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We consider polling models in the sense of Takagi [19]. In our case, the feature of the
server is that it may be forced to wait idly for new messages at an empty queue instead
of switching to the next station. We propose four different wait-and-see strategies that
govern these waiting periods. We assume Poisson arrivals for new messages and allow
general service and switchover time distributions. The results are formulas for the mean
average queueing delay and characterizations of the cases where the wait-and-see strategies
yield a lower delay compared with the exhaustive strategy.
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1. INTRODUCTION

1.1. Model

We investigate a polling model in the sense of [19] consisting of N ≥ 1 stations, which are
served by one server. The stations are labeled by the indices from 1 to N and served in
ascending, cyclic order with N + 1 � 1.

Each station i has its own queue, which is fed by messages generated by a Poisson
arrival process with intensity λi. Each message has a random length (also called the service
time). The mean and second moment of the message length distribution are assumed to be
finite and denoted by bi and b

(2)
i , respectively.

Switching between stations takes a non-negative random idle time, called the switchover
time, where the server does not serve any messages at any station. The random switchover
time Ri from station i to the next station (with distribution function FRi

) is assumed to
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have finite mean ri and finite second moment r
(2)
i . We consider both non-deterministic and

deterministic switchover times (in the latter case r
(2)
i = r2

i for i = 1, . . . , N). The sum of
the mean switchover times is denoted by r0 :=

∑N
i=1 ri and the second moment of the sum

of independent switchover times by r
(2)
0 :=

∑N
i=1 r

(2)
i +

∑N
i,j=1,i �=j rirj .

The message generation process, the lengths of the messages, and the switchover times
are assumed to be independent (everything among each other and with respect to the other
processes and stations).

The goal of this paper is to obtain explicit formulas for the mean average queueing
delay of a message in a polling model with a given wait-and-see strategy in a steady state.
The delay is the time a message experiences from the point in time when it arrives in one
of the queues until its service starts, that is, excluding the service time. The expected delay
of a message generated at station i is denoted by EDi. The mean average queueing delay is
then defined by

D̄ :=
N∑

i=1

ρi

ρ0
EDi,

where ρi := λibi is the traffic load at station i and ρ0 :=
∑N

i=1 ρi is the total load offered to
the system. We stress that the delays of the different stations are weighted by the traffic
intensity ρi, which implicitly includes weighting by the mean message lengths, whereas
the delays EDi do not include weighting the delay of the individual messages with their
lengths. The mean average queueing delay, which we often just abbreviate as delay, is called
the intensity weighted mean waiting time by Takagi [19].

1.2. Wait-and-see strategies

It is characteristic of many service strategies to avoid that the server spends time idly at a
station (while there may be work at other stations). In contrast, we focus on wait-and-see
strategies where the server may be forced to wait idly for new messages at an empty queue.
An advantage is that the server does not switch too often, especially when it is not required
or not worthwhile. This can be favorable in order to optimize performance measures such
as minimizing the delay, for instance.

First, we describe the wait-and-see behavior of the server in general: The server arrives
at a station and starts serving in an exhaustive fashion, that is, serving all waiting messages
and newly arriving messages (first come, first served) until the queue is empty. However,
once the station is empty or if the server finds an empty station upon its arrival, the server
may not immediately switch to the next station; it rather turns idle for some time in order
to wait for possibly newly arriving messages (“wait-and-see”). As soon as a new message
arrives, the server starts serving immediately and in an exhaustive fashion. Once finished,
the server may again turn idle and wait for new messages.

For each of the four strategies considered here, the behavior of the server at station i is
governed by a fixed, real parameter Ti ≥ 0, which has different interpretations (see below).
Of course, the server is not allowed to be idle if at its present station messages are waiting
to be served. The reason for waiting depends only on the current station in the current
cycle, that is, on the evolution of the traffic at the present station since the server arrived
there. The server must not use any information about the current queue status at other
stations nor about the future of the arrival process at any station. If Ti = 0 holds, the service
discipline is exhaustive at station i and there is no state of “wait-and-see” at station i. If
this is the case for all stations, we call it the exhaustive strategy.
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Now, we specify the four different wait-and-see strategies. Strategy I is extensively
analyzed by Aurzada, Beck, and Scheutzow [4] and Strategy IV is examined by Boxma,
Schlegel, and Yechiali [6] for N = 2 stations and T2 = 0. As far as we know, there are no
results in the literature on Strategies II and III.

• Under Strategy I, the server has to wait idly the total time Ti for new messages at
station i per cycle. Depending on the arrival process, this credit Ti is spent altogether
in one single period or in some periods interleaved by different busy periods.

• Strategy II is defined as follows: The server has to stay at least the minimum
sojourn time Ti at station i per cycle. We can regard it as a timer starting upon
arrival of the server at this station. Once the server has spent the minimum sojourn
time at the station (possibly consisting of several busy and waiting periods), the
server exits the station if the queue is empty. If there are still messages waiting or in
service as the timer runs out, the server continues serving in an exhaustive fashion
and switches to the next station as soon as the queue is empty.

• Strategy III is a modification of the previous one. Here, the server is forced to stay
at station i at least the fixed time Ti after becoming idle for the first time at this
station in this cycle. If there are no messages waiting upon arrival of the server, the
timer starts immediately as in the case for Strategy II. Otherwise, the timer starts
running just after the first busy period.

• Strategy IV is based on a case distinction: If there are messages waiting upon
arrival of the server, the server starts serving in an exhaustive fashion and then
switches to the next station. On the other hand, if the server finds station i empty
upon arrival, a timer is activated and the server remains idle for at most the time Ti,
waiting for the first arriving message. If the timer expires before the first arrival
occurs, the server switches to the next station. Otherwise, if a new message arrives
before the timer expires, the server starts serving immediately and in an exhaustive
fashion. After this busy period, the server does not wait any longer at this station
in the current cycle and switches to the next station.

We stress that we only deal with strategies where the wait-and-see timers are deter-
ministic. In order to yield a lower minimal delay, we conjecture that deterministic timers
do a better job than random timers. Simulations have indicated that such an additional
randomness (of the timer) in the polling model has no positive effect on the minimal delay.

1.3. Overview of the contents

The results of this paper are as follows:

• We prove a formula for the mean average queueing delay in a polling model with
N stations and Strategy III (Theorem 1).

• We prove a formula for the mean average queueing delay in a polling model with
N = 2 stations and Strategy II (Theorem 2).

