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The collapse under surface tension of a long axisymmetric capillary, held at both
ends and softened by a travelling heater, is used to determine the viscosity or surface
tension of silica glasses. Capillary collapse is also used in the manufacture of some
optical fibre preforms. Typically, a one-dimensional (1-D) model of the closure of a
concentric fluid annulus is used to relate a measure of the change in the cross-sectional
geometry, for example the external radius, to the desired information. We here show
that a two-dimensional (2-D) asymptotic model developed for drawing of optical fibres,
but with a unit draw ratio, may be used and yields analytic formulae involving a single
dimensionless parameter, the scaled heater speed V , equivalently a capillary number. For
a capillary fixed at both ends, this 2-D model agrees with the 1-D model and offers the
significant benefit that it enables determination of both the surface tension and viscosity
from a single capillary-collapse experiment, provided the pulling tension in the capillary
during collapse is measured. The 2-D model also enables our investigation of the situation
where both ends of the capillary are not fixed, so that the capillary cannot sustain a pulling
tension. Then the collapse of the capillary is markedly different from that predicted by the
1-D model and the ability to determine both surface tension and viscosity is lost.

Key words: capillary flows, slender-body theory

1. Introduction

Figure 1 depicts an annular heater travelling at speed V along a long annular silica-glass
capillary with initial external radius RI , and aspect ratio φI defined as the ratio of the
internal and external radii such that the internal radius is φIRI . The initial cross-sectional
area of the capillary is SI = πR2

I (1 − φ2
I ). At any time t, a length L of the capillary

(commensurate with but not necessarily equal to the physical heater length) is heated
and softened such that the glass is a viscous liquid and surface tension acts to collapse
the capillary. After the heater has passed and the capillary has cooled to a solid it
has final external radius RF < RI and aspect ratio φF < φI . The extent of collapse of
the capillary is used, with a suitable mathematical model, to determine the (possibly
temperature-dependent) surface tension or viscosity of silica glasses (Kirchhof 1985a,b;
Kirchhof & Unger 2017; Klupsch & Pan 2017).

† Email address for correspondence: yvonne.stokes@adelaide.edu.au
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909 A5-2 Y. M. Stokes
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FIGURE 1. Schematic diagram of the collapse of a capillary (a) in the laboratory reference
frame where a heater travels to the right at speed V along the capillary resulting in a moving
heated region of length L, and (b) in the reference frame moving with the heater in which
the capillary moves to the left at speed V through the stationary heated region of length L. A
cross-section of the capillary enters the heated region with initial external radius RI and aspect
ratio φI , and exits the heated region with external radius RF and aspect ratio φF . Beyond the
heated region the capillary is solid. In the moving reference frame the x-axis is directed along
the axis of the capillary in the direction of increasing collapse with the centre of the heated
region at x = 0.

Capillary collapse is also used in the manufacture of optical fibre preforms by modified
chemical vapour deposition; following the deposition of glassy films from a flow of
gaseous reactants through the capillary while heating using a travelling heater, the
capillary is then further heated so that it collapses to a solid multi-material rod which
may be drawn to a fibre (Lewis 1977; Kirchhof 1980; Geyling, Walker & Csencsits
1983; Kirchhof 1985a; Das & Gandhi 1986; Kirchhof & Unger 2017). Since capillary
collapse during the vapour deposition phase affects the gas flow and chemical kinetics, a
mathematical model is important for understanding of this phase, as well as to predict the
heating needed to achieve a solid rod in the second phase.

The deformation over time under surface tension of an annular cross-section of a
capillary, ignoring any flow in the axial direction (normal to the cross-section), is
the simplest, most common and oldest model used for capillary collapse as described
above (Lewis 1977; Kirchhof 1985a,b; Klupsch & Pan 2017; Kirchhof & Unger 2017).
Axisymmetry of the capillary means that the model may be written in terms of one
spatial variable, the radius r, so that it is called ‘the one-dimensional (1-D) model’.
The cross-sectional area remains constant, the surface tension γ , which is only weakly
temperature-dependent, is assumed to be constant and the fluid viscosity μ, which is
strongly dependent on temperature, is assumed to be spatially uniform and to depend only
on time t. This problem has an analytic solution. Note that this 1-D model has also been
used for capillary collapse due to a stationary heater (V = 0) (Makovetskii, Zamyatin &
Ivanov 2013). A radially dependent viscosity was considered by Geyling et al. (1983) who
also relaxed the assumption of radial symmetry and, hence, used a two-dimensional (2-D)
model of the annular cross-section in polar coordinates (r, θ).

The first 2-D axisymmetric model developed explicitly for capillary collapse,
accounting for motion in both radial and axial directions, seems to be that of Klupsch &
Pan (2017). For a capillary held fixed at both ends, and assuming that the length scale
in the radial direction is small relative to the length scale in the axial direction, they
performed an ‘asymptotic multiscale analysis’ to obtain a 2-D description of capillary
collapse. Comparison of this with the 1-D model and finite element simulations found that
the difference between the 1-D and 2-D models was ‘marginal’.
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A two-dimensional asymptotic model for capillary collapse 909 A5-3

However, in the reference frame moving with the heater a capillary held fixed at both
ends travels through the now stationary heater (see figure 1). This problem is essentially
identical to the Vello process for manufacturing capillary tubing modelled by Griffiths &
Howell (2008), and differs from the drawing of tubular fibres only because the capillary
enters and exits the heated region at the same speed V , i.e. it is fibre drawing with
unit draw ratio. Extensive attention has been given over three decades to mathematical
modelling of the drawing of slender microstructured optical fibres, incorporating both
axial and cross-sectional flow (Yarin et al. 1989; Yarin, Gospodinov & Rusinov 1994; Fitt
et al. 2002; Griffiths & Howell 2008; Stokes et al. 2014; Chen et al. 2015; Xue et al.
2015a,b; Chen et al. 2016b; Stokes, Wylie & Chen 2019), and the drawing of slender
axisymmetric tubes is a particular case. Thus, 2-D models exist which are applicable to
capillary collapse and which predate that of Klupsch & Pan (2017). For a radial length
scale that is much smaller than the axial length scale, as assumed by Klupsch & Pan, the
asymptotic fibre-drawing model of Stokes et al. (2014, 2019) may be used for capillary
collapse and yields analytic formulae relating the extent of collapse to the harmonic mean
of the viscosity and the surface tension of the glass. The accuracy of this model is excellent
for drawing of fibre from very slender preforms (Chen et al. 2016b) and is expected to be
excellent for capillary collapse which does not see the high draw ratios and sharp tapers
seen in fibre drawing and which are known to cause discrepancies between models and
experiments, especially when the radius of the preform is not sufficiently small relative to
the neck-down length (Chen et al. 2016a).

