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ABSTRACT. There is increasing awareness of the need to correct for freshwater as well as marine reservoir effects
when undertaking radiocarbon (14C) dating of human remains. Here, we explore the use of stable hydrogen isotopes
(δ2H), alongside the more commonly used stable carbon (δ13C) and nitrogen isotopes (δ15N), for correcting 14C fresh-
water reservoir offsets in 10 paired human-faunal dates from graves at the prehistoric cemetery of Shamanka II, Lake
Baikal, southern Siberia. Excluding one individual showing no offset, the average human-faunal offset was 515± 175
14C yr. Linear regression models demonstrate a strong positive correlation between δ15N and δ2H ratios, supporting
the use of δ2H as a proxy for trophic level. Both isotopes show moderate but significant correlations (r2 ~ 0.45,
p < 0.05) with 14C offsets (while δ13C on its own does not), though δ2H performs marginally better. A regression
model using all three stable isotopes to predict 14C offsets accounts for approximately 65% of the variation in the
latter (r2= 0.651, p= 0.025), with both δ13C and δ2H, but not δ15N, contributing significantly. The results suggest that
δ2H may be a useful proxy for freshwater reservoir corrections, though further work is needed.

KEYWORDS: Early Bronze Age, Early Neolithic, fisher-hunter-gatherers, stable carbon, nitrogen and hydrogen iso-
topes, freshwater reservoir effects.

INTRODUCTION

Stable carbon isotope measurements on human bone collagen are often used to estimate the
amount of dietary protein deriving frommarine foods and so can help correct radiocarbon (14C)
dates subject to marine reservoir effects (Barrett et al. 2000; Yoneda et al. 2002; Dewar and
Pfeiffer 2010; Ascough et al. 2012; Craig et al. 2013). In freshwater aquatic systems, stable
nitrogen isotopes have generally been found to be of greater utility (Cook et al. 2001; Shishlina
et al. 2009; Wood et al. 2013; Bronk Ramsey et al. 2014; Fernandez et al. 2015; Schulting et al.
2014; 2015; Svyatko et al. 2015, 2017a, 2017b), sometimes in combination with stable carbon
isotope ratios, in situations where these differ isotopically from terrestrial ecosystems
(Katzenberg and Weber 1999; Yoshii 1999; Yoshii et al. 1999). The degree to which isotopic
inferences concerning past diets are effective in correcting for marine and freshwater reservoir
offsets in 14C can be assessed through paired dating programs of human and terrestrial mammal
bone—the latter usually not subject to significant reservoir effects—from the same graves. In
many cases, however, the use of carbon and/or nitrogen isotope ratios still leaves much unex-
plained variation in observed offsets in 14C years. Here, we present the results of a pilot study
aimed at exploring the utility of stable hydrogen isotope ratios as an independent proxy for
trophic position, in order to address freshwater reservoir offsets at the Early Neolithic and Early
Bronze Age cemeteries at Shamanka II, Lake Baikal, southern Siberia (Figure 1). Any addi-
tional information that can be gained will contribute to improving the accuracy of radiocarbon
determinations on human remains, which in turn provides the framework for an increasing
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number of bioarchaeological studies in the region (Waters-Rist et al. 2015; Lieverse et al. 2016;
Weber et al. 2016a, 2016b). This is important since not all graves contain alternative materials
suitable or available for dating (i.e., terrestrial mammalian bone/tooth), and so there is still a
strong reliance on directly dating human skeletons. There is the potential for wider application
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Figure 1 Map of the Lake Baikal region showing the location of Shamanka II.
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in many other contexts where investigating trophic levels is of interest, whether or not these
include the need for 14C reservoir corrections.

