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Cycle slip detection for single frequency Global Navigation Satellite System (GNSS) data is
currently mainly based on measurement modelling or prediction, which cannot be effectively
performed for kinematic applications and it is difficult to detect or repair small cycle slips such
as half-cycle slips. In this paper, a new method that is based on the total differential of ambiguity
and Least-Squares Adjustment (LSA) for cycle slip detection and repair is introduced and vali-
dated. This method utilises only carrier-phase observations to build an ambiguity function. LSA
is then conducted for detecting and repairing cycle slips, where the coordinate and cycle slips are
obtained successively. The performance of this method is assessed through processing short and
long baselines in static and kinematic modes and the impact of linearization and atmospheric
errors are analysed at the same time under a controlled variable method. The results indicate this
method is very effective and reliable in detecting and repairing multiple cycle slips, especially
small cycle slips.
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1. INTRODUCTION. In recent years, single frequency Global Navigation Satellite
Systems (GNSS) positioning has become more popular due to the demand from many
mass-market applications, such as Unmanned Aircraft Systems (UAS), Location Based
Services (LBS) and Connected and Autonomous Vehicles (CAV) (Pinchin et al., 2008). The
appeal of single-frequency GNSS positioning is the low cost of hardware and the relatively
high performance that can satisfy the requirements of specific applications. For instance,
landslide monitoring or structural health monitoring always requires centimetre or better
levels of accuracy with a denser monitoring network (Bellone et al., 2016), but expensive
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geodetic GNSS receivers are unlikely to be used for these purposes. The implementation
of intelligent mobility also requires large numbers of low-cost but high-performance track-
ing devices installed on the moving platforms. These types of applications provide great
opportunities but are also significant challenges for GNSS.

Theoretically, if the carrier phase ambiguities are fixed correctly, the baselines could be
determined precisely even with single frequency data. One of the most important factors
that could affect the performance of GNSS positioning is cycle slip. If all the cycle slips are
detected and repaired correctly, better positioning continuity and quality could be achieved.
Therefore, a reliable cycle slip detection and repair method plays a crucial role, especially
for single frequency GNSS applications.

Currently, different methods for cycle slip detection and repair have been proposed
based on the combinations of GNSS raw observations, including the code-phase wide-
lane combination (Blewitt, 1990), phase-phase geometry-free combination (Xu, 2007) and
Doppler-phase integration (Xiaohong and Xingxing, 2012). Also, a series of numerical
methods such as wavelets (Collin and Warnant, 1995), adaptive filtering (Roberts et al.,
2002), polynomial regression (De Lacy et al., 2008), linear functions (Geng et al., 2010;
Banville and Langley, 2013) and Kalman filtering (Lin and Yu, 2013) have been devel-
oped. These methods need dual-frequency or even triple frequency data to mitigate the
influence of ionospheric error and eliminate the impact of unknown coordinates that cannot
be attained as prior information, especially in kinematic applications.

For cycle slip detection and repair of single frequency data, the coordinates cannot be
cancelled through carrier phase geometry-free combination which needs dual-frequency
data. Pseudorange observations can be used to build another form of geometry com-
bination, but its observation noise prevents the detection or repair of small cycle slips
(Genyou, 2001). Doppler observations can be used to estimate the coordinates. However,
this does not perform well when dealing with complex movement of the observation sta-
tion (Ren et al., 2011; Carcanague, 2012). Numerical methods such as wavelet (Dingfa and
Jiancheng, 1997) and Kalman filter, can be used for coordinate prediction or estimation,
but the performance is not perfect if the motion status is complicated.

In this paper, a new cycle slip detection and repair method based on the total differential
of ambiguity and Least-Squares Adjustment (LSA) is proposed for single frequency GNSS
data. In this method, only L1 carrier-phase observations of two consecutive epochs are
processed with LSA to estimate coordinates. Then cycle slip detection is implemented in
the positioning domain and the calculated Standard Deviation (STD) is taken as an indicator
for detecting cycle slips due to its sensitivity to cycle slips while the estimated coordinates
are used for cycle slip repair. The main factors that affect the performance of this method
are also analysed using a control variable method.

This paper is organised as follows: the methodology is introduced in Section 2. Section 3
covers the performance assessment of this method applied to process both short and long
baselines in the static and kinematic experiments. The conclusions drawn from this work
are given in Section 4.

