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Abstract  This paper obtains criteria for a Fano variety X defined over an algebraically closed field of
characteristic zero with normal crossing singularities to be smoothable. In particular, we show that X is
smoothable by a flat deformation X — A with smooth total space X if and only if T}( >~ Op, where D
is the singular locus of X.
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1. Introduction

This paper studies the deformation theory of a Fano variety defined over an algebraically
closed field of characteristic zero with normal crossing singularities. In particular, it is
investigated when such a variety is smoothable. This means that there is a flat projective
morphism f: X — A, where A is the spectrum of a discrete valuation ring (R, mg), such
that X ®g (R/mpg) =2 X and X ® g K(R) is smooth over the function field K(R) of R.
Moreover, it is investigated when such a smoothing exists with smooth total space X. In
this case X is said to be totally smoothable.

Normal crossing singularities appear quite naturally in any degeneration problem. Let
f: X — C be a flat projective morphism from a variety X to a curve C. Then, according
to Mumford’s semi-stable reduction theorem [6], after a finite base change and a birational
modification the family can be brought to the standard form f': X’ — C’, where X’ is
smooth and the special fibres are simple normal crossing varieties.

Smoothings of Fano varieties play a fundamental role in higher-dimensional birational
geometry as well. The outcome of the minimal model program starting with a smooth
n-dimensional projective variety X is a Q-factorial terminal projective variety Y such
that either Ky is numerically effective or Y has a Mori fibre space structure. This means
that there is a projective morphism f: Y — Z such that —Ky is f-ample, Z is normal
and dim Z < dim X — 1. Suppose that the second case happens and dimZ = 1. Let z € Z
and Y, = f~1(z). Then Y, is a Fano variety of dimension n — 1 and Y is a smoothing
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of Y,. The singularities of the special fibres are difficult to describe but normal crossing
singularities naturally occur and are the simplest possible non-normal singularities.

Moreover, the study of smoothings f: X — A such that X’ is smooth, — Ky is f-ample
and the special fibre is a simple normal crossing divisor has a central role in the classifica-
tion of smooth Fano varieties [5]. In dimension 2 Fujita [5] has described all the possible
degenerations of smooth Del Pezzo surfaces to simple normal crossing Del Pezzo surfaces
and Kachi showed that all of these actually occur [7]. As far as the author knows, this
problem is completely open in higher dimensions.

It is therefore of interest to study which Fano varieties with normal crossing singular-
ities are smoothable and, in particular, which are totally smoothable.

The paper is organized as follows.

In § 3 we review the basic properties of the theory of logarithmic structures and loga-
rithmic deformations developed in [8,9] in the algebraic case and in [10] in the complex
analytic case. These notions are essential in the investigation of when a Fano variety with
normal crossing singularities is totally smoothable. The point is that sometimes singular
varieties admit logarithmic structures in such a way that they become smooth in the
log category. Moreover, deformations of varieties with smooth log structures behave like
deformations of smooth varieties and therefore have very good deformation theory. Of
course, not all varieties admit smooth logarithmic structures. However, a variety X with
normal crossing singularities admits a semi-stable logarithmic structure and becomes log
smooth if and only if T% = Op, where D is the singular locus of X (see Theorem 3.9),
which is exactly the case when X is totally smoothable and the reason why the theory of
logarithmic deformations is so useful in the investigation of when a variety with normal
crossing singularities is totally smoothable.

In §4 we study the obstruction spaces to deform a Fano variety X with normal
crossing singularities defined over an algebraically closed field of characteristic zero.
It is well known that H?(Tx) and H'(T%) are obstruction spaces to deformations
of X. If X has a semi-stable logarithmic structure, then Theorem 3.5 shows that
H?(Homx (2x(log), Ox)) is an obstruction space to logarithmic deformations. If X is a
simple normal crossing, which means that X has smooth irreducible components, then
its obstruction theory is deeply clarified by the work of Friedman [4]. However, for the
general case in which X is not necessarily reducible, Friedman’s theory does not directly
apply. In Theorem 4.8 we show that if X is a Fano variety with normal crossing singu-
larities, then H?(Tx) = 0. Moreover, if X admits a semi-stable logarithmic structure,
then H2(Homx (£2x (log), Ox)) = 0 and hence X has unobstructed logarithmic deforma-
tions. However, usual deformations can be obstructed since the other obstruction space
H'(T}) may not vanish. This is the case in Example 6.2. However, T% is a line bundle
on the singular locus D of X and in order for X to be smoothable one has to impose
some positivity conditions on T% that will force it to vanish. If X has at worst double
points, then in Theorem 4.11 we show that H'(T%) = 0 and hence X has unobstructed
deformations in this case.

In §5 we apply the results of the previous sections to obtain criteria for the existence
of a smoothing of a Fano variety X with normal crossing singularities. We also study
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the problem of when X is totally smoothable. Proposition 5.1 shows that if X is totally
smoothable, then T% = Op, where D is the singular locus of X. Therefore, by Propo-
sition 3.9, X has a logarithmic structure and the theory of logarithmic deformations
applies in this case. The main result of §5 is the following theorem.

Theorem 1.1. Let X be a Fano variety defined over an algebraically closed field of
characteristic zero with normal crossing singularities. Assume that one of the following
conditions hold.

(1) T is finitely generated by global sections and H'(T%) = 0.

(2) X has at worst double point normal crossing singularities and T% is finitely gener-
ated by global sections.

(3) X is d-semi-stable, i.e. Ty = Op, where D is the singular locus of X .

Then X is smoothable. Moreover, X is smoothable by a flat deformation f: X — A such
that X is smooth if and only if X is d-semi-stable.

