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Abstract

Optimization of hyperparameters of artificial neural network (ANN) usually involves a trial
and error approach which is not only computationally expensive but also fails to predict a
near-optimal solution most of the time. To design a better optimized ANN model, evolution-
ary algorithms are widely utilized to determine hyperparameters. This work proposes hyper-
parameters optimization of the ANN model using an improved particle swarm optimization
(IPSO) algorithm. The different ANN hyperparameters considered are a number of hidden
layers, neurons in each hidden layer, activation function, and training function. The proposed
technique is validated using inverse modeling of two meander line electromagnetic bandgap
unit cells and a slotted ultra-wideband antenna loaded with EBG structures. Three other evo-
lutionary algorithms viz. hybrid PSO, conventional PSO, and genetic algorithm are also
adopted for the hyperparameter optimization of the ANN models for comparative analysis.
Performances of all the models are evaluated using quantitative assessment parameters viz.
mean square error, mean absolute percentage deviation, and coefficient of determination
(R2). The comparative investigation establishes the accurate and efficient prediction capability
of the ANN models tuned using IPSO compared to other evolutionary algorithms.

Introduction

Rapid evolution has occurred in the field of wireless communication over recent years.
Ultra-wideband (UWB) wireless technologies, intended for short-distance communication
have gained popularity since the Federal Communications Commission (FCC) released
7.5 GHz of the unlicensed band for commercial applications. According to the FCC rulings,
the UWB device occupies fractional bandwidth (FBW) greater than 20% and can commercially
operate in the frequency range of 3.1–10.6 GHz. As UWB systems utilize a huge amount of
bandwidth, they must share the spectrum with other wireless services and applications. To
address spectrum access coordination, UWB regulatory organizations from various countries
developed their own UWB radio spectrum regulations as listed in Table 1 [1]. UWB antennas
being the key component of UWB systems have wide impedance bandwidth, compact size,
low cost, uniform omnidirectional radiation pattern, and provide high-speed data rate. Several
narrow frequency bands operate in the UWB frequency band such as WiMAX (3.3–3.7 GHz),
C-band (downlink 3.7–4.2 GHz, uplink 5.925–6.425 GHz), WLAN (5.15–5.35 GHz and
5.725–5.825 GHz), and X-band (downlink 7.25–7.75 GHz, uplink 7.9–8.4 GHz). The communi-
cating devices operating in the narrow bands may interfere with the devices operating in UWB.
To avoid this electromagnetic interference, UWB antennas are designed with band rejection
characteristics by etching slots on the patch or ground plane, using parasitic components, or
using tuning stubs. Electromagnetic band-gap (EBG) structures are being introduced to nullify
the mutual coupling interference and independently regulate the notch band. EBG structures are
a periodic arrangement of metal conductors and dielectric material to intercept the transmission
of specific bandwidth at a certain frequency band. EBG structures exhibit stopband characteris-
tics that can direct the radiation of the antenna and prevent the scattering of surface waves [2–8].

Several electromagnetic (EM) simulators such as IE3D, FEKO, HFSS, and CST Studio are
available for the analysis and synthesis of electromagnetic devices. These simulators are based
on the finite difference method (FDM) and finite element method (FEM) for solving differ-
ential equations and method of moment (MoM) for solving integral equations of electromag-
netic problems. However, the huge computational time and resources required by these EM
simulators are their main constraints. To overcome these limitations, computational intelli-
gence (CI) techniques are proved to be an alternate solution. CI techniques are being exten-
sively used in the field of microwave engineering for modeling and optimization of
microwave structures. These techniques are efficient for solving intensive nonlinear problems
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as they require limited computational resources. Artificial neural
network (ANN) has been widely used in modeling complex EM
structures because of their ability to learn from experience and
accurate predictions compared to numerical techniques [9–14].

