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Abstract. The results of Bergelson, Host and Kra, and Leibman state that a multiple
polynomial correlation sequence can be decomposed into a sum of a nilsequence (a
sequence defined by evaluating a continuous function along an orbit in a nilsystem) and a
null sequence (a sequence that goes to zero in density). We refine their results by proving
that the null sequence goes to zero in density along polynomials evaluated at primes and
along the Hardy sequence (bnc

c). In contrast, given a rigid sequence, we construct an
example of a correlation whose null sequence does not go to zero in density along that
rigid sequence. As a corollary of a lemma in the proof, the formula for the pointwise
ergodic average along polynomials of primes in a nilsystem is also obtained.
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1. Introduction

1.1. History and motivation. Let (X, µ, T ) be an invertible measure-preserving
system, f j ∈ L∞(µ) and let s j be an integer polynomial, i.e. taking integer values on
integers, for 0≤ j ≤ k. Then the sequence

a(n)=
∫

X
f0(T s0(n)x) · f1(T s1(n)x) · · · fk(T sk (n)x) dµ(x) (1.1)

is called a multiple polynomial correlation sequence or, for conciseness, a polynomial
correlation. If s j (n)= c j n with c j ∈ Z, we call (a(n)) a linear correlation.
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Understanding multiple correlations has been a main goal of ergodic theorists since
Furstenberg’s celebrated proof of Szemerédi theorem. A possible approach to the problem
is to find connections between correlations and the sequences that have rich algebraic
structures. For example, to prove the generalized Khintchine theorem, Bergelson, Host and
Kra [6] decomposed linear correlations into a sum of a nilsequence and a null sequence
(see §2.2 for precise definitions).

This decomposition for single linear correlations (k = 1, s j (n)= c j n) can be proved
using Herglotz’s theorem. In this case, there exists a measure σ on the circle T such
that a(n)=

∫
T e2π inx dσ(x). Decomposing σ into discrete (atomic) and continuous (non-

atomic) parts, (a(n)) is then a sum of an almost periodic sequence (one-step nilsequence)
and a null sequence.

Bergelson, Host, and Kra [6] extend this classical result to k ≥ 2 when s j (n)= jn and
(X, µ, T ) is ergodic. In their result, the almost periodic sequence is replaced by a k-step
nilsequence. By a different method, Leibman generalizes Bergelson, Host and Kra’s result
to the case that s j (n) are integer polynomials [27]. Leibman himself later removes the
ergodicity assumption in [28].

If a sequence (a(n)) can be decomposed into a sum of a nilsequence and a null sequence,
we say (a(n)) has a nil+null decomposition. In this case, the decomposition is in fact
unique (see §2.5 for the proof). The nilsequence and null sequence are then called the nil
component and the null component of (a(n)), respectively.

Nilsequences in general have been studied extensively since their introduction by
Bergelson, Host and Kra [6] in 2005. Similarly, the nil components in the nil+null
decomposition of multiple correlations have also been well studied. For example,
Bergelson, Host and Kra [6] analyzed this component to prove a generalization of
Khintchine’s theorem. Moreira and Richter [29] show that this component arises from
a system whose spectrum is contained in the spectrum of the original system.

On the other hand, little is known about the null component. The goal of this paper is
to partially fill that gap. We show that the null component goes to zero in density along
polynomials evaluated at primes and along the Hardy sequence (bnc

c). Nevertheless, for
any rigid sequence (rn), there is a correlation whose null component is not null along (rn)

(see §2.13 for a definition of rigid sequences).
It is worth mentioning that a related conjecture has been raised by Frantzikinakis

[16, Problem 13]. Letting pn denote the nth prime, Frantzikinakis conjectures that for
a linear correlation in an ergodic system (a(n)), there exists a nilsequence (ψ(n)) and null
sequence (ε(n)) such that a(pn)= ψ(pn)+ ε(n). The same conjecture is raised for the
Hardy sequence (bnc

c) instead of (pn).
Our result not only gives an affirmative answer to Frantzikinakis’ conjecture, but is

stronger in several senses. First, in the case of prime sequences, we work with polynomial
correlations rather than linear correlations. Also, we do not need the system to be ergodic.
Moreover, instead of having different nilsequences when decomposing along (pn) and
(bnc
c), we show that there is a fixed nilsequence that works for both, and in fact for many

others.
Before presenting the formal statement, we have a definition.
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Definition 1.
(1) Let (rn) be a increasing sequence of integers. A bounded sequence (a(n)) is called a

null sequence along (rn) if

lim
N→∞

1
N

N∑
n=1

|a(rn)| = 0.

(2) If rn = n, we simply call (a(n)) a null sequence.

1.2. Statement of results. The main goal of this paper is to prove the following.

THEOREM 1.1.
• The null component of a polynomial correlation is null along every sequence of the

form (Q(n)) or (Q(pn)) where Q ∈ Z[n] is non-constant and pn is the nth prime.
• The null component of a linear correlation is also null along (bnc

c) for c > 0.

Remark. By a different method, Tao and Teräväinen [30] proved the null component of a
linear correlation is null along the primes, and used this result to prove odd cases of the
logarithmic Chowla conjecture.

In fact, we prove the null component is null along a more general category of sequences,
namely good sequences. A good sequence is one that possesses two properties: Good for
projection on nilfactors (GPN) and essentially good for equidistribution on nilmanifolds
(EGEN) (see §2.11 for definitions).

To show the null component is null along good sequences, we follow an argument
similar to that of Leibman [28]. A key proposition in Leibman’s proof says that an integral
of nilsequences has nil+null decomposition (see §2.6). In §3, we refine that result by
showing the following.

PROPOSITION 1.2. The null component of an integral of nilsequences is null along any
EGEN sequence.

The fact that (Q(n)) is a good sequence follows from the work of Host–Kra [22] and
Leibman [24, 26]. On the other hand, the Hardy sequence (bnc

c) was proved to be good
by Frantzikinakis [13, 14]. In §5, we show the following.

PROPOSITION 1.3. For any Q ∈ Z[n] non-constant, the sequence (Q(pn)) is good.

The EGEN property of polynomials of primes allows us to determine the exact formula
for the pointwise ergodic average along polynomials of primes for continuous functions
in a nilsystem. Green and Tao [20] proved the average converges to the integral of the
function in the case of a totally ergodic nilsystem. Eisner [9] showed that the average
converges everywhere in an arbitrary nilsystem. But the exact formula is still missing for
this case. As a corollary of the EGEN property of (Q(pn)), we can determine the exact
average.

To be precise, for an ergodic nilsystem (X = G/0, µ, τ), let π : G→ X be the
canonical map π(g)= g0. Assume X has d connected components, and X0 is the
component containing 1X = π(1G). Let X j = τ

j X0 for j ∈ Z and µX j be the Haar
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measure of X j . Note that X i = X j if i ≡ j (mod d) (see §2.4.1). Let φ be the Euler totient
function. Then we have the following.

COROLLARY 1.4. Let (X, µ, τ ) be an ergodic nilsystem with d connected components
X0, X1, . . . , Xd−1 with X i = τ

i X0 and f be a continuous function on X. Suppose x ∈ Xk

for some 0≤ k ≤ d − 1. Then

lim
N→∞

1
N

N∑
n=1

f (τ Q(pn)x)=
1

φ(d)

∑
1≤s<d
(s,d)=1

∫
X Q(s)+k

f dµX Q(s)+k .

