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Abstract. Let φ be a post-critically finite branched covering of a two-sphere. By work
of Koch, the Thurston pullback map induced by φ on Teichmüller space descends to a
multivalued self-map—a Hurwitz correspondence Hφ—of the moduli space M0,P. We
study the dynamics of Hurwitz correspondences via numerical invariants called dynamical
degrees. We show that the sequence of dynamical degrees of Hφ is always non-increasing
and that the behavior of this sequence is constrained by the behavior of φ at and near points
of its post-critical set.
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1. Introduction
Denote by S2 the oriented two-sphere. Suppose φ : S2

→ S2 is an orientation-preserving
branched covering whose post-critical set

P := {φn(x)| x is a critical point of φ and n > 0}

is finite. Then φ is called post-critically finite. The topological dynamics of φ induce
holomorphic and algebraic dynamical systems:
(I) Thurston [DH93] a holomorphic, contracting self-map Thφ : TS2,P→ TS2,P of the

Teichmüller space of complex structures on S2 punctured at P; this is known as the
Thurston pullback map, and it descends to

(II) Koch [Koc13] an algebraic, multivalued self-map Hφ :M0,P M0,P of the
moduli space of markings of CP1 by P; such a multivalued map is called a Hurwitz
correspondence.

In addition, if:
(1) P contains a periodic and fully ramified point p0 of φ; and
(2) either every other critical point of φ is also periodic or there is exactly one other

critical point of φ;
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then we also have:
(III) Koch [Koc13] a meromorphic, single-valued map H−1

φ :M0,P M0,P.
The branched covering φ is conjugate, up to homotopy, to a post-critically finite rational

map on CP1 if and only if Thφ has a fixed point. There is a tremendous amount of current
research investigating the dynamics of (I). Koch introduced (II) and (III) as algebraic
dynamical systems that ‘shadow’ the holomorphic dynamics of (I).

Dynamical degrees are numerical invariants associated to algebraic dynamical systems;
they measure complexity of iteration. Let X◦ be a smooth quasiprojective variety and
let g : X◦ X◦ (respectively, g : X◦ X◦) be a meromorphic map (respectively, a
meromorphic multivalued map). Fix a smooth projective birational model X of X◦ and an
ample class h ∈ H1,1(X). The kth dynamical degree of g is defined to be the non-negative
real number

2k(g)= lim
n→∞

(((gn)∗(hk)) · (hdim X−k))1/n .

The above limit exists and is independent of X and h; this was proved first by Dinh and
Sibony in the complex setting [DS05, DS08] and later by Truong [Tru15, Tru18] in the
algebraic setting. The kth dynamical degree of g measures the ‘asymptotic growth rate of
the degrees of codimension-k subvarieties of X◦ under iterates of g’—amazingly, this is a
well-defined notion although the degree of a subvariety of X◦ is not well defined.

Now, since φ : P→ P is a self-map of a finite set, every point eventually maps into a
periodic cycle. We define the polynomiality index of φ to be the positive real number

PI(φ) := max
{p∈P,`>0|φ`(p)=p}

(5`−1
i=0 (local degree of φ at φi (p)))1/`.

In fact, PI(φ) is the maximum, over all periodic cycles of φ on S2, of the geometric mean
of the local degrees of φ at all the points in the cycle.

THEOREM 3.1. For k = 0, . . . , |P| − 4, we have 2k(Hφ)≥ PI(φ) ·2k+1(Hφ).

Thus the behavior of the sequence of dynamical degrees of Hφ is constrained by
the behavior of φ at and near points of P. Note that 1≤ PI(φ)≤ deg(φ) always holds.
PI(φ)= 1 if and only if no critical point of φ is periodic, i.e., if every critical point is
strictly pre-periodic. PI(φ)= deg(φ) if and only if P contains a point p0 that is fixed by
and fully ramified under either φ or φ2, i.e,. if and only if either φ or φ2 is a topological
polynomial.

COROLLARY 1.1. 2k(Hφ) decreases as k increases, strictly, if φ has a periodic critical
point.

In §5, we give an example of a branched covering φ for which every critical point
is strictly pre-periodic so that PI(φ)= 1, such that 20(Hφ)=21(Hφ). Thus when the
polynomiality index equals one, the sequence of dynamical degrees may decrease only
weakly.

For any φ, the dynamical degrees of Hφ are algebraic integers [Ram18]. As a parallel
to Corollary 1.1, the results in [Ram18] show that, for k > 0, the degree over Q of 2k is
‘likely’ to decrease as k increases. More precisely, there is an upper bound for the degree
over Q of2k that decreases as k increases. In spite of the parallel, the methods used in this
paper are very different from those used in [Ram18].
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1.1. Implications when H−1
φ is single valued. Dynamical degrees have been studied

primarily in the context of single-valued maps. The topological entropy of a holomorphic
single-valued map was found to be equal to the logarithm of its largest dynamical degree
(Yomdin [Yom87] and Gromov [Gro03]). The topological entropy of a meromorphic
single-valued map is bounded from above by the logarithm of its largest dynamical
degree (Dinh and Sibony [DS05]); equality is conjectured when there is a unique largest
dynamical degree. If g is a single-valued map, either holomorphic or meromorphic,
its 0th dynamical degree is one and its top dynamical degree is its topological degree.
Guedj [Gue05] found that a map whose top dynamical degree is its largest has especially
good ergodic properties. (See Corollary 1.3 for the implications of this in the context of
this paper.)

If g : CPN
→ CPN is a holomorphic map given in coordinates by homogeneous

polynomials of degree d , then its kth dynamical degree is dk . Thus k 7→ log(2k(g))
is linear with slope d, and the top (N th) dynamical degree of g is its largest. If g :
CPN CPN or g : X X is a meromorphic map, k 7→ log(2k(g)) is known to be
concave. Thus the top dynamical degree of g is its largest if and only if k 7→2k(g) is
strictly increasing.

Koch and Roeder [KR16] studied the dynamical degrees of H−1
φ in the special

case when φ has exactly two critical points, both periodic. They showed that, in this
case, 2k(H−1

φ ) is the absolute value of the largest eigenvalue of the induced pullback
action on H k,k(M0,P), where M0,P is the Deligne–Mumford compactification of M0,P.
Koch [Koc13] studied the maps H−1

φ as meromorphic self-maps of CP|P|-3, which
is another compactification of M0,P. Koch found that if (1) and (2) hold, and, in
addition, the special point p0 is fixed by φ, i.e., φ is a topological polynomial, then
H−1
φ : CP

|P|-3 CP|P|-3 is holomorphic and is given in coordinates by homogeneous
polynomials of degree equal to the topological degree of φ. Thus if φ is a topological
polynomial, 2k(Hφ)= deg(φ)k . Koch showed that, in this case, H−1

φ : CP
|P|-3
→ CP|P|-3

is also critically finite.
Fix φ of topological degree d > 1 such that (1) and (2) hold. If there are two fully

ramified points of φ in periodic cycles, then pick p0 to be one with minimal cycle length.
Set `0 to be the length of the cycle containing p0; then PI(φ)≥ d1/`0 . Since H−1

φ is
single valued, its 0th dynamical degree is one; the results in [Koc13] imply that its
top dynamical degree/topological degree is d |P|−3. It follows from the definitions that
2k(H−1

φ )=2|P|−3−k(Hφ). We obtain the following corollary from Theorem 3.1.