• We extend [6] to timers at both stations and prove a formula for the mean average
queueing delay for Strategy IV (Theorem 2).

• We characterize the cases for a polling model with N = 2 stations where these
strategies yield a lower delay compared with the exhaustive strategy (Theorems 3
and 5).
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The remainder of this paper is structured in the following way: In Section 1.4, we
outline related work. Section 2 contains the formulas for the mean average queueing delay
(Section 2.1) and the cases where it is worth waiting (Section 2.2). All proofs of the results
as well as the determination of essential quantities are collected in Section 3.

1.4. Related work

Aurzada et al. [4] analyze Strategy I and give an explicit formula for the mean average
queueing delay in a polling model with N stations. They characterize several cases where
Strategy I yields a lower delay compared with the exhaustive strategy. In these cases, the
optimal parameters Ti can be computed explicitly. Finally, they give a lower bound for the
delay for a class of wait-and-see strategies, which includes Strategies I–IV.

In [6], Boxma et al. focus on a two-queue polling model with a timer as in Strategy IV
at station 1, which may be random. They examine different configurations: Either both
stations are served exhaustively, or one station is controlled by the 1-limited protocol,
whereas the other station is served in an exhaustive fashion. The main results are the
probability generating function of the queue lengths, expressions for pseudo-conservation
laws, and the Laplace transform of the stationary waiting times.

Besides the main references [4,6], further papers deal with service strategies, which have
in common that the server does not necessarily switch to the next station when the current
queue is empty. Polling models with deterministic sojourn times and preemptive service
are considered in [20] and with exponentially distributed sojourn times in [9]. Similar to
Strategy IV, in the setting of [1] the server waits exactly for the first arriving message at an
empty station. In [7,16,17], forced idle times are examined where the server is not allowed
to resume service immediately as soon as a new message arrives during these idle periods.
These three papers are based on an observation in [18], which is as follows: Increasing
switchover times can reduce the mean waiting time in polling models.

Furthermore, there are several works that investigate polling models with time-limited
service. There, messages are served at a station for a certain period of time or until the
queue is empty, whichever occurs first. If there is still work at the station when the timer
expires, the server either finishes all the present work, or completes only the service of the
currently served message, or stops working immediately at this station and switches to the
next station. We refer to [2,8,11,14,15] for random time limits (in particular, exponentially
distributed timers). In [10,12], deterministic time limits are studied.

2. RESULTS

In this section, we give formulas for the the mean average queueing delay that allow us to
compute the delay for the different wait-and-see strategies. We further characterize the cases
where it is favorable (in the sense of a lower delay) to possibly wait at a station instead of
switching. From now on, we assume that the stability condition ρ0 < 1 of the polling model
holds.

2.1. Main results

Theorems 1 and 2 provide formulas for the mean average queueing delay in terms:

• of the system parameters λi, bi, b
(2)
i , ri, r

(2)
i for i = 1, . . . , N ; and
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• of the parameter-dependent quantity S := (fi, wi, r̃i)i=1,...,N of expectations in
steady state, which are defined in the next paragraph and which vary depending on
the wait-and-see strategy including the parameters Ti. Specifying these expectations
for Strategies II–IV in Section 3.2 is the main novelty in this paper.

We define by fi the expected time per cycle, which the server waits at station i. We
use f0 :=

∑N
i=1 fi for the total expected waiting time of the server per cycle (i.e., idle times

without switchover times). The expected backward recurrence time (expected spent time) wi

is defined by

wi := E[time since server arrived at station i | server is idle at station i],

that is, the expectation of the elapsed time since arriving at station i at a random point in
time while waiting at station i. Furthermore, we recall the random switchover time Ri from
station i to the next station and define the conditional mean switchover time by

r̃i := E[Ri | server is idle at station i + 1].

This means: Given a random point in time while waiting at station i + 1, the quantity r̃i is
the expected length of the preceding switchover time.

Theorem 1: The mean average queueing delay of a message in a polling model with
Strategy III is given by

D̄ =
∑N

i=1 λib
(2)
i

2(1 − ρ0)
+

(r0 + f0)
(
ρ2
0 −

∑N
i=1 ρ2

i

)
2ρ0(1 − ρ0)

+
1
2ρ0r

(2)
0 + r0

∑N
i=1 fi(ρ0 − ρi)

ρ0(r0 + f0)

+
1

ρ0(r0 + f0)

⎡
⎣ N∑

i=1

fiwi(ρ0 − ρi) +
∑

1≤i<j≤N

fifj(ρ0 − ρi − ρj)

⎤
⎦ (1)

−
∑N

i=1 fiρi(ρ0 − ρi)
ρ0(1 − ρ0)

.

The quantities fi and wi for i = 1, . . . , N are specified for exponentially distributed service
times in Section 3.2.

We refer to Aurzada et al. [4] for the delay of a message in a polling model with
Strategy I. For Strategies II and IV, we restrict the number of stations to N = 2 due to the
technical effort that would be required otherwise to compute further parameter-dependent
quantities, which would arise in the formula for the delay.

Theorem 2: The mean average queueing delay of a message in a polling model with N = 2
stations and Strategy II as well as Strategy IV is given by

D̄ =
∑2

i=1 λib
(2)
i

2(1 − ρ0)
+

r0ρ1ρ2

ρ0(1 − ρ0)
+

r
(2)
0

2(r0 + f0)

+
ρ2f1

ρ0(r0 + f0)
(r1 + r̃2 + w1)

+
ρ1f2

ρ0(r0 + f0)
(r̃1 + r2 + w2).

(2)

The quantities fi, wi and r̃i for i = 1, 2 are specified in Section 3.2 (in the case of Strategy II
only for exponentially distributed service times).
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Figure 1. Comparison of the delays for the strategies vs. the wait-and-see parameter T1.

We stress that formulas (1) and (2) are valid for general distributions of the service
times. However, we emphasize that for Strategies II and III we are only able to compute
the quantity S = (fi, wi, r̃i)i explicitly for exponentially distributed service times because
formula (6) below is only available for the M/M/1 queue in the literature, for instance.

Figure 1 provides a typical relation between the delays for all four wait-and-see strate-
gies. We consider a polling model with N = 2 stations where the server is not allowed to
wait at station 2. The switchover times are deterministic, symmetrically split among the
switchovers and the service times are exponentially distributed. The delay for Strategy I
was obtained by the formula from [4], and we used formulas (1) and (2) and the values for
S = (fi, wi, r̃i)i from Section 3.2 to compute the data for Strategies II–IV.

