is sometimes referred to in engineering jargon as the availability of continuity-of-
function ~or continuity-of-service!+ The WAAS system is designed to augment the
Global Positioning System for use in providing safe and accurate navigation in
civil aviation+ In that specification~for the first phase of the system!, the number
c 5 1 2 1025 and Dt 5 1 h for en route and nonprecision approach modes of
flight, and c 5 1 2 ~5+5 3 1025! and Dt 5 150 s for the Category I precision
approach+ Using these numbers, that specification requires that the availability of
reliable service be 0+999 for en route and nonprecision approach modes of flight,
and 0+95 for precision approach+

To illustrate and compare these measures, consider a simple parallel system
with two statistically independent and identical units~or components!, each having
a constant failure ratel and each with constant repair rateµ+ We will assume that
units are switched on~when not failed!, repair is unlimited~i+e+, that there are enough
repair resources to simultaneously work on repairing both units if need be!, and that
this system is nominally operational as long as at least one unit is functioning+We
shall denote the nominally operating states asO 5 $0,1% and the failure state as
F 5 $2%+ The transition rate matrix for this system is

L 5 1
22l 2l 0

µ 2~l 1 µ! l

0 2µ 22µ
2 (2.8)

and the steady-state probabilities are

p0 5
µ2

~l 1 µ!2 , p1 5
2lµ

~l 1 µ!2 , p2 5
l2

~l 1 µ!2 , (2.9)

so that the steady-state availability is

A 5
µ2 1 2lµ

~l 1 µ!2 + (2.10)
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The matrixLoo is

Loo 5 S22l 2l

µ 2~l 1 µ!D (2.11)

and the solution toR'~t ! 5 LooR~t ! gives the reliability functions

R1~t ! 5 c1ea1 t 1 c2ea2 t,

R0~t ! 5 d1ea1 t 1 d2ea2 t, (2.12)

where

a1 5
2~3l 1 µ! 1!l2 1 6lµ1 µ2

2
, (2.13)

a2 5
2~3l 1 µ! 2!l2 1 6lµ1 µ2

2
, (2.14)

c1 5
l 1 a2

a2 2 a1

, c2 5
2a1 2 l

a2 2 a1

, (2.15)

d1 5
a2

a2 2 a1

, d2 5
2a1

a2 2 a1

+ (2.16)

Typical values for the parameters arel50+001 per hour andµ51 per hour, yielding
the value for availabilityA5121026+ Usingc5121025 andDt 51 h, it turns out
thatA1~Dt ! 5 0+999997, not far below the availability+Applying the above formulas
for the reliabilities, R0~1! 5 0+999999265 andR1~1! 5 0+9993679, and soAc~Dt ! 5
p0 5 0+998+ Note that this measure is considerably more conservative than the oth-
ers: There is no credit for the nominal operating state 1 because starting in that state,
the probability of surviving 1 h is too low+ In order to boostAc~Dt ! above 0+999, an
additional redundant unit would be needed+

3. LONG-RUN MTBF, MTTR, AND RELIABILITY

Despite the importance and usefulness of the long-run MTBF and MTTR~u andt!
for describing system effectiveness, some of the most popular mathematical relia-
bility sources~e+g+, Hoyland and Rausand@6# , Barlow and Proschan@3,4# , Kozlov
and Ushakov@7# ! do not present formulas for computing them for the case where the
system state follows a continuous-time Markov process as discussed here~arguably
the most commonly assumed case in industry!+ Expressions for these, which do not
seem to be widely known among reliability engineers, are derived in this section+ It
will be seen shortly that the computations of long-run MTBF, MTTR, and system
reliability can be accomplished surprisingly easily by making a connection with the
steady-state availability of continuous service@Eq+ ~2+3!# , a connection facilitated
by the work of Mi@9# , who gives a fairly general treatment of interval availability+
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Let RS denote the long-run system reliability function~i+e+, the limiting distri-
bution ofUn asnr`!+By Eq+ ~1+11! and the justifying discussions in the paragraph
preceding it, conditions~i! through~iv! of Theorem 1 of Mi hold true for the se-
quencesU1,U2, + + + andD1,D2, + + + + It then follows from Theorem 2 of Mi@9# that

1

T
E

0

T

1$X~s![O,u#s#u1t % dur

E
t

`

RS~u! du

u 1 t
(3.1)

with probability 1 and

EFS 1

T
E

0

T

1$X~s![O,u#s#u1t % duD*X~0! 5 i Gr

E
t

`

RS~u! du

u 1 t
(3.2)

asT r `+ However, since the integrand is everywhere nonnegative, Fubini’s theo-
rem gives

EFS 1

T
E

0

T

1$X~s![O,u#s#u1t % duD*X~0! 5 i G
5

1

T
E

0

T

E @1$X~s![O,u#s#u1t % 6X~0! 5 i # du (3.3)

