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Quasi-steady linked vortices with chaotic
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This paper describes the motion and the flow geometry of two or more linked ring
vortices in an otherwise quiescent, ideal fluid. The vortices are thin tubes of near-
circular shape which lie on the surface of an immaterial torus of small aspect ratio.
Since the vortices are assumed to be identical and evenly distributed on any meridional
section of the torus, the flow evolution depends only on the number of vortices (n)
and the torus aspect ratio (r1/r0, where r0 is the centreline radius and r1 is the
cross-section radius). Numerical simulations based on the Biot–Savart law showed that
a small number of vortices (n = 2, 3) coiled on a thin torus (r1/r0 6 0.16) progressed
along and rotated around the symmetry axis of the torus in an almost uniform manner
while each vortex approximately preserved its shape. In the comoving frame the
velocity field always possesses two stagnation points. The transverse intersection,
along 2n streamlines, of the stream tube emanating from the front stagnation point
and the stream tube ending at the rear stagnation point creates a three-dimensional
chaotic tangle. It was found that the volume of the chaotic region increases with
increasing torus aspect ratio and decreasing number of vortices.
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1. Introduction
Ring vortices have been the subject of scientific inquiry for over two hundred

years. By the middle of the nineteenth century they had aroused enough interest that
Helmholtz (1858) and Rogers (1858) published, with only a few months between
them, an analytical study of the motion of kreisförmige Wirbelfäden (circular vortex-
filaments) and an experimental study of the formation of rotating rings, respectively.
A few years later Kelvin (1867) further stimulated the interest in ring vortices with his
hypothesis that matter consists of vortex atoms, a misguided conjecture that turned out
to be very fruitful in hydrodynamical results. One of the first things Kelvin wondered
about was the motion of linked ring vortices. Indeed, on 22 January 1867 he wrote to
Helmholtz (Thompson 1910): ‘I am, as yet, a good deal puzzled as to what two vortex-
rings through one another would do (how each would move, and how its shape would
be influenced by the other)’. Kelvin (1875) later deduced, on the basis of conservation
of linear and angular vortex impulses, that two linked ring vortices of near-circular
shape could be steady solutions of the equations of motion. That is to say, they would
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rotate uniformly around a fixed line while progressing, also uniformly, along this line.
Kelvin did not give the exact shape of the vortices but hypothesized that they should
lie on the surface of a torus. In fact, this was only one case of his more general
conjecture on the steadiness of individual as well as multiple toroidal filamentary
vortices, i.e. thin tubular vortices uniformly coiled on an immaterial torus so that each
vortex Vp,q winds p times around the symmetry axis of the torus and q times around its
centreline before closing on itself. Building on Kelvin’s hypothesis, Thomson (1883)
analysed the motion of two or more toroidal filamentary vortices. He obtained an
approximate analytical expression for the shape of two steady, linked vortices of equal
circulation and showed that two linked vortices of unequal circulations could be steady
if coiled on two nested tori, whose cross-section radii are specific functions of their
circulations. Finally, by considering the limit of infinitely thin vortices lying on the
surface of a torus of infinite centreline radius, Thomson (1883) obtained his celebrated
result on the stability of a regular polygon of n equal point-vortices.

Almost a century later, Kida (1981) found analytical solutions for individual vortices
in the framework of the localized induction approximation (LIA). In this case, the
supporting torus generally has an oval cross-section and steady vortices only exist
when q > p. Ricca, Samuels & Barenghi (1999) studied the evolution of these vortices
under both the Biot–Savart law and the LIA: the numerical simulations based on the
Biot–Savart law confirmed the hypotheses of Kelvin (1875), whereas those based on
LIA were consistent with the analytical results of Kida (1981). In a sequel study
Maggioni et al. (2010) analysed the energy and helicity of the vortices and found
that writhe contributes more than twist to the overall helicity. Concurrently, Velasco
Fuentes (2010) studied the motion and the velocity field of an individual toroidal
vortex Vp,q as a function of its topology. His analysis, based on the Biot–Savart law
and encompassing the parameter region 1 6 p 6 5 and 1 6 q 6 5, showed the dominant
role of p in determining the speed of the vortex and the geometry of the flow.