The ranking of the wait-and-see strategies with respect to the minimal delay observed
in Figure 1 can be explained naturally: In the best case, the server exits the current station
as soon as there is enough work waiting at the other station. Since the server does not
have any information about the queue status at the other station, the sojourn time at the
current station is the crucial quantity in order to estimate the workload generated at the
other station. Hence, there is an optimal sojourn time for each station, and the minimal
delay is attained if the expected sojourn time agrees with the optimal sojourn time as good
as possible, that is, with small variance.

Therefore, we conjecture that Strategy III always yields a lower minimal delay compared
with Strategy I and that Strategy II is the best of the investigated wait-and-see strategies.

How much can be gained by wait-and-see strategies varies depending on the system
parameters. It is even possible to give examples where the relation between the delay in a
polling model with forced idle times and the delay for the exhaustive strategy is arbitrarily
small.

2.2. Is it worth waiting?

In addition to the formulas for the delay, Theorems 1 and 2 allow us to put the following
question: Given the system parameters, how does one have to adjust the parameters Ti ≥ 0
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such that the delay is minimized. In this context, we regard the delay D̄ for N = 2 as a
function of the Ti and thus write D̄(T1, T2). In general, we cannot compute a minimizer of
this problem

min
T1≥0, T2≥0

D̄(T1, T2)

for Strategies II–IV analytically. Nevertheless, we do obtain necessary and sufficient con-
ditions for these wait-and-see strategies in a polling model with exponentially distributed
service times such that it is favourable to wait in comparison with the exhaustive strategy,
that is, there exists (T1, T2) �= (0, 0) such that D̄(T1, T2) < D̄(0, 0).

Note that we only consider the two cases with the additional restriction T2 = 0 and
T1 = T2, respectively. As a summary, one can say that the benefit of waiting arises from the
asymmetry of the system or from non-deterministic switchover times.

Theorem 3: Let N = 2 and T2 = 0. It is worth waiting at station 1, that is, there exists
T1 > 0 such that D̄(T1, 0) < D̄(0, 0), in a polling model with

• Strategy III if and only if

r
(2)
0

2r2
0

− ρ2(1 − ρ2)
ρ0(1 − ρ0)

> 0.

• Strategy II as well as Strategy IV if and only if

r
(2)
0

2r0

(
r1 + r̃IV

2

) − ρ2

ρ0
> 0, (3)

where the quantity r̃IV
2 is defined just above Theorem 1 and can be computed as

in (18) below. In the case of a deterministic switchover time R2, inequality (3)
simplifies to ρ1 > ρ2.

We mentioned above that the parameter-dependent quantities fi, wi and r̃i can vary
depending on the wait-and-see strategy including the parameters Ti. The dependence on
the strategy is indicated by a superscript if necessary, for example, r̃IV

2 . However, note that
condition (3), which contains r̃IV

2 , must not depend on the Ti. Indeed, the quantity r̃IV
2 does

not depend on the Ti (see (18) below).

Remark 4: First, we introduce the coefficient of variation cX of a random variable X, which
is defined as the ratio of the standard deviation and the mean. Furthermore, we denote by R0

the sum of the switchover times. We can observe from Theorem 3 that for cR0 sufficiently
large, it is even worth waiting at station 1 in spite of a lower traffic load ρ1 < ρ2. As a
consequence of this, we can make a conjecture for a polling model with N = 2 stations and
without any restriction on the Ti: In the case of cR0 sufficiently large, it is favorable to have
positive parameters Ti at both stations instead of just allowing “wait-and-see” at the station
with higher traffic load.

Similar to above, we get necessary and sufficient conditions for a symmetric polling
model with ρ1 = ρ2 and the restriction T1 = T2 such that the delay is lower than for the
exhaustive strategy. The arrival rates, message length and switchover time distributions are
also assumed to be the same for both stations for Strategies II and IV, but we can omit
this requirement for Strategy III.
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Theorem 5: Let N = 2. It is worth waiting with the restriction T1 = T2, that is, there exists
T1 > 0 such that D̄(T1, T1) < D̄(0, 0), in a symmetric polling model with

• Strategy III if and only if

r
(2)
0

r2
0

− 1 − ρ1

1 − ρ0
> 0

(that can only be satisfied for non-deterministic switchover times),
• Strategy II as well as Strategy IV if and only if the switchover times are non-

deterministic.

We give a direct consequence of the two preceding theorems:

Corollary 6: There are parameter settings of a polling model with N = 2 stations where
Strategies II and IV yield a lower delay than Strategies I and III, that is, it is only worth
waiting with Strategies II and IV.

3. PROOFS

3.1. Proofs of the main results

We show how to derive Theorems 1 and 2 which are based on a decomposition principle
from [5] and on the technique of the proofs of Theorems 1 and 8 from [4]. We mention
that the proofs of Theorems 1 and 2 are quite standard and that the key novelty is the
computation of the parameter-dependent quantities in Section 3.2.

Proof of Theorem 1: First, we recall some important identities: The cycle time is the
time that the server takes from its arrival at station 1 to the next arrival at this station.
The mean cycle time in steady state is denoted by EC and is given by

EC =
r0 + f0

1 − ρ0
.

Indeed, this can be argued by looking at the expected time which the server is idle per
cycle. This expectation equals the sum of all mean switchover and waiting times, that is,
r0 + f0. On the other hand, we can represent this expected idle time using the total load
offered to the system which leads to (1 − ρ0)EC.

Next, we refer to a workload decomposition principle in [5,6] which also holds for our
system. We omit a proof since it is analogous to the proofs there. As a consequence of this
decomposition principle, we obtain

EV = EV M/G/1 + qEV switching + (1 − q)EV waiting, (4)

where q := P(server is switching | server is idle) and V is the workload at a random point
in time in steady state. The workload consists of the sum of all message lengths that are
present in the system including the remaining service time of the currently served message.
The quantities V M/G/1 and V switching (V waiting) refer to the workload in the same polling
model without switchover and waiting times, and to the workload given that the server is
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switching (waiting) at a random point in time, respectively. Furthermore, we can determine
the expected workload differently by

EV =
N∑

i=1

biE[number of messages in queue at station i] +
N∑

i=1

ρi
b
(2)
i

2bi
,

where the first sum accounts for the messages that are not yet in service and the second
sum for the currently served message. The quotient is the expected residual service time of a
currently served message at station i. Using Little’s law, this equation can be rearranged into

EV = ρ0D̄ +
N∑

i=1

ρi
b
(2)
i

2bi
. (5)

Therefore, we can combine (4) and (5) in order to obtain a representation of the delay D̄.
The quantity EV M/G/1 is given in the literature, for example, in [3, p. 206].