The author does not know if the condition that 7% is finitely generated by its global
sections is a necessary condition, too, for X to be smoothable. X is certainly not smooth-
able if H(T%) = 0 [15]. In all the cases of the previous theorem, the condition finitely
generated by global sections implies that Def(X) is smooth. If it is true that Def(X) is
smooth for any X, then X smoothable implies that T is finitely generated by its global
sections, too.

In §6 we give one example of a smoothable and one example of a non-smoothable Fano
threefold.

Finally, the requirement that we work over an algebraically closed field is more technical
than essential. In the general case the author believes that the definition of normal
crossing singularities must be modified to allow singularities like 22 + 2% = 0 in R?. This
would make the arguments more complicated without adding anything of essence to the
proofs. However, the characteristic-zero assumption is essential since we make repeated
use of the Akizuki-Kodaira—Nakano vanishing theorem.

2. Terminology and notation

All schemes in this paper are defined over an algebraically closed field k.

A reduced scheme X of finite type over k is said to have normal crossing (n.c.) singular-
ities at a point P € X if Ox p = k(P)[xo,...,x,]/(zo - - - x,), for some r = r(P), where
k(P) is the residue field of Ox p and @X’p is the completion of Ox p at its maximal
ideal. If r = 2, then we say that P € X is a double point normal crossing singularity. X
is called a normal crossing variety if it has normal crossing singularities at every point.
In addition, if X has smooth irreducible components then it is called a simple normal
crossing variety.

A reduced projective scheme X with normal crossing singularities is called a Fano
variety if and only if w)_(l is an ample invertible sheaf on X.
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For any scheme X we denote by T3 the sheaf of infinitesimal first order deformations
of X [12]. If X is reduced, then T% = Ext (2x,0x). If X has n.c. singularities then a
straightforward local calculation shows that T is a line bundle on the singular locus D
of X. Moreover, if X = Uf\[:l X; is a simple normal crossings variety, then [4]

Tx = Homp((Ix,/Ix,Ip) ® - ® (Ix,/Ix,Ip), Op).

A variety X with normal crossing singularities is called d-semi-stable if and only if
T} = Op, where D is the singular locus of X.

We say that X is smoothable if there is a flat morphism of finite type f: X — A,
A = Spec(R), where R is a discrete valuation ring, such that the central fibre A} is
isomorphic to X and the general fibre X, is smooth over the function field K (R) of R.

Finally, we will repeatedly make use of the Akizuki-Kodaira—Nakano vanishing theo-
rem and its logarithmic version, which we state next.

Theorem 2.1 (Akizuki-Kodaira—Nakano [1, 3]). Let X be a smooth variety
defined over an algebraically closed field of characteristic zero and let L be an ample
invertible sheaf on X. The following conditions then hold.

(1)
H'(X, 25 ©L71) =0
for all a and b such that a +b < dim X.

(2) Moreover, if D is a reduced simple normal crossings divisor of X, then
HY(X, 2% (og(D) @ L) =0

for all a and b such that a +b < dim X.

3. Logarithmic Structures.

In order to study the deformation theory of certain Fano varieties we will use the theory
of logarithmic structures and deformations that was developed in [8,9] in the algebraic
case and in [10] in the complex analytic case. For the convenience of the reader, we
include a short review of basic properties and results that will be used in this paper and
refer the reader to the aforementioned papers for more details.

Definition 3.1. Let X be a scheme. A pre-logarithmic structure on X is a sheaf
of monoids M on the étale site X together with a sheaf of monoids homomorphism
a: M — Ox with respect to the multiplication of Ox. A pre-logarithmic structure is
called a logarithmic structure if a=1(0%) = O%.

For simplicity, from now on pre-logarithmic structures will be called pre-log structures
and logarithmic structures will be called log structures.

A morphism (X, M) — (Y,N) of schemes with log structures is a pair (f,g), where
f: X =Y is a scheme morphism and g: f~1(N) — M is a sheaf of monoids map, such
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that the following diagram commutes:

[ (Oy) —=Ox

To any pre-log structure (M, a) on a scheme X there is a naturally defined log struc-
ture (M?, «) that is universal for homomorphisms of pre-log structures from M to log
structures of X. Moreover, given a scheme morphism f: X — Y and log structures M
and A on X and Y, respectively, the preimage and direct image log structures f*A\ and
f«M are also naturally defined.

Let M be a log structure on a scheme X. The log structure is called integral if M
is a sheaf of integral monoids and fine if étale locally on X there is a finitely generated
monoid P and a sheaf of monoids map Px — Ox, where Px is the constant sheaf
associated with P, such that the log structure associated with Px is M.

A morphism (X, M) — (Y,N) of schemes with fine log structures is called smooth
if it satisfies a logarithmic version of the infinitesimal criterion of smoothness. It is a
natural extension of the usual notion of smoothness in the category of schemes with fine
log structures. An interesting part of the theory is that morphisms that are not smooth
in the category of schemes become smooth in the log-category with suitably chosen log
structures. Example 3.7 exhibits such a case.

