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ABSTRACT
The research paper addresses the problem of estimating aerodynamic parameters using a
Gauss-Newton-based optimisation method. The process of the optimisation method lies on the
principle of minimising the residual error between the measured and simulated responses of
the system. Usually, the simulated response is obtained by integrating the dynamic equations
of the system, which is found to be susceptible to the initial values, and the integration method.
With the advent of the feedforward neural network, the data-driven regression methods have
been widely used for identification of the system. Among them, a variant of feedforward
neural network, extreme learning machine, which has proven the performance in terms of
computational cost, generalisation, and so forth, has been addressed to predict the responses
in the present study. The real flight data of longitudinal and lateral-directional motion have
been considered to estimate their respective aerodynamic parameters. Furthermore, the esti-
mates have been validated with the values of the classical estimation methods, such as the
equation-error and filter-error methods. The sample standard deviations of the estimates
demonstrate the effectiveness of the proposed method. Lastly, the proof-of-match exercise
has been conducted with the other set of flight data to validate the estimated parameters.

Keywords: Non-linear modelling; Extreme Learning Machine Network; Gauss-Newton
Method; Parameter Estimation

NOMENCLATURE
ax, ay, az Linear accelerations of aircraft along x, y and z axes (m/s2), respectively.
b Wingspan (m).
c̄ Mean aerodynamic chord of wing (m).
CD, CL, CY Coefficients of drag, lift and side force, respectively.
Cl, Cm, Cn Coefficients of rolling, pitching and yawing moment, respectively.
p, q, r Angular rates: roll, pitch and yaw (rad/s), respectively.
V True velocity of aircraft (m/s).
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V̄ , H̄ , W̄ Input weight matrix including bias, hidden layer output vector and output
weight matrix, respectively.

xi,min, xi, max Minimum and maximum value of the ith input variable, respectively.
X , Y , Z Input, predicted output and measured output, respectively.
x̄i,min, x̄i, max Lower and upper limits of the ith normalised input variable, respectively.
x̄, ȳ, z̄ Normalised input, predicted output and measured output, respectively.

Greek Notation
α Angle-of-attack (rad).
β Side-slip angle (rad).
φ, θ , ψ Roll, pitch and yaw angle (rad), respectively.
δe, δa, δr Elevator, aileron and rudder deflection (rad), respectively.

Abbreviations
ANFIS Adaptive neuro-fuzzy inference system
ATTAS Advanced technology testing aircraft system
EEM Equation error method
ELM Extreme learning machine
FEM Filter error method
FFNN Feedforward neural network
GN Gauss-Newton
HLN Hidden layer neuron
MSE Mean square error
NV Nominal value
OEM Output error method
RBFNN Radial basis function neural network
RFD Real flight data
RNN Recurrent neural network

1.0 INTRODUCTION
The determination of the aerodynamic forces and moments of an aircraft is a field of great
interest and is more often accomplished by using the analytical and computational approaches.
The analytical, computational fluid dynamic methods and wind-tunnel testing provide pre-
liminary information about the aerodynamic parameters in the design phase, while they pose
limitations due to the assumptions made about them, computational cost, scaling of the model
and model wind-tunnel interference. The computation of the aerodynamic parameters from
flight test data is a complementary step to understand the stability and control derivatives with
more accuracy.

The aerodynamic forces and moments are often depicted in the form of a functional rela-
tionship with the linear and angular motion variables and control surface deflections, thus
constituting an aerodynamic model(1,2). The unknown parameters of the postulated aerody-
namic model are extracted by minimising the error between the measured and simulated
responses. Also, the widely used estimator based on the maximum likelihood function is
applied to estimate the aerodynamic parameters through a deterministic analysis(3). Such an
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estimator is categorised based on the stochastic noise treatment of the flight data as the output
error method (OEM), equation error method (EEM) and filter error method (FEM)(4–6). OEM
and EEM can account for measurement and process noise, respectively, whereas FEM can
account for both of them(7). The estimation approaches based on the combination of state and
parameters were also investigated to improve the quality of estimates through the stochastic
analysis(8).