From now on, we focus on the expected workload present while switching EV switching

and waiting EV waiting. The former does not directly depend on the given wait-and-see
strategy so that we can proceed in the same way as in [4]. On the other hand, the particular
wait-and-see strategy influences the expected workload present while waiting. It remains to
give the general formula for EV waiting

i , the expected workload that is present in the system
at a random point in time when the server is waiting at station i. Following the computation
in [4] [see Eq. (23) there], we obtain

EV waiting
i =

∑
j<i

rj

(
N∑

l=i+1

ρl +
j∑

l=1

ρl

)
+
∑
j>i

rj

j∑
l=i+1

ρl

+
∑
j<i

ρjEC

(
N∑

l=i+1

ρl +
j−1∑
l=1

ρl

)
+
∑
j>i

ρjEC

j−1∑
l=i+1

ρl

+
∑
j<i

fj

(
N∑

l=i+1

ρl +
j−1∑
l=1

ρl

)
+
∑
j>i

fj

j−1∑
l=i+1

ρl

+ (ρ0 − ρi)wi,

where wi denotes the expectation of the elapsed time since arriving at station i at a random
point in time while waiting at station i. Combining all the relevant equations, we get the
formula in Theorem 1 for the delay. �

Proof of Theorem 2: For N = 2, the only part that differs from the proof of Theorem 1
is the computation of EV waiting

i for i = 1, 2. Now, we focus on this quantity for i = 1 and
thus have to keep the condition in mind that the server is currently waiting at station 1.
Let us assume that the server is at such a point in time. Then, the present workload has
not been generated at station 1 (otherwise the server would not be waiting at this station).
Therefore, the workload which is currently present can only consist of messages that have
been generated at station 2 since exiting that station. The expectation of the elapsed time
since exiting station 2 is the sum of the conditional mean switchover time r̃2 and the expected
backward recurrence time w1 whose definitions can be found just above Theorem 1. We get

EV waiting
1 = ρ2(r̃2 + w1)

and for EV waiting
2 , we just have to exchange the roles of 1 and 2. �
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Remark 7: Actually, the conditional mean switchover time r̃i only differs from ri for a non-
deterministic switchover time for Strategies II and IV. In the case of deterministic switchover
times for Strategies II and IV, or in the case of a polling model with Strategies I and III
(waiting occurs if Ti > 0, independently of the switchover times), we have the equality
r̃i = ri.

Remark 8: We briefly refer to Theorem 8 in [4] which provides a lower bound for the delay
for a class of wait-and-see strategies (including Strategies I–IV). The bound given there is
correct for a polling model with N = 2 stations and deterministic switchover times. In the
case of N = 2 and non-deterministic switchover times, we can replace rk [in (35) there] by
the mean of the switchover time Rk from station k to the next station given that there
is no message arriving at station k + 1 while switching. For instance, this quantity equals
E[R2 | B0] in (18) below for k = 2. In addition for a polling model with N > 2 stations, one
has to give lower bounds for further quantities, which arise in the proof there.

3.2. Determination of S = (fi, wi, r̃i)i

The general formulas for the delay in Theorems 1 and 2 require the specification of
S = (fi, wi, r̃i)i according to the wait-and-see strategy. We recall that the definitions of
these quantities can be found just above Theorem 1. The real novelty of this work is
the determination of these quantities in this section. Note that we restrict the service
times of the messages to exponential distributions with parameter μi := 1/bi at station i
for i = 1, . . . , N for Strategies II and III. After the following preparations, we discuss the
different wait-and-see strategies separately where some terms from [6] can also be spotted
here for Strategy IV. For the sake of simplicity, we deal with Strategy III before Strategy II.

3.2.1. Preparations. It is helpful to introduce ci the expected time per cycle in steady
state, which the server spends at station i. This expression is directly related to the mean
cycle time EC and to the expected waiting time fi at station i by the equation

ci = ρiEC + fi.

Moreover, we define c0 :=
∑N

i=1 ci and obtain EC = c0 + r0.
We require a time-dependent state probability [denoted by Pj,k(x)] to analyze the delay

for Strategies II and III, and we require the distribution of the length of a busy period to
analyze the delay for Strategies II and IV.

The probability Pj,k(x). According to [13, pp. 53–78], we denote by Pj,k(x) the prob-
ability that the queue length (including the possibly current service) of an M/M/1
queue with arrival rate λ and service rate μ is k at time x given that the queue length
is j at time zero. We introduce the abbreviation a := 2μ

√
ρ, where the traffic load ρ

equals λ/μ, and the modified Bessel functions Ik(x) of the first kind of order k, which
can be defined by

Ik(x) :=
∞∑

m=0

(
x
2

)k+2m

(k + m)!m!
for k ∈ N0
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and I−k(x) := Ik(x) for k ∈ N. Finally, we have

Pj,k(x) = e−(λ+μ)x

[
ρ

k−j
2 Ik−j(ax) + ρ

k−j−1
2 Ik+j+1(ax)

+ (1 − ρ)ρk
∞∑

l=k+j+2

ρ−
l
2 Il(ax)

] (6)

due to [13, p. 77]. We emphasize that we have to set λ := λi and μ := μi if we focus on
station i. Hence, the probability Pj,k(x) can differ depending on i, but we omit such an
additional index because it arises out of the context.

The density gi of a busy period. The density of the length of a busy period at station i is
denoted by gi and the n-fold convolution of gi with itself by g

(∗n)
i . We get

gi(x) =
∞∑

n=1

e−λix
(λix)n−1

n!
b
(∗n)
i (x) for x ≥ 0

from [13, p. 226]. Note that with abuse of notation g
(∗0)
i represents the Dirac delta function

according to the property that the length of 0 busy periods is zero. The density b
(∗n)
i is

the n-fold convolution of the service time with itself. For exponentially distributed service
times, we obtain the density

b
(∗n)
i (x) =

μn
i xn−1

(n − 1)!
e−μix for x ≥ 0,

of the Erlang(n, μi) distribution, which can also be identified as a gamma distribution. In
this particular case, a further representation of gi using the modified Bessel function of the
first kind of order one is given in [13, p. 215].

