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The direct numerical simulation of the flow over a sphere is performed. The
computations are carried out in the sub-critical regime at Re =3700 (based on
the free-stream velocity and the sphere diameter). A parallel unstructured symmetry-
preserving formulation is used for simulating the flow. At this Reynolds number, flow
separates laminarly near the equator of the sphere and transition to turbulence occurs
in the separated shear layer. The vortices formed are shed at a large-scale frequency,
St = 0.215, and at random azimuthal locations in the shear layer, giving a helical-like
appearance to the wake. The main features of the flow including the power spectra
of a set of selected monitoring probes at different positions in the wake of the sphere
are described and discussed in detail. In addition, a large number of turbulence
statistics are computed and compared with previous experimental and numerical
data at comparable Reynolds numbers. Particular attention is devoted to assessing
the prediction of the mean flow parameters, such as wall-pressure distribution, skin
friction, drag coefficient, among others, in order to provide reliable data for testing
and developing statistical turbulence models. In addition to the presented results, the
capability of the methodology used on unstructured grids for accurately solving flows
in complex geometries is also pointed out.
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1. Introduction
The unsteady flow over a sphere at sub-critical Reynolds numbers has a complex

nature characterized by the transition from laminar to turbulent flow, the existence
of a turbulent wake and the unsteady shedding of vortices in the wake. This flow has
been an object of many experimental (Achenbach 1972, 1974; Kim & Durbin 1988;
Sakamoto & Haniu 1990; Jang & Lee 2007) and numerical (Seidl, Muzaferija & Peric
1998; Tomboulides & Orszag 2000; Ploumhans et al. 2002; Constantinescu & Squires
2003) studies. In these works, the wake configuration and the shedding mechanism
were investigated at different Reynolds numbers. They have also provided distribution
of the pressure coefficient and skin friction over the sphere, and integral parameters
such as the dominant shedding frequencies and the drag coefficient, among others.
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In the sub-critical range, 800 � Re � 3.7 × 105 (i.e. the shear layer is laminar at
separation from the sphere but the wake is turbulent), most of the experimental works
have been focused on the observations of the shedding mechanisms and instabilities
in the shear layer. In the works of Achenbach (1972, 1974), the vortex shedding from
spheres in the range of 400 < Re < 5 × 106 was investigated experimentally. He found
the co-existence of two Strouhal numbers and suggested that the vortex separation
occurs at a point that rotates around the sphere with the vortex-shedding frequency.
Later, Taneda (1978) made flow visualizations in the range of Re = 104–106. It was
suggested that in the sub-critical range, wave motion occurs in a plane that contains
the streamwise axis and rotates slowly and randomly around it. Kim & Durbin
(1988) carried out experiments in the wake of the sphere for Reynolds numbers in
the range of 500 � Re � 6 × 104. They observed two frequency modes of instabilities:
(i) a low-frequency mode related to the large-scale instability of the wake and (ii)
a high-frequency mode associated with the small-scale instabilities of the separating
shear layer. In addition, they also provided measurements of the streamwise velocity
at different distances from the sphere for a flow with and without acoustic excitation
at Re = 3700. Their results showed that the flow excited shortens the length of the
recirculation bubble. Sakamoto & Haniu (1990) investigated experimentally the vortex
shedding from spheres in the range of 300 � Re � 4 × 104. They classified the vortex-
shedding pattern as a function of the Reynolds number, and they also measured the
low- and high-frequency modes of unsteadiness. Recently, Jang & Lee (2007) carried
out visualizations of the turbulent flow at Re = 5300 and Re = 11 000 providing some
measurements of the turbulent Reynolds stresses and the turbulent kinetic energy in
the wake of the sphere for Re =11 000.

Regarding numerical techniques, several simulations of the flow in the sub-critical
regime have been carried out. These computations have also contributed to a
better understanding of the fluid dynamics and vortex-shedding mechanisms. In
order to study the transitions in the wake as a function of the Reynolds number,
Tomboulides, Orszag & Karniadakis (1993) and Tomboulides & Orszag (2000)
performed large eddy simulations (LES) for Re = 20 000 and time-accurate direct
numerical simulations (DNS) up to Re = 1000, respectively. They also reported some
instantaneous and mean flow data statistics being in good agreement with previous
experimental results. Seidl et al. (1998) carried out experimental and DNS studies
of the flow behind a sphere held by a cylindrical stick at Re =5000. Although the
reported information is not exhaustive, the results provided can be useful for model
comparisons.

More recently, Constantinescu & Squires (2003) carried out LES and detached-
eddy simulation (DES) for investigating the flow behind a sphere at Re = 104. They
performed these calculations using an O-type mesh revolved in the azimuthal direction
and found that both approaches successfully reproduced the main flow features
associated with the vortex shedding. After this study, they also performed DES for
the sub-critical and supercritical regimes at Reynolds numbers in the range of 104–106,
capturing with quite good agreement the main flow parameters (see Constantinescu
& Squires 2004). Bakic, Schmid & Stankovic (2006) carried out experiments and
LES of the flow around a sphere at Re = 5 × 104 with reasonable agreement between
numerics and experiments. Yun, Kim & Choi (2006) used an immersed boundary
method for studying the shear layer and wake instabilities at Re =3.7 × 103 and
Re = 104 by means of LES modelling. They discretized the equations in a body-fitted
O–O-type mesh rotated in the azimuthal direction. Their results for the streamwise
velocity profile in the wake are in reasonably good agreement with the experimental
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data of Kim & Durbin (1988), but a certain uncertainty was found at a distance of
three diameters from the sphere.

Although several research works have been carried out up to now, quantitative
measurements of the wake characteristics are scarce and there is a lack of a complete
set of detailed experimental or numerical data such as detachment angle, recirculation
length and first- and second-order turbulence statistics in the wake of the sphere. These
data would not only be important for a better understanding of the flow dynamics but
also for the development and validation of new turbulence models. However, obtaining
reliable experimental results imply several difficulties such as finding an adequate
supporting mechanism for the sphere and also accurate measurement techniques
along the sphere surface and in the near wake.