Over the past few decades, an alternative model building using feedforward neural net-
work (FFNN) has gotten more attention from the researchers due to the advancement in
the instrumentation and measurement units, which have enhanced the qualitative acquisi-
tion of the database from the cause-effect observations of the system. FFNN is capable of
approximating the system behaviour using the measured database by providing training to
the network parameters(9). The training of the conventional FFNN needs a priori information
of the network size, initial weights and biases, number of hidden layer neurons (HLNs) and
their activation functions, number of epochs, and training algorithms such as steepest descent,
Levenberg-Marquardt, scaled conjugate gradient, etc.(10–12) An early investigation of FFNN
in the field of parameter estimation was found where the aerodynamic forces and moments
were non-linearly mapped with the dependent motion and control variables of the aircraft(13).
Later, the investigation was carried out by applying the numerical analysis on the dataset of the
trained FFNN, and the estimation techniques were named as Delta, Zero and Modified Delta
methods(14,15). The partial differentiation of the aerodynamic forces and moments concern-
ing the motion and control variables were also implemented as a part of the gradient-based
training algorithm of a multilayer FFNN to compute the corresponding aerodynamic param-
eters(16,17). A non-linear least-square-based optimisation methodology was also investigated
in the field of parameter estimation,(18) and the parameters of a flight manoeuvre at a high
angle-of-attack regime were computed(19,20). Variants of FFNN such as radial basis function
neural network (RBFNN), recurrent neural network (RNN) and adaptive neuro-fuzzy infer-
ence system (ANFIS) were also applied in the non-linear mapping of the aerodynamic forces
and moments to estimate the aerodynamic stability and control derivatives(21–24). It is evident
from the investigation carried out using the conventional FFNN and its variants mentioned
above that the training of FFNN is a cumbersome task due to the number of epochs, slow
convergence of learning strategies and trapping of the error function in local minima. The
improper tuning of the initial parameters may either deteriorate the generalisation or increase
the computational burden. Hence, to overcome the issues of conventional FFNN, its vari-
ant named extreme learning machine (ELM) was suggested by Huang et al. (25,26). The ELM
network consists of a single hidden layer that can be tuned analytically; hence, the compu-
tational cost is reduced significantly. The ELM network is found to be more generalised and
robust in comparison to the conventional FFNN. The real-world problems of different fields
such as forecasting, pattern recognition and classification have been solved using the ELM
features(27–31).

The research paper utilises the ELM features in the non-linear modelling of the aircraft’s
dynamic model in a restricted sense for the application of aerodynamic parameter estimation.
The quality assessment of the network has been carried out based on the statistical metric R2

and mean square error (MSE). Furthermore, a non-linear optimisation based on the Gauss-
Newton (GN) method has been applied to extract the longitudinal and lateral-directional
aerodynamic parameters from the real flight data of research aircraft – namely, Hansa-3 and
advanced technology testing aircraft system (ATTAS), respectively. The validation of the esti-
mates using the proposed methodology has been carried out by comparison of the values
and their respective standard deviations with those of the conventional parameter estimation
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methods and using the proof-of-match exercise. The research paper is organised as follows:
the next section addresses the procedure of non-linear mapping using the ELM network, and
the subsequent sections present the procedure of parameter estimation methodology, results
and discussion and conclusion.

2.0 EXTREME LEARNING MACHINE BASED NEURAL
MODELLING

The emergent of FFNN in the approximation of a system with lesser knowledge about the
underlying physics has changed the view of computation in terms of accuracy and the com-
putational cost. The supervised learning is widely used in the analysis as well as the operation
of such a system. In our research work, a time series neural model of flight dynamics has
been studied with FFNN in a restricted sense to estimate the aerodynamic parameters. The
aircraft’s motion is primarily governed by the aerodynamic forces and moments and defined by
its states such as angle-of-attack, side-slip angle, attitude angles, true velocity, angular rates,
linear accelerations, altitude, etc.(32,36) Using the measured motion and control variables, a
time series neural model for longitudinal and lateral-directional motion(18) is established by
neglecting the cross-coupling effects as shown in Fig. 1.

