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Two-dimensional direct numerical simulations of a cylinder undergoing forced
streamwise oscillations in steady approaching flow are conducted over ranges of
oscillation amplitude, oscillation frequency and gap distance between the cylinder
and the wall at a Reynolds number of 175. The flow characteristics are found to
be strongly affected by the gap distance, compared to those observed around an
isolated cylinder (Tang et al., J. Fluid Mech., vol. 832, 2017, pp. 146–169). The
synchronisation modes are mapped out in the parameter ranges. The existence of
the plane wall leads to an increased chance of occurrence of high-order modes
with the denominator being an odd number. Two new flow phenomena, namely the
period doubling and transition to quasi-periodic states through cascade of period
doubling within the primary synchronisation region, are observed. The interaction of
the plane-wall boundary layer with vortices shed from the cylinder and the asymmetry
of the flow through the gap and around the top side of the cylinder are identified
as the primary physical mechanisms responsible for the observed behaviours. The
influence of velocity gradient in the plane-wall boundary layer on the two new
phenomena is quantified through a numerical test involving linear shear flow around
an isolated cylinder. The period-doubling phenomenon occurs only when the velocity
gradient is larger than a critical value. The results obtained through three-dimensional
simulations suggest that the synchronisation modes identified through two-dimensional
simulations are not significantly affected by the three-dimensionality of the flow over
the parameter ranges covered in the present study.

Key words: flow–structure interactions, vortex dynamics, shear layers

1. Introduction
A circular cylinder that undergoes forced in-line cyclic oscillations in steady

approaching flow parallel to a stationary plane wall can be found in many practical
applications, such as vessel-induced motions of steel catenary risers near touch-down
points on the seabed in offshore engineering (Bridge et al. 2004; Randolph et al.
2011). The flow is mainly governed by the free-stream velocity (u0), the cylinder
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diameter (D), oscillation amplitude (A) and oscillating frequency ( fd), the gap distance
between the cylinder and the wall (G) and the boundary-layer thickness (δ) on the
plane wall. These parameters can be normalised based on characteristic length (D)
and velocity (u0) scales as the Reynolds number (Re= u0D/ν), the gap ratio (G/D)
and the boundary-layer thickness ratio (δ/D). In addition, the cylinder oscillation
parameters fd/fSt and A/D are commonly used as characteristic quantities in the
literature, where fSt is the vortex-shedding frequency (or Strouhal frequency) of the
otherwise stationary cylinder. The flow characteristics and flow-induced forces on the
cylinder are significantly affected by those normalised parameters.

Steady approaching flow around a cylinder near a stationary plane wall has been
extensively investigated (e.g. Bearman & Zdravkovich 1978; Lei, Cheng & Kavanagh
1999; Lei et al. 2000b). Regular vortex shedding from the cylinder is suppressed
when G/D is smaller than a critical value (Bearman & Zdravkovich 1978), which
is dependent on δ/D, G/D and Re. The mechanism for vortex-shedding suppression
was ascribed to the interaction of the boundary layer formed on the plane wall and
the shear layer developed on the gap-side surface of the cylinder (Lei et al. 1999,
2000b). Wang & Tan (2008) experimentally investigated the wake flow of a near-wall
circular cylinder at Re= 12 000, δ/D= 0.4 and G/D= 0.1–1 by using particle image
velocimetry. They observed a distinct asymmetric flow pattern about the cylinder
centreline for G/D = 0.3–0.6. A critical G/D value was reported to be 0.3, beyond
which vortex shedding takes place and the normalised vortex-shedding frequency
(Strouhal number St = fStD/u0) remains roughly constant at 0.19 for G/D ranging
from 0.3 to 1.

Rao et al. (2013) numerically investigated the flow past a circular cylinder above a
moving wall at the same velocity as the approaching steady flow for 25 6 Re 6 200
over a wide range of G/D. The critical Re for the onset of three-dimensional (3-D)
flow was determined as a function of G/D. Jiang et al. (2017a) investigated a cylinder
near a moving wall in a parameter space of 0.16G/D6 19.5 and Re6 300 by using
direct numerical simulations (DNS). The flow transition to 3-D occurs at an Re value
that is smaller than its counterpart for an isolated cylinder (Stewart et al. 2010; Rao
et al. 2011). However, flow transition to 3-D for a cylinder near a stationary wall in
steady approaching flow has rarely been studied.

Flow around a cylinder undergoing sinusoidal oscillations in the transverse direction
of the free stream has been well studied (e.g. Sarpkaya 2004; Williamson &
Govardhan 2004). Different flow regimes, such as the 2S regime (two single vortices
of opposite signs are formed per oscillation cycle), 2P regime (two pairs of vortices
are formed per cycle) and P+ S regime (one pair and one single vortex are formed
per cycle) are identified in ( fd/fSt,A/D) space (Williamson & Roshko 1988). Different
synchronisation modes, which are referred to as p/q modes (p and q are integers),
were discovered. A p/q mode flow is characterised by p pairs of vortex shedding
over q periods of cylinder oscillation (Olinger & Sreenivasan 1988; Woo 1999). The
dominant synchronisation mode for a cylinder undergoing sinusoidal oscillations in
the transverse direction of the steady approaching flow is 1/1.

Similar to a transverse-oscillating cylinder, synchronisation for a streamwise-
oscillating cylinder occurs when the adjusted frequency of vortex shedding ( fs) locks
onto a rational ratio of fd, creating a class of flow regimes (e.g. Ongoren & Rockwell
1988a,b; Xu, Zhou & Wang 2006; Al-Mdallal, Lawrence & Kocabiyik 2007; Leontini,
Lo Jacono & Thompson 2011, 2013; Tang et al. 2017). Most of the existing studies
in the literature have focused on the conditions where the forcing frequency is at or
close to 2fSt. The forced cylinder oscillation of a frequency in this range leads to the
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References Re (A/D, fd/fSt) Synchronisation modes

Ongoren & Rockwell (1988b) 584–1300 (0.13, 0.5–4.0) Similar to mode 0/1,
mode 1/1 and mode 1/2

Xu et al. (2006) 100–600 (0.5, 0–3.1) Similar to mode 0/1,
mode 1/1 and mode 1/2

Al-Mdallal et al. (2007) 200 (0.1 and 0.3, 0.5–3.0) Mode 1/2,
mode 1/3 and mode 0/1

Leontini et al. (2011) 175 (0.24–0.65, 1) Mode (N − 1)/N
Leontini et al. (2013) 175 (0–0.9, 0.8–2.0) Mode (N − 1)/N
Tang et al. (2017) 175 (0–0.5, 1.0–4.0) Mode p/q,

including all the above

TABLE 1. Summary of the flow regimes observed around a streamwise-oscillating cylinder.

synchronisation of the vortex shedding to the forced oscillation (Griffin & Ramberg
1976). Tang et al. (2017) suggested that the fraction ratios in the Farey sequence in
number theory (Farey 1816) are all possible p/q mode ratios, and that synchronised
modes with small values of p and q are more robust than those with large values
of p and q. The primary synchronisation mode for a streamwise-oscillating cylinder
is 1/2 (Tang et al. 2017). The p/q modes with q > 2 are referred to as high-order
synchronisation modes, following Pikovsky, Rosenblum & Kurths (2001). For instance,
the synchronisation region occupied by mode 1/4 in the ( fd/fSt, A/D) parameter
space is much wider than that covered by mode 3/10. Interestingly, the synchronised
flow also prefers an even-number denominator (q) to an odd value. For example,
the region occupied by mode 1/4 is much wider than that covered by mode 1/3.
This phenomenon was ascribed to the spatio-temporal symmetry of the wake of an
inline-oscillating cylinder in the free stream. Spatio-temporal symmetry of a flow is
defined as ωz(x, y, τ )=−ωz(x,−y, τ + TM/2), where ωz is the vorticity and TM is the
period of vortex shedding. Breaking of spatio-temporal symmetry can be induced by
either an asymmetric flow geometry about y = 0 or flow instabilities for flows with
a symmetric flow geometry about y= 0. Leontini et al. (2011, 2013) and Tang et al.
(2017) provided detailed reviews of previous work on this topic and these aspects will
not be repeated here. Instead, the flow features in different synchronisation modes
are summarised in table 1.

A streamwise-oscillating cylinder close to a plane wall in steady approaching flow
has not been investigated previously. The presence of a plane wall near the cylinder is
expected to affect the flow synchronisation modes through the following mechanisms:
(i) breaking of spatio-temporal symmetry due to the introduction of the plane wall; and
(ii) interaction of wall shear layers with vortices shed from the cylinder. Some works
on vortex-induced vibration (VIV) of a near-wall circular cylinder in the transverse
direction of the flow exist in the literature (e.g. Tham et al. 2015; Li et al. 2016; Li,
Jaiman & Khoo 2017). Although the findings from those studies are relevant, they
differ from the present work in two aspects: (1) direction of cylinder oscillation and
(2) forced versus induced oscillations.

The primary aim of the present study is to investigate the influence of the wall
on the synchronisation modes. A constant Re = 175 is chosen in order to make
quantitative comparisons with existing results on an isolated cylinder in the literature
(Leontini et al. 2011, 2013; Tang et al. 2017). The numerical model employed in
this study is briefly introduced and validated in § 2. The results and discussions are
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FIGURE 1. The entire domain with a macro mesh for G/D = 1.0. The insets are a
definition sketch of a cylinder above a plane wall and a close-up view of the element
grid near the cylinder.

presented in §§ 3 and 4. The 3-D effect on synchronisation modes is investigated in
§ 5 and conclusions are drawn in § 6.

2. Numerical model
2.1. Numerical method

In this paper, numerical simulations are conducted by discretising the Navier–Stokes
equations using the spectral/hp element method embedded in the open-source code
Nektar++ (Cantwell et al. 2015). The dimensionless form of the incompressible
Navier–Stokes equations in the Cartesian coordinate system are expressed as follows:

∂U
∂τ
+U · ∇U=−∇p+ υ∇2U+ a, (2.1)

∇ ·U= 0, (2.2)

where U = (u, v, w) is the velocity vector, τ is the time and p is the kinematic
pressure.

The Nektar++ code employs a high-order quadrilateral expansion method within
each element through Gauss–Lobatto–Legendre quadrature points (Np). A second-order
implicit–explicit time integration scheme is chosen from the embedded incompressible
solver, alongside a velocity-correction splitting scheme and continuous Galerkin
projection method. Herein, the harmonic cylinder oscillation is implemented through
a moving frame fixed on the cylinder by introducing a forcing term, a, which is the
additional acceleration as the result of the non-inertial translation of the reference
frame as detailed by Newman & Karniadakis (1997). By fixing the coordinate system
on the cylinder in the simulation, geometric deformation in the mesh is avoided
(Blackburn & Henderson 1999).

A definition sketch of the two-dimensional (2-D) problem investigated in the present
study is shown in figure 1. The cylinder is forced to oscillate sinusoidally in the x-
direction, with its displacement X(τ ) and velocity Ẋ(τ ) being described as follows:

X(τ )= A sin(2πfdτ), Ẋ(τ )= 2πfdA cos(2πfdτ)= up, (2.3a,b)

where up represents the velocity of the reference frame.