On the other hand, in the last few decades DNS has become a powerful tool for
providing time-accurate instantaneous and statistical flow data. However, the three-
dimensional (3-D) and time-depending flow behaviour demand the use of fine grids
and large integration times, which require a large amount of time and computational
resources. For this reason, the detailed information about turbulent statistics in the
wake of the sphere has been limited up to relatively low Reynolds numbers, most
of them in the laminar regime (Mittal & Najjar 1999; Tomboulides & Orszag 2000;
Ploumhans et al. 2002). To mitigate in some degree the computational requirements
of DNS, the modellization of some of the turbulence scales (e.g. LES modelling) is
a common alternative. In addition, the evolution of parallel computers, which can
be commonly formed by thousands of CPUs, also allows us to multiply the size
of the discretizations and the time-integration period. Therefore, in order to solve
increasingly complex problems, modelling the turbulence and developing algorithms
which can be more efficient on the parallel architectures available are both valuable
strategies.

Considering the state of the art, the aim of this work is to study the vortex-shedding
dynamics and wake characteristics of the flow behind a sphere at a Reynolds number
Re =3700, as well as to provide detailed information about the first- and second-
order turbulent statistics of the flow by means of DNS. As far as the author’s
knowledge is concerned, these are the first DNS results of the flow past a sphere
at this Reynolds number. The computations have been performed using a parallel
unstructured symmetry-preserving formulation for accurately solving flows in complex
geometries. The Poisson equation, which arises from the incompressibility constraint,
has been solved by means of a Fourier diagonalization method which takes advantage
of the homogeneity of the discretization used in the azimuthal direction. Numerical
details about the formulation used and the parallel algorithm are given in the following
sections. Results from the computations are presented in terms of instantaneous and
statistical data. Moreover, the capability of the presented numerical methodology for
performing DNS on unstructured grids with reliable results is also pointed out.

2. Mathematical and numerical model
The Navier–Stokes and continuity equations can be written as

Mu = 0 (2.1)

∂u
∂t

+ C (u) u + νDu + ρ−1G p = 0, (2.2)

where u ∈ �3m and p ∈ �m are the velocity vector and pressure, respectively (here m
refers to the total number of control volumes (CVs) of the discretized domain), ν is
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the kinematic viscosity and ρ is the density. Convective and diffusive operators in the
momentum equation for the velocity field are given by C (u) = (u · ∇) ∈ �3m×3m and
D= − ∇2 ∈ �3m×3m respectively. The gradient and divergence (of a vector) operators
are given by G= ∇ ∈ �3m×m and M = ∇· ∈ �m×3m respectively.

The governing equations have been discretized on a collocated unstructured grid
arrangement by means of second-order spectro-consistent schemes (see Verstappen
& Veldman 2003). Such schemes are conservative, i.e. they preserve the kinetic
energy equation. These conservation properties are held if and only if the discrete
convective operator is skew-symmetric (Cc (uc) = − Cc

∗(u)), the negative conjugate
transpose of the discrete gradient operator is exactly equal to the divergence operator
(− (ΩcGc)

∗ = Mc) and the diffusive operator Dc is symmetric and positive-definite
(the sub-index c holds for the cell-centred discretization). These properties ensure
both stability and conservation of the kinetic-energy balance even at high Reynolds
numbers and with coarse grids.

For the temporal discretization of the momentum equation (2.2), a fully explicit
second-order Adams–Bashforth scheme has been used for the convective and diffusive
terms, while for the pressure gradient term, an implicit first-order scheme has been
used.

The velocity–pressure coupling has been solved by means of a classical fractional
step projection method,

up
c = un+1

c + G p̃c, (2.3)

where p̃c = pn+1
c �tn/ρ is the pseudo-pressure, up

c is the predicted velocity, n+1 is the
instant when the temporal variables are calculated, and �tn is the current time step
(�tn = tn+1 − tn). Taking the divergence of (2.3) and applying the incompressibility
condition yields a discrete Poisson equation for p̃c: Lc p̃c = Mcup

c . The discrete
Laplacian operator Lc ∈ �m×m is, by construction, a symmetric positive definite
matrix (Lc ≡ MΩ−1M∗). Once the solution of pn+1

c is obtained, p̃c results from (2.3).
Finally the mass-conserving velocity at the faces (Msun+1

s = 0) is obtained from the
correction:

un+1
s = up

s − Gs p̃c, (2.4)

where Gs represents the discrete gradient operator at the CV faces. This approximation
allows us to conserve the mass at the faces but it has several implications. If the
conservative term is computed using un+1

s , in practice an additional term proportional
to the third-order derivative of pn+1

c is introduced. Thus, in many aspects, this
approach is similar to the popular Rhie & Chow (1983) interpolation method and
eliminates checkerboard modes.

However, collocated meshes do not conserve the kinetic energy, as has been shown
by Morinishi et al. (1998) for finite-difference schemes and by Felten & Lund (2006) for
finite-volume schemes. When the fractional step method on a collocated arrangement
is used, there are two sources of errors in the kinetic energy conservation: (i) due to
interpolation schemes and (ii) due to inconsistency in the pressure field in order to
ensure mass conservation. While the first one can be eliminated through the use of
conservative schemes such as those used in the present work, the latter equals

εke = ( p̃c)
∗Mc(Gc − Gs) p̃c. (2.5)

This contribution of the pressure gradient term to the evolution of the kinetic energy
cannot be eliminated. Felten & Lund (2006) have conducted a study to determine its
scaling order. They have shown that the spatial term of the pressure error scales as
O(�x2) and the temporal term scales as O(�t), i.e. pressure errors are of the order
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of O(�x2 �t). However, in their work they have proved that pressure errors do not
have a significant impact on the results at grid resolutions and time steps used in
LES and DNS.

3. Computational aspects: solving the Poisson equation
In the parallel code used to perform the simulations presented in this paper, the

algorithm followed at each time step can be divided into two parts: (i) an implicit part
where the Poisson equation is solved to project the velocity field into a divergence-free
space (this is usually the main bottleneck from the computational point of view) and
(ii) the rest of the calculations which are carried out in an explicit manner.