In the present research, only the previous data dependency of the desired response is pre-
sented with an assumption that the (i + 1)th instant output variables are affected by the ith

instant input variables. Let us assume a conventional FFNN(11,12) of multi-input multi-output
structure with the input and output variables of dimension X ∈ Rnx and Z ∈ Rny , respectively,
and the hidden layer neurons of H ∈ Rnh as shown in Fig. 1. The input and output vectors for
the training of the network can be expressed as follows:

Input vector, X (i) = [
x1(i), x2(i), . . . xnx (i)

]
(1)

Output vector, Z(i + 1) = [z1(i + 1), z2(i + 1), . . . , zny (i + 1)] (2)

As the quantities used for the non-linear mapping of the network differ in magnitude lev-
els as well as physical significance, their normalisation has been performed to enhance the
learning so that it is more effective by scaling the training data samples in a suitable range
of (x̄max, x̄min)(33). The normalisation process of the input and output variables can be carried
out as follows:

x̄i = x̄i,min + (x̄i,max − x̄i,min)

(xi,max − xi,min)
(xi − xi,min) (3)

The processing of the data takes place from the input layer neurons to the hidden layer neurons
through the connecting weight V̄ of dimension nx+1 × nh. As the hidden layer neurons use an
activation function to introduce the non-linearity and the biases, the output of the hidden layer
at the jth neuron can be expressed as follows:

h̄j = g

(
nx∑

i=1

x̄iv̄ij + v̄(nx+1) j

)
, (4)

where v̄ij, the element of V̄ , denotes the connecting weight between the ith and jth neurons of
the input and the hidden layer, respectively. v̄(nx+1) j represents the bias of the jth hidden layer
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Figure 1. Structure of the neural model for parameter estimation.

neuron. g(·) denotes the functional relationship of the activation function for processing of
the data.

The output of the network can be approximated using the connecting weights W̄ as follows:

ȳk =
nh∑

j=1

h̄jw̄jk , (5)

where h̄j is the element of the hidden layer output vector H̄ , and w̄jk , the element of the output
weight W̄ , denotes the connecting weight between the jth and kth neurons of the hidden and
the output layer, respectively.

Equations (1) – (5) represent the steps to be followed for processing of the data through the
ELM network. Huang et al. (25,26) have investigated the single hidden layer FFNN for training
as well as testing analytically and has proven the network’s optimality and convergence.
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The input weights and biases of the hidden layer neurons are chosen randomly from a normal
distribution, and the number of hidden layer neurons is determined based on the minimisation
of the residual error between the measured and estimated responses as follows:

N∑
i=1

‖Y (i) − Z(i)‖< ε, (6)

where ε is the residual error, and N is the number of the data samples. ε is a significant value
for a number of the hidden layer neurons lesser than the number of data samples.

The Equation (6) can also be expressed as follows:

min
W̄

∥∥H̄W̄ − Z̄
∥∥ (7)

The objective is to minimise the output weight W̄ of the equation, which is a set of linear
equations. These equations are minimised using the least-square principle for W̄ . The output
weight can be estimated as follows:

ˆ̄W = H̄∗Z̄, (8)

where H̄∗ = (
H̄T H̄

)−1
H̄T is a minimum of all possible solutions obtained from the least-

square and known as the Moore-Penrose inverse matrix. The equation is determined analyt-
ically for the assigned number of the hidden layer neurons and the corresponding activation
function.

The accuracy of the neural model is expressed by the MSE as follows:

MSE = 1

N

N∑
i=1

ny∑
k

(yki − zki)
2 (9)

A statistical quantity, which is the coefficient of determination (R2) is defined to quantify
the neural model for the prediction of the future outcomes based on the other related input
dataset and is expressed as follows(35):

R2 =
∑N

i=1(Zi − Zavg.)2 −∑N
i=1(Zi − Yi)2

ny
∑N

i=1(Zi − Zavg.)2
, (10)

where Zavg. is the average value of the data samples of the measured output vector Z.

3.0 PARAMETER ESTIMATION METHODOLOGY
The current section demonstrates the optimisation methodology to extract the stability and
control derivatives of an aerodynamic model. The neural models discussed in the previous
section are used for the purpose of predictions with the different input samples. Among the
input variables, the coefficients of aerodynamic forces and moments of a postulated aerody-
namic model are obtained analytically and propagated through the network. The derivatives
of the aerodynamic model, which are to be optimised, can be represented altogether as 	.
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Therefore, the prediction of the observations at the (i + 1)th instant through the neural model
can be expressed as follows:

Y (i + 1) = f (X (i), V̄ , W̄ ,	), (11)

where Y (i + 1) = [y1(i + 1), y2(i + 1), . . . , yny (i + 1)] and f (·) denotes the non-linear map-
ping through ELM network.

In the optimisation process, the cost function J , based on the likelihood function, is
expressed to be minimised for 	 and R as follows(5):

J (	, R) = 1

2

N∑
i=1

ET
i R−1Ei + N

2
ln det(R) + nyN

2
ln 2π, (12)

where Ei = [Z(i) − Y (i)] is the residual error, ny is the number of output variables (observa-
tions) and R is the measurement noise covariance matrix.