COROLLARY 1.2. The dynamical degrees of H−1
φ satisfy

(d1/`0)|P|−3
= (d1/`0)|P|−3

·20(H−1
φ )

≤ (d1/`0)|P|−4
·21(H−1

φ )

≤ · · ·

≤2|P|−3(H−1
φ )= deg(H−1

φ )= d |P|−3.

In particular, the topological degree of H−1
φ is strictly larger than its other dynamical

degrees. Corollary 1.2 provides a theoretical explanation for an aspect of the experimental
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FIGURE 1. Fix d > 1 and |P| ≥ 3. Given a degree d finite branched covering φ whose post-critical set has size
|P| such that there exists a fully ramified point in a periodic cycle of length `0, the figure shows how the graph
of k 7→ log(2k (H−1

φ )) is constrained by `0. If `0 = 1, the graph is the line of slope log(d), pictured in solid red.
If `0 > 1, the graph is concave of slope at least (1/`0) log(d), passing through (0, 0) and (|P| − 3, d(|P| − 3)),
and it lies between the line of slope (1/`0) log(d) pictured in solid black and the line of slope log(d) pictured in

solid red. The dashed red curve depicts qualitatively what the graph might look like if `0 = 2.

results in [KR16]: in every example computed, the largest dynamical degree of H−1
φ is the

topological degree.
A direct application of Guedj’s results in [Gue05] yields the following corollary.

COROLLARY 1.3. There is a unique H−1
φ -invariant measure mφ on CP|P|-3 of maximal

entropy. The measure mφ is mixing, and all its Lyapunov exponents are bounded from
below by

1
2

log(PI(φ))≥
1

2`0
log(d) > 0.

Further, the set of repelling periodic points of H−1
φ is equidistributed with respect to mφ .

If `0 = 1, then p0 is fixed and φ is a topological polynomial. In this case, Corollary 1.2
recovers that 2k(H−1

φ )= dk , since, by [Koc13], H−1
φ is holomorphic on CP|P|-3. Thus, in

this case, k 7→ log(2k(H−1
φ )) is linear of slope log(d). If `0 > 1, then k 7→ log(2k(H−1

φ ))

is a concave function, which by Corollary 1.2 is strictly increasing with slope at least
(1/`0) log(d). This generalizes the result that polynomiality of φ ensures holomorphicity
of H−1

φ on CP|P|-3, as follows.

Observation 1.4. The more φ resembles a topological polynomial, i.e., the smaller the
value of `0, the more the sequence of dynamical degrees of H−1

φ resembles the sequence
of dynamical degrees of a holomorphic map on CP|P|-3 (Figure 1).

1.2. Implications for Hurwitz correspondences as multivalued maps and an application
to enumerative geometry. Hurwitz correspondences can be defined without reference to
the Thurston pullback map. Let P be a finite set and let H be a Hurwitz space parametrizing
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maps f : CP1
→ CP1 together with two injections from P into the source and target CP1,

respectively, such that f has specified branching behavior at and over the marked points
P. The Hurwitz space H admits two maps to M0,P: a map π1 specifying the configuration
of marked points on the ‘target’ CP1 and a map π2 specifying the configuration of marked
points on the ‘source’ CP1. If the marked points on the target CP1 include all the branch
values of f , then π1 is a covering map, and π2 ◦ π

−1
1 defines a multivalued map from

M0,P to itself.
The Hurwitz space H may be disconnected; each connected component of H

parametrizes maps of a single topological type. If φ is a post-critically finite branched
covering with post-critical set P and branching type as specified by H, then Hφ is
the connected component of H that parametrizes maps f : CP1

→ CP1 such that there
exist homeomorphisms χ1 and χ2 from (CP1, P) to (S2, P) with χ2 ◦ f = φ ◦ χ1. Every
connected component of H arises as Hφ for some post-critically finite φ. Fixing H, all
such branched coverings have the same branching, induce the same map P→ P and, in
particular, have the same polynomiality index. Thus polynomiality index is a well-defined
invariant of H. We define a Hurwitz correspondence, in general, to be the multivalued self-
map of M0,P obtained by restricting π2 ◦ π

−1
1 to any non-empty union 0 of connected

components of a Hurwitz space H. Theorem 3.1 is proved in this more general context,
i.e., we have 2k(0)≥ PI(0) ·2k+1(0). This implies that Hurwitz correspondences are a
special subclass of multivalued maps. The sequence of dynamical degrees of a multivalued
map may not be log-concave, and it appears to be quite unconstrained, in general [Tru18].

The topological entropy of a multivalued map is at most the logarithm of its largest
dynamical degree, but can be strictly smaller [DS08]. Thus we have the following
corollary.

COROLLARY 1.5. The topological entropy of H (respectively Hφ or 0) is at most its 0th
dynamical degree 20(H) (respectively 20(Hφ) or 20(0)).

The 0th dynamical degree of H is the topological degree of the ‘target’ map π1 :H→
M0,P. This degree is called a Hurwitz number; it counts covers of CP1 having specified
branch locus on CP1 and specified ramification profile. It also counts the number of
ways to factor the identity in the symmetric group Sd as a product of permutations with
specified cycle types that collectively generate a transitive subgroup. Thus the dynamically
motivated quantity 20(H) has a purely combinatorial interpretation.

The top dynamical degree of H is the topological degree of the ‘source’ map π2. In
§4, we use Theorem 3.1 to prove Proposition 4.1, which has two alternative statements:
one relevant to enumerative geometry and another relevant to dynamics. (Thanks to an
anonymous referee for pointing out the second statement.)

PROPOSITION 4.1, STATEMENT 1. Let r be the maximum local degree of [ f : CP1
→

CP1
] ∈H at p, where p ranges over P. Then deg(π1)≥ r |P|−3 deg(π2). That is, the

number of ways in which a generic configuration of P-marked points on CP1 gives rise
to the configuration of marked points on the target CP1 of some branched map [ f ] ∈H is
at least r |P|−3 times the number of ways it appears as the configuration of marked points
on the source CP1 of such a map.
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PROPOSITION 4.1, STATEMENT 2. Let r be the maximum local degree of a post-critically
finite branched covering φ at p, where p ranges over the post-critical set P. Then
20(Hφ)≥ r |P|−32|P|−3(Hφ). That is, if there is a critical point that is also post-critical,
then there is a strict aggregate decrease between the 0th and the top dynamical degrees
and an upper bound for this aggregate decrease that is better (in some examples strictly
better) than the bound given by the polynomiality index.

1.3. Remarks on the polynomiality index. We are not aware of any previous mention of
polynomiality index of a branched covering or rational function as defined in this paper.
However, a similar notion is considered in [Sil93], in which Silverman addresses the
question of when a rational function on CP1 has orbits containing infinitely many integers.
Silverman defines the attractive index of a rational function f (z) at a point p ∈ CP1 of
exact period ` to be

5`−1
i=0 (local degree of φ at f i (p))1/`,

and he shows that the attractive index at p controls the rate at which ‘almost all’ points
in CP1 approach the orbit of p. The polynomiality index of a rational function/branched
covering defined in this paper is the maximum attractive index attained by some periodic
point in CP1/S2. (Thanks to Silverman for mentioning the connection to [Sil93].)