3.2.2. Strategy III. We denote by qi(Ti) the expected number of messages (including
the possibly currently served message) present at station i after time Ti given that there is
no message present at time zero. With the probability P0,k(Ti) from (6), we get

qi(Ti) =
∞∑

k=0

kP0,k(Ti).

Since we only require the expected number of messages at time Ti, we define the short
version qi := qi(Ti).

The expected sojourn time ci. For each station we get the equation

ci = λi(r0 + c0 − ci)
bi

1 − ρi
+ Ti + qi

bi

1 − ρi
, (7)

which can be seen as follows: First of all, the time which the server spends at station i
depends on the elapsed time since exiting this station in the preceding cycle up to the
current arrival at this station. This expected intervisit time of the server at station i is

EC − ci = r0 + c0 − ci

and the quotient bi/(1 − ρi) is the expected length of a busy period (which is caused by one
arriving message). In order to obtain this latter quantity, we refer to the short calculation
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using Laplace transforms in [13, pp. 211–213]. Together with the arrival rate λi, we can
compute the expected length of the first busy period (generated by the waiting messages)
at station i and get

λi(r0 + c0 − ci)
bi

1 − ρi
. (8)

After the first busy period, the server has to spend the time Ti at this station (which can
consist of several busy and waiting periods). Then, the server exits the station if the queue
is empty at time Ti. Alternatively, if there are messages present at time Ti, the server
continues serving messages until the queue is empty. This additional time depends on the
expected number qi of present messages and equals qibi/(1 − ρi) in expectation.

Using (7), we can set up a linear system of equations with variables ci. For instance, in
the case of two stations, we obtain

c1 =
r0ρ1 + (1 − ρ1)(1 − ρ2)T1 + ρ1(1 − ρ2)T2 + (1 − ρ2)q1b1 + ρ1q2b2

1 − ρ0
,

c2 =
r0ρ2 + (1 − ρ1)(1 − ρ2)T2 + ρ2(1 − ρ1)T1 + (1 − ρ1)q2b2 + ρ2q1b1

1 − ρ0
. (9)

The expected backward recurrence time wi. The expectation wi is the sum of two terms: On
the one hand, there is the expected length of the first busy period at station i [see term (8)].
The second summand is the expectation of the elapsed time since becoming idle at station i
for the first time at a random point in time while waiting at this station. Therefore, we get

wi = λi(r0 + c0 − ci)
bi

1 − ρi
+

∫ Ti

0
xP0,0(x) dx∫ Ti

0
P0,0(x) dx

, (10)

where a random point in time while waiting has the density

P0,0(x)∫ Ti

0
P0,0(y) dy

for x ∈ [0, Ti].

3.2.3. Strategy II. We focus on the steady-state probabilities π
(i)
n for all n ∈ N0 that

the server finds n messages waiting upon arrival at station i. We consider deterministic
switchover times in this paragraph first. The following system of equations describes the
relation of consecutive visits at the stations. The probability of finding n messages upon
arrival at station 1 depends on the intervisit time of the server, that is, the time since exiting
this station in the preceding cycle. The intervisit time can be divided into the sum of the
switchover times and the time which the server spends at station 2 between two consecutive
visits at station 1. This latter time can be split in two parts: First, the server stays the
minimum sojourn time T2. The second part consists of the time which the server takes
to serve the possibly remaining messages. This part depends on the number of messages
present at time T2. Given that the server finds k messages upon arrival at station 2, there
are l messages present with probability Pk,l(T2) after spending the minimum sojourn time.
Then, the length of the second part has the density g

(∗l)
2 which denotes the density of the

sum of l independent busy periods at station 2. We recall that the arrival process at station 1
is a Poisson process with arrival rate λ1. The probability of finding n messages at station 1
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is given by a Poisson distribution with parameter λ1t if the intervisit time of the server
equals t. Therefore, we can conclude the equation

π(1)
n =

∞∑
k=0

π
(2)
k

∞∑
l=0

Pk,l(T2)
∫ ∞

0

e−λ1(r0+T2+x) (λ1(r0 + T2 + x))n

n!
g
(∗l)
2 (x) dx

for deterministic switchover times. Thereby, we get the coefficients for an infinite linear sys-
tem of equations π(1) = Aπ(2). In the same manner as above, there is a system of equations
π(2) = Bπ(1).

If the switchover times are non-deterministic, we cannot proceed in such a straightfor-
ward way. Instead, we focus on the queue length distribution at server departure instants.
Note that the queue at departure instants is always empty at the current station. We denote
by ν

(i)
n the steady-state probabilities that there are n messages waiting at the other station

upon exit from station i. Now, we give an explanation for the equation

ν(1)
n =

∞∑
k=0

ν
(2)
k

∞∑
m=0

n∑
j=0

[∫ ∞

0

e−(λ1+λ2)x
(λ1x)m

m!
(λ2x)j

j!
dFR2(x)

∞∑
l=0

Pk+m,l(T1)

×
∫ ∞

0

e−λ2(T1+x) (λ2(T1 + x))n−j

(n − j)!
g
(∗l)
1 (x) dx

]
,

(11)

which consists of similar terms as above. Given that there are k messages waiting at station 1
upon exit from station 2, we have m message arrivals at station 1 and j message arrivals
at station 2 while switching to station 1. Therefore, there are k + m messages waiting at
station 1 upon arrival at this station. In order to obtain a queue length of n messages
at station 2 upon exit from station 1, a total of n − j messages have to arrive at station 2
during this stay. Then, equation (11) follows by considering all possible variations of indices.

From (11) and the corresponding observation, we get two linear systems of equations
ν(1) = Ãν(2) and ν(2) = B̃ν(1) where the coefficients of Ã are given in (11). Finally, we are
able to determine π

(i)
n by

π(1)
n =

n∑
k=0

ν
(2)
k

∫ ∞

0

e−λ1x (λ1x)n−k

(n − k)!
dFR2(x). (12)

For π(2), the roles of 1 and 2 have to be exchanged.