In this paper we address the theoretical inferences of Kelvin (1875) and the
analytical results of Thomson (1883) by numerically computing the time evolution
of linked ring vortices under the Biot–Savart law. Our purpose is twofold: to examine
the vortices’ uniformity of motion and permanence of form and, once these are
reasonably ascertained, to assess the vortices’ capacity to carry fluid. In § 2 we discuss
the conservation laws discovered by Kelvin, which were the basis for his deductions.
The numerical results of § 3 confirm that thin tubular vortices coiled on a torus and
linked according to Kelvin’s and Thomson’s prescriptions are quasi-steady. In § 4 we
analyse the velocity field and the transport properties of linked ring vortices. Section 5
contains the conclusions of this work.

2. Integrals of motion
We will assume that the vortices evolve in an inviscid, incompressible, homogeneous

fluid which is unbounded and acted on by conservative forces only. Under these
circumstances, the kinetic energy, E, and the linear and angular vortex impulses, I and
A respectively, are invariants of the motion. When all vorticity is concentrated on line
vortices, these conserved quantities are defined as follows:

E = 1
2

∑
i

Γi

∮
u ·Ri × ds, (2.1)
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I = 1
2

∑
i

Γi

∮
Ri × ds=

∑
i

Γi

∫
dS, (2.2)

A=−1
2

∑
i

Γi

∮
R2

i ds=
∑

i

Γi

∫
r× dS. (2.3)

Here we have used standard notation: the ith vortex, which has circulation Γi and
moves with velocity u, lies on the three-dimensional curve Ri(s); ds is a line element
along this curve; and dS is the surface element at the point r of an arbitrary surface
spanning the closed curve Ri(s). Barenghi, Ricca & Samuels (2001) obtained (2.1)
using an expression for the kinetic energy due to Lamb (1879). Kelvin (1875)
discovered the conservation of the quantities given by (2.2)–(2.3), but antecedents
can be traced back to Maxwell, who stated that ‘two ring vortices of any form affect
each others area so that the sum of the projection of the two areas on any plane
remains constant’ (Maxwell & Harman 1995), and to Helmholtz (1858), who showed
the conservation of the weighted projected area when the vorticity field is purely
azimuthal.

If one or more vortices are coiled on a torus according to Kelvin’s (1875)
prescription, both I and A are parallel to the axis of the torus. Kelvin thus concluded
that toroidal vortices progress along and rotate around the axis of their supporting
torus.

3. Vortex evolution
3.1. Initial conditions and parameter space

In the initial condition n toroidal ring vortices lie on the surface of an immaterial
torus of centreline radius r0 and cross-section radius r1. Each vortex is coiled once
around the symmetry axis of the torus and once around its centreline, and the set
intersects any meridional plane on the vertices of a regular polygon inscribed on the
corresponding torus cross-section. All vortices have the same circulation, Γ , and, in a
meridional plane, fluid particles rotate in the same sense in the vicinity of each vortex.

Thus the vortices are given, in Cartesian coordinates, as follows:

xi = (r0 + r1 cosφi) cos θ, (3.1)
yi = (r0 + r1 cosφi) sin θ, (3.2)

zi = r1 sinφi, (3.3)

where i= 1, . . . , n denotes the ith vortex, θ ∈ [0, 2π] is the angle around the symmetry
axis of the torus, and φi = θ − 2(n − i)π/n is the angle around its centreline (see
figure 1).