ANNs are characterized by hyperparameter values which are
responsible for defining the network structure, regularization para-
meters, and learning rate. The performance of the NN model
depends on the optimal selection of these user-specified hyperpara-
meter values. Usually, the hyperparameters are selected using
trial-and-error or by grid search. Grid search is a hyperparameter
tuning method based on scanning each possible combination of
parameters and evaluating the NN model accordingly [15].
However, these traditional approaches are time-consuming and
not feasible for assessing a higher number of hyperparameters.
Random search algorithms outperform the traditional techniques
in terms of efficiency as it tries to find a global optimum. Each
hyperparameter is statistically distributed such that the values
may be randomly sampled. The drawback of random search is
that it has a higher rate of convergence and yields high variance
during computation [16]. Evolutionary algorithms have been
widely adopted to find the optimum parameter value of the net-
work model. In [17, 18], a genetic algorithm (GA) has been used
to configure ANN topology and tune the network weights and
biases. The optimal regularization hyperparameters and activation
functions of a multi-layer NN model are determined using GA
in [19, 20]. GA has also been used to optimize the architecture
of a convolution neural network (CNN) in [21]. Particle swarm
optimization (PSO) has also been opted to determine the optimal
hyper-parameters for designing CNN-LSTM network, deep neural
network (DNN), and back-propagation network [22–25].

In PSO, each particle’s movement is dictated by its local best
position in order to reach the global best position by computing

its fitness. However, if a particle does not improve its fitness, the
previous velocity vector has an effect on the next velocity vector.
In order to overcome this, a mutation mechanism is subjected to
the velocities of the particles that are unable to locate a better pos-
ition [26]. The PSO algorithm based on velocity mutation has
been utilized for optimizing the geometry of a reconfigurable

antenna array and complementary split-ring resonator [27, 28].
A fractal antenna and a log-periodic dipole array have also been
optimized using this algorithm for obtaining low S11 and high-
gain radiation pattern respectively [29, 30]. The contribution of
this work is the integration of the PSO algorithm based on vel-
ocity mutation with ANN which has been conceptualized for
the first time to the best of the authors’ knowledge. In the pre-
sented work, ANN-based modeling is proposed for inverse mod-
eling two EBG unit cells and an EBG loaded antenna. ANN
modeling for the two EBG unit cells is implemented to predict
the geometrical parameters from resonant frequency and its cor-
responding reflection coefficient. These two unit cells are incorpo-
rated into a slotted monopole antenna to realize penta notched
band characteristics. The geometrical parameters of the proposed
antenna are predicted from the UWB impedance bandwidth and
multiband notch frequencies of the antenna. Hyperparameters of
the NN models, such as number of hidden layers, number of hid-
den neurons in each layer, activation function, and training func-
tion are tuned using PSO algorithm based on velocity mutation
mechanism termed in this work as improved PSO (IPSO).

Inverse modeling

Multilayer perceptron

ANN is a computational model for surrogate modeling aimed at
reducing computational time and resources. It bypasses the require-
ment of lengthy and tedious analysis and mathematical calcula-
tions. NN consists of artificial neurons in multiple layers and
maps the input data with the target output. Neurons of each
layer are connected with each other and carry weights that are
responsible to excite or inhibit the input signals. One of the widely
used ANN architecture is the multilayer perceptron (MLP) consist-
ing of an arbitrary number of hidden layers between an input and
output layer. MLP is a feed-forward network and is mostly imple-
mented for supervised learning problems. It is used to process the
correlation between input and target output using backpropagation.
In the forward pass, the input data flows through the intermediate
layers to the output layer. Error difference between the target and
predicted output is calculated. The partial derivative of the error
function with respect to weights and biases are backpropagated
through the network. Weights and biases are adjusted in each iter-
ation until the network reaches a state of convergence.