2.2. Boundary and initial conditions
A rectangular computational domain is employed in the 2-D numerical simulations
as shown in figure 1. Along the left boundary, the Dirichlet boundary conditions of
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u= uinlet and v = 0 are applied, where uinlet is defined as

uinlet = u0 + up = u0 + 2πfdA cos(2πfdτ). (2.4)

Along the right boundary, the Neumann boundary condition (zero normal gradient)
is employed for the velocity (i.e. ∂u/∂y = 0, ∂v/∂x = 0). The cylinder surface is
specified as a no-slip boundary with zero velocity (i.e. u = 0, v = 0). A ‘symmetry-
wall’ condition (i.e. ∂u/∂y= 0, v = 0) is applied at the top boundary.

The presence of a stationary (fixed) plane wall affects the flow around the cylinder
through two mechanisms: (i) the boundary layer that is generated above the wall;
and (ii) the velocity redistribution due to the wall–cylinder geometry setting, which is
referred to as the blockage effect. To differentiate the effects of these two mechanisms,
additional simulations are conducted under ‘moving-wall’ and ‘symmetry-wall’
conditions. Apart from v = 0, the following boundary conditions are applied on the
plane wall:

ufixed = up = 2πfdA cos(2πfdτ), (2.5)
umoving = uinlet = u0 + 2πfdA cos(2πfdτ), (2.6)

∂usym

∂y
= 0, (2.7)

where ufixed, umoving and usym are the velocities of the ‘fixed wall’, ‘moving wall’ and
‘symmetry wall’, respectively. A reference value of zero is assigned to the pressure at
the outlet (right), and a high-order pressure boundary condition of pressure gradient
is imposed on the cylinder surface and the far-field boundaries (Karniadakis, Israeli &
Orszag 1991).

Initial conditions of u = 0, v = 0 and p = 0 are implemented in all simulations,
unless otherwise specified. To eliminate the effect from these initial conditions, more
than 600 non-dimensional time units are simulated and the final 400 (approximately
70–300 oscillation cycles) are used to identify synchronisation modes and to estimate
the forces on the cylinder. Each 2-D case requires 48 central processing units over
24 h, and over 2000 cases in total are simulated.

2.3. Mesh dependence check and model validation
A dependence check of computational mesh and domain size is conducted at G/D=
0.5 and Re= 175 for an oscillating cylinder under both ‘fixed-wall’ and ‘moving-wall’
conditions and the results are detailed in appendix A. A rectangular computational
domain of 128D× (28D+G) is selected based on the outcomes of the domain size
check. A typical mesh with G/D= 1.0 is illustrated in figure 1.

The numerical model is validated by comparing the vortex-shedding frequency and
force coefficients from a stationary near-wall cylinder. The vortex-shedding frequency
of the near-wall cylinder is defined as fSt∗ , to differentiate it from that of an isolated
cylinder ( fSt). The drag and lift coefficients are defined as follows:

CD = Fx/(0.5ρDu2
0), (2.8)

CL = Fy/(0.5ρDu2
0), (2.9)

where Fx and Fy are the total forces on the cylinder in the streamwise and transverse
directions, respectively, and ρ is the density of the fluid. The results of fSt∗ and the
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References Re Wall condition fSt∗ CD,mean

Jiang et al. (2017a) 175 Moving wall 0.205 1.507
Present 175 Moving wall 0.205 1.491

Lei et al. (2000b) 200 Fixed wall 0.197 —
Present 200 Fixed wall 0.191 1.152

TABLE 2. Comparison of the vortex-shedding frequency ( fSt∗) and mean drag coefficient
(CD,mean) for a stationary cylinder in steady approaching flow with different Re and wall
conditions (G/D= 1.0).

mean drag coefficient (CD,mean) compare favourably with the results reported by Jiang
et al. (2017a) under the moving-wall conditions (see table 2). Under the fixed-wall
conditions, the results reported by Lei et al. (2000b) for Re = 200 and G/D = 1.0
are used to validate the present model (see table 2). The fSt∗ value from our work is
3 % lower than the value from Lei et al. (2000b), possibly because of the different
domain widths used in those studies: 12D in Lei et al. (2000b) and 28D in our work.
Generally, our results show good agreements with the available results in the literature.

3. Stationary near-wall cylinder
Steady approaching flow around a near-wall stationary cylinder is simulated as a

reference for further analysis. Figure 2 shows the flow field at Re= 175 over different
G/D values (0.5, 0.6, 1 and 2) under both fixed-wall and moving-wall conditions.
Under fixed-wall conditions (figure 2a–d), the flow field dramatically changes as G/D
increases, with three different flow regimes identified, as follows.

(i) Regime 1 (G/D 6 0.57): vortex shedding is completely suppressed. The flow is
characterised by stable shear layers that form on the top and bottom sides of the
cylinder, as shown in figure 2(a).

(ii) Regime 2 (0.57 < G/D < 2): vortex shedding from the cylinder is strongly
influenced by the plane wall. In this regime, as shown in figures 2(b) and 2(c),
the shear layers on both sides of the cylinder roll up to form large-scale vortices
and are regularly shed from the cylinder. The vortex street behind the cylinder
mostly consists of vortices of negative sense. Vortices of positive sense are
primarily cancelled out by the shear layer formed above the plane wall in the
gap region.

(iii) Regime 3 (G/D>2): the flow asymptotes to that around an isolated cylinder with
increasing G/D. As shown in figure 2(d), the wall shear layer rolls up to interact
with the wake of the cylinder at x/D= 5. Consequently, the wake of the cylinder
tilts away from the plane wall. Compared to figure 2(c), vortices of positive sense
are less affected by the shear layer on the plane wall.

Correspondingly, the influence of the moving-wall conditions on the flow is
quantified in figure 2(e–h). In contrast to figure 2(a–d), the positive shear layer
developed on the bottom side of the cylinder surface is hardly affected by the
boundary layer on the moving wall and interacts with the negative shear layer
to form a well-defined Kármán vortex street at all gap ratios. Thus, the three
flow regimes identified under the fixed-wall conditions are not applicable to the
moving-wall conditions. Rao et al. (2013) demonstrated that vortex shedding occurs
at G/D= 0.005 and Re= 200 under the moving-wall conditions.
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G/D = 0.5

G/D = 0.6

G/D = 1

G/D = 2

G/D = 0.5

G/D = 0.6

G/D = 1

G/D = 2

-1.0 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1.0

FIGURE 2. Wake structure of a circular cylinder in steady approaching flow under
fixed-wall (a–d) and moving-wall (e–h) conditions. The vorticity contours are given at
levels between −1 (blue colours) and 1 (red colours), with a cutoff level between
(−0.2, 0.2). This colour code for vorticity contours is used throughout the paper unless
otherwise specified.

The characteristics of the boundary layer at the location of the cylinder are
examined by plotting u/u0 against y/D (obtained from a separate simulation without
the presence of the cylinder) in figure 3. The boundary-layer thickness at the location
of the cylinder is calculated based on the vertical distance across the boundary
layer from the wall to the point where the flow velocity has essentially reached the
maximum. With 28D from the inlet, δ/D≈ 2. The fSt∗/fSt ratios under both fixed-wall
and moving-wall conditions for G/D up to 10 are also examined in figure 3. Under
the fixed-wall conditions, fSt∗/fSt closely follows the trend of u/u0, suggesting that
the variation in the intrinsic frequency fSt∗ is mainly due to the difference in the
local velocity near the cylinder. Under the moving-wall conditions, fSt∗/fSt increases
with G/D much faster than that under the fixed-wall conditions and then decreases
asymptotically to the value for an isolated cylinder for G/D > 2. The above results
agree with those reported by Jiang et al. (2017a) where a similar variation trend of
fSt∗/fSt was attributed to the changes of local flow rate, induced by the blockage effect
of the moving wall.

The velocity profiles with the presence of the cylinder at (x, y)= (0,0) with different
G/D and wall conditions are plotted in figure 4, together with that of an isolated
cylinder for comparison. Relative to the isolated cylinder, for example at G/D= 1.0,
the fixed wall causes a reduction of flow through the gap, whereas the moving wall
enhances not only the flow through the gap but also the velocity near the top side of
the cylinder. As G/D is increased, the flow velocity tends to increase on both sides of
the cylinder. The higher local velocities near the cylinder are attributed to the slightly
higher fSt∗ values than those obtained under the fixed-wall conditions at G/D= 1.0, as
shown in figure 3.
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FIGURE 3. Boundary-layer profiles at x = 0 (28D from the inlet) without a cylinder
(solid line) and fSt∗/fSt of a circular cylinder in steady approaching flow under fixed-wall
conditions (circles), alongside that under moving-wall conditions from Jiang et al. (2017a)
(dashed line) and the present study (diamonds) over different gap-to-diameter ratios.
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0 0.2 0.4 0.6 0.8
umean/u0
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G/D = 0.5, moving wall
G/D = 0.5, fixed wall
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G/D = 1, fixed wall
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G/D = 1.5, fixed wall
G/D = 2, fixed wall
Isolated cylinder

FIGURE 4. Comparison of the average velocity profiles along x= 0 with a cylinder placed
at (x, y)= (0, 0) under different conditions.

4. Oscillating near-wall cylinders

Simulations are conducted in the ranges of fd/fSt ∈ [1, 4], with an increment
of fd/fSt 6 0.02, and A/D ∈ [0.01, 0.4], with an increment of A/D 6 0.1. We are
aware of the possibility that 3-D instabilities may develop at Re= 175 for a near-wall
cylinder. It has been demonstrated that 3-D instabilities develop at Re of approximately
150–160 for a stationary cylinder next to a moving wall (Rao et al. 2013, 2015; Jiang
et al. 2017a). To quantify the 3-D effect, additional 3-D simulations are conducted,
and the results are reported in § 5.
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4.1. Effect of the plane wall
The procedure for classifying synchronisation modes and the naming of the
synchronisation modes follow those employed by Tang et al. (2017), where the power
spectra of the lift coefficient, a Lissajous phase diagram (cylinder displacement versus
lift coefficient) and the flow field were utilised, and the modes were referred to as
p/q modes (such as in figure 5). For clarity, only synchronisation modes with q6 10
are differentiated in the present study, and high-order modes (q> 10) are generically
defined as other modes (OMs). On the other hand, non-synchronisation modes or
quasi-periodic (QP) modes are not discussed extensively, but for completeness are
included as · in the regime maps (figure 5).

4.1.1. Synchronisation modes
The influence of the plane wall on the synchronisation mode is investigated initially

by conducting simulations over two different G/D (0.5 and 1) and a range of fd/fSt∗

values at A/D = 0.1 under the fixed-wall conditions. The cylinder is placed 28D
from the inlet, which is identical to the stationary cylinder condition reported earlier.
The identified synchronisation modes with A/D= 0.1 are mapped out in figures 5(c)
and 5(e). The synchronisation modes at /D=∞, reproduced from Tang et al. (2017),
are included in figure 5(a) for the purpose of comparison.