This 2-D asymptotic fibre-drawing model with unit draw ratio is here examined for
capillary collapse. Although Klupsch and Pan’s work, in showing only marginal difference
between 1-D and 2-D models, suggests there is no practical value in a 2-D model, an
important feature of the fibre-drawing model is that it involves a pulling-tension parameter
that enables both viscosity and surface tension to be determined simultaneously from a
single experiment, which is not possible using the 1-D model. Moreover, the formulae
yielded by the 2-D model are not significantly more complex than those of the 1-D model
and are readily used. Hence, with the 2-D model, capillary collapse may be a useful and
simpler alternative to the technique proposed by Boyd et al. (2012) for determination
of both surface tension and viscosity, namely using a CO2 laser to heat small segments
of a vertically suspended glass fibre. By this means the bottom of the fibre is heated
so that a glass ball forms and detaches from the fibre, the mass of which is used to
compute the surface tension, while viscosity is determined from the reduction in the fibre
length when heated a suitable distance above the bottom of the fibre. Thus, although the
same experimental set-up might be used, different procedures are needed for each fluid
property while, as we will see, both fluid properties may be determined from a single
capillary-collapse experimental procedure.

We note that the way in which the ends of the capillary are supported or held does
not feature in 1-D modelling of capillary collapse, so that this is not always mentioned.
In the experimental set-ups of Kirchhof (1980, 1985a), where heating is by a moving
oxy-hydrogen torch and the capillary is rotated in a glass working lathe to achieve uniform
heating around the perimeter of a cross-section, it is clear that the ends of the capillary
are held fixed. Klupsch & Pan (2017) assume that the cold ends of the capillary are fixed
in the laboratory reference frame. However, it is possible that, with use of a travelling
axisymmetric heater around the tube, rotation would not be necessary and the capillary
ends could be supported but allowed to slip axially. We take the opportunity in this paper,
using a modification of the 2-D fibre-drawing model, to show that such a change to the
way in which the capillary is held has a significant effect on capillary collapse such that
the 1-D model is significantly less accurate than for the capillary with fixed ends.
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909 A5-4 Y. M. Stokes

Parameter Symbol Value Units

Heater speed V 10−4 m s−1

Heated length L 10−2 m
Initial capillary radius RI 2.5 × 10−3 m
Initial capillary aspect ratio φI 0.5–0.9 —
Initial capillary cross-sectional area SI 10−6–10−5 m2

Density ρ 3600 kg m−3

Typical viscosity μ̄ 104–105 Pa s
Surface tension γ 0.3 N m−1

TABLE 1. Typical physical parameter values (Das & Gandhi 1986; Boyd et al. 2012; Klupsch &
Pan 2017).

The 1-D model is a component of our 2-D model and, for this reason, although derived
and solved elsewhere (Stokes et al. 2014; Klupsch & Pan 2017; Stokes et al. 2019), we start
in § 2 with a brief look at the 1-D model using notation needed for our 2-D model which
is then described in § 3. In § 4 we compare 1-D and 2-D models and in § 5 we show how
the surface tension and viscosity of the material from which the capillary is made may
be determined. We also discuss determination of the heater speed required to achieve a
desired amount of collapse of the capillary. Concluding remarks are given in § 6.

2. The 1-D model

As earlier stated, the 1-D model is for the collapse under surface tension of a 2-D liquid
annulus of area SI , which at time t = 0 has external radius RI , and aspect ratio φI > 0.
Let r and θ be the radial and azimuthal spatial coordinates and let t denote time. The
symmetry of the problem means that all quantities are independent of θ and there is flow
in the radial direction only, with velocity denoted by v(r, t). Let p(r, t) be the pressure,
and R(t) and φ(t)R(t) be the external and internal radii of the annulus. We assume that
the liquid has spatially uniform viscosity. However, the viscosity of silica glasses depends
strongly on temperature, so that we have a viscosity μ(t) that changes with time. On the
other hand the surface tension γ of silica glasses is only weakly temperature dependent so
that we assume this to be constant. Table 1 gives typical values of the physical parameters
for capillary collapse. We denote the external and internal free-surface boundaries of the
annulus by

Ge(r, t) = r − R(t) = 0, (2.1)

Gi(r, t) = φ(t)R(t) − r = 0, (2.2)

respectively; for convenience, the total boundary is denoted G = Ge + Gi = 0. The
curvatures κ of the external and internal boundaries are

κ =
{

1/R on Ge(r, t) = 0,

−1/(φR) on Gi(r, t) = 0.
(2.3)

Let U be the velocity scale, to be defined later,
√SI be the length scale, and μ̄ be a

typical value of the viscosity. Assuming a slow flow with Reynolds number

Re = ρ U
√
SI/μ̄ � 1, (2.4)
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A two-dimensional asymptotic model for capillary collapse 909 A5-5

the flow is described by a classical moving-boundary Stokes-flow problem. Defining the
scaled variables, denoted by primes, by

r =
√
SIr′, t =

√SI

U t′, R =
√
SIR′, κ = κ ′

√SI
, v = Uv′,

p = μ̄U√SI
p′, μ = μ̄μ′, (2.5a–g)

the dimensionless Stokes-flow model is, on dropping primes,

1
r

∂

∂r
(rv) = 0, (2.6)

−∂p
∂r

+ μ

{
1
r

∂

∂r

(
r
∂v

∂r

)
− v

r2

}
= 0, (2.7)

−p + 2μ
∂v

∂r
= − κ

Ca
on G = 0, (2.8)

∂G
∂t

+ v
∂G
∂r

= 0 on G = 0, (2.9)

where
Ca = μ̄U/γ (2.10)

is the capillary number. We set U = γ /μ̄ so that Ca = 1, which is appropriate for a flow
driven by surface tension. The flow domain has unit dimensionless area for all time.