The mesh used for solving the domain is generated by a constant step rotation
of a two-dimensional (2-D) unstructured grid about the axis (extrusion), 2π/Nplanes

being the step size (Nplanes is the number of planes in which the azimuthal direction
is divided). Under these conditions, the azimuthal coupling of the discrete Poisson
equation results into circulant sub-matrices that are diagonalizable in a Fourier space
(Davis 1979; Gray 2006). This allows us to solve the Poisson equation by means
of a fast Fourier transform (FFT) method (Swarztrauber 1977; Soria, Pérez-Segarra
& Oliva 2002) which decouples the initial system into Nplanes mutually independent
2-D systems in the frequency space (frequency system). Therefore, the arithmetical
complexity and the RAM memory of the problem are drastically reduced. Moreover,
the independent 2-D systems are solved by means of a direct Schur-complement-based
decomposition (DSD) method (Soria, Pérez-Segarra & Oliva 2003).

Concerning the parallelization strategy, initially each plane of the extrusion is
divided into P2d parts but, as all the planes are identical, the same partition is used
for all of them. Consequently torus-shaped subdomains are obtained. Moreover, the
azimuthal direction is also divided into Pper parts. Thus, the domain is decomposed
into P =Pper × P2d subdomains. When considering the optimal values for Pper and
P2d , the following two aspects must be taken into account: (i) the DSD method does
not have unlimited speed-up, and thus, if P2d overcomes the linear speed-up region,
some resources may be wasted; (ii) when the change of basis to the diagonalization
space is performed, a global communication between the processors assigned to
different subdivisions of the torus-shaped subdomains is needed. The reason is that
all the components of each azimuthal sub-vector are needed to perform the FFT.
This global communication eventually degrades the parallelization when the number
of partitions in the azimuthal direction, and consequently the number of processors
involved in each global communication, increases. Thus, given a problem and a
parallel computational architecture, some tests must be carried out in order to find
out the optimal decomposition.

A study for determining the best option for solving the finest mesh (74 041 × 128
planes in the azimuthal direction) used in this paper has been performed. For this
mesh size, 240 CPUs have been used in the simulation. In this case, the optimum
parallelization strategy has been to divide the 2-D plane into 60 domains (P2d = 60),
while the azimuthal direction has been decomposed into four parts (Pper = 4). In
absolute terms, the optimal time for solving the Poisson equation is 0.067 s, being
about the 20 % of the total time required for computing one time step (0.337 s). All
computations reported in this paper have been performed on a 76-node cluster, where
each node has two AMD Opteron 2350 Quad Core processors linked in an infiniband
DDR4X network.
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Figure 1. Computational domain and boundary conditions.
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y

Figure 2. (Colour online available at journals.cambridge.org/FLM) (a) Details of the mesh
of the 2-D grid in the region near the sphere and (b) 3-D mesh.

4. Flow parameters overview
Numerical simulations of the flow over a sphere have been performed at Re = 3700,

where the Reynolds number (Re = UD/ν) is defined in terms of the free-stream
velocity U and the sphere diameter D. Solutions are obtained in a cylindrical
computational domain of dimensions x = [−5D, 20D]; r = [0, 7D]; θ = [0, 2π], where
the sphere is located at (0,0,0) (see figure 1). The boundary conditions at the inflow
consist of a uniform velocity (u, v, w) = (1, 0, 0). Constant velocity (u, v, w) = (1, 0, 0)
is also prescribed at the other external boundaries except for the downstream one
(outlet) where a pressure-based condition is used. No-slip conditions on the sphere
surface are imposed.

As mentioned in § 3, the governing equations are discretized on an unstructured
mesh generated by the constant-step rotation around the axis of a 2-D unstructured
grid. In this discretization, the azimuthal direction is divided into Nplanes identical
planes. The use of an unstructured grid for the plane has allowed us to cluster more
CVs around the sphere and in the near wake. An example of the 2-D grid and its
refinement around the sphere together with the 3-D mesh are depicted in figures 2(a)
and 2(b) respectively. All the results presented in the paper have been performed on
a grid of about 9.48 MCVs (74041 × 128 planes) which covers the whole domain.

When performing DNS, it must be ensured that the grid size is enough to solve the
smallest flow scales well and that near the solid walls the viscous boundary layer is
also well solved. This means that, within the boundary layer, a minimum number of
grid points must be assured. Considering that the boundary layer is laminar until the
drag crisis (Re = 3.7 × 105) and that its thickness can easily be estimated Schlichting
(1979), 12 grid points have been located within the boundary layer. Although the
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grid used is unstructured, the mesh has been constructed to be as uniform as possible
at the sphere surface and in the near wake. In the a posteriori analysis of the grid
size used, the Kolmogorov length scale has been calculated. In the near wake, at
a distance of up to x/D < 3, the minimum value of this length scale is given by
η/D = 0.0134. This value increases up to η/D = 0.0303 at a distance of x/D = 5.
The grid solved has an average grid size of h/D = 0.008, with minimum values of
hmin/D = 0.0015 in the zone behind the sphere up to x/D = 3, and h/D =0.014 for
the region between 3 <x/D < 5. With these considerations, the grid density obtained
should be fine enough to solve the smallest flow scales in the zone behind the sphere
and in the near wake up to a distance of x/D = 10 at this Reynolds number.

In the quest for an adequate grid resolution for solving the computational domain,
three more different meshes of 5.45, 3.63 and 1.8 MCVs have been tested. For all
these meshes, special care has also been taken in the node distribution near the
sphere. Similar values of the drag coefficient and first-order statistics are obtained
(see the Appendix). However, an accurate description of the Reynolds stresses and
the unstable recirculation region needs the finest mesh.

5. Numerical simulation results
For obtaining the numerical results presented, small random disturbances have

been introduced to the initially homogeneous flow field. At a certain time, the flow
becomes 3-D and the transition to turbulence occurs in the wake of the sphere. Thus,
simulation has been advanced in time until statistical stationary flow conditions have
been achieved. Once the initial transient has been washed out, first- and second-
order statistics have been obtained based on the integration of instantaneous data
over a sufficiently long time period. In order to guarantee that the solved quantities
are statistically independent, the evolution of first- and second-order statistics has
been studied. A summary of these results is presented in figure 3. Figures 3(a) and
3(b) illustrate the time history averaging for streamwise (vx) and radial velocity
components (vr ), respectively. These values have been sampled at the axis at a
distance of x/D = 3. This point is located downstream of the recirculation bubble,
and at this station, the streamwise velocity exhibits clearly large fluctuations due
to the turbulent mixing between the convected fluid along the shear layer and the
fluid in the recirculation bubble. In the figure it can be observed how mean and
turbulent statistics approach to converged values as time averaging increases. Based
on these results, statistical data have been obtained by means of the integration
of the instantaneous quantities over a period of 350 D/U time units. For this
time integration period, the resolved turbulence statistics should be considered as
statistically converged values. Furthermore, all statistical quantities have also been
averaged in the azimuthal direction.