To better illustrate the influence of the plane-wall boundary layer on the flow,
additional simulations are carried out under the moving-wall conditions, where the
plane wall is forced to move at the same velocity as the steady approaching flow.
The synchronisation modes are shown in figures 5(b) and 5(d). The corresponding
profiles of mean horizontal velocity (umean/u0), sampled at x = 0 with the cylinder
placed at (x, y)= (0, 0), are shown in figure 4.

The fSt∗ values used for normalisation in figure 5 are the frequencies of vortex
shedding around a stationary cylinder at corresponding gap ratios and Re, which are
fSt∗ = 0.192 at G/D = ∞, 0.205 at G/D = 1.0 and 0.198 at G/D = 0.5 under the
moving-wall conditions and fSt∗ = 0.184 at G/D= 1.0 under the fixed-wall conditions.
Since vortex shedding is completely suppressed at G/D = 0.5 under the fixed-wall
conditions, fSt∗ =0.155, obtained from G/D=0.6, is used to normalise fd at G/D=0.5.

Similar to the wake of an isolated oscillating cylinder, a variety of synchronisation
modes are revealed as the wall is introduced. There are two major differences in the
synchronisation modes. Firstly, the synchronisation modes with an odd number as the
denominator (q) of the near-wall cylinder increase significantly, as quantified from
the percentage of occurrence, which is determined by the range of synchronisation
( fd/fSt∗) over fd/fSt∗ ∈ [1, 4]. This observation is quite different from that of an
isolated cylinder where the modes with even q values are the preferred modes. For
example, the percentage of occurrence of the 1/2 mode decreases monotonically
with the reduction of G/D from ∞ to 1.0 under the fixed-wall conditions, and from
1.0 to 0.5 under the moving-wall conditions, whereas the percentage of occurrence
of the 1/3 and 2/5 modes increases noticeably with the reduction of G/D from
∞ to 1 under the fixed-wall conditions. The flow asymmetry around the cylinder,
induced by the presence of the walls (stationary and moving), is identified as the
physical mechanism for the phenomenon observed above. Consistently, modes with
an odd-number denominator (q) are featured by inclined wakes relative to the flow
direction. This reasoning agrees with the interpretation by Tang et al. (2017) that
the synchronisation modes for an isolated cylinder prefer an even number to an odd
number as the denominator (q), because modes with an even-number denominator
exhibits spatio-temporal symmetry similar to a Kármán vortex street.
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FIGURE 5. Locations of the synchronisation modes at A/D= 0.1 for: (a) G/D=∞ (Tang
et al. 2017); (b) G/D= 1.0, moving-wall conditions; (c) G/D= 1.0, fixed-wall conditions;
(d) G/D = 0.5, moving-wall conditions; and (e) G/D = 0.5, fixed-wall conditions. Here
fSt∗ is the intrinsic vortex-shedding frequency under each condition. The synchronisation
modes for q 6 10 are listed in the legend with increasing value of the mode ratio, while
OMs are represented by +. All cases deemed QP are shown as · in the map. The number
above modes 1/2, 2/5 and 1/3 is the calculated occurrence percentage from the range of
synchronisation ( fd/fSt∗) over fd/fSt∗ ∈ [1, 4].

Secondly, synchronisation modes with reducible ratios of p/q (i.e. p and q have
a common factor above 1, such as 2/4 modes) are observed at G/D= 1.0 under the
fixed-wall condition. Those modes with reducible ratios of p/q have not been reported
in the isolated-cylinder case (e.g. Leontini et al. 2011, 2013; Tang et al. 2017). The
2/4 mode is primarily observed within the parameter space occupied by the primary
synchronisation mode of 1/2. Further investigations on the reducible mode ratios are
detailed in § 4.1.4.

The synchronisation modes observed with G/D= 0.5 under the fixed-wall condition
are quite different from other cases, possibly because the suppression of vortex
shedding from its stationary cylinder counterpart quenches the occurrence of the
modes other than modes 0/1, 1/1 and 1/2.

4.1.2. Flow characteristics
The instantaneous flow fields of selected synchronised cases are compared in

figure 6 through vorticity contours for p/q= 2/3, 1/2, 2/5, 3/8 and 1/3 under three
different conditions, i.e. G/D = ∞, G/D = 1.0 under moving-wall conditions, and
G/D= 1.0 under fixed-wall conditions.

The wake structures for the near-wall cylinder under the moving-wall conditions
are similar to those for an isolated cylinder, especially for modes 1/2, 2/5, 3/8 and
1/4. A subtle difference between them is that the wakes for G/D = 1.0 under the
moving-wall conditions incline slightly upwards from the wall in the near wake and
become approximately parallel to the wall in the far wake, whereas the wakes for the
isolated cylinder remain parallel to the free stream and are distributed almost evenly
on either side of y= 0. The wake inclinations under the moving-wall conditions are
attributable to the positive vertical velocity gradient induced by the strong gap flow, as
shown in figure 4. The average velocity directly under the gap is actually larger than
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FIGURE 7. Comparison of the instantaneous vorticity flow fields under (a) moving-wall
and (b) symmetry-wall conditions at ( fd/fSt, A/D,G/D)= (2, 0.1, 1), mode 1/2.

the approaching velocity, so that the local flow tends to decelerate (∂u/∂x< 0) as it
leaves the gap in the downstream direction, producing an upward velocity component
(∂v/∂y> 0) in the near-wall region. The positive vertical velocity gradient will then
convect the vortices in the wake upwards.

The widths of the wake for modes with p > 1 appear to be larger than for the
modes with p = 1 under both isolated and moving-wall conditions. This observation
can be explained by considering the interactions of vortices that are generated within
p pair(s) of vortex shedding in q cycles of cylinder oscillation (those within the
solid- and dashed-line boxes in figure 6). Only two vortices of opposite signs exist
in each box for modes with p= 1, whereas multiple pairs of vortices are present and
convected downstream as a group for the cases with p > 1. According to classical
vortex dynamics (Saffman 1992), two vortices of opposite signs translate as a unit
and two vortices with the same sign rotate around each other. The rotation of vortices
with the same sign in the groups of multiple vortex pairs is the direct cause of the
wider width of the wake for modes with p> 1.

On the other hand, the most noticeable difference between the wakes obtained under
the moving-wall and fixed-wall conditions is that the wakes of the cylinder under the
fixed-wall conditions mainly consist of negatively signed vortices that are shed from
the top surface of the cylinder, for the same reason as discussed with regard to the
results shown in figure 2. In addition, the vortices (with the same sign) in the wakes
of modes with p> 1 tend to rotate around each other and merge as they are convected
downstream, whereas the vortex streets (of opposite signs) in the wakes of modes with
p = 1 are almost parallel with the wall without obvious relative rotation or merging
of vortices.

Although the influence of the wall boundary layer on the flow is largely removed by
replacing the stationary wall with a moving wall, weak vortices can still be observed
on the wall near the cylinder due to the mismatch between the flow velocity in the
gap and that of the moving wall. To fully remove the weak vortices on the plane
wall, additional simulations are conducted by replacing the moving-wall conditions
with symmetry-wall conditions (∂u/∂y = 0, v = 0). The instantaneous vorticity flow
fields at ( fd/fSt, A/D, G/D) = (2, 0.1, 1) under the moving-wall and symmetry-wall
conditions are compared in figure 7. Overall, the wake structures behind the cylinder
are very similar under those two boundary conditions, suggesting the negligible effect
of the weak vortices on the flow fields behind the cylinder.

4.1.3. Force characteristics
The influence of the plane wall on the drag and lift coefficients (CD and CL)

is investigated for the cases with A/D = 0.1, as an example. Figure 8 shows the
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FIGURE 8. Mean drag coefficient (CD,mean) with respect to fd/fSt∗ at a fixed A/D= 0.1 for
an isolated cylinder (middle line) and near-wall cylinder with G/D = 1.0 under moving-
wall conditions (top line) and fixed-wall conditions (bottom line). The same symbols as
in figure 5 are also employed here to highlight the influence of synchronisation.

variations of CD,mean with fd/fSt∗ at A/D= 0.1 for the isolated cylinder and near-wall
cylinder (G/D = 1.0) under the fixed-wall and moving-wall conditions. Two main
features are observed: (i) the CD,mean values under the moving-wall conditions and
the fixed-wall conditions are consistently larger and smaller, respectively, than those
of an isolated cylinder over the range of fd/fSt∗ investigated here; and (ii) the CD,mean

values for synchronised flows are generally larger than those of the desynchronised
flows in the vicinity of the synchronised flows.

The feature (i) is primarily due to the change of the velocities of the approaching
flow local to the cylinder, induced by the presence of two different types of
boundary conditions as shown in figure 4. Because CD,mean is normalised by the
free-stream velocity u0, any change in the velocities of the approaching flow local
to the cylinder will be directly reflected by the change in CD,mean value. Although
only minor differences in the average velocity profiles exist on the top side of
the cylinder, a significant increase of flow velocity on the bottom side under the
moving-wall conditions leads to an increase of local approaching flow velocity
near the cylinder and thus an increase of CD,mean. Since the gap velocity shows
a significant reduction under the fixed-wall conditions, it leads to a reduction of
CD,mean through the mechanism explained above. If the mean streamwise velocity over
y=−1.5D–1.5D at x= 0 is quantified as a representative value for the approaching
flow velocity local to the cylinder, umean/u0 = 0.805, 0.647 and 0.759 are obtained
under the moving-wall, fixed-wall and isolated-cylinder conditions, respectively. This
result provides a quantitative support to the explanation offered above.

The observed feature (ii) is interpreted by using mode 1/2 as an example, where
the most pronounced increase in CD,mean is observed. This notable increase in CD,mean

in the region of synchronisation is due to the coalescence of small vortices and, thus,
a more organised wake flow, which causes an enhanced shear layer and a stronger
entrainment wake (Wu et al. 1998; Tang et al. 2017). Slight increases in CD,mean can
also be observed for other synchronisation modes, but they are not as strong as the
increase in CD,mean for mode 1/2.