This model is readily solved to give

v = − φR
2μ(1 − φ)r

, p = 1
R(1 − φ)

, (2.11a,b)

where

πR2(1 − φ2) = 1 ⇒ R = 1√
π(1 − φ2)

. (2.12)

On Ge = 0 and Gi = 0 the kinematic condition (2.9) gives

dR
dt

= − φ

2μ(1 − φ)
,

d
dt

(φR) = − 1
2μ(1 − φ)

, (2.13a,b)

respectively, so that
d
dt

{R(1 − φ)} = 1
2μ

. (2.14)

For convenience, we define ω(t) = R(t)(1 − φ(t)) as the wall thickness of the annulus at
time t and, on substituting for R (2.12), obtain

ω =
√

1 − φ

π(1 + φ)
, ωI = ω(0) =

√
1 − φI

π(1 + φI)
. (2.15a,b)

Then, upon integration of (2.14), we obtain

ω(t) = ωI + 1
2

∫ t

0

1
μ(ξ)

dξ. (2.16)
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909 A5-6 Y. M. Stokes

For application of this 1-D model to capillary collapse, we now move to the reference
frame of the moving heater with x = 0 at the centre of the heater and the x-axis directed
along the axis of the capillary in the direction of capillary collapse as in figure 1. In this
reference frame every cross-section travels at speed V through the heated region. We scale
the dimensional axial coordinate x with the length L of the heated region,

x = Lx ′, (2.17)

so that, on dropping the prime, capillary collapse occurs over the dimensionless domain
−1/2 � x � 1/2. Outside of this region, the capillary is solid. Every cross-section
undergoes the same deformation as it traverses from x = −1/2 to x = 1/2 so that, without
loss of generality, we consider the cross-section that has position x = −1/2 at time t = 0.
For this cross-section

x(t) = −1
2

+ V√SIμ̄

γL t, (2.18)

and we define the dimensionless speed at which a cross-section traverses the heated region,
equivalent to the dimensionless heater speed, by

V = V√SIμ̄

γL , (2.19)

which is also the capillary number.
On transforming from t to x , (2.16) becomes

ω(x) = ωI + 1
2V

∫ x

−1/2

1
μ(ξ)

dξ. (2.20)

For known μ(x) we may calculate ω(x) from (2.20), from which the aspect ratio, external
radius and internal radius may also be computed. Note that ω = 1/

√
π when φ = 0, while

ω = 0 when φ = 1. Thus, 0 < ω � 1/
√

π and once ω = 1/
√

π flow ceases.
At x = 1/2 we have ω(1/2) = ωF, which is given by

2VωI

(
ωF

ωI
− 1

)
=

∫ 1/2

−1/2

1
μ(ξ)

dξ = 1
M

, (2.21)

where M is the harmonic mean of the viscosity over the heated region −1/2 � x � 1/2.
We now define our viscosity scale μ̄ as the dimensional harmonic mean of the viscosity
over the heated region, in which case M = 1. Then, rearranging (2.21) gives

ωF = ωI

(
1 + 1

2ωIV

)
. (2.22)

We note that μ is sufficiently large for |x | � 1/2 that the capillary is solid, so that the
harmonic mean of the viscosity would barely change if we evaluated the integral over
−∞ < x < ∞.

3. Two-dimensional asymptotic fibre-drawing model

We now come to the 2-D asymptotic fibre-drawing model for capillary collapse, which is
given in the reference frame of the moving heater. In this reference frame we may consider
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A two-dimensional asymptotic model for capillary collapse 909 A5-7

the problem to be steady. The model derivation is described in detail by Stokes et al. (2014,
2019) for a capillary of arbitrary geometry in the context of fibre drawing, and specifically
applied to an axisymmetric tube.

The slenderness of the capillary is characterised by

ε =
√
SI/L, (3.1)

where, again, SI is the cross-sectional area of the original capillary and L is the length
of the heated region, and we assume that ε � 1. We use cylindrical polar coordinates
(x, r, θ) where the x-axis is directed along the axis of the capillary in the direction
of increasing capillary collapse and r and θ are the radial and azimuthal coordinates,
respectively. Again, the heated region extends from x = −L/2 to x = L/2 with x = 0 at
the centre of the heater; beyond the heated region the viscosity is sufficiently large that the
capillary is solid. The axisymmetry of the problem means that all parameters and variables
are independent of θ . We denote the cross-sectional area and external radius of the
capillary at position x by S(x) and R(x), respectively, while the fluid velocity components
in the axial and radial directions are u(x, r) and v(x, r), respectively, and p(x, r) is the
pressure. Then S(−L/2) = SI , R(−L/2) = RI , and S(L/2) = SF, R(L/2) = RF. As for
the 1-D model, the surface tension γ of the glass is assumed to be constant. As shown in
Stokes et al. (2019), using coupled energy and flow models, the viscosity μ is, to leading
order, uniform in any cross-section and, so, depends on x only.