1.4. Organization. Section 2 gives background on meromorphic multivalued maps
(henceforth referred to as rational correspondences), the moduli space M0,P and its
compactification M0,P, Hurwitz spaces and Hurwitz correspondences. Section 3 contains
the proof of Theorem 3.1. Section 4 contains an application of the main theorem to
enumerative algebraic geometry. Sections 5 and 6 give examples of specific Hurwitz
correspondences.

1.5. Conventions. All varieties are over C. For X a variety, we denote by Zk(X) the
group of k-cycles on X : that is, the free abelian group on the set of k-dimensional
subvarieties of X . We denote by Ak(X) the Chow group of k-cycles on X up to rational
equivalence. For X a smooth variety, we denote by Ak(X) the Chow group of codimension-
k cycles on X .

2. Background
2.1. Rational correspondences/meromorphic multivalued maps. Rational correspon-
dences generalize the notion of a rational map. A rational correspondence from X to Y
is a multivalued map to Y defined on a dense open set of X.

Definition 2.1. Let X and Y be irreducible smooth projective varieties. A rational
correspondence (0, πX , πY ) : X Y is a diagram

0

X Y

πX πY
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where 0 is a smooth quasiprojective variety, not necessarily irreducible, and the restriction
of πX to every irreducible component of 0 is dominant and generically finite.

Over a dense open set in X , πX is a covering map, and πY ◦ π
−1
X defines a multivalued

map to Y. However, considered as a multivalued map from X to Y, it is possible that πY ◦

π−1
X has indeterminacy, since some fibers of πX may be empty or positive-dimensional.
Like rational maps, rational correspondences induce pushforward and pullback maps of

Chow groups and can be composed with each other.

Definition 2.2. Let 0 be a projective compactification of 0 such that 0 is dense in 0
and πX and πY extend to maps πX and πY defined on 0. The cycle (πX × πY )∗[0] ∈

Zdim X (X × Y ) is independent of the choice of compactification 0, so we denote this cycle
by [0].

Remark 2.3. In [DS08], a rational correspondence from X to Y is defined as a cycle∑
i mi [0i ] in Zdim X (X × Y ) such that each 0i maps surjectively onto X.

Definition 2.4. Let 0 be a projective compactification of 0 as in Definition 2.2. Set

[0]∗ : = (πY )∗ ◦ (πX )
∗
: Ak(X)→ Ak(Y )

and

[0]∗ : = (πX )∗ ◦ (πY )
∗
: Ak(Y )→ Ak(X).

These pushforward and pullback maps are independent of the choice of
compactification 0; they depend only on the cycle [0] [Ful98, Remark 6.2.2].

Definition 2.5. Suppose (0, πX , πY ) : X Y and (0′, π ′Y , π
′

Z ) : Y Z are rational
correspondences such that the image under πY of every irreducible component of 0
intersects the domain of definition of the valued map π ′Z ◦ (π

′

Y )
−1. The composite 0′ ◦ 0

is a rational correspondence from X to Z , defined as follows.
Pick dense open sets UX ⊆ X and UY ⊆ Y such that πY (π

−1
X (UX ))⊆UY , and

πX |π−1
X (UX )

and π ′Y |(π ′Y )−1(UY )
are both covering maps. Set

0′ ◦ 0 := π−1
X (UX ) πY×π ′Y

(π ′Y )
−1(UY )

to be the fibered product as defined in [Har77, Theorem 3.3], together with its given maps
to X and Z .

Remark 2.6. (The fibered product) Although the fibered product of two maps of schemes
(as cited from [Har77] and used above in Definition 2.5) is complicated, the basic idea
is quite simple. If π1 :U1→ Y and π2 :U2→ Y are two maps of sets, then their fibered
product is the subset of U1 × U2 where the two maps agree: i.e.,

U1 πY×π ′Y
U2 := {(u1, u2) ∈U1 ×U2|π1(u1)= π2(u2)}.

On the other hand, if π1 :U1→ Y and π2 :U2→ Y are two maps of schemes, then their
fibered product is a possibly non-reduced scheme. In the context of this paper, this may
be thought of as a variety together with positive integer multiplicities assigned to the
irreducible components. However, the underlying set of their fibered product as schemes
is their fibered product as sets.
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This composite does depend on the choices of open sets UX and UY , but the cycle
[0′ ◦ 0] is well defined. Note that [0′ ◦ 0]∗ may not agree with [0′]∗ ◦ [0]∗ and [0′ ◦
0]∗ may not agree with [0]∗ ◦ [0′]∗. Dynamical degrees, introduced in the next section,
are meant to address the discrepancy between [0′ ◦ 0]∗ and [0]∗ ◦ [0′]∗ or, equivalently,
between [0′ ◦ 0]∗ and [0′]∗ ◦ [0]∗

2.2. Dynamical degrees. Dynamical degrees were first introduced as invariants of
surjective holomorphic self-maps of a smooth projective variety. The kth dynamical degree
of g : X→ X is the spectral radius of g∗ : H k,k(X)→ H k,k(X). Dynamical degrees were
later generalized to rational maps and rational correspondences.

Definition 2.7. Let (0, π1, π2) : X X be a rational correspondence such that the
restriction of π2 to every irreducible component of 0 is dominant. In this case, we say
that 0 is a dominant rational self-correspondence.

Definition 2.8. Let 0 be as in Definition 2.7. Set 0n
:= 0 ◦ · · · ◦ 0 (n times), and pick h

an ample divisor class on X . The kth dynamical degree 2k of 0 is defined to be

lim
n→∞

(([0n
]
∗(hk)) · (hdim X−k))1/n .

This limit exists and is independent of choice of ample divisor [DS05, DS08, Tru15,
Tru18].

The dynamical degrees of 0 are determined by the cycle [0].

THEOREM 2.9. (Birational invariance of dynamical degrees, [DS05, DS08, Tru15,
Tru18]) Let (0, π1, π2) : X X be a dominant rational self-correspondence, and let β :
X X ′ be a birational equivalence. We obtain a dominant rational self-correspondence
on X ′ through conjugation by β, as follows. Let U be the domain of definition of β, and
set 0′ = π−1

1 (U ) ∩ π−1
2 (U ). We have a dominant rational self-correspondence

(0′, β ◦ π1, β ◦ π2) : X ′ X ′.

Then the dynamical degrees of 0 and 0′ are equal.

Definition 2.10. If 0 = (0, π1, π2) : X X is a dominant rational correspondence, then
its inverse 0−1 is defined to be (0, π2, π1) : X X .

LEMMA 2.11. Let 0 = (0, π1, π2) : X X and 0′ = (0′, π1, π2) : X X be dominant
rational correspondences. Then the correspondence (0 ◦ 0′)−1 is the same as (0′)−1

◦

0−1.

Proof. This follows immediately from Definition 2.5 of composition of rational
correspondences. �

LEMMA 2.12. (Dynamical degrees of a correspondence and its inverse) Let
0 = (0, π1, π2) : X X be a dominant rational correspondence. Then, for k =
0, . . . , dim X,

2k(0)=2dim X−k(0
−1).
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Proof. Fix an ample divisor class h on X . Let (0n, πn
1 , π

n
2 ) : X X denote the nth iterate

of 0. By the functoriality of inverse correspondences as in Lemma 2.11, (0n, πn
2 , π

n
1 ) :

X X is the nth iterate of 0−1. By passing to a birational model of 0n for each n,
if necessary, we may assume that each 0n is smooth and projective and that the maps
πn

1 , π
n
2 : 0

n
→ X are both regular. We have

2k(0) := lim
n→∞

(((πn
1 )∗ ◦ (π

n
2 )
∗(hk)) · (hdim X−k))1/n

= lim
n→∞

(((πn
2 )
∗(hk)) · ((πn

1 )
∗(hdim X−k)))1/n

= lim
n→∞

((hk) · ((πn
2 )∗ ◦ (π

n
1 )
∗hdim X−k))1/n

=:2dim X−k(0
−1).