5.1. Power spectra analysis

The main frequencies corresponding to the shear-layer instabilities and large-scale
vortex shedding have been obtained from the power spectrum analysis of the
instantaneous data sampled at different stations in the near-wake region. The first of
these probes is located at the axisymmetric shear layer at x/D = 1.0, r/D = 0.6. The
second one is placed at x/D =2.4, r/D = 0.6, in the zone of the shear layer where
transition to turbulence is supposed to occur, the third one at x/D = 3, r/D = 0.6
and the last one at x/D = 5, r/D = 0.6 further downstream in the turbulent wake.
The energy spectra have been calculated from the time series of the radial velocity
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Figure 3. Time history for streamwise and radial velocity components and their
time-averaging history: (a) streamwise velocity vx (solid line), its time-average vx (dotted
line) and its time-averaged fluctuation vxrms (dash-dotted line); (b) radial velocity vr

(solid line), its time-average vr (dotted line) and its time-averaged fluctuation vr rms (dash-dotted
line).

fluctuations over a period of 350 tU/D (about 75 shedding cycles) by using the Lomb
periodogram technique. In addition, the resulting spectra have been averaged in the
azimuthal direction.

One can notice that radial velocity fluctuations display different frequency
contributions depending on the position of the probes in the shear layer and
in the wake. Indeed, the spectrum of the probe located at x/D = 2.4, r/D = 0.6
exhibits a dominant peak in the energy at the large-scale vortex-shedding frequency
St = fvs D/U = 0.215 (see figure 4d ). This peak is also detected at all stations
downstream of the sphere (figures 4f and 4h). The magnitude of the peak decreases
slightly with the distance from the sphere, but it is clearly seen at all monitored
ports. In the figures, the −5/3 Kolmogorov law is also represented. As can be seen
from the figures, only at x/D =5 does the slope of the spectrum approximate the
k−5/3 behaviour according to Kolmogorov’s law for a narrow range of frequencies.
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Figure 4. Time history and power spectrum at different locations: (a,b) radial velocity vr

and power spectrum at x/D = 1, r/D = 0.6, (c,d ) radial velocity vr and power spectrum at
x/D = 2.4, r/D = 0.6, (e,f ) radial velocity vr and power spectrum at x/D = 3, r/D = 0.6, (g,h)
radial velocity vr and power spectrum at x/D = 5, r/D = 0.5.
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However, at this low Reynolds number, the power spectrum almost passes directly
from the energy carrying scales to the dissipative range.

In addition to the large-scale vortex-shedding frequency, there is a secondary
characteristic frequency associated with the Kelvin–Helmholtz instabilities of the
separating shear layer at fKH D/U = 0.72. This frequency has been detected only in
the very near wake, just downstream of the sphere (see the spectrum for the location
x/D = 2.4, r/D = 0.6, figure 4d ). In fact, the first probe located in the laminar region
of the shear layer, closer to the separation point, also shows a broadband peak centred
at fKH . These instabilities can be observed as high-frequency fluctuations of the radial
velocity, and they seem to grow in magnitude as the downstream distance from the
sphere increases (see figures 4a and 4c, see also figure 8). Such intermittency has also
been observed before for a circular cylinder by Prasad & Williamson (1997), who
studied the shear layer instabilities, and has also been captured by DNS of the flow
past a sphere at Re = 650 (Mittal & Najjar (1999) and at Re = 1000 (Tomboulides
& Orszag (2000). In the experiments of the flow behind a sphere, this frequency has
also been reported previously. Kim & Durbin (1988) reported a high-frequency mode
to be between 0.75 and 1.04, while Sakamoto & Haniu (1990) measured a frequency
value within 0.97–1.22. The value obtained in this paper is more consistent with
the measurements of Kim & Durbin (1988), while there is little difference from that
reported by Sakamoto & Haniu (1990).

Besides the vortex-shedding and the small-scale instability frequencies, another
peak at a much lower frequency than that of the large-scale vortex shedding has
been observed. The value of this low frequency is fm D/U = 0.0178, and it is
captured by all the probes. Tomboulides & Orszag (2000), who obtained a value
of about fm D/U = 0.045 at Re = 500, attributed this low frequency to the irregular
rotation of the separation point. On the other hand, for the case of the wake of
a circular disc, Berger, Cholz & Schumm (1990) found a periodic shrinkage and
enlargement motion of the recirculation region at a very low frequency. If the energy
spectrum of streamwise velocity fluctuations at x/D = 3, r/D = 0 shown in figure 3(a)
is analysed (see figure 5), it also exhibits a dominant peak at a very low frequency of
fm D/U = 0.0178. This is the same low frequency found at the locations of the shear
layer, especially at x/D =2.4, r/D = 0.6 and at x/D = 3, r/D = 0.6. Just downstream
of the recirculation bubble at x/D =3, r/D = 0.6, it is expected to well capture this
pumping motion of the recirculation zone. Thus, it is more probable that this low
frequency (fm) could be attributed to the periodic shrinkage and enlargement of the
recirculation region than to the rotation of the vortex separation point.

5.2. Coherent structures of the flow

In order to understand the dynamics of the vortex formation and the wake structure,
proper identification of the coherent structures of the flow is required. Thus, in the
present work, coherent structures in the wake have been visualized by means of Q-
iso-surfaces (see Hunt, Wray & Moin 1988). The Q-criterion proposed by Hunt et al.
defines an eddy structure as a region with positive second invariant of the velocity
gradient tensor ∇u. The second invariant is defined as

Q = 1
2
(‖Ω‖2 − ‖S‖2) (5.1)

where ‖Ω‖2 = [Tr(ΩΩ t )] and ‖S‖2 = [Tr(SSt )], Ω and S being the antisymmetric and
symmetric components of the velocity gradient tensor ∇u. Positive values of Q mean
that vorticity prevails over strain, i.e. the strength of rotation overcomes the strain.
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Figure 5. Power spectrum of the streamwise velocity fluctuations v′
x at x/D = 3, r/D = 0.