At this point we allow that the ends of the capillary may not be fixed so that, in
the moving reference frame, the capillary may enter the heated region at a speed V̂ =
aV , close to, but not necessarily equal to, the speed of the heater in the laboratory
reference frame (i.e. a ≈ 1). The scalings for the problem are, using asterisks to denote
dimensionless variables,

(x, r) = L(x∗, εr∗), t = L
V̂

t∗, (u, v) = V̂(u∗, εv∗), (3.2a–c)

p = μ̄V̂
L p∗, μ = μ̄μ∗, S = SIS∗, R =

√
SIR∗. (3.3a–d)

As for the 1-D model, μ̄ is the harmonic mean of the viscosity in the heated region
−L/2 � x � L/2. The capillary and Reynolds numbers are defined as

V̂ = μ̄
√SIV̂
γL ≡ aV, Re = ρV̂L

μ̄
, (3.4a,b)

respectively, where ρ is the (constant) fluid density, and for parameter values typical for
capillary collapse (see table 1) Re � 1, so that inertia may be neglected. The capillary
number has been here denoted V̂ because of its relation to V defined in (2.19); it is the
ratio of the radial velocity scale εV̂ to the velocity scale U of the 1-D model and, hence, is
expected to be O(1). From here on we use dimensionless variables and drop the asterisks.

It is convenient to write the problem in terms of a new dependent variable χ = √
S and

a new independent variable τ related to x by (Stokes et al. 2014)

dx

dτ
= V̂μ

χ
, x(0) = −1

2
. (3.5a,b)
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909 A5-8 Y. M. Stokes

The cross-sectional area and axial velocity are given by

∂χ

∂τ
− Γ̃

12
χ = −TV̂, χ(0) = 1, (3.6a,b)

u(τ ) = 1
χ 2(τ )

, (3.7)

respectively, where

T = σL
6μ̄SIV̂

, (3.8)

is the dimensionless pulling tension and σ is the dimensional pulling tension. Then

TV̂ = σ

6γ
√SI

. (3.9)

In (3.6a,b), χ(τ)Γ̃ (τ ) is the total boundary length of the cross-section at x(τ ), i.e. the
sum of the external perimeter and the perimeter of the internal hole. Then Γ̃ (τ ) is the
total boundary length after scaling of the cross-section such that it has unit area.

With this scaling, the aspect ratio φ(τ) and the boundary length Γ̃ (τ ) are given by the
1-D model of § 2, however, the variable τ replaces the time variable and the viscosity
μ = 1. Making these substitutions in (2.16), we obtain the equation for the evolution of
the cross-sectional geometry as

ω(τ) = ωI + τ

2
, (3.10)

while φ may be computed using (2.15a,b) and the total boundary length is Γ̃ = 2/ω.
Substituting for Γ̃ in (3.6a,b) and integrating gives the exact solution

χ(τ) =
(

ω

ωI

)1/3
{

1 − 3ωITV̂

[(
ω

ωI

)2/3

− 1

]}
, (3.11)

and, from (3.5a,b),

∫ x

−1/2

1
μ(ξ)

dξ = − 1
T

log

{
1 − 3ωITV̂

[(
ω

ωI

)2/3

− 1

]}
. (3.12)

Finally, setting ω = ωF at x = 1/2 we obtain from (3.12), noting that the left-hand side
becomes unity because of our choice of the viscosity scale,

T = − log

{
1 − 3ωITV̂

[(
ωF

ωI

)2/3

− 1

]}
. (3.13)

The wall thickness of the tube is W = χω and again we note that max(ω) = 1/
√

π so that
(3.10) is valid only to τ = 2(1/

√
π − ωI) after which ω = 1/

√
π.

Clearly, in addition to the speed V̂ , the extent of capillary collapse depends on the
pulling tension T in the capillary. This suggests that the method of fixing the ends of
the capillary is important.
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A two-dimensional asymptotic model for capillary collapse 909 A5-9

3.1. Case 1: non-zero pulling tension, T /= 0
Here we assume no pre-tensioning of the capillary before heating and that any tension
in the capillary while heating is due to both ends of the capillary being held fixed in the
laboratory reference frame so they cannot move. In this case V̂ = V , and in the reference
frame moving with the heated region, our problem is exactly that of fibre drawing with
unit draw ratio, i.e. uF = uI = 1. We readily obtain, from (3.11) and (3.13),

χF =
(

ωF

ωI

)1/3

exp(−T), (3.14)

ωF = ωI

{
1

3ωITV
[1 − exp(−T)] + 1

}3/2

, (3.15)

where, by the mass conservation equation (3.7), χF = 1. Thus, for given ωI and V̂ = V ,
we have, after some manipulation,

ωF

ωI
= e3T, 3ωIV = 1

TeT (eT + 1)
. (3.16a,b)

We use a root finding procedure to determine T for given ωI and V , after which the
corresponding ωF is computed. Noting that ωF > ωI (hence φF < φI), then T > 0. Thus, if
the ends of the capillary are held fixed as assumed, there is, necessarily, a (small) positive
tension T . We refer to this case as the ‘2DT+ model’.

3.2. Case 2: zero pulling tension, T = 0
Suppose now that one or both of the ends of the capillary are not fixed but are free to slip
such that the capillary sustains no pulling tension T . Since a positive tension is needed
when the two ends of the capillary are held fixed, we expect in the case of zero tension for
the capillary to leave the heated region at a slower speed than it enters (uF < 1), in which
case this is a fibre-drawing problem with draw ratio less than unity.

On taking the limit as T → 0, (3.11) and (3.12) become

χ(τ) =
(

ω

ωI

)1/3

, (3.17)

∫ x

−1/2

1
μ(ξ)

dξ = 3ωI V̂

[(
ω

ωI

)2/3

− 1

]
, (3.18)

so that

χF =
(

ωF

ωI

)1/3

, (3.19)

ωF = ωI

(
1 + 1

3ωI V̂

)3/2

. (3.20)

Now, for given ωI , V̂ determines ωF. Since ωF > ωI , then χF > 1 and uF = 1/χ 2
F < 1, so

that the capillary exits the heated region at a smaller velocity than it enters as expected.
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909 A5-10 Y. M. Stokes

The fixing of the ends of the capillary determines the relation between V̂ and V . For
ease of comparison of all models at the same heater speed V , we now assume fixing of the
end of the capillary at x → −∞ with the end x → ∞ free to slip, in which case V̂ = V .
We refer to this case as the ‘2DT0 model’. Other possibilities are briefly discussed in
appendix A.