2. METHODOLOGY. The basic equation for the Single Difference (SD) of GNSS
carrier phase observations between stations can be expressed as Equation (1):

λ · Φ = R + c · t + T − I − λ · N + b + ε (1)
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where Φ denotes the SD observed carrier phase measurements (cycles); R denotes the SD
geometric distance (m); c denotes the speed of light (m/s); t denotes the difference of the
clock errors of two receivers (s); T denotes the SD tropospheric delay (m); I denotes the
SD ionospheric error (m); λ denotes the carrier phase wavelength (m); N denotes the SD
integer carrier-phase ambiguity (cycles); b denotes the SD carrier-phase receiver hardware
bias (m) and ε denotes the SD carrier-phase observation noise (m).

To analyse the characteristic of ambiguity, Equation (1) can be re-arranged as a function
of ambiguity after linearisation:

N = (B · X + A − λ · ϕ + ε)/λ (2)

where, B represents the linearisation coefficient matrix; X represents the unknown param-
eter vector, including the Three-Dimensional (3D) coordinates of the position increments
relative to the a priori position for linearization and the clock bias of receivers; A denotes
the atmospheric errors including tropospheric delay and ionospheric error; ϕ denotes the
“observed minus computed” carrier phase observable and the other symbols have the same
meanings as in Equation (1). For multi-GNSS observations, the satellite-induced phase
shift should be taken into consideration if different receivers are used. Although the phase
shift bias of the Global Positioning System (GPS) L1 signal that can be estimated or elim-
inated well is being demonstrated, there are still no unambiguous conclusions about the
phase shift of other GNSS systems such as BeiDou (BDS), Globalnaya Navigatsionnaya
Sputnikovaya Sistema (GLONASS) or Galileo (Wübbena et al., 2009). The value of phase
shift may be variable despite in most cases it being possible to regard it as a constant term.
It will be treated as a time-varying variable in this paper. The receiver hardware bias of
each GNSS system is different in one multi-GNSS receiver due to the different frequencies
and signal structures (Li et al., 2013; 2015a; 2015b). In this paper, the influence of phase
shift and receiver hardware bias are treated as being absorbed by the clock parameter, so the
unknown parameter vector X will contain 3 + m parameters if m different GNSS systems
are observed.

The cycle slip can be regarded as a total differential of ambiguity, so it can be
represented as:

CS = dN = (B · �X + �B · X + �A − λ · �ϕ + �ε)/λ (3)

where CS denotes the cycle slip; dN denotes total differential of ambiguity and � denotes
the differential values of these variables.

Assume there are two consecutive epochs k and k-1. It is unreasonable to use the same
a priori position for linearization in epoch k and k-1 because of the linearization error,
particularly in high kinematic situations. Here the linearization coefficient matrix of epoch
k-1 can be decomposed into:

Bk−1 = Bk − �Bk, (4)

where �Bk represents the variation of the coefficient matrix. The cycle slip occurring in
epoch k can be expressed as:

CSk = dNk = (Bk · Xk − Bk−1 · Xk−1 + �Ak − λ · �ϕk + �εk)/λ

= (Bk · �Xk + �Bk · Xk−1 + �Ak − λ · �ϕk + �εk)/λ (5)
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where �Xk can be expressed as:

�Xk = Xk − Xk−1 (6)

For applications with a high sampling rate such as a 1 Hz or even higher sampling rate,
the influence of the atmospheric error can be neglected even under a very high level of
ionospheric activities (Liu, 2011; Chen et al., 2016). However, the atmospheric error can-
not be neglected when the sampling interval becomes large. In the discussion below, the
applications with a high sampling rate will be preferentially considered in the theoreti-
cal derivation, and the influence of atmospheric error will be analysed in the experiment
section. Equation (5) can be further simplified as:

CSk = (Bk · �Xk + �Bk · Xk−1 − λ · �ϕk + �εk)/λ. (7)

If no cycle slip occurs, Equation (7) can be rewritten as:

Bk · �Xk + εk − λ · �ϕk + �εk = 0. (8)

In Equation (7), εk denotes the term of �Bk · Xk−1. The value of εk mainly depends on the
accuracy of the a priori position of linearization if the sampling interval is constant and the
details will be discussed below. To make the illustration and discussion simple, εk is called
the linearization error in this paper.