The equation representing the input-output relationship of a
generalized MLP is shown in Fig. 1 can be expressed as,

where xi is the input to ith neuron and yo is the output of o
th neu-

ron of MLP; f1, fl, and fl+1represents the activation function of the
first hidden layer, lth hidden layer, and output layer respectively;
w(1)
j,i denotes the connection weights between ith input neuron

and jth hidden neuron; w(l)
p,k denotes the connection weights

between kth and pth hidden neuron; w(l+1)
o,p denotes the connection

Table 1. UWB Regulation standards of different countries

Country
Frequency
range

Effective isotropic radiated
power (EIRP)

USA 3.1–10.6 GHz −41.3 dBm/MHz

Europe 6.0–8.5 GHz −41.3 dBm/MHz

Korea 1.0–10 GHz −66.5 dBm/MHz

Japan 3.4–4.8 GHz,
7.25–10.2 GHz

−41.3 dBm/MHz

Singapore 2.2–10.6 GHz −35 dBm/MHz

yo = f l+1
∑q
p=1

w(l+1)
o,p f l

∑s

k=1

w(l)
p,k . . . . . . . f 1

∑n
i=1

w(1)
j,i xi + b(1)j

( )( )
. . . ..

( )
+ b(l)p

( )( )
+ b(l+1)

o

( )
(1)
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weights between pth hidden and oth output neuron; b(1)j , b(l)p , and
b(l+1)
o represents the biases of hidden and output layer,
respectively.

An MLP can be created with multiple hidden layers with a
large number of neurons in each layer. However, an increase in
the number of hidden layers and neurons may lead to generaliza-
tion capability loss [31]. Also, few numbers of hidden layers and
neurons fail to map complex input-output relationships and leads
to underfitting. To achieve faster convergence, proper selection of
activation function is necessary. There are several training func-
tions used to train the MLP, which have a significant influence
on its performance. Over the years, the trial and error approach
is widely used to find the hyperparameters of MLP. In the pro-
posed work, we have explored the capabilities of IPSO to deter-
mine appropriate MLP architecture (MLP-IPSO) with better
hyperparameter configuration.

Design of MLP-IPSO

PSO is a search-based optimization algorithm inspired by the social
behavior of swarms. An initial set of the population with random
position and velocity are selected and moved around in a multidi-
mensional search space. The movement of each particle is governed
by its local best position to reach the global best position. The prox-
imity of the particle to the global best is measured using a fitness
function. The position and velocity of each particle are updated
at each iteration until a global optimum solution is achieved.
However, if a particle fails to achieve better fitness, then the previ-
ous velocity vector affects the next velocity vector. In order to avoid
that, velocity mutation is introduced in this IPSO algorithm [26].

Let the MLP configuration be represented as λ = (λN, λH)
where λN denotes the network architecture and λH denotes the
hyperparameter configuration respectively. The goal of the opti-
mization is to tune λH = (λD, λC)∈ K where K is the decision
set of all hyperparameters. The hyperparameters to be optimized
are the number of hidden layers, the number of neurons in each
hidden layer, activation function, and training function. The dis-
crete hyperparameters λD include the number of hidden layers
and the number of neurons in each hidden layer. Activation func-
tion and training function are categorical or non-ordinal hyper-
parameters λC. Every λN is trained using corresponding λH in
order to minimize errMLP[(λN, λH)] which is calculated as,

errMLP[(lN , lH)] =
∑N

i=1 [ fp(xi)− ft(xi)]
2

N
(2)

where fp(xi) is the predicted model output and ft(xi) is the target
output.

For MLP-IPSO, an initial population of particles with random
position and velocity is selected. Each pi particle has its positionxi-
∈ Sand velocity vi∈ S where S is the search space of all the hyper-
parameters. After population initialization, each particle pi
determines an MLP configuration, pi = (netIPSO, HIPSO) where,
netIPSO and HIPSO denotes the MLP architecture and hyperpara-
meter configuration, respectively. The corresponding MLP
model is then trained using the cross-validation technique [32].
k-fold cross-validation technique is widely applied to divide the
dataset into k random independent subsets. k-1 subsets are used
for training purposes and one of the k subsets is used for testing.
During all the k-fold runs, each subset is selected as hold out at a
time. The final performance of the model is then assessed by aver-
aging the k recorded errors. The modeling performance of the
MLP is assessed using mean square error (MSE) given by eq. 2.