3.1. Log differentials, log derivations and log deformations.
There is a natural extension of differentials, derivations and deformations in the log
category.
Definition 3.2.
(1) Let f: (X, M) — (Y,N) be a morphism of schemes with fine log structures and
let £ be an Ox-module. A log derivation from (X, M) to € over (Y,N) is a pair
(D, Dlog), where D € Dery (X, &) is a usual derivation and Dlog: M — £ is a
map such that:
(a) Dlog(ab) = Dlog(a) + D log(b) for a,b € M,
(b) D(a(a)) = a(a)Dlog(a) for a € M;
(c) Dlog(¢(c)) =0 for all ¢ € f~IN, where ¢: f~1 — M is the sheaf of monoids
map associated with the morphism f.
(2) The sheaf of log differentials of (X, M) over (Y, N) is the Ox-module
2x/y (log(M/N))

defined by

Nx/v ® (Ox @z MP?
2 v logM /) = 0 PO ),

where K is the O x-submodule generated by (da(a),0)—(0, a(a)®a) and (0, 1&¢(b))
foralla e M, be N.
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Next, we define the notion of a log deformation. Let A be a complete Noetherian local
ring with maximal ideal m 4 and residue field k. Let @ be a fine saturated monoid having
no invertible element other than 1. @ defines a log structure (Speck, Q). Let A[Q] be the
completion of the monoid ring A[Q] along the maximal ideal m, + A[Q — {1}] (if @ = N,
A[Q] = A[t]). The map @ — A[Q] defines a log structure on AJQ] and on any Artin
local A-algebra A via the A[Q]-algebra map A[Q] — A. Let Artiqp(k) be the category
of local Artin A[Q]-algebras.

Definition 3.3. Let f: (X, M) — (Speck, Q) be a log-smooth morphism and A €

Artg[qp (k). A log-smooth deformation of f over A is a Cartesian diagram

(X’M) — (XAvMA)

if ifA
(Speck, Q) —— (Spec(4), Q)
where fa: (Xa, Ma) — (Spec(A),Q) is log smooth. In particular, if @ = N, then the

underlying scheme morphisms are flat and hence we have a usual deformation.

Having defined log deformations, the log deformation functor
LD(X, M): Artg1op(k) — (Sets)

is naturally defined.

Theorem 3.4 (Kato [9, Theorem 8.7]). If f: (X M) — (Speck, Q) is integral and
X is proper, then LD(X, M) has a hull.

The log deformation theory of log-smooth maps is very similar to the deformation
theory of smooth varieties. The next theorem describes the obstructions to lift log-smooth
deformations.

Theorem 3.5 (Kato [8, Theorem 3.14]). Let fa: (X4, Ma) — (Spec(A), Q) be a
log deformation of the log-smooth map f: (X, M) — (Speck, Q). Let

0—-I—-B—A—=0

be a square zero extension in Artjq)(k). Then the obstructions for lifting fa to B are
in

H?(X a, Homx, (2x, /4 (log(Ma/Q)))) ®a 1.

3.2. Logarithmic structures on varieties with normal crossing singularities

Next we present some logarithmic structures on schemes with normal crossing sin-
gularities that will be needed for the study of the smoothability of Fano varieties with
normal crossing singularities.
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Example 3.6. Let D C X be a reduced divisor with normal crossings in a smooth
scheme X. Let M C Ox be the subsheaf of Ox of regular functions that are invertible
outside of D. M is a log structure on X. Moreover, if :: D — X is the closed immersion,
then ¢*M is a log structure on D. This log structure is said to be ‘of embedding type’,
and it is fine because it is étale locally around D, D C X is just (z1 -z, = 0) C Af
and the log structure is induced by the monoid map

]{1[1‘1, ce ,Z‘d]
(1 2,)

given by a(e;) =x; if i <r,and 1 for r < ¢ < d.
Example 3.7. Let

a: N

klz1,...,24]

(xl c.. xr)
be a simple normal crossing variety and N — Ox the log structure defined in the
previous example. The map §: N — k such that 5(0) = 1 and S(n) = 0 for n # 0 defines
a log structure on Speck. Let §: N — N¢ be the diagonal map. Then the corresponding
map of log schemes (X,N%) — (Speck,N) is log smooth and is called a logarithmic
semi-stable map.

X = Spec

Definition 3.8. Let a: M — Ox be a log structure on a scheme X with normal
crossing singularities.

(1) The log structure is said to be ‘of embedding type’ if locally in the étale topology
it is equivalent to the log structure of embedding type defined in Example 3.6.

(2) The log structure is said to be ‘of semi-stable type’ if there is a map of log schemes
f: (X, M) — (Speck,N) that is locally in the étale topology equivalent to the
logarithmic semi-stable map defined in Example 3.7.

In the case of a scheme with semi-stable log structure as above, for simplicity we denote
by 2x (log) the sheaf of logarithmic differentials of (X, M) over (Speck,N). 2x(log) is
a free Ox-module locally generated by the logarithmic differentials

dx dx
doy dee g e,
T1 Ty
with the relation
dx; dz,
—_— -+ =0.
X Ty

The existence of logarithmic structures of embedded type or semi-stable type is very
closely related to the deformation theory of X.

Theorem 3.9 (Kato [9, Theorem 11.7]). Let X be a scheme with normal crossing
singularities and D its singular locus.

(1) A log structure of embedding type exists on X if and only if there exists a line
bundle L on X such that L ®0, Op = T%.

(2) A Iog structure of semi-stable type exists on X if and only if Ty = Op, i.e. if X is
d-semi-stable.
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4. Obstructions

Let X be a variety with normal crossing singularities. It is well known that H?(Tx)
and H'(T%) are obstruction spaces to deformations of X. The purpose of this sec-
tion is to describe these spaces and, moreover, to describe the obstruction space
H?(Hom(2x (log), Ox)) to logarithmic deformations of an n.c. variety X with a semi-
stable logarithmic structure. We begin with some preliminary results.