In the present work, we have assumed that an aerodynamic model with their initial guess
values, number of observations through the ELM network and the number of data samples
are known before initiating the optimisation process. So, by taking the partial derivative of
J (	, R) with respect to R and equating to zero, the Equation (12) turns out to the following
expression:

R = 1

N

N∑
i=1

EiE
T
i (13)

Therefore, the cost function is rewritten as follows:

J (	) = 1

2
nyN + N

2
ln det(R) + nyN

2
ln 2π (14)

By neglecting the constant terms and without affecting the minimum value of the equation,
the cost function can be expressed as follows:

J (	) = det(R) (15)

The above cost function is minimised for the parameter 	 according to the GN method as
follows: (

∂J

∂	

)
k

= 0 (16)

The subscript ‘k’ signifies about the kth iteration of the optimisation process. Now,(
∂J
/
∂	
)

k
can be approximated using Taylor’s series expansion theory for the first two terms

as follows: (
∂J

∂	

)
k+1

≈
(
∂J

∂	

)
k

+
(
∂2J

∂	2

)
k

�	 (17)
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As ∂J
/
∂	

k+1
= 0, therefore, the parameter update vector �	 can be expressed as follows:

�	= −
[(

∂2J

∂	2

)
k

]−1 (
∂J

∂	

)
k

, (18)

where
(
∂J
∂	

)
k
= −

N∑
i=1

[
∂Y (i)
∂	

]T
R−1Ei and

(
∂2J
∂	2

)
k
=

N∑
i=1

[
∂Y (i)
∂	

]T
R−1

[
∂Y (i)
∂	

]
are defined at the

kth iteration of the optimisation process and are known as the gradient vector and Hessian
matrix, respectively.

The forward difference approximation can be used to compute the response gradient matrix,(
∂Y (i)

/
∂	
)

ij
, as follows:

(
∂Y (i)

∂	

)
ij

≈ f (X (i − 1), V̄ , W̄ ,	+ δ	j) − f (X (i − 1), V̄ , W̄ ,	)

δ	j
, (19)

where i = 1, 2, 3 . . . , N ; j = 1, 2, 3, . . . , n	; n	 denotes the number of parameters to be esti-
mated. δ	j is a small perturbation in the jth parameter. The parameter vector	 can be updated
as follows:

	k+1 =	k +�	 (20)

A flow chart presented in Fig. 2 demonstrates the stepwise procedure of the parameter esti-
mation methodology. The flight testing for the identification of the aircraft is carried out by
investigating the longitudinal and lateral-directional modes such as phugoid, short-period, roll,
Dutch roll, etc. These modes are excited by applying pulse, step or multistep control com-
mands to elevator, aileron, rudder or throttle setting for the generation of the flight data(36).
A data acquisition unit gathers the aircraft’s motion and control variables of the real flight
test, and the data is appropriately transformed to the centre of gravity location. Usually,
the raw data is corrupted due to the biases, scaling and time synchronisation errors, which
are essentially improved by the flight reconstruction technique to ensure the consistency and
compatibility of the data(5,6). The flight experiment is repeated to improve the model fidelity
within the specified tolerance limit.

The motion and control variables are appropriately chosen from the compatible flight data
set for the non-linear mapping of the specified neural model as shown in Fig. 1. The quantities
of the dataset are of different physical significance; hence, they are normalised in a predefined
scale level for effective learning of the network. The non-linear mapping is carried out by fol-
lowing the steps discussed in previous section. The tuning parameters of the network are
selected such as to achieve the minimum value of the MSE and a higher value of R2, as close
to 1. At the beginning of the optimisation algorithm, the force and moment coefficients of the
aerodynamic model are computed using the initial guess values of the parameters (	0) and
propagated through the trained network for prediction of the output and perturbed output cor-
responding to the perturbation in the parameter (δ	), as followed by the Equation (19). In the
subsequent steps, the cost function is computed, and the algorithm is checked for the conver-
gence. If the convergence is not met, the aerodynamic parameters are updated by using the GN
method as per Equation (20). The iterative process is continued until the convergence is met.
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Figure 2. Flow chart of parameter estimation methodology.