The current fitness of pi is compared with the previous best
solution of the particle’s position pbest and is updated if the cur-
rent fitness is larger. Similarly, the global best solution of the
swarm’s position gbest is updated if the current fitness value is lar-
ger than the previous gbest. After updating pbest and gbest, the
position and velocity of each particle is then modified using,

viter+1
i = k{viteri + w1rand

iter( pbestiteri − xiteri )

+ w2rand
iter(gbestiteri − xiteri )}

(3)

xiter+1
i = xiteri + viter+1

i (4)

where, xi and vi represents n-dimensional position and velocity of
ith particle, respectively; iter denotes the iteration index; rand
represents random numbers uniformly distributed in [0,1]; w1, w2-

denotes the cognitive and social coefficients respectively, and k is
constriction coefficient calculated as,

k = 2

2− w−
���������
w2 − 4w

√∣∣∣ ∣∣∣ (5)

where, w = w1 + w2.
At the end of iteration iter, if an ith particle is not able to

improve its fitness, then its velocity components viti are mutated
by a factor Fg, given as [26],

Fg = (0.6+ 0.1g)(2rand − 1) (6)

where g denotes the number of iterations for a particle with no
fitness improvement. In this case, the velocity of the particle is
updated using [26],

viter+1
i = k{Fgv

iter
i + w1rand

iter( pbestiteri − xiteri )

+ w2rand
iter(gbestiteri − xiteri )}

(7)

The process is continued until the maximum numbers of itera-
tions are over. The search space of all the hyperparameters to be
optimized by IPSO is listed in Table 2. The optimal solutions of
the algorithm obtained are considered as the tuned hyperparameters

Fig. 1. Generalized architecture of MLP.
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of the MLP. Figure 2 represents the flowchart of the proposed
MLP-IPSO approach.

Application examples

In this section, three inverse NN models based on MLP-IPSO
approach have been proposed for two EBG unit cells and an
EBG loaded antenna.

EBG unit cells

Two symmetrical defected spiral lines, and two L-shaped defected
lines with two defected spiral lines, are employed to design EBG1.
EBG2 is designed using four symmetrical spiral lines connected
from the center. Both the EBG unit cells, shown in Fig. 3, are
designed on FR4 dielectric substrate with a thickness of 1.6 mm
using Ansys HFSS. The geometrical parameters of EBG1 (a1, b1,
c1, d1, e1, a2, b2, c2, d2, e2, l ) and height of the dielectric substrate
(h) are varied to obtain the resonance frequency and its corre-
sponding |S11|. Extensive parametric analysis has been performed
on each parameter to obtain the training and testing datasets.
Similarly for EBG2, different geometrical parameters of the spiral
line (a, b1, b2, c, d, e, f, g), and height of the dielectric substrate (h)
are varied using parametric analysis to obtain the datasets. Table 3
lists out the sampling procedure for generating the datasets. A
total of 1220 and 1098 datasets are obtained for EBG1 and
EBG2, respectively. The simulated performance of both EBG1

and EBG2 is shown in Fig. 4. EBG1 gives dual resonance at 5.7
and 11.1 GHz, respectively whereas EBG2 is resonating at 7.5
GHz. The Brillouin-zone based dispersion diagrams of EBG1

Table 2. Search space for hyperparameter optimization

Hyperparameters Search space

No. of hidden layers [1, 2]

No. of hidden
neurons

[1, 60]

Activation function {‘tansig”, “logsig”, “elliotsig’}

Training function {‘trainlm”, “trainscg”, “trainbfg”, “trainrp”,
“trainbr”, traincgb”, “traincgf”, “traincgp’}

Fig. 2. Flowchart of MLP-IPSO.
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and EBG2 are shown in Fig. 5. For EBG1, two bandgaps are exhib-
ited between 5.66–5.85 GHz and 10.8–11.5 GHz, and the bandgap
for EBG2 falls between 7.21 and 7.79 GHz. A comparative study
between the EBG structures and the existing literature in terms
of types of EBG design, size, and bandgaps is conducted as listed
in Table 4.