Stable Hydrogen Isotopes

The use of stable carbon and nitrogen isotopes in archaeology is sufficiently common to require
no detailed introduction, and many overviews are available (e.g., Lee-Thorp 2008). In the
specific context of this paper, they have seen extensive use in the Lake Baikal region, both for
palaeodietary reconstruction and for the investigation of freshwater reservoir effects (FRE)
(Katzenberg and Weber 1999; Weber and Bettinger 2010; Weber et al. 2011, 2016a, 2016b;
Katzenberg et al. 2012; Bronk Ramsey et al. 2014; Schulting et al. 2014; 2015). Important
points to bear in mind are that (1) the subsistence economy of the Early Neolithic to Early
Bronze Age cultures of the region was based entirely on fishing, hunting and gathering, with a
variable but generally strong contribution from the aquatic resources of the lake itself and its
surrounding rivers, and (2) Lake Baikal exhibits an unusually variable stable carbon isotope
ecology, with fish bone collagen values from different zones ranging from –10‰ to –25‰
(Katzenberg and Weber 1999; Yoshii 1999; Yoshii et al. 1999; Weber et al. 2011).

Stable hydrogen isotopes (δ2H, or δD), on the other hand, have seen relatively limited use in
archaeology and so require additional discussion. They have been mainly used in forensic
applications, food sourcing and ecological studies, particularly to trace migration patterns in
animals. They often covary with δ18O ratios and so are used to track mobility and seasonality
(Hobson et al. 2004; Kirsanow et al. 2008; Bowen et al. 2009). But many studies have also
demonstrated that δ2H is subject to a marked trophic level enrichment, such that it combines
climate (drinking water) and dietary signals (Birchall et al. 2005; Reynard and Hedges 2008;
Soto et al. 2011; Peters et al. 2012; Topalov et al. 2013). Perhaps because it combines these two
signals, δ2H has been suggested to be particularly useful in distinguishing terrestrial and aquatic
systems (Finlay et al. 2010).While a positive correlation with δ15N ratios would be expected—as
these are also a useful proxy for trophic level (Hedges andReynard 2007)—there does seem to be
the potential for additional information with δ2H (e.g., Birchall et al. 2005, Figure 1). This may
particularly be the case in dealing with situations where δ15N ratios are affected by factors other
than trophic level enrichment, such as aridity or manuring (Amundson et al. 2003; Bogaard et al.
2007), though we do not expect either to be relevant in the case of Lake Baikal hunter-gatherers.

MATERIALS AND METHODS

Paired dates were obtained on human bone and terrestrial faunal (marmot: Marmota sibirica;
and red deer: Cervus elaphus) dentine collagen from 10 graves at the Early Neolithic (EN) and
Early Bronze Age (EBA) cemeteries of Shamanka II, on the southwest shore of Lake Baikal. Of
these, three had been previously dated and were included in a study of the region’s FRE (Bronk
Ramsey et al. 2014; Schulting et al. 2014). All the selected humans are of post-weaning age, with
the youngest being aged 5–6 yr (see Waters-Rist et al. 2011). Eight of the graves were known to
date to a large Early Neolithic (ca. 7500–6700 cal BP) cemetery based on their mortuary pro-
tocols, while two graves were selected from a smaller Early Bronze Age (ca. 4600–3700 cal BP)
cluster of burials (Weber et al. 2016a, 2016b) in order to look at possible temporal variation in
diets and 14C offsets. A number of samples were dated multiple times. These are combined using
the R_Combine function in OxCal 4.2 (Bronk Ramsey 2013).

Stable Isotope Measurements

Stable carbon and nitrogen isotope ratio measurements were undertaken using the same col-
lagen preparation used for radiocarbon dating (see below). Measurements were made on a
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Sercon continuous flow IRMS, with a precision of ±0.2‰ for both δ13C and δ15N. An alanine
standard was used for drift correction on the IRMS, with additional alanine and glutamic
acid standards (USGS40: δ13C= –26.4‰, δ15N= –4.5‰; USGS41: δ13C= +37.6‰, δ15N=
+47.6‰) used in a three-point calibration of the results (Coplen et al. 2006). The values
reported here are the means of measurements in triplicate.