Here, the first equality follows from the definition of pullback by a rational
correspondence, and the second and third equalities follow from the projection formula
as stated in [Ful98, Proposition 8.3(c)]. �

The sequence of dynamical degrees of a rational map is log-concave. Let g : X X be
a dominant rational map, and let h be an ample divisor class on X . For n > 0, set Gr(gn)

to be the graph of gn in X × X , with its two maps πn
1 and πn

2 to X . If 2k denotes the kth
dynamical degree of g,

2k = lim
n→∞

(((gn)∗(hk)) · (hdim X−k))1/n

= lim
n→∞

(((πn
1 )∗ ◦ (π

n
2 )
∗(hk)) · (hdim X−k))1/n

= lim
n→∞

(((πn
2 )
∗(hk)) · ((πn

1 )
∗(hdim X−k)))1/n .

Here (as in the proof of Lemma 2.12), the second equality follows from the definition of
pullback by a rational map, and the third equality follows from the projection formula as
stated in [Ful98, Proposition 8.3(c)]. Since (πn

2 )
∗(h) and (πn

1 )
∗(h) are nef (i.e. they have

non-negative intersection number with every effective curve) on Gr(gn), and Gr(gn) is
irreducible, the sequence of intersection numbers

{((πn
2 )
∗(hk)) · ((πn

1 )
∗(hdim X−k))}k

is log-concave [Laz04, Example 1.6.4]. Thus the sequence {2k}k is log-concave as well.
This statement is false for multivalued maps/rational correspondences [Tru18]. The

argument breaks down since their graphs are not necessarily irreducible. Even if a given
rational correspondence 0 is irreducible, its iterates 0n are reducible in general. Our
proof of Theorem 3.1 deals separately with every irreducible component of infinitely many
iterates of a given Hurwitz correspondence.

2.3. The moduli spaces M0,P and M0,P. The moduli space M0,P is a smooth
quasiprojective variety parametrizing ways of marking CP1 by elements of a finite set,
up to change of coordinates on CP1.

Definition 2.13. Let |P| ≥ 3. There is a smooth quasiprojective variety M0,P of
dimension |P| − 3 parametrizing injections ι : P ↪→ CP1 up to post-composition by
Möbius transformations of CP1.
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There are several compactifications of M0,P that extend the interpretation as a
moduli space. The most widely studied of these is the Deligne–Mumford/stable curves
compactification M0,P; projective space CP|P|−3 is another such compactification.

Definition 2.14. A stable P-marked genus zero curve is a connected projective curve C of
arithmetic genus zero whose only singularities are simple nodes, together with an injection
ι : P ↪→ (smooth locus of C), such that the set of automorphisms C→ C that commute
with ι is finite.

THEOREM 2.15. (Deligne, Grothendieck, Knudsen, Mumford) There is a smooth
projective variety M0,P of dimension |P| − 3 that parametrizes stable P-marked genus
zero curves. It contains M0,P as a dense open subset.

The complement M0,P rM0,P is a simple normal crossings divisor, referred to as the
boundary of M0,P. Given a subset S⊆ P such that |S|, |SC

| ≥ 2, define a divisor δS ⊆

M0,P as follows. Consider the locus of all [C, ι] in M0,P such that C has two irreducible
components joined at a node. The points ι(p) with p ∈ S are all on one component, and
the points ι(p) with p ∈ SC are all on the other component. Let δS be the closure of this
locus; δS is an irreducible divisor contained in the boundary. Every irreducible component
of the boundary is obtained in this manner. Note that δS = δSC .

Definition 2.16. For an injection j : P′ ↪→ P with |P′| ≥ 3, there is a forgetful map µ :
M0,P→M0,P′ sending [C, ι] to [C, ι ◦ j]. This map extends to µ :M0,P→M0,P′ .

The tautological ψ-classes. M0,P has a tautological line bundle Lp corresponding to
each marked point p ∈ P. This line bundle assigns to the point [C, ι] the one-dimensional
complex vector space T∨ι(p)C, namely, the cotangent line to the curve C at the marked point
ι(p). The divisor class associated to Lp is denoted by ψp.

The space H0(M0,P, Lp) is (|P| − 2)-dimensional and basepoint-free. The
induced map ρ :M0,P→ P(H0(M0,P, Lp)

∨)∼= CP|P|−3 is a birational map onto
CP|P|−3 [Kap93].

Consider a forgetful map µ :M0,P∪{q}→M0,P. For p ∈ P, we have [AC98]

µ∗ψ
M0,P
p = ψ

M0,P∪{q}
p − δ{p,q}.

The next lemma follows by induction.

LEMMA 2.17. For a forgetful map µ :M0,P∪Q→M0,P,

µ∗ψ
M0,P
p = ψ

M0,P∪Q
p −

∑
S⊆Q

S non-empty

δ{p}tS.

2.4. Hurwitz spaces and Hurwitz correspondences. Hurwitz spaces are moduli spaces
parametrizing finite maps with prescribed ramification between smooth algebraic
curves/Riemann surfaces. See [RW06] for a summary.

Definition 2.18. A partition λ of a positive integer k is a multiset of positive integers whose
sum with multiplicity is k.
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Definition 2.19. A multiset λ1 is a submultiset of λ2 if, for all r ∈ λ1, the multiplicity of
occurrence of r in λ1 is less than or equal to the multiplicity of occurrence of r in λ2.

Definition 2.20. (Hurwitz space [Ram18, Definition 5.4]) Fix discrete data:
• finite sets A and B with cardinality at least three (marked points on source and target

curves, respectively);
• d a positive integer (degree);
• F : A→ B a map;
• br : B→ {partitions of d} (branching); and
• rm : A→ Z>0 (ramification);
such that:
• (Condition 1, Riemann–Hurwitz constraint)

∑
b∈B(d − length of br(b))= 2d − 2;

and
• (Condition 2) for all b ∈ B, the multiset (rm(a))a∈F−1(b) is a submultiset of br(b).
There exists a smooth quasiprojective variety H=H(A, B, d, F, br, rm), a Hurwitz
space, parametrizing morphisms f : CP1

→ CP1 up to isomorphism, where:
• there are injections from A and B into the source and target CP1, respectively;
• f is degree d;
• for all a ∈ A, f (a)= F(a) via the injections of A and B into CP1;
• for all b ∈ B, the branching of f over b is given by the partition br(b); and
• for all a ∈ A, the local degree of f at a is equal to rm(a).

The Hurwitz space H has a ‘source’ map πA to M0,A sending [ f : (CP1, A)→
(CP1, B)] to [CP1, A]. There is, similarly, a ‘target’ map πB from H to M0,B. Unless
H is empty, πB is a finite covering map. Thus for smooth compactifications XA of M0,A
and XB of M0,B, (H, πB, πA) : XB XA is a rational correspondence. We generalize
this notion.