For modeling EBG1, and EBG2, two NN models, NN1, and
NN2 are proposed. NN1 has been implemented for obtaining
12-dimensional response [G1] of EBG1 for the 4-dimensional
input [I1] where [G1] = [a1, b1, c1, d1, e1, a2, b2, c2, d2, e2, l, h]
and [I1] = [ fr1, |S11|1, fr2, |S11|2]. NN2 is proposed for EBG2,
where 2-dimensional excitation [I2] is processed for getting
9-dimensional response [G2]. Here, [I2] = [ fr, |S11|] and [G2] =
[a, b1, b2, c, d, e, f, g, h].

EBG loaded UWB antenna

A conventional UWB antenna with a rectangular radiating surface
and a partial ground plane is taken as the reference antenna. The

simulated performance of the antenna is shown in Fig. 6 and it
can be observed that the antenna achieved an impedance band-
width from 2.9 to 10.5 GHz. For obtaining triple-band notch
characteristics, three modified U-shaped slots as shown in Fig. 7
are incorporated onto the radiating surface. The effect of notch
frequencies is validated by individually simulating each modified
U-shaped slot. The slot positions are optimized in such a way that
it rejects three interfering bands intended for ISM, radar surveil-
lance, and WiMAX applications.

To obtain the datasets of the reference UWB antenna, a para-
metric analysis is performed by varying four geometrical vari-
ables, LP, WP, Wf, and Lg. Slot1 is introduced on the radiator
and parametric analysis is performed by varying L1 and W1.
Slot2 is then incorporated on the radiating surface keeping Slot1
at its optimized position. Parametric analysis is done on Slot2
by varying L2, and W2. Finally, Slot3 is placed keeping Slot1 and
Slot2 at their optimized place and parametric analysis is per-
formed on L3, and W3. For validating the effectiveness of EBG
structures in rejecting frequency bands, the two EBG unit cells
are incorporated onto the slotted antenna. As shown in Fig. 7,
EBG1 is etched from the radiator at a distance of d1 and d2
from Slot1. The three modified U-shaped slots are kept at their
optimized position and d1 and d2 are varied for obtaining the
datasets. Similarly, EBG2 is introduced at a distance of p1 from
the feed line as depicted in Fig. 7. Parametric variation of p1
and p2 is performed by keeping other geometrical variables at
their optimized values.

Fig. 3. EBG Unit Cells (a) EBG1, (b) EBG2.

Table 3. Sampling approach for dataset generation of EBG structures

Parameters Sampling range (mm) Parameters Sampling range (mm)

EBG1 a1, c1, a2, c2 0.68–1.93 EBG2 a 0.75–1.05

b1, e1, b2, e2 0.60–2.05 b1 0.10–0.85

d1, d2 0.10–1.60 b2 1.35–1.60

l 1.50–4.90 c,d 0.01–0.30

h 0.10–3.20 e 0.20–3.70

f 5.60–8.90

g 3.00–6.30

H 0.10–3.20

Fig. 4. Simulated performance of EBG structures.
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Figure 7 is the final proposed antenna geometry, with two
meander line EBG cells, EBG1 and EBG2, which produces penta
notch-band characteristics. The sampling method to obtain the
datasets is listed in Table 5. Figure 6 shows that the antenna sat-
isfies the bandwidth requirement of UWB applications from fc1 =
2 GHz to fc2 = 10.74 GHz and the notches are achieved at 2.33,
2.83, 3.35, 3.87, and 5.87 GHz. The prototype of the optimized
antenna geometry is fabricated using FR4 substrate sheet of 1.6
mm thickness for validating its performance. The fabricated
prototype and the far-field measurement setup are shown in
Fig. 8. The measured |S11| result of the fabricated prototype