Proposition 4.1 (Friedman [4]). Let X be a scheme with only normal crossing
singularities. Let Tx C {2x be the torsion subsheaf of §2x. Then, for all i > 0,
2x /TX = _Q;(*,
EXté((.Qx/Tx,Ox) = Hi(Tx),
Ext’ (tx,O0x) = H™H(Tx).
Corollary 4.2. Let X be a projective scheme with only normal crossing singularities.

Then,
H*(Tx) = H"*((2x /7x) ® wx),

where dim X = n.

Proof. By Proposition 4.1, H*(Tx) = Ext% (2x/7x,0x) = H" %((2x/7x) @ wx),
by Serre duality. O

Definition 4.3. Let X be a scheme with normal crossing singularities defined over
a field k. We denote by X C X, k > 0, the subschemes of X defined inductively by
X[o) = X and by X[y the singular locus of X_) with reduced structure. We also denote
by m;: X[ — X5 the normalization of X, i > 0.

Theorem 4.4. Let X be a scheme with normal crossing singularities defined over a
field k. Then the following hold.

(1) There are exact sequences
0 2x/mx — (10)e2g 2 (T1)4(25,, © L1) S
2 (7)o (g, ® L) > 0, (4.1)
0= Ox = (m0):0x = (m1)«Q1 — -+ = (7n)Qn — 0. (4.2)

(2) Suppose that X has a semi-stable logarithmic structure. There is then an exact
sequence

0— 2x/7x — 2x(log) EER (771)*((95([1] ® M) N

22 (1) (Ox,, @ M) 0, (4.3)

where m, N < dim X and Q;, L; and M, are 2-torsion invertible sheaves on X (i
: ®2 ~ ®2 ~ 2 ~ .
ie L7 = OXM’ M7= (95([1_] and Q;° = OXM for all 1.
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Remark 4.5. In the case of simple normal crossing complex analytic spaces, Theo-
rem 4.4 was proved in [4].

The following result is needed for the proof of the theorem.

Lemma 4.6. Let f: Y — X be an étale morphism of schemes. Let m: X — X
be the normalization of X. Then py: XxxY — Y is the normalization of Y, where
XxxY —Y is the fibre product of X and Y over X and py is the projection to Y .

Proof. From the fibre square diagram

XXXY pY>Y

X——X

it follows that pg is étale and py is finite. Hence, X Xx Y is normal. Moreover, py
is generically isomorphism. Therefore, there is a factorization g: XxxY =Y of Py
through the normalization Y of Y. But then, since both X xxY and Y are normal, g is
finite and generically isomorphism, ¢ is in fact an isomorphism. O

Proof of Theorem 4.4. We will only prove the existence of the exact sequence (4.1)
in detail. The proof for the others is similar so we only sketch it and leave the details to
the reader.

The proof of the first part is in two steps. First we show the existence of the exact
sequence (4.1) for an affine simple normal crossing scheme and then we prove the general
case. The proof of this part is similar to the one exhibited by Friedman [4] in the case of
a simple normal crossing complex analytic space. For the sake of completeness, and since
the explicit local construction of the sequence is needed for the general case, we present
a short proof here following the lines of Friedman’s proof.

Step 1. Suppose that

X = Spec ks, ]
(l‘l e xT)
Then X = U§=1 X;, where X; C X is the component given by z; =0, 1 < ¢ < r. Then,
fori>1,
X[z] = U (Xkoﬂ“-ﬂin).
k0<"'<kf1',

Moreover, X = [[/_, X; and
X[i] = H (Xkoﬂ“-ﬂin).
ko< <k

The maps 7 : X[i] — X[y, ¢ = 0, are the natural ones. Now, by definition, 7x C {2x is
the sheaf of sections of 2x supported on the singular locus of X. Hence, it is the kernel
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of the natural map §: 2x — 7. f25. Now define the sequence of maps

8 § 8
0— T — .QX — (Tro)*.QX —1) (7T1>*QX[1] —2>
di dit1
— (Wi)*ﬂk[i] % (7Ti+1)*.9)2[i+1] —> e, (44)

where §; are the Cech coboundary maps. This is clearly a complex and we proceed to
show that it is in fact exact. We use induction on the number r of components of X.
For r = 1 there is nothing to prove. Suppose now that the sequence (4.4) is exact for all
simple normal crossing affine schemes with at most r — 1 components.

Let X' =J/_} X; and Y = X' N X, Then, X = X'UX, and Xy = f([’k] IT Y}y for
all k > 0, where we also set Y|_;) = X,.. By the induction hypothesis, the corresponding
sequences (4.4) for X’ and Y, are exact.

From the previous discussion, it follows that Ker(d) = 7x. Next we show exactness at

the next step, i.e. that Ker(d;) = Im(d). Now, since

(m0)« 825 = (m0)+ 825, ® £2x,.,
(1) 25, = (M) L% © Oy,

any element of (). {2 is of the form («, 3), where o € (7). {2¢, and 8 € 2x,.. Suppose
that such an element is also in the kernel of §;. It is now clear from the induction
hypothesis that («,0) is in the image of 4. Therefore, in order to show exactness at
the level of 41, it suffices to show that if an element of the form (0, 3) is in the kernel
of 41, it is also in the image of §. Suppose that § = Zk;ér o, (fr) dxy is such an element,
where fi € Ox and a,: Ox — Ox, is the natural map. Therefore, since (m9).2y =
@:;11 2x,nx,, it follows that the restriction of 8 on X; N X, is zero for all 7 < r — 1.
Hence, fr € (1 3k @p_1,2,) for 1 < k <7 and fi € (1 xp1,2,) for k > 1.
Therefore, 5(3_,, fx dax) = (0, 8) and hence (0, 3) is in the image of d.