The positioning coefficient matrix Bk, for GPS data only, can be expressed as:

Bk =
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where x, y, and z denote 3D spatial coordinates of a receiver; subscripts r and k denote
the observing station and the serial number of the epoch, respectively; superscripts i and m
denote the serial number of observable satellites and ρ is the approximate distance between
the a priori position of the station and an objective satellite.

The distance ρ could be changing by about 830 m/s for a static observer and a GPS
satellite. However, the rate is quite small. Considering the distance is only used to calculate
angles of elevation and azimuths, it can still be regarded as approximately constant at epoch
k and k-1 when the sampling interval is not very large, and then:

�Bk =
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where v denotes the velocity of the satellite and dt denotes the sampling interval.
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To assess the influence of linearization error εk on cycle slip detection, firstly the upper
limit of its theoretical magnitude should be evaluated. The a priori position for lineariza-
tion is always obtained by pseudorange Single Point Positioning (SPP) with metre-level
accuracy. Here the externally coincident precision of the a priori position is set to be 10 m.
The distance between a station and a satellite could be set to 20,200 km generally for GPS,
and the velocity of the satellite can be set to 3·89 km/s. When the sampling interval dt is 1 s
we can have:

εk = �Bk · Xk−1 ≈ 3.89km/s × 1s × 10m
20200km

≈ 0.0019m ≈ 0.01cycle (11)

After two differential processing sequences of stations and epochs, the carrier-phase obser-
vation noise can be theoretically treated as 0·02 cycles. Hence the influence of εk can be
regarded as at the same level of carrier-phase observation noise while the sampling inter-
val is 1 s, but it is obvious that the value of εk will become larger as the sampling interval
increases.

It should be mentioned that in kinematic GNSS applications, a sampling rate such as
1 Hz or higher is required, thus the influence of εk can be theoretically neglected, otherwise
it needs to be considered while the sampling interval increases to 15 s or even longer. Here,
an assumption will be made that the sampling rate is 1 Hz, so the influence of εk can be
treated as part of the noise and Equation (8) can be further simplified as:

λ · �ϕk = Bk · �Xk + �εk (12)

Equation (12) can be treated as a classical LSA model that is similar to the GNSS
positioning model by using carrier-phase observations.

The variance-covariance matrix D of X in Equation (12) can be expressed as:

D =

⎡⎢⎢⎣
σ 2

x σxy σxz
σyx σ 2

y σyz

σzx σzy σ 2
z

σxT
σyT
σzT
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⎤⎥⎥⎦ (13)

where σxσyσzσT denote the STD of x, y, z coordinates and single difference clock error of

receivers, respectively. The STD of position σP can be denoted as σP =
√

σ 2
x + σ 2

y + σ 2
z . If

no cycle slip occurs its value should be several centimetres, otherwise it could lead to a
large jump of σP. Therefore, a threshold should be set up so that once σP becomes larger
than this threshold, the current epoch can be treated as having a cycle slip.

If n satellites of m GNSS systems are observed, the unknown vector X in Equation (12)
contains 3 + m terms include x, y, z coordinates and m clock parameters, so the degree of
freedom of Equation (12) is n-m-3. To calculate the unknown parameter X , it needs at least
m + 4 equations with no cycle slips to build a Least Squares Adjustment (LSA) equation.
The purpose of cycle slip detection and repair is to attain the final precise positioning
solution which also needs at least m + 4 satellites to build a LSA system, so the condition
for cycle slip repair just meets the same requirement with final positioning. Furthermore,
since multi-constellation GNSS data is now widely used, this condition would not be too
difficult to meet since more and more satellites can be observed (Li et al., 2015b). Assuming
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that the number of satellites in common view with no cycle slip occurring is l(l ≥ m + 4)
the equation below can be built by using the observations of these l satellites:

λ · �ϕ′
k = B′

k · �X ′
k + �ε′

k (14)

where the superscript “′” denotes the satellites with no cycle slip. To distinguish different
STD obtained by Equations (12) and (14), two definitions are given:

Type 1 STD: the STD calculated through Equation (12), which uses the observations of
all the satellites.