Figure 9 shows the variations of the mean CL,mean and the root-mean-square
(r.m.s.) CL,rms with fd/fSt∗ under both moving-wall and fixed-wall conditions at
(A/D, G/D) = (0.1, 1.0). The large increase of CL,rms in the synchronised modes is
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FIGURE 9. Variations in the mean and r.m.s. of CL against fd/fSt∗ at (A/D, G/D) =
(0.1, 1.0) under different wall conditions: (a) CL,mean, moving-wall conditions; (b) CL,rms,
moving-wall conditions; (c) CL,mean, fixed-wall conditions; and (d) CL,rms, fixed-wall
conditions. The dashed lines are from the stationary cylinder. The same symbols as in
figure 5 are employed.
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FIGURE 10. Instantaneous flow field for an oscillating cylinder near a moving wall at
(a) ( fd/fSt∗, A/D, G/D)= (2.827, 0.1, 1.0) and (b) ( fd/fSt∗, A/D, G/D)= (2.828, 0.1, 1.0),
mode 1/3.

induced by the strengthened vortices in the wake at resonance. Each synchronisation
mode contains an initial stage (in which CL,rms continuously rises), a peak and a
desynchronisation stage (where CL,rms significantly decreases). The width of the
synchronisation range ( fd/fSt∗) is correlated with the magnitude of CL,rms under both
fixed-wall and moving-wall conditions. The minimum value of |CL,mean| in mode
1/2 corresponds to the maximum value of CL,rms. This behaviour occurs because the
strength of vortices that are shed from both sides of the cylinder significantly increases
and becomes more uniform at synchronisations. Another interesting phenomenon is
the dramatic changes in CL,mean and CL,rms in figures 9(a) and 9(b) for mode 1/3
under the moving-wall conditions, as detailed in the zoom-in views in figure 10.
According to the flow field shown in figure 10, the wakes are tilting away from the
plane wall for 2.824 < fd/fSt∗ 6 2.827 but are more parallel to the plane wall for
2.828 < fd/fSt∗ 6 2.834. Similar features also exist for an isolated cylinder for mode
1/3 and other modes, with q being an odd number (Tang et al. 2017).

4.1.4. Reducible mode ratios
The influence of the plane wall on the synchronisation mode with reducible ratios

is investigated by conducting simulations over a range of G/D and fd/fSt∗ values at a
fixed A/D= 0.2 under the fixed-wall conditions. The identified synchronisation modes
with A/D = 0.2 are mapped out in figure 11. The corresponding profiles of mean
horizontal velocity (umean/u0), sampled at x = 0 with the cylinder placed at (x, y) =
(0, 0), are shown in figure 4. The fSt∗ values used for normalisation in figure 11 are
0.192, 0.205, 0.197, 0.189, 0.184 and 0.155 at G/D=∞, 2.0, 1.5, 1.2, 1.0 and 0.5,
respectively, under the fixed-wall conditions.

The synchronisation modes found at G/D = 2.0 are similar to those found in its
isolated-cylinder counterpart, suggesting that the influence of the plane wall is weak
at G/D = 2.0. As G/D reduces, the synchronisation modes with an odd number as
the denominator (q) increases in the occurrence percentage, which is consistent with
the results obtained with A/D = 0.1. Most importantly, synchronisation modes with
reducible ratios of p/q, such as 2/4, 4/8 and 4/6 modes, are observed at 0.5 <
G/D < 2. The modes with reducible ratios of p/q have not been reported for an
isolated cylinder with similar parameter ranges (e.g. Leontini et al. 2011, 2013; Tang
et al. 2017). Similar to A/D = 0.1, the 2/4 mode is primarily observed within the
parameter space occupied by the primary synchronisation mode of 1/2. Interestingly,
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FIGURE 11. Locations of the synchronisation modes at A/D = 0.2 with varying fd/fSt∗

and G/D under fixed-wall conditions (results at G/D =∞ are from Tang et al. (2017)
for purpose of comparison). Refer to figure 5 caption for more details.

a transition from the primary synchronisation mode of 1/2 to QP is observed between
fd/fSt∗ = 1.292 and 1.459 at G/D = 1.0. The transition follows a sequence of 1/2–
2/4–QP–3/5–QP–4/8–2/4–1/2 modes. Only synchronisation modes of 0/1, 1/1 and 1/2
are observed with G/D= 0.5 because of the suppression of vortex shedding from its
stationary counterpart.

To further investigate the nature of the synchronisation modes with reducible p/q
ratios and the transition from synchronisation modes to QP, the spectrum of CL, the
transient trace of CL(τ ) with cylinder displacement X(τ ), and the Lissajous phase
diagram of X(τ ) and CL(τ ) for the transition sequence of 1/2–2/4–QP–3/5–QP–4/8–
2/4—1/2 modes at G/D = 1.0 are examined in figure 12 with fd/fSt∗ ranging from
1.292 to 1.469 and A/D= 0.2. The primary synchronisation mode of 1/2 is observed
at (A/D, fd/fSt∗)= (0.2,1.292), as shown in figure 12(a), where the dominant frequency
of lift is 1/2 and all other frequencies are integer multiples of frequency 1/2 in the
spectrum. The transient trace of CL(τ ) completes one cycle of oscillation in exactly
two cycles of cylinder oscillation, leading to a closed loop of the Lissajous phase
diagram. As fd/fSt∗ is increased to 1.302, as shown in figure 12(b), the synchronisation
mode of 2/4 occurs, where CL(τ ) completes two cycles of oscillation in exactly four
cycles of cylinder oscillation. Although the dominant frequency of CL(τ ) is still 1/2,
a lower-frequency component of 1/4 appears, and all other frequencies are integer
multiples of frequency 1/4. The Lissajous phase diagram is characterised by two non-
overlapping closed loops. The above features of flow response suggest that mode 2/4
is a period doubling of mode 1/2.

As fd/fSt∗ is further increased to 1.323, the flow response (through CL(τ )) becomes
quasi-periodic (figure 12c), which is characterised by desynchronisation of CL(τ )
with X(τ ) and non-repeatable loops of the Lissajous phase diagram. Although
the dominant frequency in the spectrum of CL(τ ) is still 1/2, it is modulated by
multiple irregular frequency components. A synchronisation mode of 3/5 occurs
surprisingly as fd/fSt∗ is increased to 1.365, where CL(τ ) completes three cycles
of oscillation in exactly five cycles of cylinder oscillation (figure 12d). The flow
response becomes quasi-periodic again as fd/fSt∗ is increased to 1.386 (figure 12e).
A synchronisation mode of 4/8 appears at (A/D, fd/fSt∗)= (0.2, 1.417), where CL(τ )
completes four cycles of oscillation in exactly eight cycles of cylinder oscillation
(figure 12f ). The mode of 4/8 is judged to be a period doubling of mode 2/4,
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FIGURE 12. The spectrum of CL, the transient trace of CL(τ ) (red line) with cylinder
displacement X(τ ) (black line), and the Lissajous phase diagram of X(τ ) and CL(τ )
for a near-wall cylinder with G/D = 1.0 under the fixed-wall conditions: (a) mode
1/2, (A/D, fd/fSt∗) = (0.2, 1.292); (b) mode 2/4, (A/D, fd/fSt∗) = (0.2, 1.302); (c) QP,
(A/D, fd/fSt∗) = (0.2, 1.323); (d) mode 3/5, (A/D, fd/fSt∗) = (0.2, 1.365); (e) QP,
(A/D, fd/fSt∗) = (0.2, 1.386); ( f ) mode 4/8, (A/D, fd/fSt∗) = (0.2, 1.417); (g) mode 2/4,
(A/D, fd/fSt∗)= (0.2, 1.438); and (h) mode 1/2, (A/D, fd/fSt∗)= (0.2, 1.469).
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FIGURE 13. Poincaré maps for CL for a near-wall cylinder with G/D = 1.0 under the
fixed-wall conditions (top left to bottom right): mode 1/2, (A/D, fd/fSt∗) = (0.2, 1.292);
mode 2/4, (A/D, fd/fSt∗) = (0.2, 1.302); QP, (A/D, fd/fSt∗) = (0.2, 1.323); mode 3/5,
(A/D, fd/fSt∗)= (0.2, 1.365); QP, (A/D, fd/fSt∗)= (0.2, 1.386); mode 4/8, (A/D, fd/fSt∗)=
(0.2, 1.417); mode 2/4, (A/D, fd/fSt∗) = (0.2, 1.438); and mode 1/2, (A/D, fd/fSt∗) =
(0.2, 1.469).

based on the characteristics of the flow response. The synchronisation mode changes
to 2/4 and finally 1/2 again as fd/fSt∗ is further increased from 1.417 to 1.469
(figures 12g and 12h).

Poincaré maps of CL are used to show the transition between synchronised and QP
states. For a complete cycle of cylinder oscillation, the corresponding value of CL was
recorded. Thus CL(n) is plotted against CL(n− 1) in figure 13 and CL was recorded
over 240 cycles of cylinder oscillation. For a synchronised case, the map shows a
fixed number (= q) of points. For example, at (A/D, fd/fSt∗)= (0.2, 1.292) (mode 1/2),
two points are shown in the map, while at (A/D, fd/fSt∗) = (0.2, 1.302) (mode 2/4),
four points are recorded. On the other hand, in the QP cases, e.g. (A/D, fd/fSt∗) =

(0.2, 1.323) and (A/D, fd/fSt∗)= (0.2, 1.386) as shown in figure 13, the points appear
randomly distributed over a region and the number of points increases with the
recorded time duration, which indicates QP behaviour. Together with the spectrum
of CL and the Lissajous phase diagram, it is clear that the flow is undergoing a
transition from synchronised to QP states.

The response of instantaneous flow fields to the cylinder oscillation is consistent
with the response observed through characteristics of CL(τ ). As an example, figure 14
shows snapshots of vorticity contours of a mode 2/4 case at (A/D, fd/fSt∗) =

(0.2, 1.459) over four cycles of cylinder oscillation. The instantaneous flow fields at
τ = nT and τ = nT + 2T would have matched exactly if the synchronisation mode
in this case were a 1/2 synchronisation. While the shear layers developed on the
surface of the cylinder at τ = nT and τ = nT + 2T are similar, the interaction patterns
(2.5< x/D< 7) of the vortices shed from the cylinder with the shear layer formed on
the wall show an obvious difference at the corresponding instants. It takes two extra
cycles of cylinder oscillation for the flow fields to match at τ = nT and τ = nT + 4T .
Overall, two pairs of vortices are shed from the cylinder in four cycles of cylinder
oscillation, leading to a 2/4 synchronisation in this case. The interaction of the
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FIGURE 14. Instantaneous flow field of a mode 2/4 at (A/D, fd/fSt∗)= (0.2, 1.459) under
fixed-wall conditions over four cycles of cylinder oscillation.

negative shear layer developed on the wall with the positive shear layer developed
on the surface of cylinder is evident in figure 14.

The introduction of a wall significantly alters the flow response around the cylinder.
Possible influences of the wall on the flow response include (i) the asymmetry of
the flow around the top and bottom sides of the cylinder (the mode competition) and
(ii) the interaction of the shear layer generated above the surface of the wall with
the vortices shed from the cylinder. The blockage effect induced by the presence
of the wall leads to the formation of asymmetric shear layers on the cylinder,
which subsequently affects the vortex-shedding process from the cylinder. While the
interaction of the shear layers formed on the wall with vortices shed from the cylinder
is observed in figure 14, the blockage effect of the wall is quantified in figure 15(a)
by examining the variation of mean u velocity component with y sampled at x = 0
for the same case as shown in figure 14. The mean u velocity component in the
gap is noticeably smaller than that on the top side of the cylinder, leading to an
asymmetrical approaching flow to the cylinder. We would like to emphasise that the
shear layer formed on the wall would also contribute to the flow blockage effect
quantified in figure 15(a). The flow asymmetry and the shear layer formed on the
wall, nevertheless, are identified as the main causes for the transition to QP through
cascade of period doublings.