There is an exact sequence

0— (Wk_l)*_oy[k_l — (Wk)*()j([k — (Wk)*ﬁj([/k] — 0. (4.5)

] ]

Now, define the complexes (A*, 8% ), (B*,d%) and (C*, %) such that Ak = (kal)*“(sz[k,l]v

BF — (ﬂ'k)*ﬂf([k] and CF = (Wk)*Q)?fk , k > 0. The coboundary maps are the Cech maps.
Then (4.5) induces an exact sequence of complexes

0—-A"—=B"—>C"—=0.
Passing to cohomology, we get an exact sequence

o — H¥(A*) - H¥(B*) - H*(C") - --- .

Now, by induction, H*(C*) = 0 for all k > 1 and H¥(A*) = 0 for all k& > 2. Hence,
H*(B*) = 0 for all k > 2. It remains to check for k = 1. Then there is an exact sequence

HY(C*) & HY(A*) — HY(B*) — 0.
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Moreover, H?(C*) = Q2x//7x:, H'(A*) = §2y /7y and o is the natural map
QX//TX/ — Qy/Ty,

and hence it is surjective. Therefore, H'(B*) = 0 and the complex (4.4) is exact as
claimed.

Step 2. The general case. So, let X be a scheme with normal crossing singularities.

Claim 4.7. For any x € X there are pointed étale maps

(U, u)

/ \ (4.6)

(X, ) (W, w)
where u € U, w € W, f(u) =z, g(u) = w, such that the following hold.
(1) f and g induce isomorphisms of residue fields k(u) = k(z) = k(w).

(2)

/{3[331, ce ,l’n]

W = Spec
(1‘1 o Ir(w))

and w € W corresponds to the maximal ideal (x1,...,Ty).
(3) All irreducible components of U pass through u.

(4) U is a simple normal crossing scheme and it has exactly r = r(x) irreducible
components, exactly as many as W. Let U = U2:1 Uy be the decomposition of U
into its irreducible components. Then there is an exact sequence

1 02

5 5 5 5
0= 75 = Qu = (M0)x 25 =5 (1)L, = - = (M) 2, S @)

where, as before,

U= |J U,n-nU,),

s0<--<sk
ﬁ[k} is the normalization of Uy and the boundary maps are the Cech maps.

A diagram of maps such as (4.6) that satisfies (1), (2) and (3) is called an étale
neighbourhood of x € X. Note that the map g induces an ordering on the irreducible
components U; = g~ 'W; of U, W; being the irreducible component of W given by z; = 0,
i=1,...,r(x).

We proceed to show the claim. Let € X be a point. Then, by assumption,

@X)I ~ klzy,. .. ,xn]]'
(371 o xr(m))
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Let W = Spec(k[x1,...,2n]/(21 - - Zr(4))) and let w be the closed point corresponding to
the maximal ideal (21, ..., z,). Then, by [2], since @X,m = @W,wv there is a common étale
neighbourhood of x € X and w € W, i.e. there are pointed étale maps f: (U,u) — (X, )
and g: (U,u) — (W, w) as in (4.6) that satisfy the properties (1) and (2) of the claim.

Shrinking U we may assume that all its irreducible components pass through v € U.
Let W = J_; Wi, » = r(z), be the decomposition of W into irreducible components,
where W; is given by z; =0, i = 1,...,r. Then, U = |J,_, g~ *(W;). Since g is étale and
all irreducible components of U pass through the same point, it follows that U; = g~1(W;)
is smooth and irreducible and hence U = (J;_, U;. In particular, U; is a simple normal
crossing and has the same number of irreducible components as .

From Step 1 there is an exact sequence

Sw,2

0— 7w — Q2w i) (Ww’o)*QW (Su—’l> (7Tw71)*_(2w[1] — (4.8)

Since g is étale, by Lemma 4.6 there is a fibre square diagram

Ul s Upy

W[k] s Wik

By flat base change, it follows that ¢*(my k)« = (Tuk)+(gp)*. Moreover, since both g
and g are étale,

g*QW[k] = QU[k]7
9) Qw[k] - QU[k]’
Therefore, (4.8) pulls back via g to an exact sequence in U,

5 Su, Ou,
0= 17 = Qu = (Tu0)e 5 — (“’1)*00[1 e

| . (4.9)

where the coboundary maps are the Cech maps corresponding to the numbering of the
components of U induced from the numbering of the components of W. This concludes
the proof of the claim.

Next we claim that étale neighbourhoods of X form a basis for the étale topology of X.
This means that for any étale map f: Y — X and a point y € Y, there exists an étale
neighbourhood g: (U,u) — (X,z), z = f(y), and a factorization h: U — Y such that
fh =g and h(u) = y. Indeed, if h: (U,u) — (Y,y) is an étale neighbourhood of (Y, y),
then fh: (U,u) = (X, z) is an étale neighbourhood of (X, z).

Let E}, denote the exact sequence (4.7) corresponding to the étale neighbourhood
f: U — X. Then, since étale neighbourhoods form a basis for the étale topology of X,
descent theory says that in order to construct an exact sequence on X that pulls back
to EY;, it suffices to construct, for any X-map ®,,: V — U between étale neighbourhoods
f:V = X and g: U — X of X, exact sequence isomorphisms

Uyt O (EL) — EY

https://doi.org/10.1017/50013091515000024 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091515000024

Smoothings of normal crossing Fano schemes 799

such that for any commutative diagram

@7 Yw
b

v — w

of étale neighbourhoods of X, the following diagram commutes:

Ep

V Wuw
ézw (WUU/)

In order to have a uniform numbering of the irreducible components of all étale neigh-
bourhoods, given an étale neighbourhood f: W — X with irreducible components
Wi,..., Wy (w), we extend the definition of W; for all i € {1,2,...,n}, by setting W; = ()
for n > i > r(w), where n = dim X + 1.