In the same spirit of Theorem 1.1, but in the opposite direction, we are also interested
in those sequences (rn) such that there exists a correlation whose null component is not
null along (rn). It turns out there is a well-known class of sequences satisfying such a
condition, namely rigid sequences. A sequence is called rigid if there is a weakly mixing
system (X, µ, T ) such that ‖T rn f − f ‖L2(µ)→ 0 for all f ∈ L2(µ). Examples of rigid
sequences include (2n), (3n) and (n!) (see §2.13 for more details). In §6, we prove the
following.

PROPOSITION 1.5. For any rigid sequence (rn), there exists a linear correlation whose
null component is not null along (rn).

1.3. Application. The goal of Bergelson, Host and Kra’s paper [6] is not to prove the
nil+null decomposition for a multiple correlation. They use the decomposition to prove a
generalization of Khintchine’s theorem. In a similar fashion, it follows from Theorem 1.1
and Corollary 1.4 that in an ergodic system (X, µ, T ), for any measurable set A ⊆ X and
δ > 0, the set

{n ∈ N : µ(A ∩ T−(pn−1)A ∩ T−2(pn−1)A)≥ µ(A)3 − δ}

has positive density. The same is true for the set

{n ∈ N : µ(A ∩ T−(pn−1)A ∩ T−2(pn−1)A ∩ T−3(pn−1)A)≥ µ(A)4 − δ}.

A detailed proof will appear in a forthcoming paper [8].

1.4. Open question. It is still unknown whether a similar result to nil+null
decomposition exists for a set of commuting transformations. To be precise, for a measure
space (X, µ) with commuting measure-preserving transformations T j : X→ X and
f j ∈ L∞(µ) for 0≤ j ≤ k, we define a correlation sequence

a(n)=
∫

X
f0(T n

0 x) f1(T n
1 x) . . . fk(T n

k x) dµ(x).

Frantzikinakis [15] showed that for any δ > 0 the sequence (a(n)) can be decomposed as
a(n)= ast (n)+ aer (n) where (ast (n)) is a k-step nilsequence and

lim
N−M→∞

1
N − M

N−1∑
n=M

|aer (n)|2 < δ.
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From Frantzikinakis’ result, it is natural to ask whether we have the same decomposition,
but in addition

lim
N→∞

1
N

N∑
n=1

|aer (pn)|
2 < δ?

What if we replaced (pn) by a Hardy sequence (bnc
c)? Our argument in this paper does

not apply since we do not have sufficient information about the factors that control the
multiple ergodic averages for commuting transformations [2, 3]. These factors are not
simply inverse limits of nilsystems, the objects that play a crucial role in our analysis.

1.5. Outline of the paper. Section 2 is for background and notation. In §3, we prove
the Proposition 1.2 about the integral of nilsequences. In §4, we proceed to prove that the
null component of a correlation is null along good sequences. Section 5 shows that the
polynomials of primes are good sequences, hence effectively proving Theorem 1.1. Also
in this section, we prove the limit formula of the average along polynomials of primes
(Corollary 1.4). In the last section, we construct an example of a correlation whose null
component is not null along a given rigid sequence.

2. Background and notation
2.1. Notation. A sequence is a function a : N→ C. We denote this sequence by
(a(n))n∈N, (a(n)) or sometimes only a if there is no danger of confusion.

For N ∈ N, we write [N ] = {1, 2, . . . , N }. For a function f on a finite non-empty set
S, let Es∈S f (s) denote (1/|S|)

∑
s∈S f (s). In particular, for bounded sequence (a(n)),

En∈[N ]a(n) :=
1
N

N∑
n=1

a(n).

Let (X, µ, T ) be a measure-preserving system and f ∈ L∞(X). T f is defined to be
T f (x) := f (T x) for all x ∈ X . If (Y, ν, S) is a factor of (X, µ, T ), we denote conditional
expectation of f on Y by E( f |Y ).

Let P denote the set of all primes and pn the nth prime. For d, s ∈ Z, let ps (mod d),n be
the nth prime that is congruent to s (mod d).

2.2. Nilmanifolds, nilsystems and nilsequences. Let G be a k-step nilpotent Lie group
and 0 be a uniform (i.e. closed and cocompact) subgroup of G. The compact homogeneous
space X := G/0 is called a k-step nilmanifold. Let π : G→ X be the standard quotient
map. We write 1X = π(1G) where 1G is the identity element of G. Suppose G0 is the
identity connected component of G. If X is connected, then X = π(G0)= G0/(G0

∩ 0).
The space X is endowed with a unique probability measure that is invariant under

translations by G. This measure is called the Haar measure for X , and denoted by µX .
For every τ ∈ G, the measure-preserving system (X, µX , τ ) is called k-step nilsystem.

Let C(X) denote the set of continuous functions on X . For f ∈ C(X) and x ∈ X , the
sequence ψ(n) := f (τ n x) is called a basic k-step nilsequence. A k-step nilsequence is a
uniform limit of basic k-step nilsequences.
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If G is not connected, we can embed X in X ′ = G ′/0′ where G ′ is a connected
and simply-connected k-step nilpotent Lie group and 0′ is a closed, discrete cocompact
subgroup of G ′. Extending f to a continuous function f ′ on X ′ and supposing τ ′ ∈ G ′ and
x ′ ∈ X ′ are elements corresponding to τ ∈ G and x ∈ X , we have a different representation
of basic k-step nilsequence ψ(n)= f ′(τ ′n x ′) for all n ∈ Z. Therefore, if we are discussing
the basic k-step nilsequence ( f (τ n x))n∈Z, without the loss of generality, we can assume
G is connected and simply connected.

Remark. Different authors may have different concepts of nilsequences. We use the
original definition by Bergelson, Host and Kra [6]. Leibman in his series of papers [27, 28]
uses the same definition. However, in Green and Tao [19, 20] and Frantzikinakis [15],
the nilsequences are in fact our basic nilsequences. Frantzikinakis [16] even introduces
the notion of basic generalized k-step nilsequences. They are sequences of the form
( f (τ n x))n∈N when f is allowed to be Riemann integrable. We do not use this concept
in current paper.

2.3. Subnilmanifolds. Let X = G/0 be a k-step nilmanifold. A subnilmanifold Y of X
is a closed subset of X of the form Y = H x where H is a closed subgroup of G and x ∈ X .
The Haar measure on Y is denoted by µY . This measure is invariant under translation by
any τ ∈ G.

A normal subnilmanifold Z of X is a subnilmanifold which is equal to Lx for some
normal closed subgroup L of G and x ∈ X . The quotient nilmanifold X/Z := G/(L0) is
a factor of X by standard factor map G/0→ G/(L0). For a subnilmanifold Y of X , the
normal closure of Y in X is the smallest normal subnilmanifold of X that contains Y . The
normal closure of a connected subnilmanifold is connected [28, p. 5].

For τ ∈ G, we say the sequence (τ nY )n∈N is equidistributed on X if, for any f ∈ C(X),

lim
N→∞

En∈[N ]

∫
Y
τ n f dµY =

∫
X

f dµX .