The same prepared collagen was used for stable hydrogen isotope analysis. Measurement of
δ2H presents additional challenges, since a minor but not insignificant proportion (ca. 20% for
collagen) of the hydrogen in proteinaceous tissues (including collagen and keratin) is prone to
exchange with hydrogen in ambient water vapor found in the laboratory undertaking the
analysis (Cormie et al. 1994; Wassenaar and Hobson 2000, 2003; Bowen et al. 2005; Reynard
and Hedges 2008; Chesson et al. 2009; Meier-Augenstein et al. 2011, 2013). While there is a
protocol in place for the analysis of keratin making use of international standards (Wassenaar
and Hobson 2003; Bowen et al. 2005; Meier-Augenstein et al. 2011, 2013), there are as yet no
such standards for collagen. A further issue has been noted recently affecting both keratin and
collagen, involving hydrogen fractionation during the formation of HCN during measurement
in the presence of nitrogen (Nair et al. 2015; Coplen and Qi 2016; Reynard and Tuross 2016).
Given these problems, we report both the measured and exchange-corrected values of δ2H,
using the latter in the analysis. Since the relationship between them is perfectly linear, the use of
either set of values will give the same results in terms of our discussion.

The primary reference material used was IA-R002 (mineral oil, δ2HVSMOW= –111.2‰),
traceable to NBS-22 (mineral oil, δ2HVSMOW= –118.5‰), an inter-laboratory comparison
standard distributed by the International Atomic Energy Agency (IAEA). In addition, inter-
laboratory comparison standard IAEA-CH-7 (polyethylene foil, δ2HV-SMOW= –100.3‰) and
FIRMS 221-1 (nylon, δ2HVSMOW= –160.9‰) (http://www.lgcstandards.com) were measured
for quality control. Also included in the runs were the keratin standards USGS42 (human
hair, non-exchangeable δ2HVSMOW= –72.9 ± 2.2‰), USGS43 (human hair, non-
exchangeable δ2HVSMOW= –44.4 ± 2.0‰), and Eurofins 11/2/C (casein, non-exchangeable
δ2HVSMOW= –113.4 ± 3.8‰). The δ2HVSMOW ratios for inter-laboratory comparison stan-
dards USGS42 and USGS43 have recently been revised (Coplen and Qi 2016), and we
employ the new values here. Eurofins 11/2/C is an inter-laboratory quality control sample
provided by Eurofins Scientific. In addition, we included cow and bison collagen standards
previously prepared at the Research Laboratory for Archaeology and the History of Art
(RLAHA), Oxford (Reynard 2007), which underwent equilibration in our study with two
waters with known δ2HVSMOW ratios (depleted Water A= –43.5 ± 0.21‰, and enriched
Water B=+110.0 ± 1.42‰, calibrated against in-house standards IA-R053 and IA-R055 at
Iso-Analytical), differing by more than 100‰ as recommended by Meier-Augenstein et al.
(2011). Since the δ2H ratios of the cow and bison (Table 1) do not entirely bracket the range
of human values in our study, and therefore are not entirely appropriate for their calibration,
we are in the process of preparing a new marine seal bone collagen standard regularly used as
an internal standard for stable carbon and nitrogen isotope measurements at Oxford.

USGS42, USGS43 and Eurofins 11/2/C were weighed into open capsules and simultaneously
equilibrated alongside the archaeological samples and collagen standards with ambient water
vapor at Iso-Analytical (Crewe, Cheshire, UK) for 12 days prior to analysis (cf. Wassenaar
and Hobson 2003). These were only sealed and added to the sample carousel once batch
analysis had begun. They should therefore be subject to the same exchange between the dif-
ferent runs, adhering to the “Principle of Identical Treatment” (Werner and Brand 2001).
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Samples were kept in a sealed glass container with dessicants until ready for analysis. Mea-
surements were undertaken at Iso-Analytical by Elemental Analyser–Isotope Ratio Mass
Spectrometry (EA-IRMS). Following equilibration, samples and references were placed in
silver capsules and loaded into a zero-blank auto-sampler, flushed with 99.9992% helium at a
flow rate of approximately 50mL/min before and during the entirety of batch runs. The samples
were then dropped into a furnace at 1080°C and thermally decomposed to H2 and CO over
glassy carbon. Any traces of water produced were removed by magnesium perchlorate, and any
traces of CO2 were removed via a Carbosorb™ trap. H2 was resolved by a packed column gas
chromatograph held at 35°C. The resultant chromatographic peak entered the ion source of the
IRMS where it was ionized and accelerated.