Let @: U — V be a map between two étale neighbourhoods of X, U L XandVv & X.
Let U = U;—, U; and V' = |Jj_, V; be the decompositions of U and V into irreducible
components, respectively, taking into account the conventions on the irreducible compo-
nents stated in the previous paragraph. Then,

i=1 j=1

Moreover, since all irreducible components of U pass through the same point, #~1(V;)
is irreducible, otherwise it would be a disjoint union of smooth irreducible components
of U, which is impossible since all irreducible components of U intersect. Therefore, there
exists a permutation o € Sy,11 such that Uy(;) = oLV, 1<i<n.

Let 7y Uy — Upy and v Vi) — Vi) be as in Definition 4.3. Then,

(ﬂ-k)*OU[k] = @ OUiOil"‘ik and (Vk)*(r)(/m = @ OVioir“ik’
10 <i1<---<ig G0 <i1<--<ig

where Ui, ...i, = Ui, N---NU;, and similarly for Vj,..;,. Let U/ = &~1(V;) and define

the map
/\k: @ OUiO'il'“’ik - @ OUz{Oil-»-ik (410)

G0<i1<-<ik G0<i1 <<k

by setting, for any o € ®ij<iy<-<i, Ovigiy iy >
)‘k(a)iomik = Sgn(T)aTU(io)-“TJ(ik)7

where 7 € Si41 is the permutation such that 7o (ip) < 70(iy) < -+ < 7o (ig).

Note that both sides of (4.10) are isomorphic to (’ﬂ'k)*Of][k]. The left-hand side is
written by using the ordering of the components of U coming from its structure as an
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étale neighbourhood of X, while the right-hand side is written by using the ordering of the
components of U inherited from V by @. By this consideration, A\ gives an automorphism
of Uy such that )\i is the identity. Moreover, it is straightforward to check that the
diagram

di
®7;0<"‘<7:k OUioil'“ik- i< <ip OU@'OH"'%JA

/\kl \L>ﬂe+l

Ok
@i0<-.-<ik OU

— > Dig<<i OU

/ ’
gty lg 1081 i1

commutes. Therefore, A\, gives a map between Cech complexes. Let

Sv,k
(Vk)*QV[k] E— (Vk-&-l)*“QV[kJrl]

be the map at the k stage of the exact sequence EY,. This pulls back by ¢ to a map

v,k
(k) 0204y — (Vh41) 20

This is simply the map of Cech complexes corresponding to the ordering of the irre-
ducible components of U induced from the ordering of V' by ¢. Moreover, A; induces an
isomorphism

Aki (ﬂ—k)*QU[k] — (ﬂ'k)*QU[k]

such that A2 is the identity. Moreover, a straightforward calculation shows that there is
a commutative diagram

6 ]
() + 20, 0 (Th1) 020 4y

Aki iAkH (4.11)

vk
(ﬂ-k‘)*QU[k] — (7Tk+1)*QU[k+1]

Now, by descent theory, the involutions A\; glue the structure sheaves OVk to 2-torsion

sheaves Ly on X[). Then, from (4.11), all the maps in the diagram glue as well and we

get a sequence on X:

5 4§
0—>7x = 2x — (WO)*QX = (ﬂl)*(QX[l] ®L1) =2 (WQ)*(‘QXM ®L2) [

This sequence is exact since it pulls back locally by faithful flat maps (that correspond
to local étale neighbourhoods) to exact sequences. This concludes the proof of the first
part of Theorem 4.4.

Next we sketch the proof of the other parts of the theorem. First we will construct the
exact sequences (4.2) and (4.3) locally and then glue them to get the global sequence,
exactly as in the proof of (4.1). Locally in the étale topology,

k[l?o, ‘e ,xn]

X = Spec
P o )
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In this case X = [J;_; X,, where X, is given by x; = 0. Then,

(1:):O0%, = @ Ox,,n-nx;, -

Jo<-+-<Ji

We then define the sequence of maps

0— TX — QX /\—0> Qx(log) /\—1> (71‘1)*05([1] —2>

i i

5 (1) Og,, = (mi1):Ox, =y (412)
0= Ox = (m)«O% — (771)*(95([1] ey (71-1»)*(’)5([1_] — (7Ti+1)*(’))~([i+l] — e (4.13)

as follows. The second sequence is simply the Cech coboundary maps. The maps \; are
the Cech coboundary maps for ¢ > 2 and Ag is the natural map between 2x and £2x (log).
2x (log) is a free Ox-module generated by dz;/x1,...,dz,/xr, dTrtq, ..., dz, with the
relation dxg/zo + - --dx,/x, = 0. We then define A(dx;) = 0if ¢ > r, and if 4 < 7,
)\1((11‘1/581) = (OéjOle), Jo < J1, such that

1 if jo =1,
Qg5 = 4 —1 if j1 =1,

0 otherwise.

Now, by either using the same method as in the first part for the sequence (4.1) or
by [4, Corollary 3.6], we obtain that (4.11) and (4.12) are exact. Now, by using exactly
the same argument as in the first part by using étale covers we get the existence of (4.2)
and (4.3). O

Theorem 4.8. Let X be a Fano variety with normal crossing singularities defined
over a field k of characteristic zero. Then,

H*(Tx) = H*(X,0x) = 0.
Moreover, if X has a semi-stable logarithmic structure, then
H?(Hom(Nx (log),Ox)) =0

as well.