2.4. Orbit closures of subnilmanifolds. In this section we summarize important facts
about orbit closures of subnilmanifolds under linear and polynomial translations.

2.4.1. Linear orbits. Let Y be a connected subnilmanifold of nilmanifold X = G/0
and τ ∈ G. Then the orbit closure of Y under action of τ is a subnilmanifold of X , namely
{τ nY }n∈N, and is denoted by OY . Suppose d is the number of connected components
of OY and Y 0 is the component containing Y . Then all connected components of OY

are Y 0, τY 0, τ 2Y 0, . . . , τ d−1Y 0. Moreover τ dn+r Y 0
= τ r Y 0 for n ∈ N, r ∈ Z, and the

sequence (τ dn+r Y )n∈N is equidistributed in τ r Y 0.
In particular, suppose (X, µ, τ ) is an ergodic nilsystem with d connected components.

Assume X0 is the component containing 1X = π(1G). Then all components of X are
X0, τ X0, . . . , τ

d−1 X0. And (τ dn+r 1X )n∈N is equidistributed on τ r X0. For details and
proofs, see [26].
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2.4.2. Polynomial orbits. A nilsystem (X, µ, τ ) is totally ergodic if and only if X is
connected [12, Proposition 2.1]. In this case, for any Q(n) ∈ Z[n] non-constant, and x ∈
X , the sequence (τ Q(n)x) is equidistributed on X . A stronger result is obtained in [14,
Lemma 6.7]

2.5. Uniqueness of nil+null decomposition. If a sequence (a(n)) has two nil+null
decompositions a = ψ1 + ε1 = ψ2 + ε2 where ψ1, ψ2 are nilsequences and ε1, ε2 are null
sequences. Then ψ1 − ψ2 = ε2 − ε1.
ψ1 − ψ2 is a nilsequence and ε2 − ε1 is a null sequence. A nilsequence returns to any

neighborhood of its supremum in a bounded gap set (due to the minimality of ergodic
nilsystems). Hence, it is a null sequence only when the supremum is 0. Thus in our case,
ψ1 − ψ2 = ε2 − ε1 = 0.

2.6. Integral of nilsequences. Let (�, ρ) be a measure space. Suppose for each ω ∈�,
there is a nilsequence (ψω(n))n∈Z. We say the family of nilsequences {ψω : ω ∈�} is
integrable with respect to ρ if, for each n ∈ Z, the function ω 7→ ψω(n) is integrable with
respect to ρ. In this case, the sequence a(n)=

∫
�
ψω(n) dρ(ω) is called an integral of

nilsequences. Leibman [28, Proposition 4.2] proved that an integral of nilsequences admits
a nil+null decomposition.

2.7. Nilfactors. Let (X, µ, T ) be an ergodic measure-preserving system. Suppose
(s j (n))n∈N is an integer valued sequence for 1≤ j ≤ k. A factor (Y, ν, S) of (X, µ, T ) is
said to be characteristic for (s1(n), . . . , sk(n)) if, for any bounded functions f1, . . . , fk

on X , we have

lim
N→∞

(
En∈[N ]

k∏
j=1

T s j (n) f j − En∈[N ]

k∏
j=1

T s j (n)E( f j |Y )
)
= 0,

where the limits are taken in L2(X, µ). Host and Kra [23] show that there exists
a characteristic factor for (n, 2n, . . . , kn) which is an inverse limit of (k − 1)-step
nilsystems. We call this factor the (k − 1)-step nilfactor of X and denote it by Zk−1(X)
(or sometimes just Zk−1 if there is no chance of confusion).

Host and Kra [22] show that for most families of integer polynomials Q j , there exists
a nilfactor Zm that is characteristic for (Q1(n), . . . , Qk(n)). Leibman [24] later showed
that the result is true for all families of integer polynomials.

2.8. Characteristic factor for integer polynomials of primes. Frantzikinakis, Host and
Kra [17] proved that Z1 factor is characteristic for a 2-tuple (pn, 2pn) where pn is the nth
prime. For k ≥ 3, they show that Zk−1 is characteristic for a k-tuple (pn, 2pn, . . . , kpn),
conditional upon results on the Mobius function and the inverse conjecture for the Gowers
norms, which have been established by Green and Tao [19] and Green, Tao, and Ziegler
[21] respectively.

2.9. Relative products. Let X1, X2 and Y be three sets. Suppose there are surjective
maps δ1 : X1→ Y and δ2 : X2→ Y . Then fiber product of X1 and X2 with respect to
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Y is defined to be {(x1, x2) ∈ X1 × X2 : δ1(x1)= δ2(x2)}. We denote this product by
X1 ×Y X2.

Suppose (X1, µ1, T1) and (X2, µ2, T2) are measure-preserving systems. Let (Y, ν, S)
be a common factor of (X1, µ1, T1) and (X2, µ2, T2). Then the relative product of X1 and
X2 with respect to Y is the measure-preserving system (X1 ×Y X2, µ1 ×Y µ2, T1 × T2)

where the following holds.
(i) The space X1 ×Y X2 is the fiber product of X1 and X2 with respect to Y .
(ii) The measure µ1 ×Y µ2 is characterized by∫

X1×Y X2

f1(x1)⊗ f2(x2) d(µ1 ×Y µ2)(x1, x2)=

∫
Y
E( f1|Y )E( f2|Y ) dν

for all f1 ∈ L2(X1) and f2 ∈ L2(X2).
By an abuse of notation, let X1 ×Y X2 denote the relative product of X1 and X2 with

respect to Y . If X1 and X2 are nilsystems, and Y is common nilsystem factor, then X1 ×Y

X2 is also a nilsystem.

2.10. Hardy sequences. Let F be the collection of functions f : R>0→ R. Define B =
F/∼ where f ∼ g if there exists a constant c > 0 such that f (x)= g(x) for all x > c.
A Hardy field is a subfield of the ring (B,+,×) which is closed under differentiation.
Examples of Hardy fields include the set of functions that are combinations of addition,
multiplication, exponential and logarithm on real variable t and real constants. Let H be
the union of all Hardy fields.

For a, b ∈H, we write a(t)� b(t) if limt→∞ b(t)/a(t)= 0. We say a function a(t) has
polynomial growth if there exists a polynomial p ∈ R[t] such that p(t)� a(t). We call the
sequence (ba(n)c)n∈N a Hardy sequence where a ∈H and b.c indicates the integral part.

Definition 2. Let a ∈H have polynomial growth and satisfy a(t)− cp(t)� log t for
every c ∈ R and p ∈ Z[t]. Then the sequence (ba(n)c)n∈N is called a Hardy sequence of
polynomial growth and logarithmically away from every multiple of polynomial of integer
coefficients.

Examples of sequences that satisfy the previous definition are (bnc
c)n∈N where

c > 0, c 6∈ Z, (bn log nc)n∈N, (n2
√

2+ n
√

3)n∈N and (n3
+ (log n)3)n∈N. From now on,

whenever we write (bnc
c), it represents the entire class of Hardy sequences of polynomial

growth and logarithmically away from every multiple of polynomial of integer coefficients.