To separate the influence of the shear layers generated above the surface of the
plane wall and the influence of flow blockage effect (to first-order approximation),
additional simulations are carried out at A/D= 0.2 and 0.3, G/D= 1.0 by imposing a
symmetry-wall boundary condition on the plane wall and maintaining other conditions
unchanged. The influence of the shear layers generated above the surface of the plane
wall can be largely removed with the symmetry-wall condition on the plane wall.

The synchronisation modes mapped out with the symmetry-wall condition at
A/D = 0.2 and 0.3, shown in figure 16, are clearly different from those obtained
under the no-slip boundary condition shown in figure 11. The major differences
include: (i) the transition to QP through period doubling of mode 1/2 disappears;
(ii) the period doublings of synchronisation modes still exist both inside (mode 1/2)
and outside the parameter space otherwise occupied by the primary synchronisation
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FIGURE 15. The u-velocity profiles along the vertical line passing through the cylinder
centre (x/D = 0) at (A/D, fd/fSt∗) = (0.2, 1.459) under (a) fixed-wall condition and
(b) symmetry-wall condition.

mode of 1/2; (iii) the odds of period doubling of the primary synchronisation mode
(1/2) is increased substantially; (iv) the area covered by the primary synchronisation
mode of 1/2 increases substantially and shifts towards to the direction of high fd/fSt∗ ;
and (v) the synchronisation modes other than 1/2, 2/4, 2/3 and 4/6 largely disappear
over the range of fd/fSt∗ covered in this study. The regime map shown in figure 16
shares certain similarities to that of an isolated cylinder (Tang et al. 2017), with a
major exception that period doublings of the mode 1/2 were not observed in Tang
et al. (2017). The instantaneous flow fields illustrated in figure 17 for the case at
(A/D, fd/fSt∗)= (0.2, 1.459) with the symmetry-wall condition on the plane wall show
that no shear layers are formed on the plane wall. However, the asymmetry of the
shear layers formed on the cylinder still exists, as shown by the variation of mean
u velocity component with y sampled at x = 0 in figure 15(b), albeit the degree of
asymmetry is less severe than that observed under the no-slip boundary condition.
The average velocity through the gap is slightly larger than that over the top side of
the cylinder. The observations suggest that (i) the shear layer formed above the plane
wall is responsible for the transition to QP at this A/D and (ii) the asymmetry of
the mean approaching flow around the cylinder is responsible for the period-doubling
behaviours both inside and outside the parameter space otherwise occupied by the
primary synchronisation mode of 1/2, based on the comparison of the regime maps
with that reported by Tang et al. (2017). To further investigate the influence of the
shear layers formed on the wall, simulations are also conducted at A/D = 0.2 and
0.3 under the moving-wall conditions. The flow regime map obtained under the
moving-wall conditions (not shown here) is very similar to that shown in figure 16.
Although shear layers do form in the vicinity of the cylinder under the moving-wall
conditions, the strength and extent of the shear layers are substantially smaller than
those observed under the fixed-wall conditions.

The results presented so far (see figures 11 and 16) show that the flow asymmetry
and the interaction of the plane-wall boundary layer with vortices shed from the
cylinder are two potential culprits for transition to QP through a cascade of period
doublings under the fixed-wall conditions. We are, however, still unclear how the level
of flow asymmetry affects the flow synchronisation modes. To quantify the influence
of the level of flow asymmetry, further simulations are carried out for steady linear
shear approaching flow around an isolated cylinder undergoing streamwise oscillations.
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FIGURE 16. The bifurcation diagram plotted with varying normalised excitation amplitude
(A/D) and normalised excitation frequency ( fd/fSt∗) at G/D = 1.0 under symmetry-wall
conditions.
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FIGURE 17. Instantaneous flow field of a mode 2/4 at (A/D, fd/fSt∗)= (0.2, 1.459) under
symmetry-wall conditions over four cycles of cylinder oscillation.

The shear flow in the simulations is generated by imposing u(y)= uc +Ky, v = 0 on
the inlet boundary, where uc is the approaching velocity at y= 0 (with x-axis passing
through the centre of the cylinder) and K is the transverse velocity gradient. Along
the outlet boundary, ∂u/∂y = K and ∂v/∂x = 0 are enforced. A no-slip boundary
condition (i.e. u= 0, v = 0) is specified on the cylinder surface. Boundary conditions
of ∂u/∂y = K and v = 0 are applied on the top and bottom boundaries, which are
located 4D either side of the centre of the cylinder, following that used by Lei,
Cheng & Kavanagh (2000a). The relatively small width of the computational domain
is used in order to generate large shear levels in the flow and avoid reverse flow in
the computational domain. The shear parameter is defined as k = KD/uc and Re is
defined using uc. The numerical test is conducted over ( fd/fst∗, k)= (1.2–2.0,0.05–0.2)
at Re= 175 and A/D= 0.2.

Figure 18 shows the bifurcation diagram plotted with varying k and fd/fSt∗ at A/D=
0.2 for an isolated cylinder in a uniform linear shear flow and a near-wall cylinder
under the fixed-wall condition. An equivalent k value for the near-wall cylinder is
determined by

k=
1
uc

∫ G+D

G

∂u
∂y

dy, (4.1)
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FIGURE 18. The bifurcation diagram plotted with varying shear parameter (k) and
normalised excitation frequency ( fd/fSt∗) at A/D= 0.2 for an isolated cylinder in uniform
linear shear flow and a near-wall cylinder at different G/D under fixed-wall conditions:
(a) linear shear flow, k = 0.2; (b) G/D = 1.0, equivalent k = 0.13 (data extracted from
figure 11); (c) linear shear flow, k= 0.1; (d) linear shear flow, k= 0.05; and (e) G/D= 2.0,
equivalent k= 0.02 (data extracted from figure 11).

with the velocity gradient obtained from the velocity profile given in figure 3, where
the cylinder is removed and y= 0 is on the plane wall. The equivalent k values are
0.13 and 0.02 for G/D= 1.0 and 2.0, respectively. A transition from 1/2 to 8/16 and
then to QP is observed for k = 0.20 and fd/fst∗ in the range of 1.35–1.37 (as shown
in figure 18a). The results shown in figure 18 suggest that the period doubling and
transition to QP are indeed k-dependent. No period doubling occurs in the case with
small k = 0.05 in the uniform linear shear flow. The period doubling occurs in both
uniform linear shear flow cases with k> 0.05. Although period doubling from 1/2 to
2/4 occurs in reasonably wide bands of fd/fst∗ for the cases with k= 0.10 and 0.20, no
transition to QP is observed within the Arnold tongue. The above observations appear
to support our inference that the interaction of vortex shedding from the cylinder with
the plane-wall boundary layer is primarily responsible for the transition to QP through
cascade of period doublings inside the Arnold tongue. The transition to QP in the
range of 1.35< fd/fst∗< 1.37 mentioned above is outside of the Arnold tongue, which
is different from that observed under the fixed-wall conditions. No further attempts are
made to increase the k value due to the numerical difficulty associated with possible
negative velocity near the lower lateral boundary of the computational domain.

The occurrence of flow instabilities inside the otherwise synchronisation region
has also been observed previously. For example, Ren et al. (2019) found regime D
and F flows (spatio-temporal reflection symmetry breaking) within a region occupied
by regime A flow (with spatio-temporal symmetry) at small gap ratios in oscillatory
flow around four cylinders in a diamond arrangement. They attribute this strange
behaviour to mode competition of the flows through the gaps between the cylinders
and around the cylinder cluster. Similar mode completion mechanisms also exist
in the cases studied in the present study. This interpretation is somewhat similar
to the flow asymmetry discussed in the present study. Li et al. (2016) numerically
investigated the VIV of a circular cylinder at Re = 200. It was found that the VIV
is periodic (1/2 regime) for an isolated cylinder with reduced velocity of 6.5 and 7,
but it becomes quasi-periodic when a plane wall is introduced with G/D= 1.0. It is
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FIGURE 19. Instantaneous vorticity contours of mode 7/18 for an oscillating cylinder near
a moving wall at ( fd/fSt∗,A/D,G/D)= (2.497, 0.1, 1). Four inclined dashed lines are used
to separate the groups of seven pairs of vortices in 18Td.

fd/fSt∗ 1.347 2.319 2.366 2.385 2.497 2.525 3.058 3.442 3.498 3.507 3.573

Mode 9/13 6/14 5/11 7/17 7/18 5/13 5/16 5/18 3/11 3/11 4/15

TABLE 3. OMs with 10< q< 20 at G/D= 1.0 under moving-wall conditions.

speculated that the transition to QP of VIV in the case reported by Li et al. (2016)
is also strongly related to the shear layer developed on the plane wall. No further
investigation is carried out to substantiate this speculation because it is outside the
scope of the present study.

4.1.5. Modes with q> 10 and hysteresis
Tang et al. (2017) demonstrated that more synchronised modes with different p/q

ratios could be identified if the control parameters are further refined. This feature
also applies to the near-wall cylinders that are investigated in this study. Table 3
provides a summary of 11 OMs with 10< q< 20 at G/D= 1.0 under the moving-wall
conditions. For example, a mode of 7/18 is observed at fd/fSt∗ = 2.497, which suggests
that seven pairs of vortices are shed in 18Td. Figure 19 shows four instantaneous flow
structures of mode 7/18 over 18Td. The four inclined dashed lines illustrate a method
to separate the groups of vortices. With these inclined dashed lines, we are able to
separate the groups of seven pairs of vortices shed in 18 oscillation cycles (mode
7/18). The vortex-shedding process repeats in every 18 cycles of cylinder oscillation.
Therefore, by following the four inclined dashed lines, the vortex-shedding process
in three successive 18 cylinder oscillation cycles can be observed. This process is
essentially the same as the modes with q lower than 10.

Hysteresis is checked for three cases near a critical point ( fd/fSt∗, A/D, G/D) =
(1.594, 0.1, 1.0) under the fixed-wall conditions, and the results are detailed in
table 4. The initial conditions from a fully developed mode 1/2 flow field at
( fd/fSt∗, A/D, G/D) = (1.594, 0.1, 1) are used to test the hysteresis in these cases.
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FIGURE 20. Effect of the oscillation amplitude on the synchronisation modes for a near-
wall cylinder at G/D= 1.0 under fixed-wall conditions. The shaded areas and dashed lines
show the locations of selected modes. Refer to figure 5 caption for more details.

fd/fSt∗ 1.584 1.573 1.563

Zero initial condition QP 4/7 QP
Fully developed field 1/2 4/7 QP

TABLE 4. Synchronisation mode under different initial conditions.

Hysteresis is only found for fd/fSt∗ = 1.584, suggesting a very minor hysteresis effect
in the wake of the cylinder under forced in-line oscillations based on the limited
number of simulations. Further investigations with more simulations are beyond the
scope of the present study.

4.2. Effect of oscillation amplitude

The effect of A/D on the flow synchronisation mode is illustrated under the fixed-wall
conditions with G/D=1.0, primarily through the map of synchronisation modes in the
( fd/fSt∗, A/D) plane and the frequency content of the lift.