In figures 6 and 7, a sequence of four Q-iso-surface plots is presented. This sequence
corresponds with the time evolution of the vortical structures in the wake of the sphere
over a shedding cycle, viewed from two different azimuthal positions. Each panel of
the figures depicts the wake of the sphere at each quarter period. Figure 6 corresponds
to an arbitrary azimuthal position (e.g X–Y plane) and figure 7 is perpendicular to
the X–Y plane, viewed from the top.

An axisymmetric laminar boundary layer separates from the equator of the sphere,
with a separation angle of ϕs = 89.5◦. This separated shear layer remains laminar up
to a certain distance from the sphere where it becomes unstable. From the analysis
of the instantaneous data, it has been observed that at about x/D =1–1.2, the first
instabilities in the shear layer appear. These instabilities occur, in the first instance, as
a consequence of the amplification of the small random disturbances introduced in the
initial conditions. Due to these instabilities in the shear layer that appear randomly
at any azimuthal location, the vortex sheet starts to roll up, and the flow becomes
3-D and results in a transition to turbulence. The zone where this transition occurs is
located at about x/D = 1.8–2.6. The instabilities in the shear layer can be directly seen
from the inspection of the time series of the radial velocity component in the laminar
shear layer at x/D = 1, r/D = 0.6 at four azimuthal angles (θ =0, π/2, π, 3π/2)
(see figure 8a). As can be observed, large velocity fluctuations occur randomly at
all azimuthal positions but at different times. These instabilities propagate in the
shear layer and get amplified. As a consequence, in the zone where the transition to
turbulence occurs, large velocity fluctuations are found at every azimuthal angle as
shown in figure 8(b) (x/D = 2.2, r/D = 0.6).

As can be seen from figures 6 and 7, there is a wide range of scales in the separated
region, just behind the recirculation bubble and in the wake of the sphere. Vortex
loops are detached from opposite positions, but they are not necessarily detached with
180◦ of separation. In the separated zone, the vortices formed break into small-scale
vortices which are drawn into the region behind the sphere (formation zone), but they
also feed the turbulent wake. The large-scale vortices are not arranged in the same
plane, but the wake exhibits a pronounced helical-like configuration as can also be
observed from the general 3-D view of the wake in figure 9. This helical configuration
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Figure 6. Vortical structures every quarter vortex-shedding period (time advances from a
to d ). Plane X–Y.

was previously observed in experiments carried out by Achenbach (1974) at Re = 6000
and by Taneda (1978) at Re = 104–3.8 × 105, and in numerical results at Re = 104 (see
Constantinescu & Squires 2004; Yun et al. 2006). In his experimental observations,
Achenbach (1974) suggested that the vortex shedding occurs at a position around the
sphere that rotates with the vortex-shedding frequency. On the other hand, Taneda
(1978) observed an irregular rotation about the axis of the separation point and
the wake. However, recent LES results from Yun et al. (2006) showed that vortical
structures travel downstream nearly straight, and they proposed that the helical-
like structure might be related to the wall-pressure changes in the sphere along the
azimuthal direction.
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Figure 7. Vortical structures every quarter vortex-shedding period (time advances from a
to d ). Plane perpendicular to the X–Y plane, viewed from the top.

From the examination of a large number of shedding cycles of the instantaneous
data in the present simulation, it has been observed that shear layer instabilities occur
at a random position and the vortices are shed periodically at no particular azimuthal
position. This gives the wake a helical appearance but the vortices move downstream
without circulation in the azimuthal direction (see the supplementary movie available
at journals.cambridge.org/flm). In fact, it can be argued that the observed helical
pattern of the wake is due to the way the vortices are shed in time. At any shedding
cycle, two antisymmetric vortices are shed, but at the next shedding period, due to
the randomness of the shear layer instabilities, the vortex shedding does not occur at
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Figure 8. Time series of the radial velocity component at different locations in the shear layer
and at four azimuthal angles (θ = 0, π/2, π, 3π/2): (a) x/D =1, r/D = 0.6; (b) x/D = 2.2,
r/D =0.6.

the same azimuthal position as that of the previous one. Instead, these perturbations
can produce vortices to be shed either to the left or to the right of the location of the
previous vortex shedding. Thus, the handedness of the helical pattern is determined
(in the first instance) by the amplification of the random disturbances introduced in
the initial conditions, but also the direction of the helix will vary in time due to the
nature of the vortex-shedding process.

Analysing the shedding cycle shown in the figures, panels 6(a) and 7(a) depict
the shear layer in a stage just after the instability marked as I1 has grown and has
broken off from the vortex sheet. Small instabilities in the axisymmetric shear layer
are continuously appearing (e.g. the instability marked as I2). At the end of the
axisymmetric bubble, corrugated structures along the azimuthal direction can also be
observed. These structures are induced by the action of the small scales inside the
recirculation bubble and the remnants of the previous ones broken off from the shear
layer. A protruding structure marked as VC0, which is the previous separated roller
on the opposite side of the shear layer, and other vortices marked as VC1, VC2 and
VC3 can also be noted. Figures 6(b) and 7(b) correspond to a quarter period later
when the structure I1 has become amplified and moved downstream. Of particular
interest is the long-rib structure (R) which is connected at one end with the VC0
structure. The corrugated structures at the end of the vortex sheet are now more
evident, as instability I2 has completely broken the shear layer at that azimuthal
position. In the top view, small streamwise vortices which seem to be interlaced with
the vortex structure I1 can also be observed.

A quarter period later, which corresponds with figures 6(c) and 7(c), the vortex
structure I1 has completely separated from the shear layer. The tail of the rib R has
distorted in the azimuthal direction and has wrapped around itself, feeding the VC0
vortex, which has grown also fed by the small-scale vorticity from the recirculation
bubble. The instability I2 has now separated from the shear layer and has grown as
a new vortex structure opposite to I1. In the last quarter (figures 6d and 7d ), the
vortex structure I1 has moved downstream, while the new vortex shed I2 is now in its
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 (a)
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Figure 9. (Colour online) Visualization of instantaneous vortical structures in the wake of
the sphere (time advances from a to d ).

final stage. Moreover, as a consequence of the pairing of vortices, VC0 has become a
larger structure.