Finally, the standard deviations of the optimised parameters are computed by the following
expression:

σ	i = √
pii, (21)
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where pii is the diagonal element of the estimation error covariance matrix, P which is defined
as follows:

P ≈
{

N∑
i=1

[
∂Y (i)

∂	

]T

R−1

[
∂Y (i)

∂	

]}−1

(22)

4.0 RESULTS AND DISCUSSION
The present section demonstrates the effectiveness of the proposed parameter estimation
methodology in the extraction of the stability and control derivatives from the real flight data
of Hansa-3 and ATTAS aircrafts.

4.1 Estimation of longitudinal aerodynamics parameters: Hansa-3
aircraft

In the first case study, the longitudinal real flight data (RFD) of the Hansa-3 aircraft were
considered(34) and gathered in a calm atmospheric condition by applying a multistep eleva-
tor command at a cruise speed of 46m/s and at an altitude of 6,000ft. (approx. 1,829m) as
shown in Fig. 3. The raw flight data went through the data compatibility check to improve
its quality in terms of biases, scale factors, etc. The flight data contains the motion and con-
trol variables, such as α, θ , q, V , ax, az, δe etc., whereas the other necessary variables and
the coefficients of forces and moments are derived by using the measured quantities and
geometrical values(37). For the modelling of CD, input variables α and δe are considered,
whereas α, qc̄

/
2V , δe are considered for the modelling of the coefficients CL and Cm. The

aerodynamic model, whose parameters have to be estimated, is expressed as follows:

CD = CD0 + CDαα + CDδe δe

CL = CL0 + CLαα + CLq (q c̄/2V ) + CLδe δe (23)

Cm = Cm0 + Cmαα + Cmq (q c̄/2V ) + Cmδe δe

The structure of the neural model as shown in Fig. 1 (a) has been used with the log-sigmoid
activation function at the HLNs for processing of the data. Table 1 presents the promising
values of MSE and R2 and the number of HLNs achieved in the neural modelling. Figures
4 and 5 show that the estimated quantities from FEM and ELM provide a fairly good match
with their respective measured ones. It is to be noted that the estimated responses of FEM
are obtained using the integration of the longitudinal equations of motion, whereas ELM
responses are obtained through the trained neural model. It is observed that the values of
MSE obtained using FEM are 2.84E-02 and 3.53E-02 for RFD01 and RFD02, respectively,
which are found to be greater than those obtained using ELM as shown in Table 1. Therefore,
Figs. 4 and 5 demonstrate that the quantities based on the ELM network fit better with their
measured quantities rather than those of FEM.

The optimisation methodology discussed in the previous section is applied to compute
the aerodynamic parameters of the postulated aerodynamic model. The initial values of the
stability and control derivatives are chosen closer to the results of EEM. Furthermore, the
force and moment coefficients of the aerodynamic model are computed analytically for their
propagation through the trained neural models. The optimised parameters are presented in
Table 2. The validation of the estimates has been carried out with the results of EEM and FEM.
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Table 1
Statistical quantities of the longitudinal neural model

Quantity RFD01 RFD02

HLN 22 20
MSE 2.54E-02 2.74E-02
R2 0.9679 0.9873

Figure 3. RFD of longitudinal motion: Hansa-3 Aircraft.

EEM, employing the least-square principle, has been applied to estimate the aerodynamic
parameters using a linear regression approach(39).

The other conventional method, FEM, has been applied to estimate the parameters with
appropriately chosen initial guess values. FEM uses the integration of the dynamic equations
of the aircraft while minimising the residual error in an iterative way of optimisation. The
method is highly dependent on the integration method, the initial conditions and the initial
values of the parameters. Due to the improper selection of the tuning parameters, FEM can
require a large number of iterations for convergence of the algorithm or numerically diverge
the solution. In Table 2, it is observed that ELM-GN can estimate the aerodynamic parameters
closer to the EEM and FEM methods.

Among the estimates, CD0 , CL0 , CLα , Cmα , Cmδe can also be validated with the nominal
values (NVs) obtained from the wind-tunnel test, whereas the other parameters are found to be
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Figure 4. Estimated responses using FEM and ELM: RFD01.