4.2.1. Synchronisation modes
The influence of oscillation amplitude on the synchronisation modes in the

( fd/fSt∗, A/D) plane is illustrated in figure 20 for the fixed-wall conditions with
G/D = 1.0. A fine increment of 0.01 of fd/fSt∗ is used for A/D = 0.2 and 0.3
(except for mode 0/1 at A/D = 0.3, where an increment of 0.05 is adopted). Five
fd/fSt∗ ratios are selected (i.e. fd/fSt∗ = 1.250, 1.563, 1.876, 2.188 and 2.501), and
simulations are conducted with a fine A/D increment of 0.01 within A/D∈ [0.01, 0.4].
To confirm the boundaries of modes 1/3 and 0/1, the flow with fd/fSt∗ = 2.897 is
simulated with A/D ∈ [0.1, 0.3], and two more cases with fd/fSt∗ = 3.438 and 3.959
are simulated with A/D ∈ [0.2, 0.3]. The shaded areas and dashed lines show the
bands of synchronisations, which are referred to Arnold tongues according to Olinger
& Sreenivasan (1988).
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Generally, three trends are observed on the synchronisation modes as A/D increases.
Firstly, the fd value that is required for the occurrence of a certain mode is reduced
when A/D increases, which is consistent with the results of an isolated cylinder as
reported by Tang et al. (2017) and Leontini et al. (2013). Secondly, the number of
synchronisation cases for certain dominant modes, such as modes 2/3, 3/5, 1/2, 3/7
and 1/3, significantly decreases as A/D increases from 0.1 to 0.2. Thirdly, the variety
of synchronisation modes decreases with increasing A/D. For example, modes 6/7,
5/6, 4/5, 3/4 and 1/4 are observed at A/D= 0.1 but not at A/D= 0.2. In addition,
modes 2/3, 3/5, 3/7, 3/8 and 1/3 are not found at A/D = 0.3. Tang et al. (2017)
pointed out that fine increments are required to systematically capture synchronisation
modes composed of relatively large natural numbers of p and q. For relatively
small fd/fSt∗ , the reduction of synchronisation modes with increasing A/D is again
because the modes with very narrow bands of synchronisation require extremely fine
increments of fd/fSt∗ . Moreover, at A/D= 0.3 with relatively large fd/fSt∗ , a large area
is covered by mode 0/1, which indicates that the flow is dominated by the cylinder
oscillation in this regime. The domination of cylinder oscillation is the reason why
some of the synchronisation modes, such as modes 1/3 and 1/4, disappeared at this
range of A/D and fd/fSt∗ .

Two substantial differences are observed by comparing the present regime map with
that for an isolated cylinder reported by Tang et al. (2017). Firstly, two large bands
of modes 2/5 and 1/3 are observed for the near-wall cylinder, while the modes 2/5
and 1/3 bands are extremely narrow for an isolated cylinder. As discussed in the
previous section, the flow asymmetry is responsible for the significant increase in
synchronisation modes with an odd number as the denominator. Secondly, modes with
reducible mode ratios (such as modes 2/4, 4/6 and 4/8) are more pronounced at
large A/D values. Most of the modes with a reducible ratio (modes 2/4 and 4/8) are
found within the range of the primary synchronisation regime, while a few are found
outside this range. For example, a couple of mode 4/6 cases are found near mode 2/3.
Furthermore, mode 2/6 is found near mode 1/3 at ( fd/fSt∗,A/D)= (2.501, 0.14–0.16).
The period doublings are more pronounced at larger A/D values because the vortex
shedding due to the cylinder oscillation is enhanced. Another obvious difference is
the transition to QP within the boundary of mode 1/2, which was not observed for
an isolated cylinder (e.g. Leontini et al. 2011, 2013; Tang et al. 2017).

4.2.2. Frequency content of the lift
The frequency of lift fluctuations is referred to as the fundamental frequency of

vortex shedding in the literature (Williamson 1995). The fundamental frequency of
lift is analysed here through fast Fourier transforms. The energy spectra of different
frequency components are shown in figure 21 with greyscale contours. The spectra
from each value of fd/fSt∗ are stacked next to each other to show the frequency
response of the lift for the near-wall cylinder as a function of fd/fSt∗ . The amplitude
of each frequency component in the spectrum is normalised by the number of
sampling points in each case. The cutoff ranges of the contours are selected to
ensure that the frequency components with high energy are shown in the figure. The
synchronisation modes are also labelled as a reference. In this work, the change in
the vortex-shedding frequency against fd/fSt∗ is illustrated at G/D = 1.0 and three
different A/D ratios under the fixed-wall conditions.
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FIGURE 21. Contours of the frequency content of the lift signal as a function of fd/fSt∗

when G/D = 1.0 under fixed-wall conditions with greyscale contours: (a) A/D =
0.1, (b) A/D = 0.2 and (c) A/D = 0.3. The maximum and minimum values of the
greyscale shading are 0.2 and 0.002, respectively. Refer to figure 20 for the legend of
synchronisation modes.

The strongest frequency component occurs at the fundamental vortex-shedding
frequency, which is shown in darker colour in figure 21, accompanied by the sum and
difference frequencies of the primary vortex-shedding frequency and driving frequency.
A detailed discussion regarding the frequency variation for G/D=∞ against A/D was
provided by Leontini et al. (2011), and the change in the vortex-shedding frequency
as a function of fd at A/D= 0.1 was provided by Tang et al. (2017). At A/D= 0.1
(figure 21a), a gradual transition (reduction) process is observed for the dominating
frequency ( fL/fd) with increasing fd/fSt∗ . During this gradual transition stage, the flow
mode p/q changes from 1/1 to 1/4 (reduction). A plateau in the fL/fd versus fd/fSt∗

plot indicates synchronisation to a mode ratio. For example, the flow locks onto
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mode 1/2 for a large range of fd/fSt∗ (i.e. fd/fSt∗ ∈ [1.59, 2.06]), onto mode 1/3 for
fd/fSt∗ ∈ [2.64, 3.01], and onto mode 1/4 for fd/fSt∗ ∈ [3.77, 3.84].

Apart from the primary vortex-shedding frequency ( fs), other strong frequencies
(light-grey lines) can be observed in figure 21. The first frequency is symmetrical
about fs/fd with respect to the line fL/fd = 0.5, which is quantified as fd − fs. The
second is fd, a well-defined line of fL/fd = 1. Similar to an isolated cylinder, all
the frequency contents can be expressed as linear combinations of fd and fs as
|±Mfs ± Nfd|. The frequency contents in the range fL/fd ∈ [1, 2], [2, 3] and so on
are the scaled (down) images of fL/fd ∈ [0, 1] with weaker energy. The relationships
of fL/fd versus fd/fSt∗ are rather similar for A/D = 0.1 and A/D = 0.2, except that
the gradual transition occurs earlier for A/D = 0.2. However, the variation in the
frequency content of the lift becomes less obvious for A/D = 0.3, and fL/fd shows
step changes when the regime transitions happen. This phenomenon occurs because
the variation in synchronisation modes and the number of QP cases between these
regimes significantly decrease due to the high level of disturbances. For mode 0/1,
fL/fd ≈ 1 suggests that two pairs of vortices are shed at the same time during one
period of cylinder oscillation. Moreover, the lowest frequency content observed at
A/D = 0.2 and fd/fSt∗ > 2.65 (figure 21b) represents the secondary vortex-shedding
frequency ( fSV) of the QP mode. Further analyses for mode 0/1 and the secondary
vortex shedding are detailed in § 4.2.3.

4.2.3. Mode 0/1
For relatively large A/D and fd/fSt∗ , a large area in the parameter space is covered

by mode 0/1. For an isolated cylinder with mode 0/1, a pair of symmetric vortices
forms in each cylinder oscillation period (resulting in zero lift), and the vortex
shedding from a steady approaching flow is deemed to be fully suppressed (Tang
et al. 2017). The time sequence for the binary vortex street of an isolated cylinder
can be found in figure 2 of Xu et al. (2006). Although the symmetry in the wake is
broken when a plane wall is introduced, the 0/1 mode still exists.

A detailed analysis regarding the 0/1 mode for G/D = 1.0 is conducted here to
understand the wall effect on this particular flow mode under the fixed-wall conditions.
Three main features of the 0/1 mode are discussed here:

(i) The boundary line for mode 0/1 in figure 20 is plotted in figure 22, together
with the data from Tang et al. (2017) and Leontini et al. (2013) for an isolated
cylinder. The boundary line from Tang et al. (2017) was estimated from the five
labelled data points. The comparison in figure 22 indicates that the fixed wall
with G/D= 1.0 does not significantly change the onset condition of mode 0/1.

(ii) The lift is not zero for mode 0/1 in the case of a fixed wall at G/D = 1.0
due to the flow asymmetry with respect to y= 0. The lift fluctuates periodically
with the cylinder oscillations. A typical 0/1 wake structure for G/D = 1.0 is
shown in figure 23(c), where vortices are shed simultaneously from the bottom
and top sides of the cylinder and two nearly parallel shear layers form in the
wake, similar to the results reported in Tang et al. (2017). The corresponding
temporal variation of lift is shown in figure 24(cii). The Lissajous phase diagram
of X(τ ) and CL(τ ) shows a double-lobed structure. The Lissajous phase diagram
for mode 0/1 could also be a single loop, which is similar to that for mode
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FIGURE 22. Boundary line for mode 0/1 extracted from figure 20 alongside the boundary
line for an isolated cylinder from Tang et al. (2017) and a boundary point from Leontini
et al. (2013).

1/1. For this reason, the Lissajous phase diagram alone is not sufficient to
identify the synchronisation mode of the flow. Both flow patterns and the
Lissajous phase diagram are used to identify flow synchronisation modes in this
work.

(iii) A large area below the 0/1 mode region in figure 20 is covered with the
QP mode. A secondary wake is observed in the wake for cases with this QP
mode. One typical example of the QP mode is shown in figures 23(b) and
24(b), ( fd/fSt∗, A/D) = (3.8, 0.2). In the near wake (x/D < 4), the vortices
that are shed from the cylinder surface are very similar to those observed
in the 0/1 mode (figure 23c), but further downstream (x/D > 5), the small
vortices that are shed from the cylinder merge into larger vortices and form a
new secondary vortex street. The vortex-shedding frequency in the secondary
wake is 0.1544, which is 22 % of fd. The formation of this secondary vortex
street is attributed to the instability of the shear layers in the wake. Similar
observations were reported in the wake of a stationary cylinder (Thompson
et al. 2014). When A/D is further reduced to 0.1, the wake flow regains
synchronisation to mode 1/4, ( fd/fSt∗, A/D) = (3.8, 0.1), as shown in figures
23(a) and 24(a). In the 1/4 mode, the vortex shedding occurs alternatively in
the wake near the cylinder, which is fundamentally different from the other two
QP modes.