obtained using a vector network analyzer (VNA) is compared
with the simulated results in Fig. 9. A good agreement between
the simulated and measured performance characteristics is
achieved. The slight deviations might be due to fabrication toler-
ances, soldering effect, or human error during the process of fab-
rication and/or measurement. The simulated and measured
normalized radiation patterns for the antenna in H-plane and
E-plane are plotted in Fig. 10. The antenna achieves an omnidir-
ectional radiation pattern in the H-plane, and a dipole-like radi-
ation pattern in the E-plane at the working frequencies of 4.2,
6.9, and 9.5 GHz. Figure 11 depicts that the antenna achieved
stable group delay and relatively flat gain. The sudden transitions
validate the radiation prohibition at the notch bands. For validat-
ing the creation of notched bands by etching slots and loading
EBG structures, the surface current distribution at five notch fre-
quencies of the antenna is plotted in Fig. 12. From the figure, it is
clear that the current distribution is strongly confined around the
respective slots at 2.33, 2.83, and 3.35 GHz. Besides, at 3.87, and
5.87 GHz, the surface current remains concentrated near the
EBG1 and EBG2, respectively.

Fig. 5. Dispersion diagram of (a) EBG1, (b) EBG2.

Fig. 6. Simulated performance.

Fig. 7. Proposed EBG loaded antenna design.Table 4. Comparison of EBG structures with existing literature

Ref. Type of EBG Size (mm2) Bandgaps (GHz)

[5] SRS EBG 12 × 18 5.2–8.85, 10.54–15.28

[6] TVS EBG 7 × 7 3.01–3.38

[7] TVDS EBG 7 × 7 2.5–2.95, 5.13–5.36

[8] TVS EBG 5.9 × 5.9 5.55–5.95

EBG1
EBG2

Meander line EBG 5.4 × 5.46 × 5 5.66–5.85, 10.8–11.5
7.21–7.79
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A comparative study between the presented geometry and
existing literature is conducted in terms of the performance char-
acteristics viz. impedance bandwidth, the number of notches
obtained, rejected frequency, notch bands, and antenna size, as
listed in Table 6. Although, [33] and [3] have proposed a more
compact structure, it has achieved only single and dual notches,
respectively. The suggested geometry is found to be more minia-
turized than [2, 4, 34–36], and has also obtained notch character-
istics at five frequency bands.

For modeling the proposed antenna structure, NN3 has been
presented to predict 14-dimensional output [G3] from 7-dimen-
sional input [I3] where [G3] = [LP, WP, Wf, Lg, L1, W1, L2, W2,
L3, W3, d1, d2, p1 and p2] and [I3] = [ fc1, fc2, fn1, fn2, fn3, fn4, fn5].

Computed performance

To verify the effectiveness of the MLP-IPSO approach men-
tioned in Section II, the performance of the three proposed
models is evaluated in this section. The optimal

hyperparameters obtained after the models are tuned using
IPSO are listed in Table 7. It is observed that two hidden layers
are proved to be optimum for all the models. The optimal acti-
vation function is tansig for NN1, and NN3, and logsig for NN2.
Trainbr is proved to be the optimum training function for
NN1, and NN2, whereas for NN3, trainlm is the optimum
hyperparameter.

The convergence of MLP-IPSO is shown in Fig. 13. The MSE
calculated using eq. 2 is plotted against the number of iterations
measured on the entire training dataset, to obtain the convergence
characteristics. The effectiveness of the algorithm for NN1, NN2,
and NN3 is clearly depicted in Fig. 13, as the curve consistently
converges toward the minimum. Tables 8 and 9 gives a compari-
son between the simulated and computed performance of all the
models. It is observed from Table 8, that an error percentage of
less than 1.5% is achieved for all the output parameters of EBG1

and EBG2, respectively. For the EBG loaded antenna, the error
is below 1.1% for all the output parameters as shown in Table 9.