2.11. Good sequences.

Definition 3.
(1) The sequence (rn)n∈N is said to be linearly good for projection onto nilfactors

(denoted by linear-GPN) if for any h1, h2, . . . , hk ∈ Z, there is some m such that
the m-step nilfactor is characteristic for (h1rn, h2rn, . . . , hkrn).

(2) Similarly, (rn)n∈N is said to be polynomially good for projection onto nilfactors
(polynomial-GPN) if for any s1, s2, . . . , sk ∈ Z[n], there is some m such that the
m-step nilfactor is characteristic for (s1(rn), s2(rn), . . . , sk(rn)). It is obvious that a
polynomial-GPN sequence is linear-GPN.
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By the work of Host and Kra [22] and Leibman [25],the polynomial sequence (Q(n))
is polynomial-GPN. On the other hand, Frantzikinakis [14] showed that (bnc

c) with
c > 0, c 6∈ Z is linear-GPN.

Definition 4.
(1) The sequence (rn) is said to be good for equidistribution on nilmanifolds (denoted

by GEN) if, for an ergodic nilsystem (X, µ, τ ), the sequence (τ rn 1X )n∈N is
equidistributed on X .

(2) The sequence (rn) is called essentially good for equidistribution on nilmanifolds
(EGEN) if the following holds: suppose for some s, d ∈ N such that the set {n ∈ N :
rn ≡ s (mod d)} has positive upper density. Let rs (mod d),n denote the nth element of
{rm : m ∈ N} that is congruent to s (mod d). Let (X, µ, τ ) be an ergodic nilsystem
with d connected components and X0 be the component containing 1X . Then the
sequence (τ rs (mod d),n 1X )n∈N is equidistributed on τ s X0.

Remark. Here is the difference between GEN and EGEN. In an ergodic nilsystem, the
orbit of any point along a GEN sequence is equidistributed on the nilmanifold. On the
other hand, the orbit along an EGEN sequence may not be. However, if we restrict
the sequence to a suitable arithmetic progression, the orbit now is equidistributed on a
connected component of the nilmanifold.

It is easy to see that a GEN sequence is EGEN.

Frantzikinakis [13] proved that (bnc
c) with c > 0, c 6∈ Z is GEN. He also proved that

polynomial sequences are EGEN [14, Lemma 6.7]. To demonstrate why polynomials
satisfy EGEN (but not GEN) properties, take for example Q(n)= n2, X = T× Z/3
and τ = (α, 1̄) where α is irrational. Then since n2

≡ 0 or 1 (mod 3), the sequence
(τ n2

(0, 0)) never visits the connected component T× 2̄. So it is not equidistributed on
the entire T× Z/3. However, if we consider only those n ≡ 0 (mod 3), i.e. n = 3m then
the sequence (τ ((3m)2(0, 0) is now equidistributed on the component T× 0̄. Similarly the
sequences (τ (3m+1)2(0, 0)) and (τ (3m+2)2(0, 0)) are equidistributed on T× 1̄.

Definition 5. A sequence that is both linear-GPN and EGEN is called a linear-good
sequence. Analogously, a sequence that is both polynomial-GPN and EGEN is called a
polynomial-good sequence.

From above discussion, we see that the polynomial sequence (Q(n)) is polynomial-
good while the Hardy sequence (bnc

c) is linear-good.

2.12. Gaussian system. For a positive measure σ on T, there exists a Gaussian system
(X, µ, T ) and function g ∈ L2(µ) such that σ̂ (n)=

∫
X gT n ḡ dµ for all n ∈ N. If σ is

a probability measure, then ‖g‖L2(µ) = 1. It is worth mentioning that g is a Gaussian
variable, and hence unbounded. See [7, pp. 369–371] for details.

2.13. Rigid sequences. We recall the definition of rigid sequences from the
introduction. An increasing sequence of integers (rn) is called rigid if there is a weakly
mixing system (X, µ, T ) such that ‖T rn f − f ‖L2(µ)→ 0 for all f ∈ L2(µ). Using
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Gaussian systems, we can show that a sequence (rn) is rigid if and only if there is a
continuous measure σ on T such that σ̂ (rn)→ 1 as n→∞.

Examples of rigid sequences include (qn)n∈N for q ∈ N, q ≥ 2. Generally, an increasing
sequence (rn), such that rn|rn+1, is rigid [5, 10]. Furthermore, there is a rigid sequence
with very slow growth. Let (dn) be an increasing sequence of integers of density zero.
Then there is a rigid sequence (rn) such that rn ≤ dn for all n ∈ N [1]. See [5, 10, 4] and
[11] for more exhaustive lists of rigid sequences.

3. Integral of nilsequences
To prove that a correlation sequence in a non-ergodic system has a nil+null decomposition,
Leibman [28] showed that an integral of nilsequences has such a decomposition. For this
purpose, by a series of reductions, Leibman proved that it suffices to show the following.

PROPOSITION 3.1. (Leibman [28, Proposition 4.3]) Let X = G/0 be a nilmanifold, ρ be
a finite Borel measure on G and f ∈ C(X), then the sequence ϕ(n)=

∫
G f (gn1X ) dρ(g)

has a nil+null decomposition.

By the same reduction, for the purpose of showing Proposition 1.2, i.e. the null
component of an integral of nilsequences is null along EGEN sequences, it suffices to
show the following.

PROPOSITION 3.2. With the set-up as in Proposition 3.1, in the nil+null decomposition of
(ϕ(n)), the null component is null along any EGEN sequence.

The rest of this section is devoted to proving Proposition 3.2. We start with a lemma.

LEMMA 3.3. Let X = G/0 be a nilmanifold and Z be a normal subnilmanifold that
contains 1X . Suppose τ ∈ G0 such that (τ n Z)n∈N is dense in X. Let ρ be a finite Borel
measure on G such that for ρ̃ = π∗(ρ) we have supp(ρ̃)⊆ τ Z and ρ̃(τW )= 0 for any
proper normal subnilmanifold W of Z. Let ϕ(n)=

∫
G f (gn1X ) dρ(g) for n ∈ N, X̂ =

X/Z and f̂ = E( f |X̂). Then (ϕ(n)− f̂ (π(τ n)))n∈N is null along any EGEN sequence. In
particular, the null component of ϕ is null along any EGEN sequence.

Proof. Let (rn) be an arbitrary EGEN sequence. Replacing f by f − f̂ , we can assume
E( f |X̂)= 0. We are left with the need to show that (ϕ(n))n∈N is null along (rn).

Shift ρ to the origin by replacing it by τ−1
∗ ρ. Let L be a connected subgroup of G such

that π(L)= Z . So now, supp(ρ)⊆ L and supp(ρ̃)⊆ Z .
Let d ∈ N be the number of connected components of X ×X̂ X . Note that to show ϕ

is null along (rn), it suffices to show that ϕ is null along (rs (mod d),n) for any 0≤ s ≤
d − 1 such that the set {n ∈ N : rn ≡ s (mod d)} has positive upper density. Let s be such
a number. Define

H(a, b)= lim
N→∞

En∈[N ] f ⊗ f̄ (π×2((τa, τb)rs (mod d),n ))

and
F(a, b)= lim

N→∞
En∈[N ] f ⊗ f̄ (π×2((τa, τb)dn+s))

for (a, b) ∈ L × L .
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According to the proof of Lemma 4.6 in Leibman [28], for ρ×2-almost every (a, b) ∈
L × L , the sequence un = (τa, τb)n(1X , 1X )= π

×2((τa, τb)n) is equidistributed on
X ×X̂ X . Therefore, for those (a, b), by §2.4.1, the sequence (τa, τb)dn+s(1X , 1X ) is
equidistributed on (τa, τb)s(X ×X̂ X)o, where X ×X̂ X)o is the connected component of
X ×X̂ X containing (1X , 1X ).