5. Three-dimensional effects
The potential influence of three-dimensionality of the flow on the results obtained in

the present study is examined by conducting 3-D simulations with purposely selected
parameters. The majority of the 3-D simulations are conducted at G/D = 0.5 (the
smallest gap investigated in this study), which is chosen because the 3-D effect is
likely to peak at a gap ratio near 0.5, based on the findings on a stationary cylinder
next to a moving wall (Rao et al. 2013, 2015; Jiang et al. 2017a).

To manage the high demands on computing resources, a relatively coarse mesh
and short downstream domain length of 30D (1/6 of the total elements of the 2-D
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FIGURE 23. Instantaneous vorticity flow fields for a near-wall cylinder under fixed-wall
conditions with G/D = 1.0: (a) an example case of mode 1/4, with ( fd/fSt∗, A/D) =
(3.8, 0.1); (b) a QP case with secondary vortex shedding (SVS) after binary vortices (BV),
with ( fd/fSt∗, A/D)= (3.8, 0.2); and (c) a case of mode 0/1 with BV and parallel shear
layers (PLS), with ( fd/fSt∗, A/D)= (3.8, 0.3).

simulations) are used. Firstly, the 2-D mesh is checked at ( fd/fSt, A/D, G/D) =
(4, 0.1, 0.5) under fixed-wall conditions. As shown in table 6 of appendix A, good
agreement between the results obtained using these two meshes are achieved with
identical fsD/u0 and exactly the same synchronisation mode. The CD,mean value
varies by less than 1 %, whereas CD,std and CL,std vary by less than 1.1 % and
2 %, respectively. Therefore, this coarse mesh is selected for the 3-D simulations
here. A spanwise length of 12D with 120 Fourier planes is chosen, based on the
finding reported by Jiang et al. (2016). A random perturbation of amplitude 0.01 is
added to both velocity and pressure in the initial conditions. The variation of flow
three-dimensionality is further examined with the spanwise kinetic energy Ez, which
is defined as

Ez =
1
2

∫
V

(
w
u0

)2

dV, (5.1)

where V is the volume of the entire domain. The Q isosurfaces are used to illustrate
the 3-D flow structures (Hunt, Wray & Moin 1988), where the Q function object
calculates and stores the second invariant of the velocity gradient tensor, i.e.

Q= 1
2 [(tr(∇u))2 − tr(∇u · ∇u)]. (5.2)

Flow transition to 3-D for an isolated stationary cylinder in a steady approaching
flow occurs at Recr ≈ 194 (Williamson 1996; Jiang et al. 2016). Since the present
simulations are conducted at Re = 175, the flow is 2-D without the presence of the
plane wall and cylinder oscillations. When the plane wall alone is introduced, the
flow is not expected to transit to 3-D because the flow velocity reduction in the
boundary layer will lead to a reduction of local flow Re, especially at G/D = 1.0
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FIGURE 24. The spectrum of CL, the transient trace of CL(τ ) (red line) with cylinder
displacement X(τ ) (black line), and the Lissajous phase diagram of X(τ ) and CL(τ )
for a near-wall cylinder with G/D = 1.0 under the fixed-wall conditions: (a) mode
1/4, ( fd/fSt∗, A/D) = (3.8, 0.1); (b) QP, ( fd/fSt∗, A/D) = (3.8, 0.2); and (c) mode 0/1,
( fd/fSt∗, A/D)= (3.8, 0.3).

where the interesting physical phenomena are observed. To confirm this conjecture,
3-D simulations of a steady approaching flow ( fd/fSt∗ = 0) around a near-wall cylinder
with G/D= 0.5 and 1.2 are conducted at Re= 175. The results shown in appendix C
suggest that the flow remains 2-D in both cases, as evidenced by temporal variations
of Ez that converge to 1.13× 10−8 and 2.32× 10−11, respectively.

To quantify the influence of cylinder oscillations on flow transitions to 3-D,
additional simulations over a wide range of fd/fSt∗ are conducted at Re = 175,
A/D = 0.1 and G/D = 0.5 under both fixed-wall and moving-wall conditions. The
selection of a relatively small A/D= 0.1 for the demonstration here is not expected
to alter the conclusion drawn in this section because the major physical phenomena
observed at A/D > 0.1 are also observed at A/D = 0.1 (figure 20). The choice of
G/D = 0.5 is because transition to 3-D is expected for Re = 175 and G/D = 0.5 in
steady approaching flow around a cylinder above a moving wall. The Lissajous phase
diagram of X(τ ) and CL(τ ) (black for 2-D simulations and red for 3-D simulations),
isosurfaces of Q (Q=±0.8), the comparison of synchronisation modes and the time
histories of Ez for selected 3-D simulations under moving-wall conditions are shown
in figure 25.

The three-dimensionality is first examined at G/D = 0.5 under the moving-wall
conditions. For a non-oscillating cylinder, as shown in figure 25(a), Ez increases
exponentially with time in the early stage and then stabilises at an equilibrium value.
As an example, the time history of w at a sampling point of (x/D, y/D, z/D) =
(2, 1.5, 6) is plotted together with Ez in figure 25(a), where the increasing trend
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FIGURE 25. The Lissajous phase diagram of X(τ ) and CL(τ ) (black for 2-D simulations
and red for 3-D simulations), isosurfaces of Q, spanwise length (L), synchronisation modes
and the time histories of the spanwise kinetic energy Ez for 3-D simulations at G/D= 0.5
under moving-wall conditions.

of w agrees well with that of Ez. The fluctuation of w is cancelled when it is
integrated to calculate Ez. For the cases that decay to 2-D, w decays rapidly to
zero, as shown in figure 25(d). The isosurfaces show an ordered mode A structure
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(spanwise characteristic length L= 4D of the 3-D flow structure) without dislocations,
which is consistent with Jiang et al. (2017b). On the other hand, for oscillating
cylinders, although the wake structures do show some 3-D features at relatively
low driving frequencies (i.e. fd/fSt∗ < 1.68), the synchronised modes identified from
3-D simulations are identical to those observed in 2-D simulations. Interestingly,
the 3-D wake structure with L = 1.7D in mode 1/1 is observed after the wake
structure is fully developed, as shown in figures 25(b) and 25(c). The wake structure
for QP cases can be relatively regular with L = 4D at some instants, as shown
in figure 25(e), or irregular, as shown in figure 25( f ). For relatively large driving
frequencies (i.e. fd/fSt∗ > 1.68, as shown in appendix C), the wake structure decays to
2-D. The results suggest that cylinder oscillation tends to suppress 3-D instabilities
at this particular pair of G/D= 0.5 and A/D= 0.1.

Under the fixed-wall conditions, Ez decays rapidly to zero, following an initial
growth stage in some of the cases with fd/fSt∗ 6= 0. The wake structure is exclusively
2-D and the synchronisation modes identified from 2-D and 3-D simulations are
identical, including the case with G/D= 1.2 (shown in appendix C). This observation
suggests that the influence of the plane wall and cylinder oscillations is not significant
enough to cause the flow transition to 3-D over those particular parameter ranges.

A satisfactory agreement between 2-D and 3-D simulation results on the force
coefficients is also observed for 2-D and 3-D results on the force coefficients
with varying fd/fSt∗ under both moving-wall and fixed-wall conditions (shown in
appendix C).

The above results, especially those obtained under the moving-wall conditions,
suggest that three-dimensionality of the flow does not significantly affect the
identification of flow synchronisation modes for the time period shown here. The
conclusions drawn from 2-D simulations are expected to hold for 3-D flows under
the parameter ranges of the present study.

6. Conclusions

Two-dimensional numerical simulations are conducted for a near-wall cylinder
that undergoes streamwise oscillations with varying oscillation amplitude (A/D) and
frequency ( fd/fSt∗) in a steady approaching flow at Re= 175. Different gap-to-diameter
ratios (G/D) are considered to investigate the influence of the wall boundary layer on
wake formation around the oscillating cylinder and the hydrodynamic characteristics.
The wall effect is also investigated under fixed-wall, moving-wall and symmetry-wall
conditions to differentiate the influences of the plane-wall boundary layer and
flow asymmetry induced by the geometrical setting. The major conclusions can
be summarised as follows.

A variety of synchronisation modes for a wall-bounded cylinder (also referred to
as p/q modes, following Tang et al. (2017)) are identified. The synchronised flow is
relatively robust to changes in the controlling parameters for small p and q values.
Although the phenomenon of synchronisation is similar to that of an isolated cylinder,
interactions between the cylinder and the boundary layer along the plane wall notably
affect the wake formation. As the cylinder is moved closer to the wall, the percentage
of occurrence of synchronisation modes with an odd number as the denominator (such
as 1/3) significantly increases, in contrast to that of an isolated cylinder, where the
synchronised flow prefers an even number as the denominator in the mode ratio (such
as 1/4). This behaviour is ascribed to the asymmetric wake formation of the near-
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wall cylinder. The interaction between vortices shed from the cylinder with the shear
layer formed above the plane wall and the flow acceleration through the gap lead to
a wake inclined to the free-stream direction and asymmetric vortex shedding from the
cylinder.

The period-doubling phenomenon is observed for a near-wall cylinder undergoing
streamwise oscillations over certain ranges of parameters investigated in the present
study. The breaking of spatio-temporal symmetry, induced by the wall, is identified to
be responsible for the phenomenon. Period doubling occurs only when the asymmetry
of the flow reaches above a critical level, which can be measured by the velocity
gradient in the wall boundary layer.

Transitions to quasi-periodic states through a cascade of period doublings inside
the primary synchronisation region are discovered in the present study. Through
specifically designed numerical tests (different wall boundary conditions and the
linear shear flow), the interaction of asymmetric vortex shedding from the cylinder
(due to a geometry asymmetry) and the boundary layer developed on the wall is
found to be the primary cause for this phenomenon.

The fixed wall also tends to stabilise the wake formation, as evidenced by the
decrease in the variety of synchronisation modes with large p and q values (such as
those with q> 10) as the cylinder is moved close to the wall. The flow mechanism
associated with this phenomenon is the same as that responsible for the suppression
of vortex shedding from a wall-bounded cylinder in steady approaching flow. At
small gap ratios, for example in the case of (G/D, A/D)= (0.5, 0.1), only the three
strongest modes (0/1, 1/2 and 1/1) are present.

The mean values of the drag coefficient and r.m.s. values of the lift coefficient
are generally larger in the region of synchronisation than those outside the range
of synchronisations. The increases in the force coefficients are more pronounced
in relatively wide synchronisation regions with small values of q than those in
narrow synchronisation regions with large q values. This behaviour is caused by the
enhanced vortices in the wake at resonance and occurs under both moving-wall and
fixed-wall conditions. However, the moving wall does appear to increase the drag
coefficient compared to a wall-free cylinder, whereas the fixed-wall effectively lowers
the drag coefficient, largely due to different ambient flow velocities under different
wall conditions.

The frequency contents in the spectrum of lift coefficients are linear combinations
of driving and vortex-shedding frequencies in all the synchronised regions. At low
forced amplitudes, the transition of the vortex-shedding frequency between modes is a
gradual process. The plateaus indicate different synchronised regimes, i.e. p/q modes,
which are interleaved with numbers of quasi-periodic cases. However, large forced
amplitudes of cylinder oscillation lead to apparent jumps in the vortex-shedding
frequency, corresponding to the jumps in the ratios of p/q modes. This is because
the variety of synchronisation modes and the number of quasi-periodic modes
are significantly reduced when large amplitudes of perturbation (i.e. large forced
amplitudes) are introduced.