The expected sojourn time ci. Using the solutions π(i), we obtain the expected sojourn
time

ci = Ti +
∞∑

k=0

π
(i)
k

∞∑
l=0

lPk,l(Ti)
bi

1 − ρi
,

which the server spends at station i per cycle. Here, the series

∞∑
l=0

lPk,l(Ti)

is the expectation of the number of messages present at station i after spending the minimum
sojourn time Ti given that there are k messages present upon arrival of the server. The
quotient bi/(1 − ρi) is the expected length of a busy period.
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The expected backward recurrence time wi. In order to determine wi, we recall the condition
that a point in time while the server is waiting is randomly chosen. We distinguish how many
messages are waiting upon arrival of the server at the station. Therefore, we obtain

wi =
∞∑

k=0

p
(i)
k

∫ Ti

0
xPk,0(x) dx∫ Ti

0
Pk,0(x) dx

,

where p
(i)
k denotes the probability of choosing a waiting period during a stay with k mes-

sages waiting upon arrival of the server. Similar to Strategy III above, the quotient is the
expectation of the elapsed time since arriving at station i at a random point in time while
waiting at station i given that there are k messages waiting upon arrival of the server.

It remains to determine the coefficients p
(i)
k . The basic observation is that p

(i)
k is pro-

portional to the product of the probability π
(i)
k that the server finds k messages waiting

upon arrival at station i and the expected length of the total waiting time during the stay
at such a station, that is,

∫ Ti

0
Pk,0(x) dx. Hence, the probability p

(i)
k is given by

p
(i)
k =

π
(i)
k

∫ Ti

0
Pk,0(x) dx∑∞

l=0 π
(i)
l

∫ Ti

0
Pl,0(x) dx

. (13)

The conditional mean switchover time r̃i. If the switchover time from station i to the next
station is deterministic, we get r̃i = ri (cf. Remark 7). Otherwise, the conditional mean
switchover time r̃i from station i to the next station, given a random point in time while
waiting at station i + 1, can be determined as follows. We restrict the computation to i = 2
for the sake of clarity. First, we introduce the events

Al := {there are l messages waiting at station 1 upon exit from station 2},
Bj := {there are j messages arriving at station 1 while switching from station 2 to 1},
Ck := {there are k messages waiting at station 1 upon arrival}

for all j, k, l ∈ N0. We distinguish how many messages are waiting upon arrival of the server
at station 1 just like above. We get

r̃2 =
∞∑

k=0

p
(1)
k E[R2 | Ck], (14)

where p
(i)
k is given by (13). Now, we are left with the specification of the quantity E[R2 | Ck].

We make use of

Ck =
k⋃

j=0

Ak−j ∩ Bj

and obtain

E[R2 | Ck] =
k∑

j=0

P(Ak−j ∩ Bj)
P(Ck)

E[R2 | Ak−j ∩ Bj ].
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Due to the independence of the events Ak−j and Bj , and the fact that Ak−j does not
influence the switchover time R2, we get

E[R2 | Ck] =
k∑

j=0

P(Ak−j)P(Bj)
P(Ck)

E[R2 | Bj ]. (15)

It remains to determine these quantities. We can represent the event Bj as

Bj =

{
j∑

l=1

el ≤ R <

j+1∑
l=1

el

}
, (16)

where (el)l is a sequence of independent and exponentially distributed random variables
with parameter 1 which are independent of R := λ1R2 as well. We get

λ1E [R2 | Bj ] =
E
[
R1Bj

]
E
[
1Bj

] =
ER

[
R E(el)l

[
1Bj

]]
ER

[
E(el)l

[
1Bj

]] .

We use the property that the sum of independent and identically exponentially distributed
random variables is Erlang distributed and thus compute

E(el)l

[
1Bj

]
=

Rj

j!
e−R.

Therefore, we obtain

E[R2 | Bj ] =
ER

[
Rj+1e−R

]
λ1ER [Rje−R]

=

∫∞
0

xe−λ1x (λ1x)j

j! dFR2(x)∫∞
0

e−λ1x (λ1x)j

j! dFR2(x)
(17)

and

P(Bj) = E
[
1Bj

]
=
∫ ∞

0

e−λ1x (λ1x)j

j!
dFR2(x).

Finally, we have

P(Ck) =
k∑

j=0

P(Ak−j)P(Bj)

due to the independence and P(Ak−j) = ν
(2)
k−j .

3.2.4. Strategy IV. As above, π
(i)
n is the steady-state probability that the server finds

n messages waiting upon arrival at station i. The method we use to give the characterizing
system coincides with the method for Strategy II. The probability π

(1)
n depends on the

intervisit time of the server, which consists of the switchover times and the time that the
server spends at station 2 between two consecutive visits at station 1.

We have to distinguish whether there is no message or at least one message waiting at
station 2 because it influences the activation of the timer. In the first case, either a new
message arrives before the timer expires and a busy period starts, or there is no message
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arrival and the server waits the whole time T2. For deterministic switchover times, we obtain

π(1)
n = π

(2)
0

[∫ T2

0

∫ ∞

0

e−λ1(r0+x+y) (λ1(r0 + x + y))n

n!
g2(x) dxλ2e

−λ2y dy

+ e−λ1(r0+T2)
(λ1(r0 + T2))n

n!
e−λ2T2

]

+
∞∑

k=1

π
(2)
k

∫ ∞

0

e−λ1(r0+x) (λ1(r0 + x))n

n!
g
(∗k)
2 (x) dx.

Once again, we get systems of equations π(1) = Aπ(2) and π(2) = Bπ(1). Note that we are
only interested in π

(i)
0 in the end.

In the case of non-deterministic switchover times, we focus on the steady-state proba-
bilities ν

(i)
n that there are n messages waiting at the other station upon exit from station i.

We obtain

ν(1)
n = ν

(2)
0

n∑
j=0

[∫ ∞

0

e−(λ1+λ2)x
(λ1x)0

0!
(λ2x)j

j!
dFR2(x)

×
(∫ T1

0

∫ ∞

0

e−λ2(x+y) (λ2(x + y))n−j

(n − j)!
g1(x) dxλ1e

−λ1y dy

+ e−λ2T1
(λ2T1)n−j

(n − j)!
e−λ1T1

)]

+
∞∑

k=0

ν
(2)
k

∞∑
m=0

m+k �=0

n∑
j=0

[∫ ∞

0

e−(λ1+λ2)x
(λ1x)m

m!
(λ2x)j

j!
dFR2(x)

×
∫ ∞

0

e−λ2x (λ2x)n−j

(n − j)!
g
(∗(k+m))
1 (x) dx

]

and get two systems of equations ν(1) = Ãν(2) and ν(2) = B̃ν(1). Finally, we can compute
π

(i)
n as mentioned in (12) for Strategy II.