On the other hand, by the definition of EGEN, the sequence (τa, τb)rs (mod d),n (1X , 1X )

is also equidistributed on (τa, τb)s(X ×X̂ X)o. This implies that H(a, b)= F(a, b)=∫
(τa,τb)s (X×X̂ X)o

f ⊗ f̄ dµ(τa,τb)s (X×X̂ X)o . This equality holds for ρ×2-almost every

(a, b) ∈ L × L . So by taking the integral on L × L , with respect to ρ×2, we obtain

lim
N→∞

En∈N|ϕ(dn + s)|2 = lim
N→∞

En∈N|ϕ(rs (mod d),n)|
2.

The sequence (ϕ(n))n∈N is a null sequence along (n)n∈N. The subsequence (dn + s)n∈N
has density 1/d in N. It follows that (ϕ(n))n∈N is also a null sequence along (dn + s)n∈N.
Thus it follows that ϕ is null along (rs (mod d),n)n∈N. This fact holds true for any 0≤ s ≤
d − 1 such that {n ∈ N : rn ≡ s (mod d)} has positive upper density. Hence ϕ is null along
(rn). Since (rn) is an arbitrary EGEN sequence, we have that ϕ is null along any EGEN
sequence.

We have just shown that (ϕ(n)− f̂ (π(τ n))) is null along any EGEN sequence. By
definition, f̂ (π(τ n)) is a nilsequence. Thus (ϕ(n)− f̂ (π(τ n)) is the null component of
ϕ(n), and it is null along any EGEN sequence. This finishes our proof. �

We need a lemma from Leibman [28].

LEMMA 3.4. (Leibman [28, Lemma 4.4]) Let X = G/0 be a nilmanifold with standard
quotient map π : G→ X. Suppose ρ is a finite Borel measure on G. Then there exists an at
most countable collection V of connected subnilmanifolds of X and finite Borel measure
ρV for V ∈ V on G, such that ρ =

∑
V∈V ρV and for every V ∈ V , supp(ρ̃V )⊆ V and

ρ̃V (S)= 0 for any proper subnilmanifold S of V where ρ̃V = π∗(ρV ).

We are ready to prove Proposition 3.2.

Proof of Proposition 3.2. By Lemma 3.4, the measure ρ can be decomposed as ρ =∑
V∈V ρV where supp(ρ̃V )⊆ V and ρ̃V (S)= 0 for any proper subnilmanifold S of V .
Fix V ∈ V . Let V ′ be the normal closure of V in X . For any proper normal

subnilmanifold S′ of V ′, the intersection S′ ∩ V is a proper subnilmanifold of V by the
minimality of V ′. Therefore ρ̃V (S′ ∩ V )= 0. Since supp(ρ̃V )⊆ V , we have ρ̃V (S′)=
ρ̃V (S′ ∩ V )+ ρ̃V (S′\V )= 0.

Write V ′ = τ Z for τ ∈ G0 and a normal subnilmanifold Z of X that contains 1X . By
considering only the orbit closure (τ n Z)n∈N of Z , without the loss of generality, we can
assume that (τ n Z)n∈N is dense in X . Applying Lemma 3.3, the null component of the
sequence

∫
G f (π(gn)) dρV (g) is null along any EGEN sequence.

A convergent countable sum of nilsequences is a nilsequence. Likewise, a convergent
countable sum of null sequences along any EGEN is a null sequence along any EGEN
sequence. Therefore

ϕ(n)=
∫

G
f (π(gn)) dρ(g)=

∑
V∈V

∫
G

f (π(gn)) dρV (g)
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has a nil+null decomposition, and its null component is null along any EGEN sequence.
This finishes our proof of Proposition 3.2. �

4. Null along good sequences
In this section, we prove that the null component of a polynomial correlation is null
along any polynomial-good sequence. By the same proof, the null component of a linear
correlation is null along any linear-good sequence. The argument proceeds in three stages:
first in a nilsystem, then in an arbitrary ergodic system, and lastly in a general measure-
preserving system.

4.1. In a nilsystem.

PROPOSITION 4.1. The null component of a polynomial correlation in a nilsystem is null
along any EGEN sequence.

Proof. Let (X = G/0, µX , τ ) be a nilsystem, f j ∈ L∞(µX ) and let s j ∈ Z[n]. Let

a(n)=
∫

X
T s0(n) f0 . . . T sk (n) fk dµ.

By approximation, we can assume that f j is a continuous function on X for all j . Then

a(n)=
∫

X
f0(τ

s0(n)x . . . fk(τ
sk (n)x dµX (x)

=

∫
X

f0 ⊗ · · · ⊗ fk((τ
s0(n), . . . , τ sk (n))(x, x, . . . , x)) dµX (x).

The function F = f0 ⊗ · · · ⊗ fk is continuous on X k+1. On the other hand, the
sequence (τ s0(n), . . . , τ sk (n))= gs0(n)

0 . . . gsk (n)
k is a polynomial sequence on Gk+1

where g j = (1G , . . . , 1G , τ j , 1G , . . . , 1G). Hence f0 ⊗ · · · ⊗ fk((τ
s0(n), . . . , τ sk (n))

(x, x, . . . , x)) is a polynomial nilsequence for all x ∈ X . By [25], a polynomial
nilsequence is also a nilsequence (of higher degree of nilpotency). Therefore, (a(n)) is
an integral of nilsequences. By Proposition 1.2, the null component of (a(n)) is null along
any EGEN sequence. Our proof finishes. �

4.2. In an ergodic system.

LEMMA 4.2. Let (a(n)) be a polynomial correlation in an ergodic system and let (rn) be a
polynomial-GPN sequence. Then there exists an m ∈ N such that if (ã(n)) is the projection
of (a(n)) onto an m-step nilfactor Zm , then a − ã is a null sequence along (n) and (rn).

Proof. Since both (n) and (rn) are polynomial-GPN sequences, then m1 and m2 exist
such that Zm1 is characteristic for (s0(n), . . . , sk(n)), and Zm2 is characteristic for
(s0(rn), . . . , sk(rn)). Let m =max{m1, m2} + 1 and let ã be the projection of a onto Zm .
Then with the same proof as in [6, Corollary 4.5], we obtain the conclusion. �

PROPOSITION 4.3. The null component of a polynomial correlation in an ergodic system
is null along any polynomial-good sequence.
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Proof. Let (a(n)) be a polynomial correlation in an ergodic system and let (rn) be a
polynomial-good sequence. The goal is to show the null component of (a(n)) is null along
(rn). Let (ã(n)) be as described in Lemma 4.2. Then by this lemma, a − ã is null along
(n) and (rn).