We exclude from our investigation vortices with more complex topology, i.e. Vp,q

with p> 1 or q> 1, because a previous study showed that they become more unstable
as their complexity increases (Romero Arteaga 2011). For the same reasons we will
limit ourselves to the study of small sets of vortices (n = 2, 3, 4) coiled on thin
tori (r1/r0 < 0.16). We must further set a lower bound for r1/r0 because of the
desingularization of the Biot–Savart law, which implies that the vortices have an
undeformable cross-section of radius a. Consistency then requires that the vortices are
never too close to each other, i.e. their centrelines must be separated by distances
about or larger than 3a. We chose to use a value which amply satisfies this condition
for n= 2 and narrowly does it for n= 4. Therefore in this study the aspect ratio of the
torus will be in the range 0.1< r1/r0 < 0.16 (except for one case in § 4).
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r0

r1

FIGURE 1. Two linked ring vortices represented by light and dark grey tubes. Each vortex
is coiled once around the symmetry axis of the torus and once around its centreline. The
centreline and cross-section radii of the torus are r0 and r1, respectively.

3.2. Numerical method

We compute the vortex motion with the Rosenhead–Moore approximation to the
Biot–Savart law (see Saffman 1995):

dx
dt
=− Γ

4π

∑
i

∮ [x− Ri(s)] × ds

(|x− Ri(s) |2+µ2a2)
3/2 , (3.4)

The use of this approximation implies that the vortices are no longer infinitely thin:
they now have an undeformable, circular cross-section of radius a. The value of the
radius is chosen to be a= 0.05. That of the constant µ depends on the vortex internal
structure; the particular value used here, e−3/4, corresponds to uniform vorticity on the
vortex cross-section (Saffman 1995). The effect of other choices of a and µ on the
vortex motion and flow geometry will be briefly discussed in the final section.

The evolution (3.4) was numerically solved using a fourth-order Runge–Kutta
scheme with fixed time step. In order to evaluate the integral on the right-hand
side, we represented each vortex with a set of material markers. We chose the number
of markers as m≈ 2L/a, where L is the vortex length, and the time step as dt ≈ a2/Γ ,
because preliminary tests showed that these values resulted in accurate simulations of
the motion of a circular ring, i.e. the shape was preserved and the speed deviated
less than 0.5 % from the analytical value. Higher spatial and/or temporal resolutions
substantially increased the computational costs without providing major improvements
to the accuracy. Since the vortices evolved without significant changes in length or
shape it was not necessary to update the spatial discretization (e.g. by removing
markers which get too close to each other or introducing new ones where the original
ones get excessively separated) as is usually done in highly time-dependent flows (see
e.g. Baggaley & Barenghi 2011). As a further control, in all simulations we monitored
the evolution of the integrals of motion (2.1)–(2.3): the energy varied by less than
0.1 % of its initial value; the linear and angular impulses varied by less than 0.001 and
0.1 % of their initial magnitudes, respectively, while their directions, which initially
coincided with the symmetry axis of the torus, deviated from this direction by angles
of ∼0.0001 s.
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(a)

(b)

(c)

(d)

FIGURE 2. Evolution of two linked ring vortices with aspect ratio r1/r0 = 0.1. The axis of the
system is represented by a cross in the frontal view (left column) and by a straight line in the
lateral view (right column). The stages depicted are (a) t = 0, (b) t = 0.105T , (c) t = 0.210T ,
(d) t = 0.315T , where T is the time required by a circular ring vortex of centreline radius r0
and cross-section radius a to advance a distance equal to r0.

3.3. Progression and rotations of the vortices
Figure 2 shows an example of the evolution of a pair of linked ring vortices of equal
circulation. The vortices (represented by thin, coloured tubes) were initially coiled on
a torus of small aspect ratio (r1/r0 = 0.1). The lateral view shows the progression of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

39
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.394


576 O. Velasco Fuentes and A. Romero Arteaga

–10–4

0

10–4

0 1 2 3 4 5 6 7 8

FIGURE 3. (a) Progressive motion of a pair of linked vortices (the same of figure 2 but for
a 16-times longer period). (b) Time evolution of the kinetic energy E (continuous line), linear
impulse I (dashed line), and angular impulse A (dot-dashed line). The relative change of
these quantities (see text) is shown as a function of the adimensional distance travelled by the
vortices, Z = Ut/r0 (where U is the speed of the vortices, t is the time and r0 is the centreline
radius of the torus).

the vortices along the symmetry axis of the torus whereas the front view shows the
rotation of the vortices around the same axis. This figure shows exactly one vortex
rotation, and since this is relatively fast, the vortices are seen to advance only a short
distance during this time.