4. Model comparison

In this section we compare the 1-D, 2DT+ and 2DT0 models which give the change in
geometry due to capillary collapse in terms of the initial geometry and the scaled heater
speed V . First, however, we compare the asymptotic multiscale model of Klupsch & Pan
(2017), developed for a capillary held fixed at both ends and which we shall call the ‘AM
model’, with our 2DT+ model for this same case.

Capillary collapse may be measured by such things as the change in wall thickness,
aspect ratio and external radius, but not by the change in cross-sectional area since the
initial and final cross-sectional area are equal for the 1-D and 2DT+ models. From the
perspective of practical measurement, the change in external radius R is a good choice and
Klupsch & Pan (2017) measure capillary collapse by the ratio RF/RI . For the 1-D and 2-D
models of §§ 2 and 3, the (scaled) external radius is given by

R = χ(1 + πω2)

2πω
, (4.1)

so that
RF

RI
= χF

ωI(1 + πω2
F)

ωF(1 + πω2
I )

. (4.2)

4.1. Comparison of the fibre-drawing and asymptotic multiscale models
Klupsch & Pan (2017) tabulate values of 1 − RF/RI for both 1-D and AM models for
capillaries with initial aspect ratios φI = 0.7 and 0.9. For each φI , they use different
choices of parameters u and α, where u is their dimensionless heater speed and α and
is a parameter in their dimensionless viscosity profile η(Z) defined as

η(Z) = exp(−α2Z2), (4.3)

Z being their scaled axial coordinate. In order to compare the 2DT+ model with these
values we need to relate the parameters u and α to our parameter V̂ = V . (Note any scaling
difference for the external radius does not affect the ratio RF/RI .) This is most easily done
using the 1-D model because the model given in § 2 above (taken from Stokes et al. 2014)
differs only in scaling from that given by Klupsch & Pan (2017).

In this paper
√SI is used to scale radial lengths and ωF − ωI is the scaled change in

wall thickness due to collapse, while Klupsch & Pan use R0 max ≡ RI as their radial length
scale and denote the scaled change in wall thickness by ΔW(tot)

0 . Then, from (2.22) above
and (3.39) and (3.46) of Klupsch & Pan (2017) we have

√
SI(ωF − ωI) = RIΔW(tot)

0 ⇒
√SI

2V
= RI

2u

√
π

α
(4.4)

and, on substituting SI = πR2
I (1 − φ2

I ), we find

V = uα

√
1 − φ2

F. (4.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

95
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.954


A two-dimensional asymptotic model for capillary collapse 909 A5-11

Parameters 1 − RF/RI

φI u α V AM 2DT+ 1-D

0.7 50 0.125 4.46339 0.20184 0.20239 0.20191
0.7 200 0.125 17.85357 0.07210 0.07212 0.07210
0.7 50 1.0 35.70714 0.03851 0.03856 0.03856
0.7 200 1.0 142.82857 0.01015 0.01016 0.01016
0.9 50 0.125 2.72431 0.48569 0.48971 0.48621
0.9 200 0.125 10.89725 0.23079 0.23133 0.23090
0.9 50 1.0 21.79449 0.13258 0.13425 0.13417
0.9 200 1.0 87.17798 0.03805 0.03810 0.03809

TABLE 2. Collapse (1 − RF/RI) for the 2DT+ model (parameter V), the AM model
(parameters u, α) of Klupsch & Pan (2017), and the 1-D model, for φI = 0.7, 0.9.

Table 2 compares the collapse as given by the AM, 2DT+ and 1-D models, for φI = 0.7
and 0.9 and the given parameters u, α for the AM model and the equivalent parameter V
for the 2DT+ model. Results for the AM model have been simply copied from Klupsch &
Pan (2017) while the results for the 1-D model were computed using (2.22) and agree with
those shown by Klupsch & Pan to at least four, and usually all five, decimal places. Note
that a smaller value of 1 − RF/RI indicates less collapse. There is excellent agreement
between the three models. The AM model predicts slightly less collapse than the 1-D
model which predicts slightly less collapse than the 2DT+ model.

We note that large V = V√SI ū/(γL) implies εV � U , where ε = √SI/L and U =
γ /μ̄ is the velocity scale of the 1-D model. Thus, for significant capillary collapse, i.e.
RF/RI significantly less than one, we expect εV ∼ U or V = O(1) and it is to be expected
that 1 − RF/RI → 0 as V becomes large, as seen in table 2.

4.2. Comparison of 1-D and 2-D fibre-drawing models
To determine and compare the change in the capillary shape over −1/2 � x � 1/2 for the
models of §§ 2 and 3, we need to specify a viscosity profile and, following Klupsch & Pan
(2017), we assume the scaled viscosity profile to be Gaussian, given by

μ(x) =
√

π erf(β/2)

β
exp(β2x2), (4.6)

where erf(.) denotes the error function, the profile is symmetrical about x = 0 and the
prefactor to the exponential has been chosen to give unit harmonic mean over −1/2 � x �
1/2 as required by our choice of the viscosity scale. The parameter β must be large such
that μ becomes sufficiently large at |x | = 1/2 that the viscosity is, practically speaking,
infinite and deformation ceases, i.e. all collapse occurs in the region |x | � 1/2. Then,∫ x

−1/2

1
μ(ξ)

dξ = 1√
π erf(β/2)

∫ βx

−β/2
e−ξ 2

dξ = 1
2

{
1 + erf(βx)

erf (β/2)