The measured δ2H ratios for USGS42, USGS43 and Eurofins 11/2/C were used to obtain a
3-point linear calibration (y= 0.892x− 36.752, r2= 0.987, n= 36), which was used for the
exchangeable hydrogen correction. We assume that keratin and collagen powders will behave
similarly in terms of exchangeable H, though this may not be valid because of differences in
their amino acid composition (Reynard and Tuross 2016; Soto et al. 2017). We have not applied
a separate calibration using the collagen standards, pending the dual water calibration of the
seal collagen. While the reported values may thus be subject to revision, any changes will apply
equally to all the archaeological samples and so will not affect our discussion here. It is worth
noting that the sub-fossil bison collagen we employed as one of our standards is the same
material used in a recent study by Reynard and Tuross comparing different protocols, which
yielded a nearly identical measured δ2HVSMOW-SLAP ratio of –151.4 ± 1.7‰ (n= 5) compared to
that of –151.9 ± 4.2‰ (n= 12) obtained in our study (Table 1), despite being analyzed in—and
equilibrated to the atmosphere of—a laboratory on the eastern seaboard of the United States
(Reynard and Tuross 2016: tab. 1). While on opposite sides of the Atlantic, the two laboratories
are in zones sharing similar δ2H and δ18O precipitation values (Bowen 2010), and so their
equivalence is not surprising but does provide additional confidence in the results. Measure-
ment precision during the runs for the non-organic standards (mineral oil, polyethelene and
nylon) was 1.9‰ (n= 67), and that for the organic standards (keratin and casein) was 2.9‰
(n= 45) (Table 1).

Radiocarbon Dating

Radiocarbon measurements were undertaken following the standard protocols in place at the
Oxford Radiocarbon Accelerator Unit (ORAU) (Brock et al. 2007, 2010). Briefly, bone

Table 1 δ2H results for standards δ2HVSMOW(non-exchangeable)= δ2HVSMOW(measured) – (–36.752/
0.892).

Standard Material
Accepted
value ±

δ2HVSMOW

(measured) ±
δ2HVSMOW

(non-exchangeable) ± n

IA-R002 Mineral oil –111.2 –110.4 1.3 — — 35
IAEA-CH-7 Polyethelene –100.3 –100.1 1.9 — — 16
FIRMS 221-1 Nylon –160.9 –160.2 3.5 — — 16
USGS42 Human hair –72.9 2.2 –102.5 2.7 –73.6 3.1 15
USGS43 Human hair –44.4 2.0 –76.8 3.2 –44.4 3.6 15
Eurofins 11/2/C Casein –113.4 3.8 –137.4 2.8 –112.8 3.1 15
Bison Collagen –151.9 3.7 –129.1 4.2 12
Cow Collagen –79.6 3.1 –48.1 3.5 12
Seal Collagen –14.8 3.8 24.7 4.3 12
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surfaces are cleaned by shot-blasting after which they are crushed and then demineralized using
an acid-base-acid treatment (0.5M hydrochloric acid – 0.1M sodium hydroxide – 0.5M HCl).
The resulting “collagen” is then gelatinized (after Longin 1971) and filtered with an Ezee filter.
The filtrate then undergoes a 30 kD ultrafiltration step, in which the >30 kD gelatin fraction is
retained, washed with milliQ ultrapure water, and freeze-dried pending conversion to CO2 for
14C AMS measurement (Brock et al. 2010).