Type 2 STD: the STD calculated through Equation (14), which uses the observation of
the satellites without cycle slips.

The number of all common-viewed satellites is n(n ≥ l), thus the theoretical value of
carrier phase observations of these m satellites �ϕ′′

k can be represented as:

�ϕ′′
k = Bk · �X ′

k/λ (15)

Thus, the cycle slip can be represented as:

CSk = Int(�ϕ′′
k − �ϕk) (16)

where �ϕ′′
k − �ϕk represents the float residual obtained by this method. Int denotes the

rounded processing. Here, we assume the observation of each satellite is independent and
no cycle slip or multipath error affects the observation. �ϕ′′

k − �ϕk represents the least
square residuals V and the posterior standard error of unit weight σ̂0 can be calclulated:

σ̂0 =

√
VT · P · V
n − m − 3

, V = �ϕ′′
k − �ϕk, (17)

where P denotes the weight matrix. The standard error of unit weight can reflect the obser-
vation accuracy of carrier phase observations with the value of several millimetres (Liu,
2011; Chen et al., 2016). The value of V should fit a Standard Normal Distribution (SND)
with μ = 0, σV = σ̂0, where μ and σV denote the expectation and standard deviation of the
SND (Kirkko-Jaakkola et al., 2009). Once an integer cycle slip occurs, the change of sys-
tem redundancy n − m − 3 is neglected, the value of V of the satellite with a cycle slip
that is calculated by Equation (16) should fit a SND with μ = Y, σV = σ̂0, where Y denotes
the integer value of the cycle slip. For cycle slip detection, once the cycle slip occurs, it
will lead to a change in order of magnitude of the corresponding residual V from several
millimetres to 19 cm or even larger with one-cycle slip, and finally cause a large jump in
the STD σ̂0. Normally the magnitude of σ̂0 is several millimetres and it will become larger
if the multipath and atmospheric error is considered (Liu, 2011; Chen et al., 2016) and
3σ̂0 is always used as a threshold to judge the abnormal values with a 99·73% confidence
level. In this paper, the empirical threshold of STD is set to 0·05 m after a large amount of
data processing and a review of relevant literature (Blewitt, 1989). It is slightly larger than
3σ̂0, but performs better and can avoid the epochs with no cycle slip being wrongly judged
as with cycle slips when the observation environment is not perfect. For cycle slip repair,
theoretically the absolute value of the fractional part of V should be in the range of [−3σ̂0,
3σ̂0]. Assuming the float value of the residual is βf and it can be rounded to an integer βInt,
if the absolute value of

∣∣βf − βInt
∣∣ is smaller than 0·2, it will be regarded as a cycle slip.
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Table 1. Experiment Arrangement.

Arrangement ε �A Comments

Case 1 × × Short Static
Case 2 � × Short Static
Case 3 × � Long Static
Case 4 � � Long Static
Case 5 × × Kinematic

It should be mentioned that in order to identify the half-cycle slips, an empirical value of
0·05 cycles is selected as the threshold in this paper, which means if the fractional part of
CSk is in a range of 0·45 to 0·55 cycles, thus CSk can be regarded as a half-cycle slip.

3. EXPERIMENT AND VALIDATION. As mentioned, linearization error ε and atmo-
spheric errors �A play the main roles in this method. In this paper only GPS data is used to
assess their effects. Firstly, the performance was assessed under different conditions based
on a control variable method of which the impact of linearization error ε and atmospheric
errors �A will be assessed step by step and two sets of experiments using static short and
long baselines were carried out.

Table 1 shows the detailed arrangements that were covered in the following cases for
the assessments, where × denotes that a particular factor (ε, �A) can be neglected in a
discussion of this section, � represents this factor should be considered in this case, and
the column of comments indicates whether the data is static or kinematic.

A short baseline of approximately 2 m was used to investigate the impacts of lineariza-
tion error ε. Using the experimental data of different sampling intervals (1 s, 15 s, 30 s and
60 s) and high- (of a few mm obtained by post-processing) and low-accuracy (of about
10 m obtained by SPP) initial coordinates assessments are carried out in Case 1 and 2,
respectively. The data was collected on 20 February 2013 from 04:00 for about 2 hours and
cut-off angle was set to 10◦. The accurate baseline was calculated by post-processing and
the integer ambiguity of each satellite at each epoch was also fixed, when no cycle slips are
found. All these results can be taken as the ground-truth reference.