}
. (4.7)

We shall consider 4 � β � 10 in which range erf(β/2) > 0.995 ≈ erf(∞) = 1, so that

1 =
∫ 1/2

−1/2

1
μ(x)

dx ≈
∫ ∞

−∞

1
μ(x)

dx, (4.8)
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V
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0.4

0.5

0.6

ωF

FIGURE 2. Value of ωF versus V for the 1-D (black dash-dot), 2DT+ (red solid) and 2DT0
(blue dashed) models, where φI = 0.9 (ωI = 0.1294). Validity of all models requires ωI < ωF <
1/

√
π (black dotted), hence V > 1.5436.

and essentially all collapse of the tube occurs within the heated region as required. Note
the values of β are larger than the equivalent α values used by Klupsch & Pan, whose
scaling of the axial coordinate with the initial external radius RI (rather than the heated
length L � RI as in this paper) implies a slower change in viscosity with axial coordinate
and, therefore, collapse over a long axial length.

For our model comparison we select a capillary with initial aspect ratio φI = 0.9; recall
that the initial (scaled) cross-sectional area SI = 1. We note that our models are valid
only while 0 < φ < 1, and hence 0 < ω < 1/

√
π, throughout −1/2 � x � 1/2 and we

will consider only parameter values V that satisfy this criterion for all three models. To
determine a suitable range for V , we consider the largest value of ω, namely ωF, and in
figure 2 plot ωF against V . This shows that there is a lower bound on V given by the 2DT0
model when ωF = 1/

√
π. From (3.20) we obtain

V >
1

3ωI

{(
1

ωI
√

π

)2/3

− 1

}−1

, (4.9)

which, for φI = 0.9 (ωI = 0.1294) yields V > 1.5436.
Figure 3 shows the change in the geometry with x as given by the three models. Panels

(a,b) are for the viscosity profile given by (4.6) with β = 4 and the velocities V = 2,
5, while panels (c,d) are similar but for β = 9. The larger value of β corresponds to a
viscosity that is smaller at the centre of the heater (x = 0) and increases more quickly with
distance from the centre, so that, for all three models, the profile changes more locally
around x = 0. Larger velocity V means less heating and less collapse of the capillary.
Note that for any of the 1-D, 2DT+ or 2DT0 models, the cross-sectional geometry at
x = 1/2, i.e. the total collapse of the capillary, depends on V but is independent of β which
governs only the portion of the heated region in which the collapse takes place. Thus, the
total collapse is determined by the harmonic mean of the viscosity, but not otherwise
by the viscosity profile. For given β and V , the geometry for the 2DT+ model differs
only little from that for the 1-D model with this agreement improving with increasing
β and increasing V . However, the geometry for the 2DT0 model is significantly different,
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FIGURE 3. Geometry R and φR over the heated region −1/2 � x � 1/2 of a capillary with
initial area SI = 1 and aspect ratio φI = 0.9 for each of the 1-D (black dash-dot), 2DT+ (red
solid) and 2DT0 (blue dashed) models and with the values of β and V shown: (a) β = 4,
V = 2; (b) β = 4, V = 5; (c) β = 9, V = 2; (d) β = 9, V = 5.

showing the importance of pulling tension T in the capillary. Although not obvious, for the
2DT0 model at the lower velocity V = 2, the external radius decreases over a little more
than half of the domain and then increases with x , while the internal radius decreases
monotonically with x . This behaviour is more readily seen at values V closer to the lower
bound, as seen in figure 4(a) for V = 1.6, β = 9. For all choices of the parameters β, V ,
the cross-sectional area S(x) increases then decreases back to unity for the 2DT+ model
while, for the 2DT0 model, the cross-sectional area increases monotonically with x as also
shown for V = 1.6, β = 9 in figure 4(b); for the 1-D model S(x) = 1 for all x .

Figure 5 shows, for each of the three models, the effect of V on the final cross-sectional
area SF = χ 2

F and aspect ratio φF of the capillary and the collapse as measured by the
change in the external radius 1 − RF/RI . Also shown is the pulling tension T versus V for
the 2DT+ model. The final and initial cross-sectional areas are equal (SF = SI = 1) for
the 1-D and 2DT+ models, while for the 2DT0 model we have SF > SI with SF increasing
as V decreases. We see excellent agreement between the 1-D and 2DT+ models. Figure 6
shows the difference in collapse between these two models, ΔRF/RI where ΔRF is the
difference in RF between the 1-D model and the 2DT+ model; over most of the range of V
the difference reduces with increasing V but for 1.6 � V � 2 the difference increases with
V . In contrast to this agreement between the 1-D and 2DT+ models, the 2DT0 model is
significantly different. The increase in cross-sectional area which occurs when both ends
of the capillary are not fixed has a significant effect on the change in external radius,
i.e. the collapse, in particular. This is generally true for zero pulling tension as shown in
appendix A where results are given for other choices of fixing of the capillary ends. As is
to be expected, capillary collapse is greater at smaller heater speed V for all models.
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FIGURE 4. Geometry (a) R and φR and (b) cross-sectional area S versus axial position x for
the 1-D (black dash-dot), 2DT+ (red solid) and 2DT0 (blue dashed) models with β = 9 and
V = 1.6. For the 1-D model S(x) = 1.
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FIGURE 5. Collapse of a capillary with initial area SI = 1 and aspect ratio φI = 0.9 for each of
the 1-D (black dash-dot), 2DT+ (red solid) and 2DT0 (blue dashed) models. Plotted against
the heater speed 1.6 � V � 10 are the final (a) cross-sectional area SF , (b) aspect ratio φF ,
(c) change in external radius 1 − RF/RI and (d) tension T relevant to the 2DT+ model.