The same shedding period shown in figures 6 and 7 is also depicted in figure 9,
but it offers a 3-D view of the helical pattern of the wake. Note also that large-
scale structures are composed of about 3–4 azimuthal vortex rings, which is in
agreement with the small-scale instability frequency fKH measured. During the whole
sequence, the large-scale structures such as VC1, VC2 and VC3 have moved uniformly
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278 I. Rodŕıguez, R. Borrell, O. Lehmkuhl, C. D. Pérez-Segarra and A. Oliva

Re St ϕs (◦) Cd Cpb L/D

Present work (DNS) 3700 0.215 89.4 0.394 −0.207 2.28
Kim & Durbin (1988) (exp.) 3700 0.225 – – −0.224 –
Sakamoto & Haniu (1990) (exp.) 3700 0.204 – – – –
Yun et al. (2006) (LES) 3700 0.21 90 0.355 −0.194 2.622
Schlichting (1979) (exp.) 3700 – – 0.39 – –
Tomboulides & Orszag (2000) (DNS) 1000 0.195 102 – – 1.7
Seidl et al. (1998) (DNS) 5000 – 89.5 0.38 – 2.1
Constantinescu & Squires (2003) (LES) 104 0.195 84–86 0.393 – 1.7

Table 1. Statistical flow features. DNS results compared with experimental measurements
and numerical results from the literature.
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Figure 10. Mean profiles around the sphere. (a) Mean pressure distribution compared with
experimental results of Kim & Durbin (1988) at Re = 4200. (b) Mean skin-friction coefficient
compared with numerical results of Seidl et al. (1998) at Re = 5000.

downstream without change in their azimuthal position. As they travel downstream,
the whole wake gives the appearance of a wavy motion and, as has been commented
before, it exhibits this helical-like configuration.

5.3. First- and second-order statistics

Time-averaged statistical features resulting from the simulation are summarized in
table 1. In the table, the vortex-shedding frequency, St , the separation angle measured
from the stagnation point, ϕs , the non-dimensional length of the recirculation bubble
evaluated from the rear end of the sphere, L/D, and the mean streamwise drag
coefficient, Cd , are presented. Previous numerical results and experimental data from
the literature are also given. In general, good agreement with previous data has been
found for all time-averaged flow features.

As commented in § 5.1, vortices are shed from the sphere at a frequency St =0.215.
This value is within the range (0.204–0.225) of Strouhal numbers reported in
experiments (see Kim & Durbin 1988; Sakamoto & Haniu 1990), as can be seen
in the table.

Predictions of the angular distribution of the mean pressure coefficient, Cp , and the
wall skin-friction, τw , are plotted in figure 10 against the results from the literature at
comparable Reynolds numbers. As experimental measurements of the drag coefficient
(see values summarized in Schlichting 1979) have shown little variation in this quantity
in the sub-critical regime, the dependence on the Reynolds number is not so important.
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Figure 11. (a) Time-averaged streamwise velocity (vx) profile along the wake centreline.
(b) Mean fluctuating streamwise velocity (v′

x) along the wake centreline.

Thus it is possible to carry out comparisons with other results from the literature at
different Reynolds numbers. In figure 10(a), the mean pressure coefficient is compared
against earlier experimental measurement data of Kim & Durbin (1988) at Re = 4200.
As can be seen, when comparing the DNS results with those obtained from Kim &
Durbin (1988), good agreement within experimental uncertainties is obtained. The
angular position of the pressure minimum is well captured, being at ϕ = 71.5◦. This
value is also comparable with the position of the pressure minimum, ϕ =71◦, reported
by Seidl et al. (1998) at Re = 5000. The value of the base pressure coefficient Cpb, i.e.
the time-mean pressure coefficient at the rear point of the sphere at ϕ = 180◦, is also
well predicted (see table 1).

The skin-friction distribution obtained and the DNS results of Seidl et al. (1998)
at Re = 5000 are depicted in figure 10(b). The values presented have been non-
dimensionalized by ρU 2/Re0.5 being consistent with the boundary layer theory. The
variation of the skin-friction coefficient with the angle is also in correspondence with
previous results. As can be observed, it exhibits a maximum value at the angular
position of ϕ = 48◦, which compares well with the value calculated by Seidl et al.
(1998) of ϕ = 50◦.

As shown in table 1, the value of the mean drag coefficient, Cd = 0.394, is in
correspondence with the value reported in experiments, Cd = 0.39 (values summarized
in Schlichting 1979). This is also in agreement with the observations that report a
local minimum of the drag coefficient of Cd = 0.38 at about Re = 5000 (see Seidl
et al. 1998) with the further increase with the Reynolds number in the sub-critical
regime approaching the drag crisis (Schlichting 1979; Constantinescu & Squires
2003). However, when compared with the LES results by Yun et al. (2006), some
discrepancies are found. They predicted a lower value for the drag coefficient of
Cd = 0.355. It is important to highlight that computations performed with coarser
grids of 3.63 MCVs and 5.45 MCVs have shown little variation in the value of the
mean drag coefficient Cd being 0.39 and 0.399, respectively. Thus, differences with
LES results might be attributed to the subgrid-scale model they have used.

The average streamwise velocity (vx) normalized by the free-stream velocity U and
its fluctuations (v′

x) are given in figure 11. As can be seen from figure 11(a), the
length of the recirculation bubble, defined as the streamwise distance from the rear
end of the sphere to the position where the mean streamwise velocity changes sign, is
L/D =2.28. This is nearly the same distance to the location where the fluctuations of
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–0.4

 0

 0.4

 0.8

 1.2

 0  0.5 1.0  1.5 2.0

y/D

x/D = 3

Kim & Durbin (exp.)