The expected waiting time fi. Let Ei be an exponentially distributed random variable with
intensity λi, which represents the interarrival time of messages at station i. We denote by
min(Ei, Ti) the random length of a waiting period at station i. The timer at station i is
activated if and only if the server finds this station empty upon arrival. Therefore, we can
conclude

fi = π
(i)
0 E [min(Ei, Ti)] =

π
(i)
0

λi

(
1 − e−λiTi

)
for the expected waiting time at station i per cycle in steady state.

The expected backward recurrence time wi. The quantity wi equals the expected residual
time of a waiting period and is given by

wi =
E
[
min(Ei, Ti)2

]
2E [min(Ei, Ti)]

=
1
λi

− Ti

eλiTi − 1
.
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The conditional mean switchover time r̃i. If the switchover time is deterministic, we just
have r̃i = ri (cf. Remark 7). Now, we focus on a non-deterministic switchover time: Similar
but easier than for Strategy II, the quantity r̃2 is just the mean switchover time given that
there is no arrival at station 1 while switching to this station. We get

r̃2 = E[R2 | B0] =

∫∞
0

xe−λ1x dFR2(x)∫∞
0

e−λ1x dFR2(x)
(18)

and we can represent r̃1 in an analogous manner.

3.3. Proofs of the “worth-waiting” results

3.3.1. Preparations. First, we state two facts which we use later to prove that it is
worth waiting with Strategy II if it is worth waiting with Strategy IV. Lemma 9 concerns
an estimate for the mean switchover time given a certain number of message arrivals while
switching.

Lemma 9: There is a positive constant α such that

E[R2 | Bj ] ≤ α
(
j2 + 1

)
for all j ∈ N with the notation from (16).

Sketch of proof: We recall

E[R2 | Bj ] =
ER

[
Rj+1e−R

]
λ1ER [Rje−R]

for R := λ1R2 from (17) and we introduce the random variable X by

E [f(X)] :=
ER

[
f(R)e−R

]
ER [e−R]

, f ∈ Cb.

Then, X has some finite exponential moment and one can show by elementary calculations
that there is an α > 0 such that

E
[
Xj+1

]
E [Xj ]

≤ λ1α
(
j2 + 1

)
for all j ∈ N. This finishes the proof. �

The next Lemma 10 captures the fact that if there may be an additional waiting time
due to a larger wait-and-see parameter T̃1 ≥ T1, rather more messages arrive per cycle.
Therefore, the probability of finding an empty queue upon arrival at station 1 becomes
smaller.

Lemma 10: Consider a polling model with N = 2 stations, Strategy II and T2 = 0. Given a
T̄1 > 0, we have

πinf(T̄1) := inf
T1∈[0,T̄1]

π
(1)
0 (T1) > 0.

Sketch of proof: We can construct an appropriate coupling of two processes represent-
ing the polling models with wait-and-see parameters T1 and T̃1 for 0 ≤ T1 ≤ T̃1. Due to the
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construction, the queue length at station 1 upon exit from station 2 is always larger for
the process with T̃1 instead of T1. Combining this observation and the ergodic theorem for
Markov chains, we obtain

ν
(2)
0 (T1) ≥ ν

(2)
0 (T̃1).

This inequality is equivalent to

π
(1)
0 (T1) ≥ π

(1)
0 (T̃1)

due to (12). Then, we get πinf(T̄1) = π
(1)
0 (T̄1). �

We make use of Theorems 1 and 2 to prove whether it is worth waiting. For the purpose
of comparison, we recall the formula

D̄exh =
∑2

i=1 λib
(2)
i

2(1 − ρ0)
+

r0ρ1ρ2

ρ0(1 − ρ0)
+

r
(2)
0

2r0

for the mean average queueing delay of a message in a polling model with the exhaustive
strategy from (2) by setting f1 = f2 = 0. Thus, we can rearrange the formula for the delay
into D̄ = D̄exh + ΔD̄ with

ΔD̄ := − r
(2)
0

2r0
+

r
(2)
0

2(r0 + f0)

+
ρ2f1

ρ0(r0 + f0)
(r1 + r̃2 + w1)

+
ρ1f2

ρ0(r0 + f0)
(r̃1 + r2 + w2),

(19)

where r̃i = ri holds in the case of Strategy III (cf. Remark 7).

3.3.2. Proof of Theorem 3. Due to T2 = 0, we have f2 = 0 and the last line in (19)
vanishes. It is worth waiting at station 1 if and only if there is a positive parameter of
the wait-and-see strategy such that ΔD̄ < 0. Since the expected waiting time at station 1
equals the total expected waiting time per cycle (f1 = f0), we rearrange inequality ΔD̄ < 0
into

1
r0 + f1

[
r
(2)
0

2
+

ρ2

ρ0
f1 (r1 + r̃2 + w1)

]
<

r
(2)
0

2r0

whose validity is equivalent to

[
−r

(2)
0

2r0
+

ρ2

ρ0
(r1 + r̃2 + w1)

]
f1 < 0. (20)

We recall that wi and fi are non-negative quantities. Moreover, we observe that fi > 0 holds
for all Ti > 0. This can be argued by using the expected sojourn times for Strategy III and
by using the steady-state probabilities for Strategies II and IV.
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Strategy III. Note that we have r1 + r̃2 = r0 according to Remark 7. For all T1 > 0, we see
from (10) that w1 is greater than the expected length of the first busy period at station 1,
that is, there is a function Δ1(T1) > 0 such that

w1 = (r0 + c2)
ρ1

1 − ρ1
+ Δ1(T1).

We insert this representation of w1 into (20), make use of (9) and obtain that (20) is
equivalent to

− r
(2)
0

2r0
+

ρ2

ρ0

(
1 − ρ2

1 − ρ0
r0 +

ρ1ρ2

1 − ρ0

(
T1 +

q1(T1)b1

1 − ρ1

)
+ Δ1(T1)

)
< 0. (21)

Because of the property that both functions Δ1(T1) and q1(T1) converge to zero for T1 → 0,
we find the sufficient condition

r
(2)
0

2r2
0

− ρ2(1 − ρ2)
ρ0(1 − ρ0)

> 0 (22)

for “it is worth waiting at station 1”. In order to establish the necessity of this condition,
we argue in the following way: If we assume that (22) does not hold, inequality (21) is not
satisfied for all T1 > 0 because Δ1(T1) and q1(T1) are non-negative, and we see that it is
not worth waiting at station 1.