5. Fluid properties and other information

In this section we consider the determination of viscosity and surface tension using
physical measurements of a capillary before and after collapse. Following this we briefly
look at application of the models to modified chemical vapour deposition.
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FIGURE 6. The difference ΔRF/RI in collapse between the 2DT+ model and the 1-D model
versus heater speed V , for φI = 0.9. Here ΔRF is the value RF for the 1-D model minus the value
for the 2DT+ model.

For computation of viscosity and surface tension we focus on the 1-D and 2DT+ models
applicable for a capillary with fixed ends in the laboratory reference frame. Of particular
interest is the 2DT+ model which, unlike the 1-D model, offers the benefit of giving both
surface tension and viscosity simultaneously from a single experiment. In contrast, the
1-D model will give a very similar estimation of either the viscosity or the surface tension
from a single experiment, but not both.

Now, suppose that we know the initial external radius and aspect ratio, RI , φI , of the
capillary and the external radius RF after collapse. Given this information we may readily
calculate the initial cross-sectional area SI = πR2

I (1 − φ2
I ). For a capillary with both ends

fixed, we might assume (perhaps check) that the cross-sectional area after collapse is
unchanged from the initial value, i.e. SF = SI , from which we may compute

φF =
√

1 − SF

πR2
F
. (5.1)

With φF determined, we use (2.15a,b) to compute

ωI =
√

1 − φI

π(1 + φI)
, Φ = ωF

ωI
=

√
(1 − φF)(1 + φI)

(1 + φF)(1 − φI)
. (5.2a,b)

Note that 1 � Φ <
√

(1 + φI)/(1 − φI) and Φ → 1 as φF → φI , while as the channel
closes and φF → 0 we have Φ → √

(1 + φI)/(1 − φI). Recall that W = χω is the
dimensionless wall thickness so that W = √SI W is the dimensional wall thickness and
Φ is the ratio of the wall thicknesses after and before collapse.

Next, for each model of interest, the equation relating ωF to ωI and V is readily
rearranged to yield an equation giving V for values ωI and Φ, after which the definition
V = μ̄

√SIV/(γL) is used to obtain an expression for one of μ̄ and γ . By way of example
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FIGURE 7. The ratio μ̄2DT+/μ̄1D versus Φ (solid) as given by (5.6), where 1 < Φ �√
(1 + φI)/(1 − φI) is the ratio of the wall thickness after and before collapse. The dotted line

shows Φ corresponding to φF = 0 when φI = 0.9.

we consider the 2DT+ model as the most complex case. From (3.16a,b) we have

T = 1
3

log Φ, TV = 1
3ωIΦ1/3(Φ1/3 + 1)

(5.3a,b)

and, noting that
√SIωI = RI(1 − φI) = WI is the initial wall thickness,

μ̄2DT+ = γL
VWI log Φ Φ1/3(Φ1/3 + 1)

. (5.4)

Thus, we may determine the harmonic mean of the viscosity (the subscript indicates the
model used) using known surface tension γ , heater speed V , and with L estimated from
the length of the heater or found by measuring the length over which the radius of the
capillary changes from its initial to final value. Alternatively we may compute γ using
known μ̄.

In place of (5.4), the 1-D model (2.22) yields the simpler expression

μ̄1D = γL
2VWI(Φ − 1)

(5.5)

(again the subscript indicates the model used) and, from (5.4) and (5.5) we find

μ̄2DT+
μ̄1D

= 2(Φ − 1)

log Φ Φ1/3(Φ1/3 + 1)
, (5.6)

where 1 � Φ <
√

(1 + φI)/(1 − φI). Figure 7 shows this ratio plotted against Φ � 1. For
φI = 0.9 (Φ < 4.359) we find μ̄2DT+/μ̄1D < 1.061. Thus the 2DT+ model increases the
viscosity prediction of the 1-D model by no more than 6 %.

Given the agreement between the 1-D and 2DT+ models, it is reasonable to use the
simpler 1-D model where the ends of the capillary are fixed. However, the slightly more
complex 2DT+ model brings a benefit that is not immediately apparent. Using (3.9) we
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A two-dimensional asymptotic model for capillary collapse 909 A5-17

may compute the physical tension σ in the capillary during the collapse given know
surface tension γ . More importantly, if the physical tension σ is measured during capillary
collapse, this may be used to compute the surface tension as

γ = σΦ1/3(Φ1/3 + 1)

2πRI(1 + φI)
, (5.7)

and, substituting for γ in (5.4), also compute the harmonic mean of the viscosity as

μ̄ = σL
2SIV log Φ

. (5.8)

Thus, provided the tension σ is measured, the 2DT+ model enables determination of both
the viscosity μ̄ and the surface tension γ from a single experiment while the 1-D model
requires that one of these parameters be known in order to determine the other. This means
that capillary collapse is an alternative experiment to that proposed by Boyd et al. (2012)
for determining both surface tension and viscosity.

Now it may be shown that

f (Φ) = 1
Φ1/3(Φ1/3 + 1)

<
1
2

for Φ > 1, lim
Φ→1

f (Φ) = 1
2
, (5.9a,b)

so that, from (5.7), we have

0 < σ � πRI(1 + φI)γ < 2πRIγ, (5.10)

since φI < 1. Then, using the physical parameter values for RI and γ given in table 1 we
find that 0 < σ < 5 × 10−3 N, with σ larger for a capillary with larger initial radius RI .
Although small, this tension force makes a significant difference to the collapse of the
capillary compared with zero pulling tension.

The 2DT0 model might also be used to predict fluid properties from measurements of
capillary collapse with the end x → −∞ fixed in the laboratory reference frame and the
other end free to slip. However, this is not done here for two reasons. First, like the 1-D
model it can only give one of surface tension or viscosity from a single experiment and so
is no more useful that the 1-D model. Second, switching the fixed end changes the extent of
collapse for given V and, indeed, if slip is permitted at both ends the collapse will depend
on the amount of slip at each end (see appendix A). However, it is worth noting that our
comparison of the 1-D and 2DT0 models in the previous section, and the results given in
appendix A, indicate that the 1-D model should not be used if there is any (possibility of)
slippage at either or both ends of the capillary.