On the other hand, ã is a polynomial correlation arising from a nilfactor Y . Y is an
inverse limit of nilsystems, say Y = lim

←−
Yl . Let ãl be the projection of ã on to Yl for each

l ∈ N. By Proposition 4.1, ãl can be written as ãl = ψl + εl where ψl is a nilsequence
and εl is null along any EGEN sequence, in particular along (n) and (rn). Note that ãl

converges to ã uniformly as l→∞, since Y = lim
←−

Yl . Hence it is easy to see that ψl

converges to a nilsequence ψ uniformly (see [6, §7.4]). Likewise, εl converges uniformly
to a null sequence ε, which is also null along (rn). Now ã can be written as ã = ψ + ε.
Hence it has nil+null decomposition, and its null component is null along (rn).

In summary, we have just shown that both a − ã and the null component of ã is null
along (rn). Therefore the null component of a = ã + (a − ã) is null along (rn). Our proof
finishes. �

4.3. In a general measure-preserving system.

PROPOSITION 4.4. The null component of a polynomial correlation is null along any
polynomial-good sequence.

Proof. Let µ=
∫
�
µω d P(ω) be the ergodic decomposition of µ with respect to T . Then

a(n)=
∫
�

aω(n) d P(ω) where

aω(n)=
∫

X
T s0(n) f0 . . . T sk (n) fk dµω.

For almost every ω ∈�, the system (X, µω, T ) is ergodic. Hence by Proposition 4.3,
the null component of aω is null along any polynomial-good sequence. To be precise, aω =
ψω + εω whereψω is a nilsequence and εω is a null sequence along every polynomial-good
sequence. Thus a =

∫
�
ψω d P +

∫
�
εω d P .

On one hand, the sequence
∫
�
ψω d P is an integral of nilsequences. Hence its null

component is null along any polynomial-good sequence, by Proposition 1.2. On the other
hand,

∫
�
εω d P is obviously null along any polynomial-good sequence (an integral of a

null sequence is still a null sequence). Therefore, the null component of (a(n)) is null
along any polynomial-good sequence. Our proof finishes. �

5. Polynomials of primes are polynomial-good sequences
In this section, we show that polynomials of primes are polynomial-good sequences. The
proof has two parts. One is to show such sequences are polynomial-GPN. The other part
is to show they are EGEN. Some notation is needed before going into the details.

The modified von Mangoldt function is defined to be

3′(n)=

{
log n (n ∈ P),

0 (n ∈ N\P).
The Euler totient function φ(n) is the number of positive integers not greater than n and

relatively prime to n.
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For r < M ∈ N, define

3′M,r (n)=
φ(M)

M
3′(Mn + r).

For ω ∈ N, define W =
∏

p∈P,p<ω p.
The symbol oω→∞(1) (or oN→∞(1)) represents a function of ω that approaches zero as

ω→∞(N →∞ respectively). Furthermore, oω,N→∞(1) is a function of ω and N such
that for a fixed ω, the function approaches zero as N →∞.

For two sequences a and b, by writing a(N )∼ b(N ) we mean limN→∞ a(N )/b(N )
= 1.

5.1. Polynomials of primes are polynomial-GPN. Let Q(n), s j (n) ∈ Z[n] for
1≤ j ≤ k. The results of Host and Kra [22] and Leibman [24] show that there exists some
m ∈ N such that an m-step nilfactor Zm is characteristic for (s1(Q(n)), . . . , sk(Q(n)).
The optimal value for m may depend intrinsically on the polynomials and is
very hard to pinpoint. However, there is always an m that only depends on the
degrees of the polynomials. With that m, we prove that Zm is characteristic for
(s1(Q(pn)), . . . , sk(Q(pn)). Denote

a(n)= T s1(Q(n)) f0 . . . T sk (Q(n)) fk ∈ L∞(µ)

and

BW,r (N )= En∈[N ]a(W n + r).

The key ingredient in our proof is a proposition from Frantzikinakis, Host and Kra [18]
that compares ergodic averages along primes to the averages along integers.

LEMMA 5.1. (Frantzikinakis, Host and Kra [18, Proposition 3.6])

max
r<W,(r,W )=1

‖En∈[N ]3
′

W,r (n)a(W n + r)− BW,r (N )‖L2(µ) = oN→∞,ω(1)+ oω→∞(1).

We are ready for the main result of this section.

PROPOSITION 5.2. For any Q ∈ Z[n] non-constant, the sequence (Q(pn)) is polynomial-
GPN.

Proof. With the notation as before, assume E( f j |Zm)= 0 for some j . We need to prove
that

lim
N→∞

E[N ]a(pn)= 0 in L2(µ).

From Lemma 5.1, taking an average along r < W, (r, W )= 1, we obtain

‖E(r,W )=1En∈[N ]3
′
ω,r (n)a(W n + r)− E(r,W )=1 Bω,r (N )‖L2(µ)

= oω,N→∞(1)+ oω→∞(1). (5.1)

Note that

E(r,W )=1En∈[N ]3
′
ω,r (n)a(W n + r)= En∈[W N ]3

′(n)a(n).

Hence (5.1) becomes

‖En∈[W N ]3
′(n)a(n)− E(r,W )=1 Bω,r (N )‖L2(µ) = oω,N→∞(1)+ oω→∞(1). (5.2)
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And since Zm is characteristic for (s1(Q(W n + r)), . . . , sk(Q(W n + r))) for any W
and r (remember that m only depends on the degrees of the polynomials), we have
limN→∞ Bω,r (N )= 0 in L2(µ). Hence,

lim
N→∞

E(r,W )=1 Bω,r (N )= 0 in L2(µ).

On the other hand, by results of Wooley and Ziegler [31] and Frantzikinakis, Host and
Kra [18], the limit

lim
N→∞

E[N ]3′(n)a(n)

exists in L2(µ) (equal to limN→∞ E[N ]a(pn)). Call that limit F ∈ L2(µ).
Then for any W ∈ N,

F = lim
N→∞

E[W N ]3
′(n)a(n).

Taking the limit as N →∞ in (5.2), we get

‖F − 0‖L2(µ) = oω→∞(1). (5.3)

The left hand side of (5.3) no longer depends on ω. Let ω→∞, we get F = 0 in L2(µ).
This completes our proof. �

5.2. Polynomial of primes is EGEN. We need the following proposition by Green and
Tao.

PROPOSITION 5.3. (Green and Tao [20, Theorem 7.1]) For sufficiently large ω ∈ N, define
W =W (ω)=

∏
p∈P,p<ω p. Suppose (X = G/0, g) is a nilsystem, x ∈ X and F ∈ C(X).

Then

max
b<W,(b,W )=1

∣∣∣∣ lim
N→∞

En∈[N ](3
′

W,b(n)− 1)F(gQ(n)x)
∣∣∣∣= oω→∞(1).

Remark. The Green–Tao version of Proposition 5.3 is slightly different to the one
we introduce here. In Green and Tao’s version, in the place of F(gQ(n))x there is a
Lipschitz nilsequence that arises from a connected and simply-connected nilpotent group
G. However, it is immediately clear that Green–Tao’s version implies our result. First, as
discussed in §2.2, any basic nilsequence can be seen as arising from a nilmanifold whose
Lie group is connected and simply-connected. Second, every polynomial nilsequence is
a nilsequence (see [25, Theorem B* Proof]). Lastly, we can take F to be any continuous
function since the set of Lipschitz functions is dense in C(X).