In the long baseline experiments, a baseline of approximately 289 km was
selected, where the atmospheric errors must be considered. The data on 9 March
2013 from 0:00 to 2:00 was collected at 1Hz. The coordinates are estimated
with GPS Analysis at Massachusetts Institute of Technology (GAMIT) software
(http://www-gpsg.mit.edu/∼simon/gtgk/) and the International GNSS Service (IGS) pre-
cise orbit and clock products were utilised in data processing. The same sampling intervals
and initial coordinates of similar levels of accuracy were used in the assessments. The
atmospheric errors play a major role while the initial coordinates of centimetre accuracy
were used in Case 3. Since the tropospheric delays are relatively stable over a short period,
the impact of the ionospheric error on the performance of this method was assessed. �A
and ε affect the performance of this method when the initial coordinates of metre-level
accuracy were used in Case 4.

To further assess the performance of the proposed method, kinematic data sets col-
lected from short- (0–20 km), medium- (20–50 km) and long-baselines (>50 km) were
also processed in Case 5. Since high-rate GNSS data are required for kinematic appli-
cations (Cramer et al., 2000; Meng et al., 2006), only 1 Hz kinematic data was used in this
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experiment, and theoretically, the effect of linearization modelling error and atmospheric
error are insignificant according to the earlier discussion.

It should be mentioned that in practical applications, the atmospheric error impact or
other effects such as multipath or satellite orbit errors cannot be weakened or eliminated by
the single-difference between stations with the increasing length of baseline, so the posi-
tioning accuracy by using single-frequency carrier phase observations will be decreased
or become even unavailable since the fixed integer carrier phase ambiguities cannot be
obtained with large SD residuals of atmospheric errors. This paper only aims at the illus-
tration of cycle slip detection and repair performance of the proposed method, and the
positioning performance is not discussed.

For the Case 1 to Case 4 experiments, cycle slips are artificially added to make a good
reference for further analysis. These cycle slips are added epoch by epoch. For each epoch,
the basic rule is: a full cycle slip is added while the number of common-viewed satellites
between two consecutive epochs is larger than five and a half-cycle slip is added when the
number of common-viewed satellites is larger than six. This means that for each epoch
there are two satellites containing cycle slips if the number of common-viewed satellites is
equal or greater than seven. It should be noted that the bit change of the navigation message
modulated on the signal may also cause a half-cycle slip if the receiver does not or fails
to decode navigation data properly, so the half-cycle slip needs to be considered (Kirkko-
Jaakkola et al., 2009). After the cycle slip detection and repair at the current epoch, the
carrier phase observables will be recovered to their original values, and then the experiment
of the current epoch will have no influence to the experiments of subsequent epochs.

In the relevant figures below (Figures 4, 7 and 9), different colours are used to mark the
artificially added cycle slips of the epochs to clearly display the cycle slip repair perfor-
mance. Finally, the success rate of the repair will be statistically summarised. If a total of
n half- or full-cycle slips are added, and m of them are repaired successfully based on the
threshold we set, so the success rate is calculated as m/n, and the number of success rate,
m and n are listed in Table 3 and other related discussion parts.

3.1. The analysis of STD with no cycle slips. As discussed above, the STD of
Equation (12) is taken as an indicator to judge whether a cycle slip occurs. Theoretically,
the abnormally large STD would appear at the epochs that contain cycle slips. First of all,
the STD with no cycle slips was estimated and statistically analysed from Case 1 to Case 4.

As shown in Figure 1, all the STD values with 1 s and 15 s sampling interval are smaller
than 0·05 m. Normally the threshold for cycle slip detection can be set as Max(σP) below
with 99·73% confidential level:

Max(σP) = Mean(σP) + 3 × STD(σP)

The statistical values of σP are included in Table 2. This also demonstrates that while
the sampling interval is 1 s or 15 s, 0·05 can be a proper threshold for cycle slip detection
in this paper. However, the influence of the linearization error ε and atmospheric error
�A will increase with a larger sampling interval, which will lead to the failure of cycle
slip detection. Therefore, the experiments with only 1 s and 15 s sampling intervals are
considered in this paper for Cases 2, 3 and 4, otherwise the epochs with no cycle slip may be
incorrectly classified as with cycle slips if the sampling intervals are 30 s or even longer. For
Case 1, all the sampling intervals should be discussed since theoretically the linearization
and atmospheric error has nearly no effect and the statistical information in Table 1 also
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Figure 1. STD values of Case1 to Case 4 with different sampling intervals (no cycle slips).