RESULTS AND DISCUSSION

Results of the paired dating program are provided in Table 2. All C:N ratios fall between 3.1
and 3.4, indicating well-preserved collagen (DeNiro 1985; Ambrose 1990). The human-faunal
offsets range between 0 (i.e., no offset) and 679 14C yr. The paired dating in Grave 104 showing
no offset is clearly an outlier, the removal of which results in an average offset of 515± 175 14C yr.
The individual in Grave 104may have been an outsider who died and was buried at Shamanka II
not long after arriving there. The fact that their δ13C, δ15N and δ2H values all suggest a
significant contribution of aquatic resources from Lake Baikal itself (or a connecting river) is
puzzling, since a 14C reservoir offset would then be expected. It may be that other as yet
unidentified river systems in the Cis-Baikal region are also 13C-enriched, but lack a significant
reservoir age.

The reported δ13C, δ15N and δ2H values are averages of measurements made in triplicate
(or multiples thereof in the case of δ13C and δ15N where multiple dates were obtained on the
same human skeleton). The average standard deviation of the triplicate calibrated δ2HVSMOW

measurements on human bone is 3.9 ± 3.2‰. In one case, two different samples from the same
individual (Grave 39) were also measured for δ2H, with the resulting six measurements giving
very consistent ratios with a mean of –28.9 ± 2.0‰. In two cases, however, the triplicate mea-
surements are more variable (Grave 75: +1.8 ± 7.9‰; and Grave 104: –41.8 ± 11.3‰). The
considerable degree of variability in δ2H between individuals at Shamanka II is apparent from
the high coefficient of variation (Table 3), and is consistent with previous studies reporting
particularly high variance in δ2H values from carnivores (Topalov et al. 2013). This can also be
seen in the values of –3.5‰ and +31.7‰ for two archaeological Baikal seals (nerpa, Phoca
sibirica) from the site of Sagan Zaba II (Nomokonova et al. 2013), though these are both still
substantially higher than the values of –97.1‰ and –83.3‰ obtained on two unidentified
ungulates from the same site (Table 3). The human δ2H average of –29.7 ± 21.9‰ is, as would
be expected, intermediate between the seals and the ungulates, though closer to the former. As a
point of reference, the waters of Lake Baikal exhibit extremely homogeneous δ18O and δ2H
values horizontally, vertically and seasonally, averaging –15.8 ± 0.3‰ and –123.0 ± 1.2‰
(n= 32), respectively (Seal and Shanks 1998).

Considering the human stable isotope results, there is no significant correlation between either
δ13C and δ15N (r2= 0.138, p= 0.291) or δ13C and δ2H values (r2= 0.306, p= 0.098). There is,
however, a strong correlation between δ15N and δ2H values (r2= 0.885, p= 0.000) (Figure 2),
providing further support for the use of δ2H as a proxy for trophic level. This is not unexpected,
since an estimated 60% of the non-exchangeable hydrogen in bone collagen derives from food,
with the remainder coming from drinking water (Reynard 2007). But, to our knowledge, such a
strong correlation has not previously been observed in humans. The explanation may lie in the
coincidence of hydrogen from both food (i.e., fish) and drinking water from Lake Baikal. This
relationship is carried through in the positive correlations with the observed human-faunal 14C
offsets. While there is no significant correlation in the case of δ13C (r2= 0.000, p= 0.991) (see
also Schulting et al. 2014), both δ15N (r2= 0.428, p= 0.040) and δ2H (r2= 0.482, p= 0.023) are
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Table 2 14C paired dating results on humans and fauna from Shamanka II. M=male; F= female; I= indeterminate. Samples with multiple
dates have been combined in OxCal using the R_combine function; in all cases these passed χ2 tests (Ward and Wilson 1978). Dates from
graves marked * have been previously published (Bronk Ramsey et al. 2014; Schulting et al. 2014).

Grave-Ind Master ID Species
Age
(yr) Sex OxA-

14C
yr ± δ13C δ15N δ2H C:N Offset Species Lab no.