Figure 5. Estimated responses using FEM and ELM: RFD02.
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Table 2
Longitudinal parameters of the HANSA-3 aircraft

RFD01 RFD02

�̂ NV(38) EEM FEM ELM-GN EEM FEM ELM-GN

CDo 0.035 −0.0349 0.0349 0.0363 0.0361 0.0362 0.0380
(0.0009)# (0.0010) (0.0008) (0.0010) (0.0010) (0.0008)

CDα 0.086 0.1827 0.1797 0.1841 0.1598 0.1595 0.1755
(0.0094) (0.0097) (0.0083) (0.0091) (0.0092) (0.0083)

CDδe 0.026 0.1804 0.1809 0.1717 0.1708 0.1689 0.1660
(0.0100) (0.0102) (0.0090) (0.0102) (0.0102) (0.0091)

CLo 0.354 0.3592 0.3520 0.3796 0.3510 0.3469 0.3641
(0.0040) (0.0044) (0.0055) (0.0047) (0.0047) (0.0093)

CLα 4.978 4.6329 4.6096 4.7476 4.7265 4.7329 4.9537
(0.0470) (0.0525) (0.0764) (0.0501) (0.0498) (0.0974)

CLq − 26.5029 27.5718 22.2460 24.6533 24.6898 25.4994
(1.224) (1.3463) (1.8895) (1.4383) (1.4146) (2.7020)

CLδe 0.265 0.5716 0.6586 0.3125 0.5718 0.6125 0.5054
(0.0514) (0.0573) (0.0662) (0.0593) (0.0594) (0.1172)

Cmo 0.052 0.1000 0.1023 0.1045 0.0957 0.0983 0.1007
(0.0032) (0.0037) (0.0028) (0.0032) (0.0036) (0.0030)

Cmα −0.496 −0.5308 −0.4619 −0.4711 −0.5126 −0.4631 −0.4823
(0.0379) (0.0435) (0.0357) (0.0335) (0.0375) (0.0339)

Cmq − −3.7102 −5.4853 −4.8506 −3.6962 −5.1917 −4.9060
(0.9859) (1.1446) (0.8662) (0.9619) (1.0821) (0.9045)

Cmδe −1.008 −0.8371 −0.8880 −0.9070 −0.8045 −0.8482 −0.8690
(0.0414) (0.0481) (0.0360) (0.0397) (0.0453) (0.0376)

Note: # Values in the parentheses indicate the sample standard deviation.

comparable with the values of the conventional estimation methods. The values of the param-
eters CDα , CDδe , CLδe , Cm0 , obtained using the estimation methods, are comparable among
themselves, although their wind-tunnel values are found to be lower. It is also seen that the
estimates obtained through RFD02 are in a close agreement with the parameters obtained
through RFD01. As the ELM-GN method computes the estimates like FEM in an iterative
way, the convergence of the parameters from their initial values have been presented in Figs.
6, 7, and 8. EEM estimates have been presented as a straight line with their fixed error bars
throughout a chosen number of iterations. In the iterative approaches of optimisation, the role
of the initial guess values is crucial for their convergence. Hence, the guess values closer to
EEM are provided in FEM, and ELM-GN methods. In case of FEM, the convergence of the
method has been ensured by keeping the values of a few aerodynamic parameters away from
their EEM results, while such a convergence issue is not observed in the case of the ELM-GN
method. It is also observed that more iterations are required for optimisation of the parameters
using FEM rather than ELM-GN. A similar convergence is seen with the estimates of RFD02
using the FEM and ELM-GN methods.

The validation of the postulated aerodynamic model has also been carried out using the
proof-of-match exercise. The estimates obtained through RFD02 has been used to generate
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Figure 6. Convergence plot of drag force estimates: RFD01.

Figure 7. Convergence plot of lift force estimates: RFD01.

the simulated response and compared with the measured response of RFD01 as shown in
Fig. 9(a). A similar exercise has also been carried out in the generation of the simulated
flight data with the estimates of RFD01 and a doublet elevator command of other real flight
data(34), as shown in Fig. 9(b). In both of the figures, it is observed that the simulated responses
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Figure 8. Convergence plot of pitching moment estimates: RFD01.

Figure 9. Comparison of measured and simulated flight data using estimates of (a) RFD02 (b) RFD01.
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Figure 10. RFD of lateral-directional motion: ATTAS Aircraft.

generated using the estimates of EEM, FEM and ELM-GN are matching satisfactorily with
their corresponding measured motion variables of the aircraft.