Table 2. Statistical information of STD with no cycle slip (unit: metre).

σP (meter) Case 1s 15s 30s 60s

Mean/STD/Max Case 1 0·003/0·002/0·009 0·004/0·002/0·010 0·005/0·003/0·014 0·005/0·004/0·017
Case 2 0·003/0·002/0·009 0·015/0·008/0·039 0·029/0·017/0·080 0·056/0·032/0·152
Case 3 0·006/0·003/0·015 0·014/0·006/0·032 0·024/0·011/0·057 0·046/0·020/0·105
Case 4 0·006/0·003/0·015 0·016/0·007/0·037 0·028/0·012/0·064 0·055/0·023/0·124

verifies this. It is also interesting that with a 15 s sampling interval, the Max(σP) values of
a Case 4 sampling interval are slightly larger than that of Case 3, but the Max(σP) value
of Case 2 is significantly larger than that of Case 1. The major reason is the accuracy of
the initial coordinates obtained by SPP has been improved by using the precise products of
IGS which weaken the impact of linearization error.

3.2. Short baseline experiments. To assess the performance of this method, one-cycle
slip and a half-cycle slip are added to the PRN24 and PRN9 satellites based on the prin-
ciple above since these two satellites were observed in the whole observation session and
experienced a large variation of elevation angles.

3.2.1. Case 1 experiment (high-accuracy initial coordinates). Once the cycle slips are
artificially added, the STD values significantly increase as shown in Figure 2. It is apparent
that the cycle slips will be detected 100% successfully by using the threshold of 0·05 m.
Figure 3 shows the detailed information of common-viewed satellites between two consec-
utive epochs, and it can be seen that the STD values have a strong positive correlation with
the values of Position Dilution Of Precision (PDOP). The discontinuity of the STD values
in Figure 2 is caused by the change of satellites.
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Figure 2. STD values with artificially added cycle slips.

Figure 3. Detail information of satellites in common-view.

As described by Equations (14) to (16), the repair work needs at least five satellites
without cycle slips to calculate the unknown parameters �X ′

k . Then the float residual of
each satellite in common-view will be obtained based on Equation (15). Figure 4 exhibits
the float residuals of all the satellites.

The cycle slip repair is done with the rule discussed at the end of Section 2, and the repair
success rates of one-cycle and a half-cycle slips in terms of 1 s and 15 s sampling intervals
of Case 1 are summarised and listed in Table 3 with Cases 2, 3 and 4. When the sampling
intervals are 30 s and 60 s, the repair success rates of one-cycle slip/half-cycle slip can reach
100% (239/239)/100% (224/224) and 100% (116/116)/100% (109/109), respectively. All
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Figure 4. Float residuals of the satellites (PRN24 and PRN9) with and without cycle slips. The red and
green points represent the float residual of PRN24 (one-cycle slip) and PRN9 satellite (half-cycle slip),
respectively. The blue points represent the float residuals of other satellites.

Table 3. Cycle slip repair success rate of one-cycle slip and a half-cycle slip of Case 1 to Case 4.

Sampling interval Cycle slip Case 1 Case 2 Case 3 Case 4

1s One-cycle 100% 100% 100% 100%
7374/7374 7374/7374 7195/7195 7195/7195

Half-cycle 100% 100% 95·8% 95·7%
6873/6873 6873/6873 6895/7195 6890/7195

15s One-cycle 100% 99·2% 99·8% 100%
485/485 481/485 475/476 476/476

Half-cycle 100% 63·6% 68·3% 59·5%
453/453 288/453 325/476 283/476

these results show the performance of this new method while the effect of linearization
error ε and atmospheric errors �A can be neglected.

3.2.2. Case 2 experiment (low-accuracy initial coordinates). For Case 2, the lineariza-
tion error should be taken into consideration. Firstly, the PRN24 satellite is employed to
estimate the magnitude of ε, which is shown in Figure 5.