However, they continue rotating and progressing in the same way for much longer
times. Figure 3, for example, shows the vortices advancing a distance equal to eight
times their diameter while performing almost sixteen rotations around their symmetry
axis. The bottom row of the same figure shows the corresponding time evolution of
quantities that, theoretically, should be conserved but which are not exactly so in the
numerical simulations. Instead of the instantaneous values of the energy and the linear
and angular impulses (2.1)–(2.3), we plotted their relative change; thus figure 3 shows,
respectively, E(t)/E(0)− 1, |I(t)|/|I(0)| − 1 and |A(t)|/|A(0)| − 1. In the period shown,
the energy is preserved within 0.01 %, the linear impulse within 0.001 %, and the
angular impulse within 0.02 %.

The progression of the vortices corresponds, because of Helmholtz’s (1858) vortex
laws, with the advance of material elements. The vortex rotation around the symmetry
axis does not match a similar motion of material elements: it is actually an azimuthal
wave. To verify this, note that the hue of the colour in figure 2 marks fluid elements
along each vortex and that, in the front view, the darker hues remain on the right-hand
side and the lighter ones on the left-hand side of the vortices. The cause of the
azimuthal wave is a different motion of the material elements, namely their rotation
around the torus centreline. This can be qualitatively verified by close inspection of the
vortices’ lateral view in figure 2.

Hence the motion of the fluid elements that make up the vortices has two main
components: (a) progression along the symmetry axis of the torus, and (b) rotation
around its centreline. We found that these components are approximately uniform so
we characterized them by the average speeds U and Ωc, respectively.
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FIGURE 4. Linear speed (U) and phase angular speed (Ω) of the vortex system as functions
of the torus aspect ratio (r1/r0), for sets of n = 2 vortices (thickest line and largest markers),
n = 3 and n = 4 (thinnest line and smallest markers). The continuous lines represent the
analytical functions discussed in the text, the markers represent the results of the numerical
simulations. The linear speeds are scaled by the speed of a circular ring vortex of circulation
2Γ , centreline radius r0 and cross-section radius 2a; the angular speeds are scaled by the
rotation speed of a pair of point vortices of circulation Γ separated by a distance 4a.

The linear speed U grows with the number of vortices n and decreases with
the aspect ratio r1/r0. A simple argument accounts for this: since r1/r0 � 1 the
progression speed behaves as if, instead of n toroidal rings with circulation Γ , there
was a single circular ring with cross-section radius r1 and circulation nΓ . The speed of
this virtual vortex is U0 = (nΓ/4πr0)[log(8r0/r1)− 1/4]. Figure 4 shows that this is in
good agreement with the speeds measured for sets of linked ring vortices, particularly
when n= 2.

The angular speed Ωc increases with n and decreases with r1/r0. This can be
explained following Thomson (1883): since the vortices are thin and r1/r0 � 1 they
move on the meridional plane as if they were a set of point vortices. Indeed, in
the parameter region studied here, Ωc ≈ 0.94Ω0, where Ω0 is the angular speed of a
set of n point vortices of circulation Γ placed on the vertices of a regular polygon
inscribed on a circle of radius r1: Ω0 = (n − 1)Γ/4πr1

2. We argued above that the
material rotation around the centreline of the torus causes the azimuthal wave around
its symmetry axis. The close agreement, shown in figure 4, between Ω0 and the
angular speed of the azimuthal wave, Ω , quantitatively demonstrates the connection
between these two rotations.