Definition 2.21. (Hurwitz correspondence [Ram18, Definition 5.5]) Let A′ be any subset
of A with cardinality at least three. There is a forgetful morphism µ :M0,A→M0,A′ .
Let 0 be a union of connected components of H. If XA′ and XB are smooth projective
compactifications of M0,A′ and M0,B, respectively, then

(0, πB, µ ◦ πA) : XB XA′

is a rational correspondence. We call such a rational correspondence a Hurwitz
correspondence.

2.5. Hurwitz self-correspondences and dynamics. Suppose φ : S2
→ S2 is a degree d

orientation-preserving branched covering with finite post-critical set P. Define br : P→
{partitions of d} sending p ∈ P to the branching profile of φ over p. Define rm : P→ Z>0

sending p ∈ P to the local degree of φ at p. Then

H=H(P, P, d, φ|P, br, rm)

parametrizes maps (CP1, P)→ (CP1, P) with the same branching as φ. Let π1 and π2 be
the ‘target’ and ‘source’ maps from H to M0,P. For 0 a non-empty union of connected
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components of H, and XP any compactification of M0,P, (0, π1, π2) : XP XP is a
rational self-correspondence.

There is a unique connected component Hφ of H parametrizing maps that are
topologically isomorphic to φ, i.e., maps f : (CP1, P)→ (CP1, P) such that there exist
marked-point-preserving homeomorphisms χ1 and χ2 from (CP1, P) to (S2, P) with
χ2 ◦ f = φ ◦ χ1. By [Koc13], the multivalued map defined by Hφ on M0,P is descended
from the Thurston pullback map Thφ .

It is convenient to consider Hurwitz self-correspondences in more generality. Given
a Hurwitz space H=H(P′, P, d, F, br, rm) together with an injection P ↪→ P′, if µ :
M0,P′→M0,P is the forgetful map, 0 is a non-empty union of connected components of
H and XP is a compactification of M0,P, then (0, πP, µ ◦ πP′) : XP XP is a Hurwitz
self-correspondence. Note that, by Theorem 2.9, the dynamical degrees of the Hurwitz
self-correspondence 0 do not depend on the choice of compactification XP.

Definition 2.22. As above, let H=H(P′, P, d, F, br, rm) be a Hurwitz space together
with an injection P ↪→ P′. Since F : P→ P is a self-map of a finite set, every point
eventually maps into a periodic cycle. We define the polynomiality index of H to be

PI(H) := max
{p∈P,`>0|F`(p)=p}

(5`−1
i=0 rm(p))1/`.

If 0 is a non-empty union of connected components of H, then we define the polynomiality
index of 0 to be the polynomiality index of H.

Note that the polynomiality index of Hφ as in Definition 2.22 agrees with the
polynomiality index of φ as in §1.

2.6. Fully marked Hurwitz spaces and admissible covers. Harris and Mumford
[HM82] constructed compactifications of Hurwitz spaces. These compactifications are
called moduli spaces of admissible covers. They are projective varieties that parametrize
certain ramified maps between nodal curves. They extend the ‘target curve’ and ‘source
curve’ maps to the stable curves compactifications of the moduli spaces of target and
source curves, respectively.

In general, the admissible covers compactifications are only coarse moduli spaces with
orbifold singularities. For technical ease, we introduce a class of Hurwitz spaces whose
admissible covers compactifications are fine moduli spaces. We call these Hurwitz spaces
fully marked.

Definition 2.23. [Ram18, Definition 5.6] Given (A, B, d, F, br, rm), as in Definition 2.20
with Condition 2 strengthened to:
• (Condition 2′) for all b ∈ B, the multiset (rm(a))a∈F−1(b) is equal to br(b),
we refer to the corresponding Hurwitz space H(A, B, d, F, br, rm) as a fully marked
Hurwitz space.

Given any Hurwitz space H=H(A, B, d, F, br, rm), there exists a fully marked
Hurwitz space Hfull

=H(Afull, B, d, F, br, rm), where Afull is a superset of A extending
the functions F and rm. There is a finite covering map ν :Hfull

→H, and we have the
following commutative diagram (see [Ram18] for details).
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Hfull

H M0,Afull

M0,B M0,A

ν
πAfull

µ
πAπB

For 0 a union of connected components of H, and for XB and XA smooth projective
compactifications of M0,B and M0,A, respectively, (0, πB, πA) : XB XA is a Hurwitz
correspondence. Set 0full

= ν−1(0). Then 0full is a union of connected components of
Hfull and, in Zdim XB(XB × XA),

[0] =
1

deg ν
[0full
].

LEMMA 2.24. Let (0, π1, π2) : XP XP be a dominant Hurwitz self-correspondence.
Then

(kth dynamical degree of 0)=
1

deg ν
(kth dynamical degree of 0full),

where 0full is a union of connected components of a fully marked Hurwitz space Hfull

corresponding to a superset Pfull of P, and ν : 0full
→ 0 is a finite covering map.

Proof. For 0full as above, we have that, for every iterate 0n ,

[0n
] =

(
1

deg ν

)n

[(0full)n]. �

This means that arbitrary Hurwitz correspondences may be studied via fully marked
Hurwitz spaces. These, in turn, have convenient compactifications by spaces of admissible
covers.

THEOREM 2.25. (Harris and Mumford [HM82]) Given (A, B, d, F, br, rm) satisfying
Conditions 1 and 2′ as in Definition 2.23, there is a projective variety H=
H(A, B, d, F, br, rm) containing H=H(A, B, d, F, br, rm) as a dense open subset.
This admissible covers compactification H extends the maps πB and πA to maps πB and
πA to M0,B and M0,A, respectively, with πB :H→M0,B being a finite flat map. H may
not be normal, but its normalization is smooth.

The following comparison of tautological line bundles on moduli spaces of admissible
covers is the key ingredient in our proof of Theorem 3.1.

PROPOSITION 2.26. (Ionel [Ion02, Lemma 1.17]) Let H=H(A, B, d, F, br, rm) be a
fully marked space of admissible covers with maps πB and πA to M0,B and M0,A,
respectively. Suppose we have a ∈ A and b ∈ B with F(a)= b. Then (πB)

∗(Lb)=

(πA)
∗(La)

⊗rm(a) as line bundles on H.
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3. Main theorem
THEOREM 3.1. Let

(0, π1, π2) :M0,P M0,P

be a dominant Hurwitz self-correspondence. Let R be the polynomiality index of 0, and
let 2k be the kth dynamical degree of 0. Then

20 ≥ R21 ≥ · · · ≥ R|P|−32|P|−3.

Proof. By Lemma 2.24, we may assume that 0 is a union of connected components of
a fully marked Hurwitz space H=H(Pfull, P, d, F, br, rm) corresponding to a superset
Pfull of P. Let H denote the admissible covers compactification of H, and let 0 be the
closure of 0 in H. For ` > 0, set 0` to be the `th iterate of 0, that is,

0 π2×π1 · · · π2×π1 0 (` times).

Set 0` to be its compactification

0 π2×π1 · · · π2×π1 0 (` times),

with π`1 and π`2 being its two maps to M0,P.

Since π`1 is a flat map, no irreducible component of 0` is supported over the boundary
of M0,P. This means that 0` is a dense open subset of 0`. We refer to the complement
0` r 0` as the boundary of 0`. The inverse image under π`1 of the boundary of M0,P

is exactly the boundary of 0`. The inverse image under π`2 of the boundary of M0,P is
contained in the boundary of 0`.