14C
yr ± δ13C δ15N C:N

Grave 22 SHA_2002.022 H. sapiens 19–22 M 24797, 24740 7083 26 –15.9 15.6 4.2 3.2 641 Marmota
sibirica

OxA-31795 6442 33 –18.5 7.2 3.3

Grave 39* SHA_2004.039 H. sapiens 40–44 M 24773, 24798,
26189, 26190

6895 18 –16.4 14.2 –28.9 3.2 533 Marmota
sibirica

OxA-26299,
31922

6362 27 –19.5 5.5 3.3

Grave 47 SHA_2004.047 H. sapiens 20–25 F 24777, 24788,
26268

7027 19 –16.2 15.8 –5.4 3.2 468 Marmota
sibirica

OxA-31761 6559 34 –19.6 3.9 3.4

Grave 56-2* SHA_2004.056.02 H. sapiens 8–10 I 27052, 26446 6986 27 –15.7 15.5 11.4 3.2 679 Marmota
sibirica

OxA-26300,
31763

6307 25 –19.7 8.2 3.3

Grave 73 SHA_2006.073 H. sapiens 16–18 F 21949 7010 45 –16.5 14.1 –28.4 3.3 617 Marmota
sibirica

OxA-31765 6393 35 –20.0 5.9 3.3

Grave 75 SHA_2006.075 H. sapiens 25–29 M 26455 7093 37 –16.2 16.0 1.8 3.2 644 Marmota
sibirica

OxA-31766 6449 34 –20.4 7.9 3.3

Grave 77 SHA_2006.077 H. sapiens 30–39 F 21549 7025 40 –17.6 14.1 –34.5 3.2 588 Marmota
sibirica

OxA-31797 6437 37 –20.8 4.6 3.4

Grave 104* SHA_2008.104 H. sapiens 20–35 F 21497, 27552,
28697

6334 20 –16.4 13.6 –41.8 3.2 0 Marmota
sibirica

OxA-26302,
27553, 31843

6334 22 –19.7 5.5 3.2

Grave 103-2 SHA_2008.103.02 H. sapiens 5–6 I 21496 3746 28 –16.6 12.4 –50.1 3.1 294 Cervus
elaphus

OxA-31846 3452 28 –19.9 4.9 3.3

Grave 111 SHA_2008.111 H. sapiens 18–20 M 22030 3700 33 –16.0 13.4 –37.6 3.2 171 Cervus
elaphus

OxA-31847 3529 28 –19.9 5.3 3.3
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significant predictors of the 14C offsets, accounting for approximately 45% of the observed
variability (Figures 3 and 4).

The results are in fact strikingly similar, as might be expected given the strong correlation
between the two stable isotopes, although the relationship with δ2H is actually slightly stronger
(although a regression model incorporating both δ2H and δ15N fails to attain statistical sig-
nificance (adjusted r2= 0.334; p= 0.100)). This is confirmed in a multiple linear regression
model (Equation 1), in which both δ13C (p= 0.034) and δ2H (p= 0.036) ratios contribute sig-
nificantly to the predicted 14C offset (adjusted r2= 0.656, p= 0.024), while, interestingly, δ15N
does not (p= 0.199). Re-running the regression model (Equation 2) excluding δ15N reduces the
contribution of δ13C to the point where it just fails to attain significance (p= 0.066)—though

y = 0.0515x + 15.563
R2 = 0.8852
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Figure 2 Scatterplot with linear regression of δ2H and δ15N ratios on human bone collaen, showing strong positive
correlation (r2= 0.885, p= 0.000). Error bars show average±1SD.

Table 3 Human δ13C, δ15N and δ2H results from Shamanka II. Both measured and “non-
exchangeable” δ2H are reported, with the caveat that the latter have not been corrected with
like-for-like standards (i.e., collagen).