3.4. Evolution of the vortex shape
We applied several diagnostics to measure the deformation of the vortices throughout
their evolution. The simplest one was the time evolution of the vortex length, which
was observed to vary within 0.3 % of its initial value in the region of the parameter
space studied here (n = 2, 3 and 0.1 6 r1/r0 6 0.16). The second diagnostic consisted
in finding the torus that best fitted the vortices at every stage of the evolution. The
conservation laws (2.2)–(2.3) guarantee that the fitting torus has the same symmetry
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Z
0 2 4 6 8

–0.01

0

0.01

Δr1

FIGURE 5. Evolution of the vortex shape as illustrated by a time series of the histogram of
distances from the vortex markers to the surface of the torus (see text). The signed distance,
1r1, at which a certain percentage of the markers is located (white, 0 %; black, 100 %) is
shown as a function of the adimensional distance travelled by the vortices, Z = Ut/r0 (where
U is the speed of the vortices, t is the time and r0 is the centreline radius of the torus). The
results correspond to the simulation shown in figure 3.

axis as the initial one, therefore the former is uniquely determined by the radii r0(t)
and r1(t). We found that r0(t) remained within 1 % of its initial value, whereas r1(t)
remained within 5 % of its initial value. The final diagnostic was to measure the signed
distance, 1r1, from the surface of the torus to every material marker representing
the vortices. The time series of histograms of 1r1 showed that the markers remained
within a distance 0.01r0 of the torus (as in the case n = 2, r1/r0 = 0.1, shown in
figure 5).

4. Flow geometry
Toroidal ring vortices are almost stationary and of fixed shape when observed in the

comoving frame, i.e. in a coordinate system that translates with speed U and rotates
with angular speed Ω . Hence we will use this comoving frame to analyse the flow
geometry.

In § 3.3 we showed that the progression speed of a set of n linked vortices with
circulation Γ and aspect ratio r1/r0 is well approximated by that of a circular ring
vortex with circulation nΓ , centreline radius r0 and cross-section radius r1. This
implies that, away from the immediate vicinity of the vortices, the velocity field
produced by the set of linked vortices may be considered as a small perturbation of
the velocity field of a circular ring vortex.

Hence we start by describing the flow geometry of a circular ring vortex in the
comoving system (i.e. progressing with speed U). The flow may qualitatively change
depending on the numerical value of r1/r0, but all values used here fall within the
regime of fat ring vortices (r1/r0 > 1/86: see Saffman 1995 for a detailed analysis).
In this regime the velocity field has two stagnation points, both lying on the ring’s
symmetry axis. The forward one, P, has a linear attractor and a planar repellor; the
backward one, Q, has a linear repellor and a planar attractor. The two stagnation points
are connected by an infinite number of streamlines starting at P and ending at Q.
These lines form a surface with the shape of an oblate spheroid. This stream surface is
called a ‘separatrix’, because the streamlines located inside it are qualitatively different
from those located outside it: the former are closed whereas the latter are open and of
infinite length. From a more physical point of view, the separatrix is the surface that
divides the ambient fluid from the fluid permanently carried by the vortex.

The addition of a solid body rotation, Ω , around the symmetry axis affects neither
the existence nor the position of the stagnation points. The rotation transforms the
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plane streamlines into helical curves but it leaves the shapes of all stream surfaces
unaltered. Therefore, the separatrix of a circular ring vortex in a system progressing
with speed U and rotating with speed Ω is the same oblate spheroid described above.

Let us now see what happens when we substitute back the linked vortices in place
of the virtual ring vortex. The stagnation points survive, although somewhat displaced.
The separatrix, in contrast, disappears: instead of a single surface starting at P and
ending at Q, there are now two surfaces. The first one, called the unstable manifold,
starts at P and ends infinitely far downstream; the second one, called the stable
manifold, starts infinitely far upstream and ends at Q. These surfaces intersect along a
finite number of streamlines which start at P and end at Q.