The compactification 0` is singular. However, for Cartier divisors D1, . . . , Ddim 0`
, the

intersection product D1 · · · · · Ddim 0`
is a well-defined integer as in [Laz04, §1.1.C]. For

any subscheme Y of dimension k, and Cartier divisors D1, . . . , Dk, we, similarly, have
the intersection number D1 · · · · · Dk · Y ∈ Z.

LEMMA 3.2. For all p ∈ P and for all `≥ 0, there is an equality of Cartier divisors on 0`

of the form

(π`1 )
∗(ψF`(p))=5

`−1
i=0 rm(F i (p)) · (π`2 )

∗(ψp)+ E,

where E is an effective Cartier divisor supported on the boundary of 0`.

Proof. We induct on `. By convention, 00 is the identity rational correspondence

(M0,P, π
0
1 = Id, π0

2 = Id) :M0,P M0,P.

For all p ∈ P, F0(p)= p, so (π0
1 )
∗(ψF0(p))= (π

0
2 )
∗(ψp). This gives us the base case

`= 0.

https://doi.org/10.1017/etds.2018.125 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.125


1982 R. Ramadas

Suppose the Lemma holds for `− 1. Then

0` = 0 π2×π`−1
1

0`−1

0 0`−1

M0,Pfull

M0,P M0,P M0,P

pr1 pr2

π1

π2 π`−1
1

π`−1
2

π full
2

µ

For all p ∈ P,

(π`1 )
∗(ψF`(p))= pr∗1(π1)

∗(ψF`(p))

= pr∗1(rm(F
`−1(p)) · (π full

2 )∗(ψPfull

F`−1(p))) (by Proposition 2.26).

By Lemma 2.17,

ψPfull

F`−1(p) = µ
∗(ψF`−1(p))+

∑
S⊆PfullrP

δ{F`−1(p)}∪S.

The inverse image under π full
2 of the boundary in M0,Pfull is contained in the boundary of

0 (in fact, it is the entire boundary), and the inverse image under pr1 of the boundary of 0
is the boundary of 0`. Thus, the Cartier divisor

E1 := pr∗1

(
(π full

2 )∗
( ∑

S⊆PfullrP

δ{F`−1(p)}∪S

))

is effective and supported on the boundary of 0`. We continue with

(π`1 )
∗(ψF`(p))= rm(F`−1(p)) pr∗1(π

full
2 )∗µ∗(ψF`−1(p))+ rm(F`−1(p))E1

= rm(F`−1(p)) pr∗1(π2)
∗(ψF`−1(p))+ rm(F`−1(p))E1

= rm(F`−1(p)) pr∗2(π
`−1
1 )∗(ψF`−1(p))+ rm(F`−1(p))E1.

By the inductive hypothesis, we can rewrite this as

rm(F`−1(p)) pr∗2(5
`−2
i=0 rm(F i (p))(π`−1

2 )∗(ψp)+ E2)+ rm(F`−1(p))E1,

where E2 is an effective Cartier divisor supported on the boundary of 0`−1. Since the
inverse image under pr2 of the boundary of 0`−1 is contained in the boundary of 0`,
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pr∗2(E2) is an effective Cartier divisor supported on the boundary of 0`. Thus we can
finally write

(π`1 )
∗(ψF`(p))

= rm(F`−1(p))(5`−2
i=0 rm(F i (p))) pr∗2(π

`−1
2 )∗(ψp)

+ rm(F`−1(p)) pr∗2(E2)+ rm(F`−1(p))E1

=5`−1
i=0 rm(F i (p))(π`2 )

∗(ψp)+ (rm(F`−1(p)) pr∗2(E2)+ rm(F`−1(p))E1),

which is as desired. This proves Lemma 3.2. �

Now, since F : P→ P is a map of finite sets, every point is eventually periodic. Fix
p ∈ P to be periodic of period `0 > 0 and such that (5`0−1

i=0 rm(F i (p)))1/`0 = R. Then, by
Lemma 3.2, for every multiple m`0, we have, on 0m`0 ,

(π
m`0
1 )∗(ψp)= Rm`0(π

m`0
2 )∗(ψp)+ Em, (1)

where Em is an effective Cartier divisor supported on the boundary of 0m`0 .

Let ρ :M0,P→ CP|P|−3 be the birational morphism to projective space given by the
line bundle Lp. Let h be the Cartier divisor class of a hyperplane in CP|P|−3. Then ρ∗(h)=
ψp.

The pullback [0n
]
∗(hk) is, by definition,

(ρ ◦ πn
1 )∗ ◦ (ρ ◦ π

n
2 )
∗(hk).

So, by the projection formula,

([0n
]
∗(hk)) · (h|P|−3−k)= ((ρ ◦ πn

2 )
∗(hk)) · ((ρ ◦ πn

1 )
∗(h|P|−3−k)).

Since dynamical degrees are birational invariants, 2k is also the kth dynamical degree of
the induced rational correspondence (0, ρ ◦ π1, ρ ◦ π2) : CP|P|−3 CP|P|−3.

2k = lim
n→∞

(([0n
]
∗(hk)) · (h|P|−3−k))1/n

= lim
n→∞

(((ρ ◦ πn
2 )
∗(hk)) · ((ρ ◦ πn

1 )
∗(h|P|−3−k)))1/n

= lim
n→∞

(((πn
2 )
∗(ψk

p)) · ((π
n
1 )
∗(ψ |P|−3−k

p )))1/n .

Since this sequence converges, we can find its limit using any subsequence, and

2k = lim
m→∞

(((π
m`0
2 )∗(ψk

p)) · ((π
m`0
1 )∗(ψ |P|−3−k

p )))1/m`0

= lim
m→∞

(((π
m`0
2 )∗(ψp))

k
· ((π

m`0
1 )∗(ψp))

|P|−3−k)1/m`0 .

For m > 0, set

αm,k := ((π
m`0
2 )∗(ψp))

k
· ((π

m`0
1 )∗(ψp))

|P|−3−k,

so

2k = lim
m→∞

(αm,k)
1/m`0 .
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LEMMA 3.3. Fix m > 0. The intersection numbers αm,k on 0m`0 satisfy

αm,0 ≥ Rm`0αm,1 ≥ · · · ≥ (Rm`0)|P|−3αm,|P|−3.

Proof of Lemma 3.3. Let J be any irreducible component of 0m`0 , and set

αJ ,k := ((π
m`0
2 )∗(ψp))|

k
J · ((π

m`0
1 )∗(ψp))|

|P|−3−k
J .

Since (πm`0
1 )∗(ψp) and (πm`0

2 )∗(ψp) are pullbacks of the ample hyperplane class h,
they are nef on 0m`0 and J . By [Laz04, Example 1.6.4], αJ ,k is a log-concave function
of k.

Note that ψ |P|−4
p = ρ∗(h|P|−4). The class h|P|−4 on CP|P|−3 may be represented by

a line L that does not intersect the codimension-two exceptional locus of ρ. Then
ρ−1(L) is an irreducible curve in M0,P that is not contained in the boundary and

(π
m`0
1 )−1(ρ−1(L))|J is a curve Y , none of whose irreducible components lies in the

boundary of J . Since πm`0
1 is a flat map and a covering map away from the boundary,

((π
m`0
1 )∗(ψ |P|−4

p ))|J = [Y ].