Although three-dimensionality of the flow develops in some of the cases under the
moving-wall conditions, the synchronisation modes identified through 2-D and 3-D
simulations remain identical for the cases where 3-D simulations are conducted. This
observation suggests that the conclusions drawn from 2-D simulations hold for 3-D
flows, at least in the parameter ranges covered in the present study.
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Appendix A
A rectangular computational domain is employed in the 2-D numerical simulations.

The domain length in the x-direction is 128D, with 28D upstream and 100D
downstream of the cylinder. The domain width in the y-direction is 28D and G
on the top and wall sides, respectively. The mesh dependence is checked here
under both fixed-wall and moving-wall conditions with a constant Re = 175 and
( fd/fSt, A/D, G/D) = (4, 0.1, 0.5). Four meshes are generated by changing the
polynomial order (Np). As shown in table 5, Np varies from 5 to 8, with the total
number of cells ranging from 211 232 to 646 898, and the size of the first layer grid
next to the cylinder surface varies from 0.0060D to 0.0034D. The time step was
held constant at 0.002 with varying Np. The Courant–Friedrichs–Lewy (CFL) number
is far below 1. Further checks are conducted on mesh 2 by varying the time step
(as shown in meshes 2-a and 2-b, 1tu0/D = 0.001–0.003), alongside the domain
size (as shown in meshes 2-c and 2-d).

Comparisons of the simulation results based on these meshes under fixed-wall
and moving-wall conditions are given in tables 5(a) and 5(b), respectively. Excellent
agreement between the results from these meshes can be observed. More importantly,
an identical flow synchronisation mode is captured by these different meshes. The
CD,std and CL,std values vary by less than 0.16 % and 1.27 %, respectively. In table 5(c),
mesh 2-d is chosen at mode 3/7, where the flow displays a secondary shedding
frequency at 1/7. The values of CD,mean, CD,std, CL,mean and CL,std vary by less
than 1 % between the cases of 100D and 200D. The synchronisation modes and
frequency component of the lift are exactly identical. Therefore, the length of the
outlet boundary has minimal influence on the results and 100D is sufficient to
visualise the key structures.

These results suggest that a reasonable mesh convergence has been achieved.
Mesh 2 is selected conservatively for the rest of the 2-D simulations in this work.

A relatively coarse mesh and short downstream length of 30D (one-sixth of the
total elements of the 2-D simulations) is used in the 3-D simulations. Firstly, the
2-D coarse mesh is checked at ( fd/fSt, A/D, G/D) = (4, 0.1, 0.5) under fixed-wall
conditions. As shown in table 6, good agreement between these two meshes is
achieved with identical fsD/u0 and exactly the same synchronisation mode. The
CD,mean value varies by less than 1 %, whereas CD,std and CL,std vary by less than
1.1 % and 2 %, respectively. Therefore, this coarse mesh is selected for the 3-D
simulations here. A spanwise length of 12D with 120 Fourier layers is chosen, based
on Jiang et al. (2016).
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(a) ( fd/fSt∗ , A/D,G/D)= (4, 0.1, 0.5) under fixed-wall conditions

Mesh Domain size Np
1tu0

D
Nv ∆/D CD,mean CD,std CL,std Mode

1 128D× (28D+G) 5 0.002 211 232 0.0060 0.7228 6.0354 0.0552 0/1
2 128D× (28D+G) 6 0.002 330 050 0.0048 0.7234 6.0356 0.0552 0/1
3 128D× (28D+G) 7 0.002 475 272 0.0040 0.7236 6.0354 0.0551 0/1
4 128D× (28D+G) 8 0.002 646 898 0.0034 0.7232 6.0356 0.0552 0/1
2-a 128D× (28D+G) 6 0.001 330 050 0.0048 0.7234 6.0341 0.0551 0/1
2-b 128D× (28D+G) 6 0.003 330 050 0.0048 0.7235 6.0377 0.0551 0/1
2-c 128D× (20D+G) 6 0.002 330 050 0.0048 0.7427 6.0289 0.0545 0/1
2-d 128D× (36D+G) 6 0.002 348 800 0.0048 0.7130 6.0291 0.0554 0/1

(b) ( fd/fSt∗ , A/D,G/D)= (4, 0.1, 0.5) under moving-wall conditions

Mesh Domain size Np
1tu0

D
Nv ∆/D CD,mean CD,std CL,std Mode

1 128D× (28D+G) 5 0.002 211 232 0.0060 1.6040 5.9491 0.6116 1/4
2 128D× (28D+G) 6 0.002 330 050 0.0048 1.5985 5.9518 0.6103 1/4
3 128D× (28D+G) 7 0.002 475 272 0.0040 1.6063 5.9490 0.6117 1/4
4 128D× (28D+G) 8 0.002 646 898 0.0034 1.6335 5.9511 0.6101 1/4
2-a 128D× (28D+G) 6 0.001 330 050 0.0048 1.6401 5.9439 0.6103 1/4
2-b 128D× (28D+G) 6 0.003 330 050 0.0048 1.6146 5.9508 0.6148 1/4
2-c 128D× (20D+G) 6 0.002 330 050 0.0048 1.6147 5.9461 0.6054 1/4
2-d 128D× (36D+G) 6 0.002 348 800 0.0048 1.6103 5.9421 0.6102 1/4

(c) ( fd/fSt∗ , A/D,G/D)= (2.22, 0.1, 1) under fixed-wall conditions

Mesh Domain size Np
1tu0

D
Nv ∆/D CD,mean CD,std CL,std Mode

1 128D× (28D+G) 5 0.002 204 192 0.0060 1.1751 1.5757 0.3493 3/7
2 128D× (28D+G) 6 0.002 319 050 0.0048 1.1750 1.5758 0.3492 3/7
3 128D× (28D+G) 7 0.002 459 432 0.0040 1.1747 1.5758 0.3490 3/7
4 128D× (28D+G) 8 0.002 625 338 0.0034 1.1741 1.5759 0.3485 3/7
2-a 128D× (28D+G) 6 0.001 319 050 0.0048 1.1822 1.5750 0.3488 3/7
2-b 128D× (28D+G) 6 0.003 319 050 0.0048 1.1749 1.5759 0.3504 3/7
2-c 128D× (36D+G) 6 0.002 337 800 0.0048 1.1610 1.5751 0.3329 3/7
2-d 228D× (28D+G) 6 0.002 450 300 0.0048 1.1743 1.5742 0.3491 3/7

TABLE 5. Mesh dependence study for three different parameter groups:
( fd/fSt∗, A/D, G/D) = (4, 0.1, 1), fixed-wall conditions (a); (4, 0.1, 0.5), moving-wall
conditions (b); and (2.22, 0.1, 1), fixed-wall conditions (c).

Cases CD,mean CD,std CL,std fsD/u0 Mode

2-D 0.7234 6.0356 0.0552 0.767 0/1
2-D (coarse mesh) 0.7162 5.9691 0.0542 0.767 0/1
3-D 0.7227 5.9805 0.0541 0.773 0/1

TABLE 6. Comparison of the 2-D and 3-D results for the force coefficient, vortex-shedding
frequency and synchronisation mode for ( fd/fSt,A/D,G/D)= (4, 0.1, 0.5) under fixed-wall
conditions.
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FIGURE 26. Lissajous phase diagrams of CD versus CL for each mode for G/D = 1.0
and A/D= 0.1 under fixed-wall conditions. The value of fd/fSt∗ is listed in brackets next
to each mode.

Appendix B

A range of distinctive modes of flow synchronisations are observed in this work.
Following Tang et al. (2017), the flow modes are called p/q modes. For completeness,
Lissajous phase diagrams of CD versus CL are shown in figure 26 for each mode at
G/D = 1.0 and A/D = 0.1 under fixed-wall conditions. The synchronisation modes
for q > 10 are also listed, i.e. modes 8/11, 8/13, 8/14 and 6/16. An example of a
QP case is also included. As shown in figure 26, the Lissajous phase diagrams are
characterised by time-independent enclosed and regular loops for synchronised cases,
whereas the loops do not repeat themselves by cycles and may eventually fill the entire
phase space for a non-synchronised case.
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FIGURE 27. The time histories of the spanwise kinetic energy Ez for 3-D simulations that
decay to 2D: (a) fd/fSt∗ = 0, fixed-wall conditions; (b) G/D= 0.5, moving-wall conditions.

(a) Moving-wall conditions

fd/fSt∗ 2-D 3-D Errors 2-D 3-D Errors 2-D 3-D Errors fs/fd

CD,mean CD,mean (%) CD,std CD,std (%) CL,std CL,std (%)

1.90 1.7174 1.7062 −0.65 1.3704 1.3578 −0.92 0.9043 0.8956 −0.96 1/2
3.87 1.6160 1.6192 0.20 5.9472 5.8858 −1.03 0.6086 0.5987 −1.63 1/4

(b) Fixed-wall conditions

fd/fSt∗ 2-D 3-D Errors 2-D 3-D Errors 2-D 3-D Errors fs/fd

CD,mean CD,mean (%) CD,std CD,std (%) CL,std CL,std (%)
1.24 0.7424 0.7370 −0.73 0.3878 0.3831 −1.20 0.1154 0.1157 0.31 1/1
1.90 0.7448 0.7558 1.48 0.8853 0.8723 −1.48 0.1417 0.1403 −1.04 1/2
4.95 0.7234 0.7227 −0.10 6.0356 5.9805 −0.91 0.0552 0.0541 −2.05 1/4

TABLE 7. Comparison of the 2-D and 3-D results on the force coefficients with varying
fd/fSt∗ at G/D= 0.5 under (a) moving-wall conditions and (b) fixed-wall conditions.

Appendix C

Three-dimensional simulations of steady approaching flow ( fd/fSt∗ = 0) around
a near-wall cylinder with G/D = 0.5 and 1.2 under fixed-wall conditions are
conducted at Re = 175. It is confirmed that the wake structure of both cases
decays to 2-D. Moreover, for an oscillating cylinder with relatively large driving
frequencies (i.e. fd/fSt∗ > 1.68) under moving-wall conditions at Re= 175, A/D= 0.1
and G/D= 0.5, the wake structure also decays to 2-D. The time histories of Ez for
some example cases are shown in figure 27.

As shown in figure 27, Ez decays rapidly to zero for these cases, following an initial
growth stage in some of the cases. The wake structure is exclusively 2-D and the
synchronisation modes identified from 2-D and 3-D simulations are identical.

Table 7 compares the 2-D and 3-D results on the force coefficients at G/D = 0.5
with varying fd/fSt∗ under both moving-wall and fixed-wall conditions. A satisfactory
agreement between 2-D and 3-D simulation results on the force coefficients is
observed under both moving-wall and fixed-wall conditions.
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