We obtained the unstable manifold by computing a set of streamlines starting on
the vicinity of the front stagnation point. The starting points lay on a circle of small
radius (0.01r0), coaxial with the torus and centred at the stagnation point. The stable
manifold could have been computed in a similar way, but this was unnecessary. Note
that a time reversal in the equations of motion is equivalent to a change of sign
of all vortex circulations (i.e. Γ →−Γ ) and this is equivalent to the transformation
(x, y, z)→ (x,−y,−z), because of the initial conditions described in § 3.1. Therefore,
to obtain the stable manifold, we rotated the unstable one by an angle π around the x
axis.

Figure 6 shows meridional cross-sections of the stable and unstable manifolds of
two linked vortices; each frame corresponds to a supporting torus of a particular
aspect ratio (r1/r0 = 0.07, 0.1). In both cases the thick curve, which represents the
unstable manifold of P, smoothly moves downstream but, as it approaches Q, it starts
to oscillate about the thin curve, which represents the stable manifold of Q. Similarly,
the stable manifold of Q smoothly moves upstream but as it approaches P it starts
to oscillate about the unstable manifold of P. Note that when the supporting torus
is thinner (figure 6a, r1/r0 = 0.07), the oscillations of the manifolds are of small
amplitude and they start close to the opposite stagnation point. In contrast, when the
supporting torus is thicker (figure 6b, r1/r0 = 0.10), the oscillations of the manifolds
are of larger amplitude and they start closer to their own stagnation point.

The presence of this geometric structure, known as heteroclinic tangle, implies that
streamlines are chaotic in this region (see e.g. Wiggins 1992). It also provides a
template for the wandering of streamlines around different flow regions through the
following mechanism (called ‘lobe dynamics’: see Rom-Kedar, Leonard & Wiggins
1990 for details). Consider two adjacent intersections, on some meridional plane,
between the unstable manifold of P and the stable manifold of Q; the two line
segments bounded by these points form a closed contour which defines an area, say A1,
usually called a lobe (see figure 6b). The streamlines passing through A1 successively
intersect the same meridional plane within the lobes A2, A3, . . . , thus reaching at some
point the interior of the so-called vortex atmosphere. This is, however, only a transient
situation because the same mechanism eventually brings them out to the downstream
side of the vortex.

Figure 6(b) shows that there are two independent sequences of lobes, the grey ones
and the white ones, which implies that the unstable manifold of P intersects the stable
manifold of Q along four streamlines. In fact we found that manifolds always intersect
along 2n streamlines, where n is the number of vortices. Note also that here, as in all
cases we have analysed, the areas of the lobes are larger when they are closer to the
symmetry axis of the torus. This occurs because the fluid is incompressible and the
azimuthal velocity grows with the distance to the torus axis.
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P

Q

P

Q
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A2
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A5
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(a) (b)

FIGURE 6. Meridional cross-section of the three-dimensional chaotic tangle for n linked
ring vortices with aspect ratio r1/r0: (a) n = 2 and r1/r0 = 0.07, (b) n = 2 and r1/r0 = 0.10.
The thick and thin lines represent, respectively, the unstable manifold of the front stagnation
point (P), and the stable manifold of the rear stagnation point (Q); the grey circles represent
the vortices and the shaded areas, labelled with Ai, represent successive intersections of a
particular streamtube with the meridional plane (see text).

The geometry of the flow around the vortices themselves is best exhibited with the
aid of Poincaré sections. We constructed these by numerically computing a set of
streamlines that started on a radial line going from the symmetry axis of the torus
to the vicinity of the vortices. Then we plotted every intersection of the streamlines
with the meridional plane that contains the starting points. Each streamline was colour
tagged depending on the position of its starting point: red for those starting closer to
the symmetry axis and blue for those starting closer to the vortices (figure 7). We
found that the Poincaré section has at least 2n large islands of stability: n correspond
to the tubes of fluid permanently trapped by an individual vortex, and n correspond to
tubes of irrotational fluid which run parallel to the vortices and have approximately the
same shape. When n > 2 there is an additional island of stability which corresponds
to a tube of irrotational fluid that runs between the n vortices and surrounds the torus
centreline.