Yun, Kim & Choi (LES)
DNS 5.45 MCV

–0.4

 0

 0.4

 0.8

 1.2

     

x/D = 1.6
–0.4

 0

 0.4

 0.8

 1.2

     

x/D = 0.2

u–/U

Figure 12. Streamwise velocity at three locations in the wake. Comparison of the DNS
results with experiments of Kim & Durbin (1988) and LES solution of Yun et al. (2006).

the streamwise velocity reach its maximum, i.e. the vortex formation zone, as Norberg
(1998) pointed out. In fact, figure 11(b) shows the presence of two large peaks. The
first one is more pronounced and its maximum occurs at x/D =1.98 measured from
the rear end of the sphere, while the second one takes place at x/D = 2.81. Some
discrepancies with the previous LES modelling work by Yun et al. (2006) are observed
in the prediction of the recirculation length (see table 1). These differences are also
reflected when the profile of the mean streamwise velocity in the wake is compared
with both experimental data of Kim & Durbin (1988) and LES modelling results
by Yun et al. (2006) (see figure 12). Good agreement between our DNS results and
the experimental data is obtained. However, noticeable differences are observed when
compared with the mentioned LES results. These discrepancies are more relevant at
x/D = 3 where, according to our DNS and the experimental measurements, the flow
is in the recovery zone (i.e. the region between the end of the recirculation bubble
and the location where the flow accelerates in spite of the adverse pressure gradient).
However, for LES results by Yun et al. (2006), the profile shows that the flow is at
the end of the recirculation bubble.

The time-averaged profiles of the streamwise and radial velocities at five different
locations (x/D = 1.6, 2, 3, 5, 10) in the wake are plotted in figure 13. The negative
streamwise velocity at x/D = 1.6 and 2 stems from the recirculation zone. In the
wake behind the sphere, vx is negative until the free-stagnation point. At x/D =3,
the streamwise velocity is positive but near zero, since this position is very close to the
end of the recirculation bubble. The minimum value of the radial velocity occurs on
the side of the free-stagnation point, and its value is vr = − 0.198U (see table 2). The
largest backward velocity (minimum streamwise velocity) in the recirculation bubble
is vx = − 0.321 U according to figure 11(a).

The mean velocity fluctuations v′
x/U and v′

r/U are plotted in figure 14. The
averaged maps of the Reynolds stresses v′

xv
′
x/U 2, v′

rv
′
r/U 2 and v′

x v′
r/U 2 are also
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Figure 13. Mean velocity profiles at different positions in the wake behind the sphere at the
plane (x/D, y/D, z =0). (a) Streamwise velocity vx/U , (b) radial velocity vr/U .

depicted in figure 15. The contour plots show qualitative agreement with particle
image velocimetry (PIV) measurements of Jang & Lee (2007) for a Reynolds
number Re = 11 000. As expected, low levels of the Reynolds stresses in the near
wake, in the region close to the sphere, are observed. On the contrary, peaks
in the stresses are within a distance of 1.8D–2.5D from the sphere. The largest
streamwise turbulence intensity is located at x/D = 2.61 around which contours
are arranged in the recirculation zone. In fact, the largest values of this variable
occur in the shear layer at a radial position around 0.4 � r/D � 0.6 (see figures 14a
and 15a). Furthermore, the maximum value of the cross-stream Reynolds stresses
v′

rv
′
r/U 2 occurs along the wake centreline at x/D = 3.1 (see figures 14b and 15b).

All these representative quantities are summarized and compared (when possible) with
the LES results by Constantinescu & Squires (2003) at Re = 104, in table 2. Although
there is a difference in Reynolds numbers, note that the minimum/maximum values
of these variables take place at nearly the same radial location, but the streamwise
position is larger in our calculations. These differences in the axial position are
attributed to the shrinkage of the recirculation bubble with the increase in the
Reynolds number.

6. Summary
The direct numerical simulation of the flow over a sphere has been carried out

at the Reynolds number of Re = 3700. A second-order spectro-consistent scheme
for collocated and unstructured grids is used in the discretization of the governing
equations. The conservation properties ensure good stability and conservation of
the kinetic-energy balance with coarse meshes even at high Reynolds numbers. The
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Value x/D y/D

Minimum mean streamwise velocity vx/U
DNS −0.321 2.133 0.0
LES, Re = 104 −0.4 1.41 0.0

Maximum mean streamwise velocity vx/U
DNS 1.175 1.282 0.702
LES, Re = 104 – – –

Minimum mean radial velocity vr/U
DNS −0.198 2.499 0.572
LES, Re = 104 −0.15 1.82 0.56

Maximum mean radial velocity vr/U
DNS 0.207 0.0014 0.565
LES, Re = 104 – – –

Maximum mean streamwise turbulent intensity v′
x v′

x/U 2

DNS 0.055 2.606 0.423
LES, Re = 104 0.063 1.78 0.46

Maximum mean radial turbulent intensity v′
r v′

r/U 2

DNS 0.069 3.090 0.0
LES, Re = 104 – – –

Minimum mean Reynolds shear stress v′
x v′

r/U 2

DNS −0.029 2.565 0.392
LES, Re = 104 −0.039 2.04 0.39

Table 2. First- and second-order statistics. Comparison with LES results of Constantinescu
& Squires (2003) at Re = 104.

results have been computed on an unstructured grid of about 9.48 MCVs generated by
the constant-step rotation around the axis of a two-dimensional unstructured grid.
Time-averaged statistics have been based on the integration of the instantaneous
statistical stationary data over a period of 75 vortex-shedding cycles and also spatially
averaged in the periodic direction.

The computed results have been compared with experimental and numerical data
available in the literature at comparable Reynolds numbers. It has been found that the
flow separates laminarly near the equator of the sphere and transition to turbulence
occurs in the separated shear layer at a distance between x/D = 1.8 and 2.6 . The flow
parameters, such as vortex-shedding frequency, instability frequency, drag coefficient
and detachment angle, have been found to be consistent with previous works. Good
agreement in the wall-pressure and skin-friction distributions in the sphere has also
been found.