We have a corollary.

COROLLARY 5.4. Fix d ∈ N. For sufficiently large ω ∈ N, define W =W (ω)=∏
p∈P,p<ω p. Suppose (X = G/0, g) is a nilsystem, x ∈ X and F ∈ C(X). Then

max
b<dW,(b,dW )=1

∣∣∣∣ lim
N→∞

En∈[N ](3
′

dW,b(n)− 1)F(gQ(n)x)
∣∣∣∣= oω→∞(1).

Proof. By [25], the sequence (F(gQ(n)x))n∈Z is a basic nilsequence. Therefore, according
to Leibman [27, Lemma 2.4], there exists a basic nilsequence (F ′(g′n x ′))n∈N such that
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F ′(g′dn+r x ′)= F(gQ(n)x) for r = 0 and F ′(g′dn+r x ′)= 0 for 1≤ r ≤ d − 1 and n ∈ N.
Note that for sufficiently large ω, all prime divisors of d divide W . Therefore for b ∈ N
we have (b, W )= 1 if and only if (b, dW )= 1. It follows that φ(dW )= dφ(W ). Thus
φ(dW )/(dW )= φ(W )/W . By Proposition 5.3, we have

max
b<dW,(b,dW )=1

∣∣∣∣ lim
N→∞

En∈[N ]

(
φ(dW )

dW
3′(W n + b)− 1

)
F ′(g′n x ′)

∣∣∣∣= oω→∞(1). (5.4)

Note that the sequence (F ′(g′n x ′))n∈N is supported on the set {n ∈ N : n =
dm for some m ∈ N}. Replacing n by dm, the left hand side of Equation 5.4 is now equal
to

1
d

max
b<dW,(b,dW )=1

∣∣∣∣ lim
N→∞

Em∈[N ]

(
φ(dW )

dW
3′(W dm + b)− 1

)
F ′(g′dm x ′)

∣∣∣∣.
Our proof is finished by noting that F ′(g′dm x ′)= F(gQ(m)x) for all m ∈ N. �

We need two more lemmas before going to the main theorem.

LEMMA 5.5. Let a(n) be a bounded sequence and let 0≤ r < d be positive integers.
Define Qr,d(N ) := {1≤ q ≤ N : qd + r ∈ P}. Then

Eq∈Qr,d (N )a(q)− En∈[N ]3
′

d,r (n)a(n)= oN→∞(1).

Proof. Let πr,d(N ) be the cardinality of Qr,d(N ). By Dirichlet’s theorem about primes
in arithmetic progessions, the set of primes that are congruent to r (mod d) has density
1/φ(d) relative to the set of all primes. Therefore,

πr,d(N )∼
π(d N + r)
φ(d)

∼
d N + r

log(d N + r)φ(d)
∼

d N
(log N )φ(d)

.

Note that 3′(dn + r)= 0 if dn + r 6∈ P. Therefore,

u(N ) :=
∣∣∣∣Eq∈Qr,d (N )a(q)− En∈[N ]

φ(d)
d
3′(dn + r)a(n)

∣∣∣∣
=

∣∣∣∣ 1
N

∑
q∈Qr,d (N )

a(q)
(

N
πr,d(N )

−
φ(d)

d
3′(dq + r)

)∣∣∣∣
=

∣∣∣∣ 1
N

∑
q∈Qr,d (N )

a(q)
(
φ(d)

d
log N −

φ(d)
d

log(dq + r)
)∣∣∣∣+ oN→∞(1).

Note that log(dq + r)= log(q)+ log(d + r/q). Thus we have∣∣∣∣ 1
N

∑
q∈Qr,d (N )

a(q) log
(

d +
r
q

)∣∣∣∣≤ ‖a‖∞ 1
N

∑
q∈Qr,d (N )

log
(

d +
r
q

)

= ‖a‖∞
πr,d(N ) log(d + r/q)

N

= ‖a‖∞
(Nd + r) log(d + r/q)
φ(d) log(Nd + r)N

+ oN→∞(1)= oN→∞(1).
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Therefore,

u(N )=
∣∣∣∣ 1

N

∑
q∈Qr,d (N )

a(q)
(
φ(d)

d
log N −

φ(d)
d

log(q)
)∣∣∣∣+ oN→∞(1)

=
φ(d)

d

∣∣∣∣ 1
N

∑
q∈Qr,d (N )

a(q) log
N
q

∣∣∣∣+ oN→∞(1).

Since log(N/q) > 0 for all q ∈ Qr,d(N ), we have

u(N )≤ ‖a‖∞
φ(d)

d
1
N

∑
q∈Qr,d (N )

log
N
q
+ oN→∞(1).

For any 0< c < 1,

1
N

∑
q∈Qr,d (N )

log
N
q
=

1
N

∑
q∈Qr,d (N )

q<cN

log
N
q
+

1
N

∑
q∈Qr,d (N )

q≥cN

log
N
q
. (5.5)

It is easy to see that when N goes to infinity, the first average in the right hand side of
(5.5) approaches a value less than cd/φ(d), while the second average goes to 0. Since c is
arbitrary, we deduce u(N )→ 0 as N →∞. Our proof finishes. �

PROPOSITION 5.6. Fix d ∈ N and r ∈ {0, 1, . . . , d − 1}. For n ∈ N, define qn to be the
nth integer such that dqn + r is a prime. Let (X = G/0, µX , τ ) be a totally ergodic
nilsystem. Then for any Q(n) ∈ Z[n] non-constant and x ∈ X, the sequence (τ Q(qn)x)n∈N
is equidistributed on X.

Proof. Let f ∈ C(X). Replacing f by f −
∫

f , we can assume
∫

f = 0. For any x ∈ X ,
we want to show that

lim
N→∞

En∈[N ] f (τ Q(qn)x)= 0.

For sufficiently large ω ∈ N, let Bω = {0≤ b < dW : (b, dW )= 1, b ≡ r (mod d)}. By
Corollary 5.4, for b ∈ B,

lim
N→∞

En∈[N ](3
′

dW,b(n)− 1) f (τ Q(W n+(b−r)/d)x)= oω→∞(1).

Note that the term oω→∞(1) does not depend on b. Therefore

lim
N→∞

En∈[N ]3
′

dW,b(n) f (τ Q(W n+(b−r)/d)x)

= lim
N→∞

En∈[N ] f (τ Q(W n+(b−r)/d)x)+ oω→∞. (5.6)

Since (X, µX , g) is totally ergodic, for any b ∈ B, the sequence (τ Q(W n+(b−r)/d)) is
equidistributed on X (see §2.4.2). That means

lim
N→∞

En∈[N ] f (τ Q(W n+(b−r)/d)x)= 0.

Hence, (5.6) implies

lim
N→∞

En∈[N ]3
′

dW,b(n) f (τ Q(W n+(b−r)/d)x)= oω→∞(1). (5.7)
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Let B ′ω = {0≤ b < dW : b ≡ r (mod d)}. In (5.7), summing over b ∈ B ′ω and noting
that 3′(dW n + b)= 0 if b ∈ B ′ω\Bω, we get∑

b∈B′ω

lim
N→∞

En∈[N ]3
′

dW,b(n) f (τ Q(W n+(b−r)/d)x)= |Bω|oω→∞(1). (5.8)

Now dividing both sides by W (which is the cardinality of B ′ω), we get

lim
N→∞

En∈[N ]Eb∈B′ω3
′

dW,b(n) f (τ Q(W n+(b−r)/d)x)=
|Bω|
W

oω→∞(1). (5.9)

The left hand side now is equal to

lim
N→∞

En∈[W N ]
φ(dW )

dW
3′(dn + r) f (τ Q(n)x).