By equation (1),

(π
m`0
1 )∗(ψp) · [Y ] = Rm`0(π

m`0
2 )∗(ψp) · [Y ] + Em · [Y ].

Since (πm`0
1 )∗(ψp) and (πm`0

2 )∗(ψp) are nef on 0m`0 , the intersection numbers

(π
m`0
1 )∗(ψp) · [Y ] and (π

m`0
2 )∗(ψp) · [Y ]

are non-negative. Since Em is entirely supported on the boundary and no component of Y
is supported on the boundary, Em · [Y ] is non-negative as well. Thus we obtain

(π
m`0
1 )∗(ψp) · [Y ] ≥ Rm`0(π

m`0
2 )∗(ψp) · [Y ]. (2)

Thus

αJ ,0 = ((π
m`0
1 )∗(ψp))|

|P|−3
J

= ((π
m`0
1 )∗(ψp))|J · ((π

m`0
1 )∗(ψ |P|−4

p ))|J

= ((π
m`0
1 )∗(ψp))|J · [Y ]

≥ Rm`0((π
m`0
2 )∗(ψp))|J · [Y ] by (2)

= Rm`0((π
m`0
2 )∗(ψp))|J · ((π

m`0
1 )∗(ψ |P|−4

p ))|J

= Rm`0((π
m`0
2 )∗(ψp))|J · ((π

m`0
1 )∗(ψp))|

|P|−4
J

= Rm`0αJ ,1.

By log-concavity, we conclude that the intersection numbers αJ ,k satisfy

αJ ,0 ≥ Rm`0αJ ,1 ≥ · · · ≥ (R
m`0)|P|−3αJ ,|P|−3.
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Since
αm,k =

∑
J irreducible

component of 0m`0

αJ ,k,

the lemma follows. �

We now complete the proof of Theorem 3.1. For all m,

αm,0 ≥ Rm`0αm,1 ≥ · · · ≥ (Rm`0)|P|−3αm,|P|−3, so

α
1/m`0
m,0 ≥ Rα1/m`0

m,1 ≥ · · · ≥ R|P|−3α
1/m`0
m,|P|−3.

The theorem follows by taking the limit as m goes to infinity. �

4. An application to enumerative algebraic geometry
PROPOSITION 4.1. Let H=H(P, P, d, F, br, rm) be a Hurwitz space with ‘target’ and
‘source’ maps π1 and π2, respectively, to M0,P. Let

r =max
p∈P

rm(p).

Let 0 be any connected component of H. Then

20(0)= deg(π1|0)≥ r |P|−3 deg(π2|0)=2|P|−3(0).

By summing over all connected components of H, we obtain

20(H)= deg(π1)≥ r |P|−3 deg(π2)=2|P|−3(H).

Remark 4.2. Here, r is the maximum local degree of [ f : CP1
→ CP1

] ∈H at p, where
p ranges over P.

In the introduction, two alternative statements are given for Proposition 4.1. Both follow
immediately from the statement as proved here. Note that every connected component 0
arises as Hφ for some topological branched covering φ, giving us the second statement in
the introduction. Note that if there is a p ∈ P with local degree rm(p) strictly bigger than
one, then even if the polynomiality index is one, by this proposition we can still guarantee
a strict total decrease from the 0th to the top dynamical degrees.

Proof. Fix p ∈ P with rm(p)= r . Pick a permutation σ ∈ Aut(P) such that σ(p)= F(p).
The permutation σ induces an automorphism σmoduli of M0,P, given by

[ι : P ↪→ CP1
] 7→ [ι ◦ σ : P ↪→ CP1

].

Set
Hnew

=H(P, P, d, σ−1
◦ F, br ◦σ, rm).

Hnew is the Hurwitz space obtained by using σ to relabel the marked points of [ f : CP1
→

CP1
] ∈H on the target CP1. The point p is a ‘fixed point’ of maps [ f ] ∈Hnew. Note that,

by construction, PI(Hnew)≥ r . (In fact, PI(Hnew)= r , although we will not need this
stronger fact.) There is an isomorphism σ hurwitz from H to Hnew, as follows. A point in
H is a map f : CP1

→ CP1 together with injections ι1 and ι2 into the target CP1 and
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source CP1, respectively. The isomorphism σ hurwitz
:H→Hnew takes [ f, ι1, ι2] ∈H to

[ f, ι1 ◦ σ, ι2]. Denote by πnew
1 and πnew

2 , respectively, the ‘target’ and ‘source’ maps from
Hnew to M0,P. Note that σmoduli

◦ π1 = π
new
1 ◦ σ hurwitz; also that π2 = π

new
2 ◦ σ hurwitz.

Now let 0 be some connected component of H; denote by 0new its isomorphic image
in Hnew. By Theorem 3.1,

deg(πnew
1 |0new)=20(0

new)≥ r |P|−32|P|−3(0
new)= deg(πnew

2 |0new). (3)

Since σmoduli and σ hurwitz are both isomorphisms,

deg(π1|0)= deg(πnew
1 |0new)

and
deg(π2|0)= deg(πnew

2 |0new).

By (3), this proves the proposition. �

5. Equal dynamical degrees when the polynomiality index equals one
Let φ : S2

→ S2 be a branched covering such that every critical point of φ is strictly pre-
periodic. Then PI(φ)= 1. In this case, Theorem 3.1 is at its weakest: it tells us only that
2k(Hφ)≥2k+1(Hφ). In fact, equality is possible, as in the following example.

Example 5.1. A generic degree three rational function on CP1 has four simple critical
points. Let f be such a rational function with simple critical points x1, . . . , x4. Set
p1, . . . , p4 to be the four non-critical points such that f (pi )= f (xi ) for i = 1, . . . , 4.
Now let ψ be any homeomorphism of CP1 that takes f (xi ) to pi for i = 1, . . . , 4. Set
φ = ψ ◦ f . Then φ is a degree three branched covering whose simple critical points
x1, . . . , x4 map, respectively, to fixed points p1, . . . , p4. Thus φ has finite post-critical
set P= {p1, . . . , p4}, and PI(φ)= 1.

Set Pfull
:= P t {q1, . . . , q4}. Let H be the Hurwitz space that parametrizes (up to

changing coordinates on CP1) two injections ι1 : P ↪→ CP1, ι2 : Pfull ↪→ CP1 as well as
a degree three map f : CP1

→ CP1 such that, for i = 1, . . . , 4:
• f (ι2(pi ))= f (ι2(qi ))= ι1(pi );
• f is unramified at ι2(pi ); and
• f is simply ramified at ι2(qi ).
Each ι2(pi ) is called a co-critical point of f : it is an unramified point mapping to a critical
value.

Since H parametrizes maps with the same markings and branching type as φ, as in §2.5
we have that Hφ is a connected component of H. On the other hand, since H parametrizes
maps with only simple branching, by [Ful69] H is connected. Thus Hφ =H. The space H
admits two maps to M0,P: a ‘target’ map π1 recording ι1 and a ‘source’ map π2 recording
ι2|P.