4.2 Estimation of lateral-directional aerodynamics parameters: ATTAS
aircraft

In the second case study, the objective is to extract the aerodynamic stability and control
derivatives from the RFD of ATTAS aircraft(5), which was obtained in calm weather at a
nominal speed of 200kn (approx. 103m/s) and at an altitude of 16,000ft (approx. 4,877m) as
shown in Fig. 10. The data presents a compatible RFD of lateral-directional motion gathered
by exciting the roll and Dutch-roll modes using multistep aileron and rudder commands for
30 seconds each, respectively. The data contain the essential motion and control variables,
such as β, φ, ψ , p, r, δa, δr, gathered at a sample rate of 0.04 seconds. The aerodynamic
force and moment coefficients for postulation of an aerodynamic model are computed from
the measured and geometrical quantities(37). The aerodynamic model, whose parameters must
be determined, is expressed as follows:

CY = CY0 + CYβ β + CYp ( p b/2V ) + CYr (r b/2V ) + CYδa δa + CYδr δr

Cl = Cl0 + Clβ β + Clp ( p b/2V ) + Clr (r b/2V ) + Clδa δa + Clδr δr (24)

Cn = Cn0 + Cnβ β + Cnp ( p b/2V ) + Cnr (r b/2V ) + Cnδa δa + Cnδr δr

The aerodynamic model described by Equation (24) presents the dependency of the side-
force, rolling and yawing moment coefficients on side-slip angle (β), angular roll and yaw
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Table 3
Statistical quantities of the lateral-directional neural model

Quantity RFD03 RFD04

HLN 30 28
MSE 1.98E-04 2.99E-04
R2 0.9988 0.9993

Figure 11. Estimated responses using FEM and ELM: RFD03.

rates ( p, r) and control surface deflections of aileron and rudder (δa, δr), whereas the effects
of the other longitudinal variables are neglected. Initially, the flight dynamic neural model (in
a restricted sense) for the purpose of aircraft parameter estimation is developed by using the
lateral-directional neural model, as shown in Fig. 1 (b). Table 3 presents the statistical values
of MSE and R2 obtained in the neural modelling. It is observed that the value of R2 is found to
be 0.99 with lower values of MSE in both cases, which demonstrate the quality of the neural
model for subsequent step in the parameter estimation methodology. Figures 11 and 12 rep-
resent the estimated responses of the neural models and FEM obtained through RFD03 and
RFD04, respectively. Also, in this case, it is reported that the values of MSE obtained using
FEM are found to be higher at 2.20E-04 and 5.61E-04 for RFD03 and RFD04, respectively,
in comparison to the values obtained using the ELM network as shown in Table 3. Hence, the
quantities modelled using the ELM network fit better in contrast to those of FEM. The coef-
ficients of the aerodynamic model signify the input state/variables of the network, which are
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Figure 12. Estimated responses using FEM and ELM: RFD04.

propagated through the trained network for the computation of the aerodynamic parameters.
The optimisation algorithm is initialised with the guess values closer to the obtained esti-
mates of EEM, and the optimal estimates are presented in Table 4 for their validation using
the estimates of the conventional methods.

From Table 4, it is observed that CY0 , CYδa , Cl0 , Cn0 , Cnδa are the weaker derivatives,
whereas CYβ , CYp , CYr , CYδr , Clβ , Clp , Clr , Clδa , Clδr , Cnβ , Cnp , Cnr , Cnδr are the strong
derivatives in their respective coefficients of the aerodynamic model. It is also observed that
the proposed method is capable to estimate the weaker as well as the strong derivatives with
the lower standard deviations. The values of the parameters have been found in close agree-
ment with the estimated values of EEM and FEM. Figures 13–15 present the convergence
plots of the aerodynamic parameters obtained from FEM and ELM-GN. It is observed that the
ELM-GN approach does not report any numerical divergence, whereas FEM reports numer-
ical divergence in the early number of iterations. The size of the error bars represents the
standard deviations at each of the iterations. It can also be seen that most of the parameters
estimated through the ELM-GN method have converged in the first two iterations, whereas the
other iterations have been required due to the sensitivity of the parameters on their respective
aerodynamic model coefficients. EEM estimates have been presented with fixed-size error
bars as discussed in the earlier subsection. A similar convergence of the estimates is observed
through the other flight data RFD03.