For a comparative analysis, the three MLP models are also
tuned using other evolutionary algorithms, viz. hybrid PSO
(HPSO) [37], conventional PSO [38], and GA [39]. The para-
meters of the algorithms mentioned in Table 10 are selected
based on an initial parametric analysis performed with each algo-
rithm individually. The performance of all the models has been
analyzed in terms of MSE, mean absolute percentage deviation
(MAPD), and coefficient of determination (R2). The training

Table 5. Sampling approach for dataset generation of EBG loaded UWB
antenna

Parameters Optimized values (mm) Parameter range (mm)

LP 16.5 12.00–17.00

WP 12.2 7.00–17.00

Wf 15.1 10.00–20

Lg 2.00 1.00–5.00

L1 8.70 8.00–16.00

W1 8.00 7.00–12.00

L2 10.1 9.90–16.00

W2 9.40 9.10–12.00

L3 11.5 11.20–16.00

W3 10.8 10.50–12.00

d1 0.60 0.10–1.70

d2 0.40 0.10–2.40

p1 0.19 0.10–5.50

p2 6.25 1.50–11.50

Fig. 8. Fabricated prototype and the measurement
setup in anechoic chamber.

Fig. 9. Simulated and measured |S11| comparison.
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MSE of three MLP models tuned using IPSO, HPSO, PSO, and
GA are depicted in Fig. 14. Training MSE of NN1 and NN3 is
the largest when tuned using PSO followed by GA, HPSO, and
IPSO. NN2 when tuned using HPSO and PSO has achieved
almost equal training MSE. It is observed from the figure, for
all the MLP models, IPSO has achieved the least MSE compared
to other algorithms.

The accuracy of the models is also evaluated using MAPD and
R2; mathematical formulae for which are given as,

MAPD = 100%
N

∑N
i=1

fp(xi)− ft(xi)

ft(xi)
(8)

MAPD measures prediction accuracy and gives relative devi-
ation from true values whereas R2 assesses the ability of the
model to adequately fit the data. As shown in Table 11, train-
ing and testing MAPD of MLP-IPSO models are less than that
of MLP-HPSO, MLP-PSO, and MLP-GA models. MAPD of
NN1, and NN2 is the worst when the hyperparameters are
tuned using PSO, whereas, in the case of NN1, training
MAPD is the least when IPSO is used for tuning the hyper-
parameters, followed by HPSO, PSO, and GA. R2 of all the
models, listed in Table 11, depicts a stronger correlation
between the target and predicted output. Although R2 of all
the models is greater than 0.97, training and testing R2 are bet-
ter for MLP-IPSO models as compared to MLP-HPSO,
MLP-PSO, and MLP-GA models.

Fig. 10. Radiation pattern comparisons (a) H-Plane, (b) E-Plane.
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Conclusion

This paper presented an IPSO algorithm to optimize the hyper-
parameters of an ANN-based model for solving inverse electro-
magnetics problems. The proposed algorithm is validated with
two EBG unit cells and an EBG loaded slotted monopole
antenna. The geometrical parameters of the two EBG unit
cells are predicted using resonant frequency and corresponding
|S11| as the input to the NN models. However, to predict geo-
metrical parameters of EBG loaded slotted antenna, cut off fre-
quencies of the UWB frequency band and notch frequencies are
considered as the input for the NN model. Hyperparameters of
different NN model configurations investigated in this work

Fig. 11. Simulated group delay and gain.

Fig. 12. Surface current distribution.