5
1

T
E

0

T

(
j[O

pij ~u!P$X~s! [ O,0 # s# Dt 6X~0! 5 j % du

r (
j[O

pj Rj ~t ! (3.4)

as T r `+ Relation Eq+ ~3+4! follows by Eqs+ ~2+2! and ~2+3! and the fact that
~10T !*0

T f ~u! dur c asT r ` wheneverf is integrable andf ~u! r c asu r `+
This shows that the measureA1~t ! does, indeed, have the interpretation as the
long-run fraction of total time that the system spends inO for which the exit time
from O is at leastt time units+ Accordingly, combining Eqs+ ~3+2!–~3+4!, it follows
that

A1~t ! [ (
j[O

pj Rj ~t ! 5

E
t

`

RS~u! du

u 1 t
+ (3.5)

Differentiating this att 5 01 gives, using Eq+ ~1+18!,

(
i[O

pi (
k[O

rik 5 2
1

u 1 t
5 2(

i[O

pi (
k[F

rik , (3.6)
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which, after applying Eq+ ~1+12!, yields

u 5 2

(
i[O

pi

(
i[O

pi (
k[O

rik

5

(
i[O

pi

(
i[O

pi (
k[F

rik

+ (3.7)

The second equality above and the second equality in Eq+ ~3+6! follows by simply
noticing that the limiting probability$pi , i [ S% must satisfy Eq+ ~1+6! and the rows
of L each sum to 0, so

(
i[O

pi (
k[F

rik 5 2(
i[O

pi (
k[O

rik 5 (
i[F

pi (
k[O

rik + (3.8)

Now, from the relationship~1+12!, the long-run MTTR is seen to be

t 5

12 (
i[O

pi

(
i[O

pi (
k[F

rik

5

(
i[F

pi

(
i[F

pi (
k[O

rik

+ (3.9)

Also, differentiating Eq+ ~3+5! at t1 and using Eqs+ ~1+18!, ~3+7!, ~3+8!, and~3+9!
yields

RS~t ! 5 2

(
i[O

pi (
k[O

rik Rk~t !

(
i[O

pi (
k[F

rik

5

(
i[F

pi (
k[O

rik Rk~t !

(
i[F

pi (
k[O

rik

(3.10)

as the long-run system reliability function~i+e+, the steady-state reliability function
for the sojourn time in the setO!+

If TO represents the sojourn time in the setO at steady state, then the previous
analysis shows thatRS~t ! 5 P$TO . t % andE~TO! 5 u+ A related quantity is the exit
time from the setO, given the process is somewhere in the setO+ If at steady state,
this quantity is denoted byTx, then

P$Tx . t % 5 lim
ur`

P$X~s! [ O,u # s# u 1 t 6X~u! [ O% (3.11)

and it follows from the relation

P$X~s! [ O,u # s# u 1 t %

5 P$X~s! [ O,u # s# u 1 t 6X~u! [ O%P$X~u! [ O% (3.12)

along with Eqs+ ~3+11!, ~2+2!, and~2+3! that

(
j[O

pj Rj ~t ! 5 AP$Tx . t %+ (3.13)
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Using this in Eq+ ~3+5! and applying Eq+ ~1+12! gives

P$Tx . t % 5

E
t

`

RS~u! du

u
, (3.14)

and integrating Eqs+ ~3+13! and~3+14! gives

E~Tx! 5
E ~TO

2!

2E~TO!
5 A21 (

j[O

pj uj , (3.15)

whereuj is the MTTF starting in statej [ O, given in Eq+ ~1+21!+ This also serves to
provide a formula for the second moment ofTO and to show thatTx has the same
relation toTO as the steady-state excess or residual life has to the time between
renewals in a renewal process+ Ross@12, Prob+ 5+34# also points out this structural
similarity and gives an outline of a~different! multistep approach to find the steady-
state distribution and mean of the sojourn time in an arbitrary set of statesB, S~ i+e+,
the time spent inB during a visit!+ TakingB5 O gives these measures the interpre-
tation of steady-state reliability and MTBF, respectively, and those results then match
Eqs+ ~3+7! and~3+10!+

4. SUMMARY AND FINAL REMARKS

Two availability measures appropriate for safety critical applications have been dis-
cussed and illustrated for systems whose state evolves according to a continuous
Markov process: the availability of continuous service and the availability of reli-
able service+ Both measures are computationally straightforward and are particu-
larly relevant to safety critical applications+ At the same time, general expressions
for the long-run values of MTBF, MTTR, and system reliability have been derived
as easy consequences of applying the concept of steady-state availability of contin-
uous service+ These formulas are not widely exposed in popular reliability method-
ology sources, and this discussion serves to make them accessible to practitioners+
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