It is quite clear that the magnitude of ε has a linear relationship with the sampling inter-
vals. When the sampling interval is 1 s, the magnitude of ε is at the level of the measurement
noise. However, the value of ε will reach 0·2 cycles with a 30 s sampling interval, and it will
be large enough to prevent successful cycle slip detection or even repair. Thus, only 1 s and
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Figure 5. Magnitude of ε of PRN24 satellite.

15 s sampling intervals will be discussed in this section, which have also been demonstrated
in Section 3.1.

As shown in Figure 6, while the sampling interval was 1 s or 15 s, even a half-cycle slip
can be detected with the threshold 0·05 m. The process of cycle slip repair is the same as
the procedure introduced in Section 3.2.1. The detailed distribution of the float residuals of
all the satellites is displayed in Figure 7.

According to the repair success rate in Table 3, it is quite obvious that the 15 s would
be the maximum value of the sampling interval for the one-cycle slip repair with a 99·2%
success rate because of the influence of the linearisation error ε. Meanwhile, the success
rate of half-cycle slip repair is just 63·6% with a 15 s sampling interval. Therefore, it is
better to detect and mark the half-cycle slips rather than repair them since it would appear
to be impossible to judge whether they are half-cycle slips.

3.3. Long baseline experiments (Case 3 and Case 4). In this section, the performance
of this new method is investigated for long baseline applications. Since it is difficult to
100% confirm whether this data is clean without cycle slips, one-cycle slip and a half-
cycle slip are added artificially into the raw observations of PRN26 and PRN10 satellites
since these two satellites are visible over the whole observation session. The experiments
will focus on the changes of STD values caused by the artificially added cycle slips, and
according to the discussion in Section 3.1, only 1 s and 15 s sampling intervals will be
discussed. Following the experimental procedure of Section 3.2, the STD values with cycle
slips of both Case 3 and Case 4 are calculated and displayed in Figure 8.

It can be seen that all the cycle slips can be successfully detected with the threshold
0·05 m. The STD values of Case 4 are just slightly larger than those of Case 3, which
demonstrates that the atmospheric errors, especially the ionospheric error, play a major
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Figure 6. STD values with artificially added cycle slips.

Figure 7. Float residuals of all the satellites in common-view. The red and green points represent
the float residual of PRN24 (one-cycle-slip) and PRN9 satellite (half-cycle slip), respectively. The blue
points represent the float residuals of other satellites.
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Figure 8. STD values with artificially added cycle slips of Case 3 (blue points) and Case 4 (red points).

role in the performance of this method since the use of precise orbit and clock products
from the IGS has remarkably improved the accuracy of the initial coordinates obtained
by SPP.

The procedure of the cycle slip repair is the same as with the experiments above. Figure 9
exhibits the float residuals of all the satellites of Case 3 and Case 4. As shown in Table 3,
even the linearization error impact of Case 3 and Case 4 is diminished by using IGS precise
products; the success rates of Case 3 and Case 4 are lower than those of Case 1 and Case
2, respectively. The possible reason is that the multipath error, the difference residuals of
atmospheric and orbit errors, the shortening of the observation session and bad satellite-
receiver geometry lead to this method having a worse repair performance. In addition, the
repair success rate of a half-cycle slip was slightly influenced by the linearization error ε

when the sampling interval was 15 s. Therefore, only the one-cycle slip can be repaired in
practical applications with a 15 s sampling interval.

3.4. Kinematic experiment (Case 5). The Case 2 and Case 4 experiments 4 can be
regarded as simulated kinematic experiments by using static data since the initial coordi-
nates are obtained with SPP epoch-by-epoch. However, the observation environment of
static data is always better compared with real kinematic data. In this section, a real kine-
matic data set collected in a complete aerial triangulation operation is used for the analysis
of the performance of this method. The data was collected from 02:13:39 to 08:23:09 on
4 October 2013 in Shijiazhuang of Hebei province of China by Wuhan University with
the use of Hi-target GNSS receivers. The sampling rate is 1Hz and the flight track is
displayed in Figure 10. The longest baseline can reach about 265 km while the short-
est baseline is about 2·5 km. Thus, this kinematic data covers all the scenario of short
(0-20 km), mid-length (20–50 km) and long baselines (>50 km).
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Figure 9. Float residuals of all the satellites of Case 3 and Case 4. The red, green and blue points
represent the float residual of PRN26, PRN10 and all the other satellites of Case 3, respectively. The
grey points represent the float residuals of all the satellites of Case 4.