Strategy IV. The difference to Strategy III is the fact that w1 does not have to be greater
than the expected length of the first busy period at station 1. We just focus on

− r
(2)
0

2r0
+

ρ2

ρ0
(r1 + r̃2 + w1) < 0 (23)

from (20) and observe the property w1 ≤ T1 because a waiting period ends at the latest
when the timer expires. In the same manner as above, we get the necessary and sufficient
condition

r
(2)
0

2r0

(
r1 + r̃IV

2

) − ρ2

ρ0
> 0

for “it is worth waiting at station 1” with r̃IV
2 given by (18). In the case of deterministic

switchover times, we just replace r
(2)
0 by r2

0 and r̃IV
2 by r2.

Strategy II. We focus again on (23) as with Strategy IV, and w1 ≤ T1 holds since waiting
periods can only happen within the minimum sojourn time T1. Differently from Strategy IV,
the conditional mean switchover time r̃II

2 depends on the parameter T1.
First, we prove that it is worth waiting with Strategy IV if it is worth waiting with

Strategy II. Therefore, we assume that there is a T1 > 0 such that (23) holds for Strategy II.
We have to conclude that (3) is satisfied which can be easily seen if we have r̃IV

2 ≤ r̃II
2 (T1)
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for all T1 > 0. We continue with proving this inequality. We recall

r̃II
2 =

∞∑
k=0

p
(1)
k

k∑
j=0

P(Ak−j)P(Bj)
P(Ck)

E[R2 | Bj ]

from (14) and (15), and

r̃IV
2 = E[R2 | B0]

from (18). We use the representation of E[R2 | Bj ] from (17) and the Cauchy–Schwarz
inequality to get

E[R2 | Bj ] ≤ E[R2 | Bj+1]

for all j ∈ N0. This property suffices in order to conclude r̃IV
2 ≤ r̃II

2 (T1) for all T1 > 0.
Next, we have to prove that it is worth waiting with Strategy II if it is worth waiting

with Strategy IV. Let (3) be satisfied, that is, there is a T IV
1 > 0 such that (23) holds for

r̃IV
2 and wIV

1 (T IV
1 ). We are done if there is a T1 > 0 such that

r̃II
2 (T1) + wII

1 (T1) ≤ r̃IV
2 + wIV

1 (T IV
1 )

because (23) is the criterion for “it is worth waiting with Strategy II” as well. We observe

r̃II
2 = p

(1)
0 E[R2 | B0] +

∞∑
k=1

p
(1)
k

k∑
j=0

P(Ak−j)P(Bj)
P(Ck)

E[R2 | Bj ]

≤ E[R2 | B0] +
∞∑

k=1

p
(1)
k E[R2 | Bk]

and define

ε :=
wIV

1 (T IV
1 )

2
.

Due to r̃IV
2 = E[R2 | B0] and wII

1 (T1) ≤ T1, it suffices to show that there is a positive T1 < ε
such that

∞∑
k=1

p
(1)
k E[R2 | Bk] < ε.

We recall

p
(1)
k =

π
(1)
k

∫ T1

0
Pk,0(x) dx∑∞

l=0 π
(1)
l

∫ T1

0
Pl,0(x) dx

from (13). First, we estimate the quantity
∫ T1

0
Pk,0(x) dx that is the expected length of the

total waiting time during the stay at station 1 given that there are k messages waiting upon
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arrival. We get∫ T1

0

P0,0(x) dx ≥ T1 P(no message arrives at station 1 within the time T1)

= T1e
−λ1T1

and ∫ T1

0

Pk,0(x) dx ≤ T1 P(the length of the first busy period ≤ T1)

≤ T1 P(the sum of k independent service times ≤ T1)

≤ T1

⎛
⎝1 − e−μ1T1

k−1∑
j=0

(μ1T1)j

j!

⎞
⎠

= T1e
−μ1T1

⎛
⎝eμ1T1 −

k−1∑
j=0

(μ1T1)j

j!

⎞
⎠

= T1e
−μ1T1

∞∑
j=k

(μ1T1)j

j!

= T1e
−μ1T1(μ1T1)k

∞∑
j=0

(μ1T1)j

(j + k) · · · (j + 1)j!

≤ T1(μ1T1)k

for all k ∈ N where we use the Erlang(k, μ1) distribution function in the third line. Now,
we can bound p

(1)
k for all k ∈ N from above by

p
(1)
k ≤ T1(μ1T1)k

π
(1)
0 T1e−λ1T1

=
eλ1T1

π
(1)
0

(μ1T1)k.

Using Lemmas 9 and 10 with T̄1 := 1/μ1 in the first two lines and using limits of geometric
series, we obtain for T1 ∈ (0, T̄1

)
with q := μ1T1 < 1

∞∑
k=1

p
(1)
k E[R2 | Bk] ≤

∞∑
k=1

eλ1T1

π
(1)
0

(μ1T1)kα
(
k2 + 1

)

≤ αe
λ1
μ1

πinf(T̄1)

( ∞∑
k=1

k2qk +
∞∑

k=1

qk

)

=
αe

λ1
μ1

πinf(T̄1)

(
q(1 + q)
(1 − q)3

+
q

1 − q

)
.

Finally, we are done because the term in the last line converges to zero for T1 → 0.

3.3.3. Proof of Theorem 5. We focus on inequality ΔD̄ < 0 which can be rearranged
into

1
r0 + f0

[
r
(2)
0

2
+

ρ2

ρ0
f1 (r1 + r̃2 + w1) +

ρ1

ρ0
f2 (r̃1 + r2 + w2)

]
<

r
(2)
0

2r0
.
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Strategy III. We can proceed in an analogous manner as in the proof of Theorem 3. Using
the symmetry ρ1 = ρ2, we obtain the necessary and sufficient condition

r
(2)
0

r2
0

− 1 − ρ1

1 − ρ0
> 0

for “it is worth waiting” at both stations with T1 = T2 > 0.

Strategies II and IV. In addition to the procedure in the proofs above, we have to extend
Lemma 10 by setting T1 = T2 > 0. Then, for a totally symmetric polling model we get the
necessary and sufficient condition

r
(2)
0

r0

(
r1 + r̃IV

2

) > 1 (24)

for “it is worth waiting” at both stations in the same way. A short calculation shows that
r̃IV
2 ≤ r2 holds. Therefore, we can conclude that (24) is satisfied if and only if the switchover

times are non-deterministic.

3.3.4. Proof of Corollary 6. We just have to set the system parameters such that the
condition (inequality) in Theorem 3 or 5 is fulfilled for Strategies II and IV but not for
Strategy III.
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