Corollary 4.9. Let X be a Fano variety defined over an algebraically closed field of
characteristic zero with normal crossing singularities. Then any formal deformation of X
is effective.

Proof. This follows since H%(X,Ox) = 0 and from Grothendieck’s criterion of effec-
tivity [13, Theorem 2.5.13]. O

Theorems 3.4, 3.5 and 4.8 imply the following corollary.
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Corollary 4.10. Let X be a Fano variety with normal crossing singularities defined
over a field k of characteristic zero. Assume that X has a semi-stable logarithmic struc-
ture M. Then, LD(X, M) is smooth.

Proof of Theorem 4.8. We only prove the vanishing of H?(Tx ). The remaining parts
of the theorem are proved in exactly the same way by using the exact sequences (4.2)
and (4.3) and, in addition, that by Serre duality, H?(X,Ox) = H" ?(X,wy), where
n = dim X.

By Corollary 4.2,

H*(Tx) = H"3((2x/7x) @ wx), (4.14)

where n = dim X. Then, by Theorem 4.4, there is an exact sequence

0= 2x /Tx 2 (m0)uf2g 2 (m)u(Rg, © L1) 2 oo 25 (wx)u (g, ® L) =0,
(4.15)
where N < dim X, 7x is the torsion part of 2x and L; is an invertible sheaf on X [i] such
that L7 = O, .
Tensoring equation (4.15) with wx and taking into consideration that

(1)« (25, © (M) wx) = (M)« 2% Owx,
we get the exact sequence

J, * 01 * 1
0= (2x/7x) Qwx == (M)« (25 @ Thwx) — (771)*((25([1] ® Ly ®@miwyx) —= - -

§ *
RN (WN)*(‘QX[N] ® Ly ®7Twa) — 0.

Let My =Im(dx), 1 < k < N. The above sequence splits into

0— (2x/7x) @wx 6—1> (ﬂ'o)*(ﬂf( ® Towx) 6—2> M; — 0,
0— Mk — (’/Tk)*(.Qj([k] ®Lk ®7T;:WX) — Mk+1 — 0,

where 1 < k< N—-1, N <n=dimX and My = (WN)*(.QXW] ® Ly ®@mywx). Therefore,
we get exact sequences in cohomology:

S HPT3(My) = H'2(02x /7x) @ wx) — H"72((m0)u (25 @ mhwx)) — -+
e HYT (Mi) = HY R (M) = HY R () (25, © L @ mwx) = -+
(4.16)

Now, since the 7, are finite, it follows that (mjwx )" are ample for all 0 < k& < N, and

hence (L;1 ® WZ&)X)_I is ample too, since Ly is 2-torsion and invertible. Moreover, X
is smooth of dimension n — k. Therefore, and by using the Kodaira—Nakano vanishing
theorem [3, Corollary 6.4],

H' 472 (m). (25, © Li @ wiwx)) = 0
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for all 1 < k < N. Hence, from (4.16) and by induction, it follows that H"~*~2(M}) =0
for all 0 < k < N, and hence, again by (4.16), it follows that there is an exact sequence

H" 3 (My) = H'?((2x /7x) @ wx) = H"72((m0)« (25 ® mgwx)),

and therefore
H2(TX) = Hn_Z((.Qx/TX) ®w_x) =0

as claimed. 0

Unfortunately, in general the author cannot say much about the other obstruction
space, namely H'(T%). However, since T% is a line bundle on the singular locus X
of X, it is much more easily handled than H?(T) and it will vanish if we impose certain
positivity requirements on Ty

The case in which X has only double points exhibits much better behaviour and it
deserves special consideration. The difference between this and the general case is that
the singular locus X[;j of X is smooth.

Theorem 4.11. Let X be a Fano variety with only double point normal crossing
singularities such that T% is finitely generated by its global sections. Then,

H(Tx) = H'(T}) = 0.

Corollary 4.12. Let X be a Fano variety with only double point normal crossing
singularities and such that T is finitely generated by its global sections. Then Def(X)
is smooth.

Question 4.13. Is Def(X) smooth for any Fano variety with normal crossing singu-
larities? If this is true, then X is smoothable if and only if 7% is finitely generated by
global sections, and hence this is a very natural condition to impose.

Remark 4.14. In general, H!(T%) will not vanish. However, if X is smoothable,
then T% must have some positivity properties and the one stated is the most natural
one.

Proof of Theorem 4.11. In view of Theorem 4.8 we only need to show the vanishing
of H'(T%). In order to show this we will first show that the singular locus Z = X;j of X
is a smooth Fano variety of dimension dim X — 1. The Fano part is the only part to be
shown. Let 7: X — X be the normalization and let Z = 7=1Z. Then Z — Z is étale.
By subadjunction we obtain that

Twx = wg ® 0% (2).

Therefore,

wy; =wx ® OX(Z) ® 02.
Hence, wgl is ample. But since Z — Z is étale, it follows that m*wy = wj. Therefore,
1is ample too, and hence Z is Fano as claimed. Now,

HYTx) =H' (wz ® (Tx ®wz")) =0

Wz

by the Kawamata—Viehweg vanishing theorem since if T'% is finitely generated by global
sections, then T% ® w,' is ample, too. O
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5. Smoothings of Fanos

In this section we obtain criteria for a Fano variety X with normal crossing singularities
to be smoothable. First we state a criterion for a variety X with hypersurface singularities
to be smoothable and, moreover, to be smoothable with a smooth total space.

Proposition 5.1. Let X be a reduced projective scheme with hypersurface singular-
ities and let D be its singular locus. Then the following hold.