If the number of vortices is large or the aspect ratio of the torus is small,
these islands of stability are embedded in a chaotic sea bounded by a nested set
of Kolmogorov–Arnold–Moser (KAM) tori, as shown by the bands of differently
coloured dots in figure 7(a,c). Note that the largest KAM torus almost fills the
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(a) (b)

(c) (d)

FIGURE 7. Poincaré sections of streamlines in the velocity field of n linked ring vortices
with aspect ratio r1/r0: (a) n = 2 and r1/r0 = 0.07, (b) n = 2 and r1/r0 = 0.10, (c) n = 3 and
r1/r0 = 0.10, (d) n= 3 and r1/r0 = 0.15. The intersections of the vortices with the meridional
plane θ = 0 are represented by white circles, those of the streamlines by dots coloured
according to the position of the streamline’s starting point (red, closer to the symmetry axis of
the torus; blue, closer to the vortices).
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‘unperturbed’ oblate spheroid. If, however, the number of vortices is small or the
aspect ratio of the torus is large, these islands of stability are embedded in an
unbounded chaotic sea, as shown by the well-mixed coloured dots in figure 7(b,d).

5. Discussion and conclusions
Our numerical results confirm Kelvin’s (1875) deductions about linked toroidal

vortices: they progress along and rotate around the torus symmetry axis with
almost uniform speeds while undergoing negligible deformations. The vortices in the
approximate solution of Thomson (1883) – a higher-order perturbation, in the small
parameter r1/r0, of the curves given by (3.1)–(3.3) – behave in the same way. Note
that if one uses µ = 1 in (3.4) (Thomson’s incorrect value for uniform vortices: see
Saffman 1995), the vortex velocity obtained with the numerical model agrees with the
analytical result of Thomson (1883), namely U = (Γ/4πr0)[log(32r2

0/r1a)− 7/4].
By proving that both Kelvin’s and Thomson’s linked vortices move almost uniformly

while approximately preserving their shape, we have made plausible the existence of
exact solutions which are both steady and stable. Finding the analytical expression of
such solutions is, however, still an open problem.

The linked vortices studied here belong to the expanding class of steady or quasi-
steady vortices possessing chaotic streamlines, such as vortex knots (Velasco Fuentes
2010) and vortex solitons (Kimura & Koikari 2004). As in these cases, the quasi-
steadiness of the linked ring vortices enables us to interpret the results about the flow
geometry in terms of the capacity of the vortices to carry fluid. We may thus conclude
that more fluid is carried by either more vortices on tori of equal diameter or the same
number of vortices on thinner tori. This behaviour is analogous to that of a single
toroidal vortex Vp,q, whose capacity to carry fluid grows as the number of coils round
the symmetry axis, p, increases and as the aspect ratio of the torus decreases (see
Velasco Fuentes 2010).

Equation (3.4) shows that the velocity field depends on the value of µa, particularly
in the neighbourhood of the vortices. This affects the self-induced velocity and,
through it, the flow geometry, for if µa is larger the vortices are slower and their
stagnation points are closer to each other, and vice versa. To evaluate the extent of
the modifications produced by changing the value of µa, we used thinner vortices
(a = 0.025) with the same internal structure used above (µ = e−3/4) and hollow
vortices (µ = e−1/2) with the same cross-section used above (a = 0.05). The thinner
vortices moved with a 6 %-larger speed and the distance between their stagnation
points was 8 % smaller. The hollow vortices moved with a 3 %-smaller speed and the
distance between their stagnation points was 4 % larger. In neither case did the chaotic
tangles or the Poincaré sections exhibit significant changes with respect to those shown
in figures 6 and 7.

We are grateful to two anonymous referees for their comments and suggestions on
an earlier version of this paper. This research was partially supported by CONACyT
(México) through a postgraduate scholarship to ARA.
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