Figure 10. Flight track.

After removing the epochs for the initialization of the processing software, there are
22,147 epochs of observation for cycle slip detection and repair. It should be noted that
no cycle slip was artificially added into the raw data in this experiment. The performance
of the method is demonstrated by the detection and repair for the cycle slip inside the raw
data.
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Figure 11. STD values with baseline lengths and the number of satellites in common-view.

Figure 12. Type 1 (red points) and Type 2 (blue points) STD values of the 36 epochs.
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Figure 13. Float residuals of all the satellites of the 36 epochs with cycle slips. The red points represent the
possible half-cycle slips and the blue points represent the normal float residuals.

Firstly, the Type 1 STD values mentioned in Section 2 are calculated and displayed in
Figure 11 with the baseline length and the number of satellites in common-view.

It is quite obvious that the fluctuation of the STD value has a strong relationship with the
number of satellites. However, it is hard to see the correlation between STD and baseline
length, and this conclusion coincides with the discussion in Sections 3.1 to 3.3 that the effect
of linearization error and atmospheric error can be neglected while using high-frequency
data such as 1 Hz. Indeed, some cycle slips exist in the raw data since the STD values of
36 epochs are larger than the threshold 0·05 m. Thus, all the epochs with STD values larger
than 0·05 m were picked up to do the cycle slip repair work. The Type 1 and Type 2 STD
values of these 36 epochs are calculated and displayed in Figure 12, and the float residuals
of all the satellites are displayed in Figure 13.

In Figure 12, the STD values are significantly decreased after the cycle slips are
removed. The red points in Figure 13 can be numerically regarded as a half-cycle slip,
but it is difficult to repair them based on the discussion above. In addition, it is also diffi-
cult to say all the cycle slips have been detected and repaired since the STD values have a
strong correlation with the satellite geometry, and in some cases, the epoch with just one
half-cycle slip cannot be detected by using the threshold 0·05 m, and this needs further
research.

4. CONCLUSION. In this paper, we proposed a new method of cycle slip detection and
repair based on the total differential of ambiguity and least squares adjustment for single-
frequency data processing. Different thresholds are used for STD, and detection and repair
of integer and half-cycle slips.

https://doi.org/10.1017/S0373463318000243 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463318000243


NO. 6 A NEW CYCLE SLIP DETECTION AND REPAIR METHOD 1509

To validate this method, experiments with static data of short and long baselines were
firstly carried out. It was found that for short baselines with high accuracy initial coor-
dinates, the success rate of cycle slip detection and repair can reach 100%, while if low
accuracy initial coordinates were used, 15 s was the maximum sampling interval for this
method to repair half-cycle slips. For long baseline experiments, IGS final orbits and clocks
were used to improve the accuracy of initial coordinates, which can mitigate the negative
impact of initial coordinates. However, due to the non-negligible atmospheric effects, the
sampling interval should be less than 15 s for correctly detecting and repairing half-cycle
slips. At the same time, the detection and repair of one-cycle slip can still reach a 100%
success rate.

A set of real kinematic data with no artificially added cycle slips was used to demonstrate
the performance of this method for kinematic applications. This kinematic data covers all
the scenarios of short (0-20 km), mid-length (20-50 km) and long baselines (>50 km). The
results indicate that half-cycle slips exist in the real data and can be detected. However, it is
difficult to detect all the cases of half-cycle slips by using the empirical threshold of 0·05 m
and it also appears to be impossible to repair the half-cycle slips with a threshold of 0·05
cycles.

This method performs quite well in both cycle slip detection and repair with single fre-
quency data, especially in the cases of frequent occurrences of cycle slips. However, it
should be mentioned that the computational process of this method is relatively complex
since the least square estimation is adopted to identify the satellites with no cycle slips and
then detect and repair the cycle slip. If multiple cycle slips occur, this method becomes
more time-consuming, which will affect the performance of this method for real-time
applications, especially high kinematic real-time applications.
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