Multiplying both sides of (5.9) by φ(d)W/φ(dW ), we get

lim
N→∞

En∈[W N ]3
′

d,r (n) f (τ Q(n)x)=
φ(d)|Bω|
φ(dW )

oω→∞(1)= oω→∞(1). (5.10)

Note that

En∈[N ]3
′

d,r (n) f (τ Q(n)x)= En∈[WbN/Wc]3
′

d,r (n) f (τ Q(n)x)+ oω,N→∞(1).

Therefore (5.10) implies

lim
N→∞

En∈[N ]3
′

d,r (n) f (τ Q(n)x)= oω→∞(1).

The left hand side no longer depends on ω. By letting ω approach infinity, we get

lim
N→∞

En∈[N ]3
′

d,r (n) f (τ Q(n)x)= 0.

Applying Lemma 5.5 to a(n)= f (τ Q(n)x), our proposition is proved. �

We are ready to prove the main result of this section.

PROPOSITION 5.7. For Q ∈ Z[n] non-constant, the sequence (Q(pn)) is EGEN.

Proof. Let (X = G/0, µX , τ ) be an ergodic nilsystem. Suppose X has d connected
components and X0 is the component containing 1X . For (r, d)= 1, we need to show
that the sequence (τ Q(pr (mod d),n)1X )n∈N is equidistributed on τ Q(r)X0.

Let qn = (pr (mod d),n − r)/d. Applying Proposition 5.6 to the totally ergodic nilsystem
(τ Q(r)X0, τ

Q(r)µX0 , τ
d), with polynomial P(n)= (Q(dn + r)− Q(r))/d ∈ Z[n], we

get that the sequence (τ P(qn)τ Q(r)1X ) is equidistributed on τ Q(r)X0. Our proposition
follows. �

5.3. Proof of Proposition 1.3. By Proposition 5.2, (Q(pn)) is polynomial-GPN. By
Proposition 5.7, the same sequence is EGEN. Hence by definition, (Q(pn)) is polynomial-
good.
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5.4. Proof of Theorem 1.1. By Proposition 4.4, the null component of a polynomial
correlation is null along any polynomial-good sequence. The sequence (Q(n)) is
polynomial-good, as mentioned in §2.11. On the other hand, the sequence (Q(pn)) is
polynomial-good by Proposition 1.3. Hence the first part of Theorem 1.1 is proved.
The same argument applies to linear correlations and linear-good sequences (bnc

c). That
proves the second part of the theorem.

5.5. Proof of Corollary 1.4. Let (X = G/0, µ, τ) be an ergodic nilsystem with d
connected component and the set-up as in Corollary 1.4. Since (Q(pn)) is EGEN, for
each s < d with (s, d)= 1, the sequence (τ Q(ps (mod d),n)x) is equidistributed on X Q(s)+k .
Hence

Ep∈P,p≡s (mod d) f (τ Q(p)x)=
∫

X Q(s)+k

f dµX Q(s)+k . (5.11)

For each s < d with (s, d)= 1, the set {p ∈ P : p ≡ s (mod d)} has density 1/φ(d).
Taking the average for all s, we have Corollary 1.4.

6. Proof of Proposition 1.5
In this section, we prove Proposition 1.5. Some preliminary facts are needed before going
into the proof. By Herglotz’s theorem, for f ∈ L2(µ), there exists a complex measure
σ on circle T such that a(n) :=

∫
X f · T n f̄ dµ=

∫
T e2π int dσ(t)=: σ̂ (n) for all n ∈ Z.

The measure σ is called the spectral measure of f . Sometimes we denote it by σ f to
indicate the dependence on f . By decomposing σ to discrete and continuous parts, we
get a(n)= σ̂d(n)+ σ̂c(n). The sequence (σ̂d(n))n∈N and (σ̂c(n))n∈N are the nil and null
components of (a(n))n∈N, respectively. We have a proposition.

PROPOSITION 6.1. Let (rn) be a increasing sequence of integers such that there is a
continuous measure σ on T such that (σ̂ (n)) is not null along (rn). Then there exists a
linear correlation whose null component is not null along (rn).

Proof. Let (rn) be a increasing sequence of integers and σ be a continuous measure
satisfying the Proposition 6.1 hypothesis. Our proposition would have been proved if there
existed a bounded function f on a system (X, µ, T ) whose spectral measure σ f is equal
to σ . However, we are only guaranteed the existence of an unbounded L2-function (let
us call it g) from a Gaussian system (see §2.12) that satisfies the required condition. To
achieve our goal, a small modification is needed.

Since L∞(µ) is dense in L2(µ), for a small ε1, there exists f ∈ L∞(µ) such that
‖ f − g‖L2 < ε1. That implies

|σ̂ f (n)− σ̂g(n)| =
∣∣∣∣∫ f T n f̄ −

∫
gT n ḡ

∣∣∣∣< 2ε1‖g‖L2 + ε
2
1 =: ε2. (6.1)

Let σgd and σgc denote discrete and continuous parts of σg respectively. By Wiener’s
lemma, since σg is continuous

σgd(T)= lim
N→∞

En∈[N ]|σ̂g(n)|2 = 0 (6.2)

and
σ f d(T)= lim

N→∞
En∈[N ]|σ̂ f (n)|2. (6.3)
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From (6.1), (6.2) and (6.3), we get σgd(T) < ε2
2 . That implies |σ̂ f d(n)|< ε2

2 for all
n ∈ N. Hence, for all n ∈ N:

|σ̂ f c(n)− σ̂g(n)| = |σ̂ f (n)− σ̂ f d(n)− σ̂g(n)|< ε2 + ε
2
2 . (6.4)

Since (σ̂g(n)) is not null along (rn), there is δ > 0 such that

lim sup
N→∞

En∈[N ]|σ̂g(rn)| = δ. (6.5)

If we choose ε1 sufficiently small that ε2 + ε
2
2 < δ, then from (6.4) and (6.5), we have

lim sup
N→∞

En∈[N ]|σ̂ f c(rn)|> δ − ε2 − ε
2
2 > 0. (6.6)

That would imply (σ̂ f c(n)) is not null along (rn). Therefore, the null component of∫
f T n f̄ is not null along (rn). Our proof finishes. �

Proof of Proposition 1.5. If (rn) is a rigid sequence, then there is a continuous measure σ
on T such that σ̂ (rn)→ 1 as n→∞ (see §2.13) . Hence (σ̂ (n)) is not null along (rn), so
(rn) satisfies the Proposition 6.1 hypothesis. �

Remark. In a recent paper, Badea and Grivaux [4] show that there exists a continuous
measure σ on T such that lim infn,m∈N σ̂ (2n3m) > 0. Hence the sequence (2n3m), when
ordering in the increasing fashion, also satisfies the Proposition 6.1 hypothesis.
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