Table 6. Comparison of optimized design with existing literature

Ref.
Impedance BW

(GHz)
No. of
notches

Notch frequency
(GHz) Notch bands Volume (mm3)

[33] 3.1–10.6 1 5–6 WLAN 31 × 30 × 1.5 ( = 1395)

[2] – 2 3.5/5.5 WiMAX/WLAN 30 × 40 × 1.6 ( = 1920)

[3] 3.1–9.2 2 5.2/8.2 WLAN/ITU 32 × 24 × 0.76 ( = 583.68)

[4] 2.4–11.6 2 3.5/5.5 WiMAX/WLAN 50 × 50 × 0.8 ( = 2000)

[34] 2.0–12.5 2 5.3/7.4 WLAN/X-band 38.5 × 46.4 × 1 ( = 1786.40)

[35] 3.2–11.9 3 3.4/4.23/6.35 WiMAX/WLAN 55 × 54 × 1.59 ( = 4722.3)

[36] 1.4–11.3 3 2/3.5/5.8 AWS1-AWS2/WiMAX/IEEE 802.11/
HIPERLAN

34 × 33 × 1.6 ( = 1795.2)

Proposed 2–10.74 5 2.33/2.83/3.35/3.87/
5.87

ISM/Radar Surveillance/WiMAX/
C-Band/WLAN

34.9 × 31.3 × 1.6 ( = 1747.79)
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have also been optimized using HPSO, PSO, and GA.
Performances of all the models are compared on the basis of
MSE, MAPD, and R2. MLP-IPSO models have outperformed
all other evolutionary algorithms in terms of statistical approach.
The computed results of MLP-IPSO models are observed to be
in close agreement with the simulated results. Though ANN has
been widely used to predict the performance of microwave com-
ponents for a long time, hyperparameter optimization of ANN

Table 7. Optimized hyperparameter values.

NN
models

No. of
hidden
layers

No. of
hidden
neurons

Activation
function

Training
function

NN1 2 [40 18] Tansig trainbr

NN2 2 [34 27] Logsig trainbr

NN3 2 [53 36] Tansig trainlm

Fig. 13. Convergence curve.

Table 8. Performance comparison of EBG1 and EBG2

EBG1 EBG2

parameters Simulated values Computed values % Error parameters Simulated values Computed values % Error

a1 1.32 1.316 0.303 a 0.90 0.892 0.888

c1 1.32 1.314 0.454 b1 0.70 0.705 0.714

a2 1.32 1.329 0.454 b2 1.50 1.488 0.800

c2 1.32 1.317 0.227 c 0.20 0.202 1.000

b1 1.97 1.959 0.558 d 0.20 0.198 1.000

e1 1.97 1.981 0.558 e 2.40 2.413 0.542

b2 1.97 1.986 0.812 f 7.60 7.648 0.632

e2 1.97 1.987 0.863 g 5.00 5.060 1.200

d1 1.50 1.486 0.933 h 1.60 1.619 1.188

d2 1.50 1.516 1.066 – – – –

l 4.83 4.845 0.311 – – – –

h 1.60 1.589 0.688 – – – –

Table 9. Performance comparison of EBG loaded UWB antenna

Parameters Simulated values Computed values % Error

LP 16.50 16.580 0.485

WP 12.20 12.108 0.754

Wf 15.10 15.132 0.212

Lg 2.00 2.013 0.650

L1 8.70 8.684 0.184

W1 8.00 7.949 0.638

L2 10.10 10.118 0.178

W2 9.40 9.378 0.234

L3 11.50 11.518 0.157

W3 10.80 10.773 0.250

d1 0.60 0.598 0.333

d2 0.40 0.401 0.250

p1 0.19 0.193 1.053

p2 6.25 6.269 0.304

Table 10. Settings of the evolutionary algorithms

Algorithms Parameters

IPSO Particle size = 20, f1 =f2 = 2.05

HPSO Particle size = 20, cognitive and social coefficients = 2.0,
inertia weight = 0.9–0.4 (real part)/ 1(binary part)

PSO Particle size = 20, inertia weight = 0.6,
constriction factor = 2

GA Population size = 25, crossover rate = 0.7,
mutation rate = 0.1
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for such a problem has not been addressed to the best of the
authors’ knowledge.
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