An element of M0,P is an injection ι : P ↪→ CP1, that is considered up to post-
composition by Möbius transformations. Given such an equivalence class of injections [ι],
we may post-compose by a Möbius transformation to assume that ι(p1)= 0, ι(p2)= 1 and
ι(p3)=∞. Then ι(p4) defines a point of CP1 r {0, 1,∞}. This gives an identification
between M0,P and CP1 r {0, 1,∞} = Cr {0, 1}. Thus Hφ is one dimensional, and
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the Hurwitz correspondence Hφ has two dynamical degrees: 20(Hφ)= deg(π1) and
21(Hφ)= deg(π2).

Now, given an element [ f : (CP1, p1 . . . , p4, q1 . . . , q4)→ (CP1, p1 . . . , p4)] ∈

Hφ , we can apply two independent Möbius transformations to assume that ι1(p1)=

ι2(q1)= 0, ι1(p2)= ι2(q2)= 1 and ι1(p3)= ι2(q3)=∞. Thus, in these coordinates, f
is a degree three rational function such that 0, 1 and ∞ are critical fixed points. As a
degree three rational function, f is of the form

f (z)=
z3
+ Az2

+ Cz + D
Ez3 + Fz2 + Gz + H

.

The condition that 0 is a critical fixed point forces C and D to vanish; the condition that
∞ is a critical fixed point forces E and F to vanish. We rewrite f as

f (z)=
z3
+ Az2

Gz + H
.

The condition that 1 is a fixed point forces H = 1+ A − G. Rewriting again gives

f (z)=
z3
+ Az2

Gz + 1+ A − G
.

Imposing the last condition that 1 is a critical point forces G = 3+ 2A. Thus

f (z)=
z3
+ Az2

(3+ 2A)z − 2− A

is determined by the parameter A. For A ∈ C, we set

f A(z)=
z3
+ Az2

(3+ 2A)z − 2− A
,

identifying Hφ with a Zariski-open subset of C, parametrized by A. A direct computation
yields that the fourth and last critical point of f A is at (−2A − A2)/(3+ 2A).

The ‘target’ map π1 identifies the positions of the four critical values, 0, 1,∞ and

f A

(
−2A − A2

3+ 2A

)
=−

A3(2+ A)
(3+ 2A)3

.

Thus, for A ∈Hφ ,

π1(A)=−
A3(2+ A)
(3+ 2A)3

∈ Cr {0, 1} =M0,P.

We see from these coordinates that π1 has degree four.
Solving for the inverse images of the critical values, we obtain that the co-critical points

mapping respectively to 0, 1, ∞ and −(A3(2+ A)/((3+ 2A)3) are −A, −2− A, (2+
A)/(3+ 2A) and A/(3+ 2A). The ‘source’ map π2 sends A ∈Hφ to the cross-ratio of
the four co-critical points, which simplifies to

(2+ A)3 A
−3− 2A

,

which is again of degree four in A. Thus we obtain that

21(Hφ)= deg(π2)= 4= deg(π1)=20(Hφ).
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The above example is of a branched covering φ whose post-critical set has size exactly
four, giving us a Hurwitz correspondence on a one-dimensional moduli space. We do not
know an example of a branched covering φ with finite post-critical set with size strictly
larger than four (so that Hφ is a correspondence on a moduli space of dimension larger
than one) such that 2k(Hφ)=2k+1(Hφ) for some k, but we believe that such branched
coverings should exist.

We also do not know if there exists a branched covering φ such that H−1
φ is single valued

and 2k(Hφ)=2k+1(Hφ) for some k. Such a map could not satisfy Koch’s criteria (1)
and (2). On the other hand, every known example of a branched covering φ with H−1

φ

being single valued satisfies Koch’s criteria.

6. A two-dimensional Hurwitz correspondence in coordinates
Example 5.1 describes in coordinates a Hurwitz correspondence on the one-dimensional
moduli space M0,4. In this section, we describe a simple Hurwitz correspondence on the
two-dimensional space M0,5. Let P= {p1, . . . , p5}, and let H be a Hurwitz space that
parametrizes:
• two injections ι1, ι2 : P ↪→ CP1; and
• a degree two map f : CP1

→ CP1 such that ι1(pi )= f (ι2(pi )) for i = 1, . . . , 5 and
such that f is ramified at ι2(p1) and ι2(p3),

up to changing coordinates on CP1. The space H admits two maps to M0,P: a ‘target’ map
π1 recording ι1 and a ‘source’ map π2 recording ι2. We describe these maps in coordinates
below.

An element of M0,P is an injection ι : P ↪→ CP1 that is considered up to post-
composition by Möbius transformations. Given such an equivalence class of injections
[ι], we may post-compose by a Möbius transformation to assume that ι(p1)= 0, ι(p2)= 1
and ι(p3)=∞. Then the tuple (ι(p4), ι(p5)) defines a point of

(CP1 r {0, 1,∞} × CP1 r {0, 1,∞})r {x = y}. (4)

This defines an identification between M0,P and the space (4). Now, given an element
[ι1, ι2, f ] of H, we can apply two independent Möbius transformations to assume that
ι1(p1)= ι2(p1)= 0, ι1(p2)= ι2(p2)= 1 and ι1(p3)= ι2(p3)=∞. Then f must be the
map sending z ∈ CP1 to z2, and the tuple (ι2(p4), ι2(p5)) defines a point of

(CP1 r {0, 1,−1,∞} × CP1 r {0, 1,−1,∞})r ({x = y} ∪ {x =−y}). (5)

It is straightforward to check that this defines an identification of H with the space (5).
In these coordinates, the map π1 sends (x, y) in (5) to (x2, y2) in (4), and π2 is the open
inclusion from (5) to (4). Thus this Hurwitz correspondence is the ‘coordinatewise square
root’ multivalued map; it sends (x, y) in

M0,P ∼= (CP1 r {0, 1,∞} × CP1 r {0, 1,∞})r {x = y}

to the unordered tuple

{(+
√

x,+
√

y), (+
√

x,−
√

y), (−
√

x,+
√

y), (−
√

x,−
√

y)}.

The correspondence H arises as Hφ for any degree two branched cover φ : S2
→ S2

with two ramified fixed points p1 and p3 and three labelled unramified (and not post-
critical) fixed points p2, p4 and p5. Since we need to label superfluous points that are
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not post-critical in order to have a correspondence on the two-dimensional M0,P, this is a
somewhat trivial example. In fact, the inverse of H is the single-valued, holomorphic,
‘coordinatewise squaring’ map on CP1

× CP1 sending (x, y) to (x2, y2). Thus we
conclude that 20(H)= 4, 21(H)= 2 and 22(H)= 1. Note that the polynomiality index
of H is two, so the inequalities in Theorem 3.1 are equalities in this example.

However, from this example we obtain certain others by post-composing π2 with
automorphisms of M0,P that are induced by permutations in S5, relabelling the points
p1, . . . , p5. These new examples are less trivial but also less easily described in
coordinates. They correspond to Hφ for branched covers φ : S2

→ S2 with two ramified
period points, either in the same cycle of length five or in different cycles of lengths two
and three. In [KR16], these correspondences are described in detail in coordinates, and the
first dynamical degrees of their single-valued inverse maps are computed.

There is also a computation in [Ram17, Ch. 7] of the dynamical degrees of a family
of two-dimensional Hurwitz correspondences whose inverses are not single valued. These
Hurwitz correspondences are closely related to the one-dimensional correspondence in
Example 5.1. For these, computation in coordinates is forbiddingly difficult; instead, a
combinatorial algorithm is developed in 7.1 and applied in 7.2.
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