We note that, aside from geometrical information, our models involve the three physical
parameters μ̄, γ and V and, in the case of the 2DT+ model, σ is a fourth. Of this set of
four parameters, if two of the set {μ̄, γ,V} are known, the other one or two parameters may
be determined from the initial geometry and Φ measured from an appropriate experiment.
For the 2DT+ model, σ might be substituted for γ and any two of the set {μ̄, σ,V} used
to determine γ and the remaining parameter. It is not possible, however, to use σ and γ to
determine both μ̄ and V .

Now, with reference to the modified chemical vapour deposition process, by setting

φF = 0 ⇒ ωF = 1/
√

π ⇒ Φ = 1/(
√

πωI), (5.11)

it is straightforward to use an appropriate model to determine the maximum speed
V to completely close the inner channel of a capillary with initial wall thickness
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FIGURE 8. The maximum speed V versus initial wall thickness ωI for complete closure of the
capillary as given by the 1-D (black dash-dot), 2DT+ (red solid) and 2DT0 (blue dashed) models.
The dotted vertical line marks ωI = 1/

√
π or φI = 0 and ωI → 0 as φI → 1.

ωI ∈ (0, 1/
√

π) and to then use known μ̄ and γ to determine the corresponding maximum
physical heater speed V . Figure 8 shows V versus ωI for each of the 1-D, 2DT+ and 2DT0
models. One may also determine V for any desired φF ∈ (0, φI). For capillaries fixed at
both ends the 1-D model gives an excellent indication of V for capillaries of practical wall
thickness. If the capillary is not fixed at both ends then the appropriate 2-D asymptotic
model should be used. To determine the change in capillary geometry during collapse, as
needed for computing fluxes during the chemical vapour deposition phase, the full physical
viscosity (temperature) profile must be known, along with γ or σ and the initial capillary
geometry.

6. Conclusions

The 2-D asymptotic fibre-drawing model of Stokes et al. (2014, 2019) has been used
to model the collapse of an axisymmetric capillary due to a travelling annular heater
where the ends are fixed in the laboratory reference frame, so that the capillary sustains
a pulling tension, and where one or both ends are free to move such that there is no
pulling tension. In the reference frame of the travelling heater, this model yields analytic
formulae for the change in geometry with axial position for a specified viscosity profile.
It also yields analytic formulae for the total collapse with just a single dimensionless
parameter, the scaled heater speed V = V√SIμ̄/(γL) involving the physical heater speed
V , the harmonic mean of the viscosity μ̄ and the surface tension γ , along with the initial
cross-sectional area of the capillary SI and the collapse distance L.

For the case with both ends of the capillary fixed, the problem is equivalent to fibre
drawing with unit draw ratio. The 2-D fibre-drawing model agrees well with the 1-D
model and with the 2-D asymptotic multiscale model of Klupsch & Pan (2017); it is also
considerably more straightforward than that of Klupsch & Pan. Its power, however, lies in
the fact that it yields information not available from either the 1-D or Klupsch & Pan 2-D
models, namely the pulling tension in the capillary. With measurement of both the total
collapse of the capillary and the pulling tension during capillary collapse, both the surface
tension and (the harmonic mean of) the viscosity might be determined using the 2-D
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fibre-drawing model. This contrasts with the 1-D and 2-D asymptotic multiscale models
which can yield only one of these fluid properties, and with the technique proposed by
Boyd et al. (2012) which requires different experimental procedures for determination of
surface tension and viscosity.

We have also shown that if either or both ends of the capillary are free to move the
collapse of the capillary differs significantly from that predicted by the 1-D model. Thus,
the 1-D model is suitable for capillary collapse applications only when both ends are fixed;
otherwise the appropriate 2-D model should be used.

It is significant that the extent of capillary collapse depends on the harmonic mean
of the viscosity over the collapse length but not on the viscosity profile through this
region. Consequently, with 1-D or 2-D models, the harmonic mean of the viscosity may
be determined without any knowledge of the viscosity (or temperature) profile.

Finally it is noted that the fibre-drawing model with active channel pressurisation of
Chen et al. (2015) provides a 2-D model for capillary collapse when the pressure inside
the capillary is larger or smaller than the external pressure.
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Appendix A. Other solutions for T = 0

The 2DT0 model which assumed fixing of the capillary end x → −∞ with the end
x → ∞ free to slip, so that V̂ = V , is just one of the options for the 2-D model with zero
pulling tension. Here we briefly consider fixing of the end x → ∞ with the end x → −∞
able to slip and fixing of neither end so that both may slip. For the first of these alternatives,
which we call the ‘2DT0b model’ we have

uF = 1
χ 2

F
= V

V̂
⇒ V̂ = χ 2

FV. (A 1)

If both ends of the capillary have freedom to slip then V < V̂ < χ 2
FV . Assuming that the

average of the speeds of the two ends is equal to the heater speed, which we call the
‘2DT0n model’, gives

1
2

(
1 + 1

χ 2
F

)
= V

V̂
⇒ V̂ = 2χ 2

F

χ 2
F + 1

V. (A 2)

The effect of the change in a = V̂/V is to slide the curves of SF, φF and 1 − RF/RI against
V for the 2DT0 model shown in figure 5 to the left so that the curve for the 2DT0b model
is to the left of that for the 2DT0n model which is left of that for the 2DT0 model. This
is shown for the collapse 1 − RF/RI in figure 9. Clearly the 1-D model is not suitable for
describing capillary collapse when there is no pulling tension in the capillary.
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FIGURE 9. Capillary collapse for the 2DT0, 2DT0b and 2DT0n models (blue dashed right, left
and centre, respectively), where SI = 1, φI = 0.9. Also shown are the 1-D (black dash-dot) and
2DT+ (red solid) models.
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