(1) If X is smoothable by a flat deformation X — A such that X is smooth, then
Ty =Op.

(2) Suppose that T% is finitely generated by its global sections and that H?(Tx) =
HY(T%) = 0. Then X is smoothable. Moreover, if Def(X) is smooth, then the
converse is also true.

Proof. The proof of the second part is given in [15, Theorem 12.5]. We proceed to
show the first part. Let f: X — A be a smoothing of X such that X is smooth, where
A = Spec(R) and (R, mp) is a discrete valuation ring. Let T}(/A = é’xtﬁ((ﬁ/y/& Ox) be
Schlessinger’s relative T sheaf. Then, dualizing the exact sequence

O%f*wA:OX*)Q/'y—)QX/A—)O,
we get the exact sequence
o= Ox = Tyyp — Exty(2x,0x) = 0.

Now, restricting to the special fibre and taking into consideration that X ® g R/m, =2 X
and that T}{/A ®r R/mp = T% [15, Lemma 7.7], we get that there is a surjection
Ox — T4 Moreover, T is a line bundle on the singular locus D of X. Hence, restricting
on Z, it follows that T} = Op, as claimed. (]

Remark 5.2. The condition 7% = Op is equivalent to Friedman’s d-semi-stability
condition in the case of reducible simple normal crossing schemes [4]. One of the natural
questions raised by Friedman is whether this condition is sufficient for a simple normal
crossing variety to be smoothable. He showed that in the case of K3 surfaces this is true
but Persson and Pinkham have shown that this is not true in general [11]. However, this
is true in the case of normal crossing (not necessarily reducible) Fano schemes, as shown
by Theorem 5.3.

Theorem 5.3. Let X be a Fano variety defined over an algebraically closed field of
characteristic zero with normal crossing singularities. Assume that one of the following
conditions holds.

(1) T% is finitely generated by global sections and H'(T% ) = 0.

(2) X has at worst double point normal crossing singularities and T% is finitely gener-
ated by global sections.

(3) X is d-semi-stable, i.e. Ty = Op, where D is the singular locus of X .

Then X is smoothable. Moreover, X is smoothable by a flat deformation f: X — A such
that X is smooth if and only if X is d-semi-stable.
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Proof. Theorem 5.3 (1) follows directly from Theorem 4.8 and Proposition 5.1(2).
Theorem 5.3 (2) follows from Theorem 4.11 and Proposition 5.1(2). Finally, suppose
that T% = Op, i.e. X is d-semi-stable. Then, according to Proposition 3.9, X admits
a semi-stable logarithmic structure M. Moreover, by Theorem 4.8 and Corollary 4.10,
(X, M) has unobstructed logarithmic deformations. Let s be a nowhere vanishing section
of T% as a sheaf on D. Then, locally in the étale topology,

k[ZOa ce 7xd]

X = Spec
p (2o 2r)

and s corresponds to the first-order deformation of X,

Aifzo, - ..,

X, = Spec 21T o Td)
1 pec(xo...mr_t>

— Spec A,

where A; = k[t]/(t?). This deformation is also a log deformation for the semi-stable log
structure of X. This is evident from the diagram

o Al[l‘g,...,xd]

Nd (CCO"'xr—t)
d

|

N——4

where A is the diagonal, o the semi-stable log structure of X and 3(n) = t". Since X has
unobstructed log deformations, this first order deformation lifts to a formal log defor-
mation of X over k[t]. By Corollary 4.9, any formal deformations are effective. Let then
f:(X,N)— (A,N), where A = Spec k[t] is the lifting. Then, as in the proof of Propo-
sition 5.1, there is an exact sequence

o= Ox 5 Tyyp — Extiy(2x,0x) = 0.

Now, by the assumption that 7% = Op and the non-triviality of the deformation, it
follows that o is surjective, and hence

Exth(2x,0x) = 0.

Therefore, since X has complete intersection singularities, X’ is smooth. O

6. Examples

In this section we construct one example of a smoothable and one of a non-smoothable
normal crossing Fano threefold.

Example 6.1. Let P € Y C P* be a quadric surface with one ordinary double point
locally analytically isomorphic to (zy — zw = 0) C C*. Let f: X — Y be the blow up
of P € Y. Then X is smooth and the f-exceptional divisor F is isomorphic to P x P!,
Moreover, —Kx — E is ample and N, x = Op(-1,-1).
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Next we construct an embedding £ C X’ of E into a smooth scheme X’ such that
Ng/x: = Og(1,1) and —Kx: — E is ample. Let Z C P2 be a smooth quadric surface.
Then, Nzps = Oz(2,2). Let m: X’ — P? be the cyclic double cover of P? ramified
over Z. This is defined by the line bundle £ = Ops(1) and the section s of £%? that
corresponds to Z. Let E = (771(Z))1eqa = Z. Then 7*Z = 2F and wx = 7*(wps ® L).
Let I’ C E be one of the rulings and [ = 7, (I'). Then,

V" E=L0 -m2)=11-2)=1,

1
2
and hence Ny = Op(1,1). Now let Y be the scheme obtained by gluing X and X'
along E. This is a normal crossing Fano threefold with only double points. Then, T} =
NE/X ®NE/X/ = Opg. Therefore, by Theorem 5.3, Y is smoothable.

Example 6.2. Let £ C X be as in Example 1. Then let Y be obtained by gluing two
copies of X along E. Then,

Ty = Np/x @ Ng/x = Op(-2,-2)

and hence H°(T*(Y)) = 0. Hence, Y is not smoothable [14, Theorem 12.3]. In fact, every
deformation of Y is locally trivial.
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