Period Grave δ13C δ15N C:N δ2H measured ± δ2H non-ex ±

EN Grave 22 –15.9 15.6 3.2 –33.0 1.6 4.2 1.8
EN Grave 39 –16.4 14.2 3.2 –62.5 1.7 –28.9 2.0
EN Grave 47 –16.2 15.8 3.2 –41.6 2.7 –5.4 3.0
EN Grave 56-2 –15.7 15.5 3.2 –26.6 1.8 11.4 2.1
EN Grave 73 –16.5 14.1 3.3 –62.1 1.7 –28.4 1.9
EN Grave 75 –16.2 16.0 3.2 –35.1 7.1 1.8 7.9
EN Grave 77 –17.6 14.1 3.2 –67.5 1.4 –34.5 1.6
EN Grave 104 –16.4 13.6 3.2 –74.1 10.1 –41.8 11.3
EBA Grave 103-2 –16.6 12.4 3.2 –81.5 3.3 –50.1 3.7
EBA Grave 111 –16.0 13.4 3.2 –70.3 3.2 –37.6 3.5

Seal (E2008.143) –20.9 15.6 3.4 –39.9 7.6 –3.5 8.5
Seal (E2008.155) –21.7 14.2 3.4 –8.5 2.8 31.7 3.1
Ungulate (E2008.146) –18.8 3.3 3.4 –123.4 4.3 –97.1 4.8
Ungulate (E2008.147) –18.9 5.0 3.4 –111.1 2.7 –83.3 3.0
Human X –16.3 14.5 3.2 –55.4 3.5 –20.9 3.9
SD 0.5 1.2 0.0 19.5 2.9 21.9 3.2
CV 3.2 8.3 35.2 82.8 104.5
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nevertheless providing a significant improvement over the single isotope models (adjusted
r2= 0.603, p= 0.016)—while retaining the significance of δ2H (p= 0.007). For both models all
standardized residuals are less than two standard deviations.

14C offset= �1903:2662� 340:8886 δ13C
� �� 189:8488 δ15N

� �
+ 21:5779 δ2H

� �

F = 6:72; adjusted r2 = 0:656; p= 0:024; S = 135:92; n= 10 ð1Þ

14C offset= �3338:0028� 246:2623 δ13C
� �

+ 10:5748 δ2H
� �

F = 7:83; adjusted r2 = 0:603; p= 0:016; S = 146:03; n= 10 ð2Þ
That the regression equations obtained here are less precise than those previously produced for
the Cis-Baikal region, including Shamanka II (Bronk Ramsey et al. 2014; Schulting et al. 2014),
is largely the result of the much-reduced range of variability in both the 14C offsets and the
dietary stable isotope data at this site. These previously published equations, therefore, are still
preferred for the correction of 14C dates on human remains in the Southwest Baikal and Angara
micro-regions.

y = 7.3662x + 617.67
R2 = 0.4831
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Figure 4 Scatterplot with linear regression model of human δ2H values and human-faunal offsets in 14C yr, showing
a moderate positive correlation (r2= 0.483, p= 0.023). Error bars show average±1SD for δ2H.
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Figure 3 Scatterplot with linear regression model of human δ15N values and human-faunal offsets in 14C yr,
showing a moderate positive correlation (r2= 0.428, p= 0.040). The outlier Gr 104 is identified.
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While a comparison of the Early Neolithic and Early Bronze Age results is limited by the
inclusion of only two graves from the latter period, it is worth noting that the EBA results fall
below the entire range seen in the Early Neolithic individuals in terms of their δ15N and δ2H
values as well as their 14C offsets (with the exception of the abovementioned Grave 104). They
do not differ, however, in their δ13C values (Table 3).

CONCLUSIONS

The average offset of 515± 175 14C yr is consistent with that of 537±80 yr previously reported
for Shamanka II (Schulting et al. 2014). Linear regression models making use of δ13C, δ15N,
and δ2H both separately and in combination suggest that stable hydrogen isotope ratios are at
least as useful a predictor of the 14C offsets as stable nitrogen isotopes. At the same time, the
greater difficulties involved in the measurement of δ2H compared with that of δ15N, and the
thus far limited additional information obtained, are factors that do need to be taken into
account. Nevertheless, our results provide further support for the utility of δ2H as a proxy for
trophic position, and suggest that this isotope system holds promise for future investigations in
the Baikal region and elsewhere. In terms of correcting dates on human remains, the previously
published equations are still preferred (Bronk Ramsey et al. 2014; Schulting et al. 2014). This
may be modified in future as new results become available.
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