The energy spectra of a set of selected probes at different locations in the wake of
the sphere have been calculated. The spectra exhibit different frequency contributions
depending on the position of the probes. Three main instability frequencies have
been detected: the large-scale vortex-shedding frequency at St = fvs D/U = 0.215;
the small-scale Kelvin–Helmholtz instability of the shear layer at fKH =0.72; and a
frequency lower than the vortex-shedding frequency attributed to the shrinkage and
enlargement of the recirculation region at fm = 0.0178. The vortex-shedding frequency
and the Kelvin–Helmholtz instability have been found to be in good agreement with
previous studies.
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Figure 14. Mean velocity fluctuations at different positions in the wake behind the sphere
at the plane (x/D, y/D, z =0). (a) Streamwise velocity fluctuations v′

x/U , (b) radial velocity

fluctuations v′
r/U .

1(a)

(b)

(c)

0

1

0

1

0

 1  2  3  4  5  6

 1  2  3  4  5  6

 1  2  3  4  5  6

Figure 15. Isocontour maps of the second-order statistics: (a) Reynolds streamwise
normal stress v′

xv
′
x/U 2 = 0.00552–0.0554, 10 levels. (b) Reynolds cross-stream normal stress

v′
rv

′
r/U 2 = 0.00685–0.0685, 10 levels. (c) Reynolds shear stress v′

x v′
r/U 2 = − 0.029–0.00323, 10

levels.
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Case Nt (MCV) NCVplane Nplanes NBL

I 9.48 74 041 128 12
II 5.45 56 787 96 10
III 3.63 56 787 64 8
IV 1.8 28 168 64 4

Table 3. Main parameters for the different computations. Nt , total number of CVs; NCVplane ,
number of CVs in the plane; Nplanes , number of planes in the azimuthal direction; NBL, number
of points in the viscous boundary layer.

The visualization of the vortex structures over a long period of time shows that
the wake has a marked helical-like configuration due to the shedding of vortices at
random azimuthal positions in the shear layer. Although during a vortex-shedding
period coherent structures are antisymmetric, vortex loops are not strictly detached
with 180◦ of separation. Furthermore, as every vortex-shedding period does not occur
at the same circumferential location and there is a random change in its azimuthal
position, vortices are shed either to the left or to the right of the location of the
previous one. However, large-scale structures move uniformly downstream without
circulation in the azimuthal direction, but their relative positions give the appearance
of a wavy motion and helical configuration.

In addition to the flow parameters presented, a detailed set of first- and second-
order statistics at different positions in the wake have also been given. As far as
the authors are aware, this work presents the first DNS carried out at this Reynolds
number. Furthermore, the data obtained are useful not only for a better understanding
of the flow features but also for assessing and validating the results from turbulence
modelling.

It is worth highlighting that the methodology developed for solving bodies of
revolutions using unstructured grids has allowed us to accurately solve the flow in
the wake of the sphere with good results. Furthermore, the computational cost of the
present computations is relatively small for the grids used, which allows us to carry
out similar DNS studies at higher Reynolds numbers.

This work has been financially supported by the Ministerio de Educación y Ciencia,
Secretarı́a de Estado de Universidades e Investigación, Spain (ref. ENE2009-07689)
and by the Collaboration Project between Universitat Politècnica de Catalunya and
Termo Fluids SL (ref. C06650). The authors would also like to thank the referees for
their useful comments, which served to improve the paper.

Appendix. Grid resolution studies
We performed simulations with different resolutions in both the 2-D plane (x, r)

and the azimuthal direction. The coarser mesh solved was of 1.8 MCVs (28168 × 64
planes). In all cases a minimum number of CVs within the boundary layer were
considered (4 CVs for the coarse grid and 12 CVs for the finest one). Mesh refinement
was carried out taking advantage of the unstructured grids used. Thus, more CVs
were clustered within the near-wake region than in the outer zones where the flow is
laminar. Table 3 summarizes the details of each computational grid considered.

Flow features resulting from the different simulations are given in table 4. In all
cases, statistical data were obtained by averaging 350 D/U time units. The drag
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St ϕs (◦) Cd Cpb L/D

Case I (9.48 MCV) 0.215 89.4 0.394 −0.207 2.28
Case II (5.45 MCV) 0.215 89.4 0.399 −0.209 2.18
Case III (3.63 MCV) 0.21 89.35 0.390 −0.238 2.08
Case IV (1.8 MCV) 0.215 89.5 0.378 −0.234 2.35
Kim & Durbin (exp.) 0.225 – – −0.224 –
Sakamoto & Haniu (exp.) 0.204 – – –
Yun et al. (LES) 0.21 90 0.355 −0.194 2.622

Table 4. Statistical flow parameters for the different grids. Experimental measurements from
Kim & Durbin (1988) and Sakamoto & Haniu (1990), and numerical results from LES
computations by Yun et al. (2006).
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Figure 16. Streamwise velocity profiles at different locations in the near wake of the sphere
for different grid resolutions: —, case I; �, case II; ∗, case III; �, case IV.

coefficient Cd , the base pressure coefficient Cpb, the vortex-shedding frequency St

and the separation angle ϕs agree quite well with the experimental data for all
resolutions. On the other hand, the recirculation length shows a higher sensitivity to
the grid resolution. These differences are also reflected in the mean streamwise velocity
profiles in the near wake (see figure 16). Good agreement is obtained at x/D = 0.2
and x/D = 1.6, but some differences are observed when they are compared at a
distance of x/D = 3. As this station is located at the outer limit of the recirculation
zone, these differences might be due to the fluctuations of the recirculation bubble.
Largest differences in the mean flow variables are obtained in the downstream region
when compared with the high-resolution mesh, specially for the two coarser grids, for
downstream distances from the sphere of x/D > 5 (not shown in the image). These
differences are mainly due to the coarsening of these grids further downstream, being
incapable of capturing all flow scales.

Figure 17 shows the mean pressure coefficient on the sphere surface as a function of
the angle (measured from the stagnation point) for the low- and high-resolution grids
(cases IV and I, respectively), together with the experimental data by Kim & Durbin
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Figure 17. Comparison of the pressure coefficient on the sphere surface: —, case I; - - -, case
IV; �, experimental data by Kim & Durbin (1988).

(1988) at Re =4200. The low-resolution mesh captures the pressure distribution quite
well with some differences in the front surface of the sphere, and also it slightly
under-predicts the pressure in the base of the sphere. However, the position of the
minimum pressure and its value are predicted satisfactorily.
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