Furthermore, the parameters have been validated by the proof-of-match exercise for their
simulation-based applications such as the design of flight control laws, flight simulators, etc.
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Table 4
Lateral-directional parameter estimates of the ATTAS aircraft

RFD03 RFD04

�̂ EEM FEM ELM-GN EEM FEM ELM-GN

CY0 −0.0067 −0.0067 −0.0067 −0.0075 −0.0075 −0.0076
(5.4E-05)# (4.4E-05) (5.38E-05) (4.8E-05) (3.7E-05) (5.2E-05)

CYβ −1.0508 −1.0552 −1.0447 −1.0339 −1.0351 −1.0309
(0.0021) (0.0018) (0.0020) (0.0016) (0.0013) (0.0016)

CYp 0.2093 0.2160 0.2075 0.1599 0.1609 0.1625
(0.0058) (0.0047) (0.0052) (0.0065) (0.0050) (0.0064)

CYr 0.6353 0.6430 0.6247 0.6127 0.6174 0.5976
(0.0161) (0.0132) (0.0155) (0.0111) (0.0085) (0.0117)

CYδa 0.0089 0.0103 0.0087 0.0037 0.0037 0.0054
(0.0011) (0.0009) (0.0010) (0.0013) (0.0010) (0.0012)

CYδr 0.1918 0.1930 0.1825 0.1933 0.1944 0.1911
(0.0034) (0.0028) (0.0034) (0.0024) (0.0018) (0.0025)

Cl0 −1.3E-04 6.0E-05 −9.55E-05 −3.0E-05 1.5E-04 −2.0E-05
(1.2E-05) (2.6E-05) (3.92E-05) (1.1E-05) (2.3E-05) (2.9E-05)

Clβ −0.0561 −0.0614 −0.0561 −0.0585 −0.0646 −0.0551
(0.0005) (0.0010) (0.0013) (0.0004) (0.0008) (0.0008)

Clp −0.3785 −0.3888 −0.3666 −0.3931 −0.4022 −0.3766
(0.0013) (0.0029) (0.0040) (0.0015) (0.0032) (0.0036)

Clr 0.1413 0.1436 0.1272 0.1148 0.1161 0.1088
(0.0035) (0.0079) (0.0107) (0.0025) (0.0053) (0.0056)

Clδa −0.0965 −0.0990 −0.0917 −0.0988 −0.1012 −0.0934
(0.0002) (0.0005) (0.0008) (0.0003) (0.0006) (0.0007)

Clδr 0.0217 0.0225 0.0164 0.0205 0.0212 0.0169
(0.0007) (0.0017) (0.0023) (0.0005) (0.0011) (0.0012)

Cn0 0.0014 0.0014 0.0012 0.0014 0.0014 0.0013
(1.0E-05) (2.1E-05) (2.20E-05) (8.0E-06) (1.5E-05) (2.0E-05)

Cnβ 0.1290 0.1304 0.1234 0.1314 0.1324 0.1277
(0.0004) (0.0008) (0.0007) (0.0003) (0.0005) (0.0005)

Cnp −0.0468 −0.0505 −0.0393 −0.0507 −0.0530 −0.0459
(0.0011) (0.0024) (0.0012) (0.0011) (0.0021) (0.0013)

Cnr −0.0687 −0.0746 −0.0735 −0.0696 −0.0734 −0.0641
(0.0030) (0.0063) (0.0050) (0.0020) (0.0035) (0.0035)

Cnδa −0.0060 −0.0064 −0.0054 −0.0069 −0.0073 −0.0060
(0.0002) (0.0004) (0.0002) (0.0002) (0.0004) (0.0003)

Cnδr −0.0718 −0.0724 −0.0592 −0.0745 −0.0753 −0.0647
(0.0006) (0.0014) (0.0015) (0.0004) (0.0008) (0.0010)

Note: # Values in parentheses indicate the sample standard deviations.

The simulated flight data have been generated by using the estimates of EEM, FEM and ELM-
GN, as shown in Figs. 16 and 17. In Fig. 16, the aileron command of RFD04 has been used to
generate the simulated data with the estimates of RFD03. In Fig. 17, the rudder command of
RFD03 has been used to generate the simulated data with the estimates of RFD04. In both of
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Figure 13. Convergence plot of side force estimates: RFD04.

Figure 14. Convergence plot of rolling moment estimates: RFD04.
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Figure 15. Convergence plot of yawing moment estimates: RFD04.

the figures, it can be observed that most of the simulated quantities match satisfactorily with
their respective measured ones.

5.0 CONCLUSION
The parameter estimation methodology, a combined approach of an ELM network with the
GN method, has been demonstrated for computation of the aerodynamic parameters from
the measured RFD pertaining to the longitudinal as well as the lateral-directional motion. The
approach yields good non-linear mapping with satisfactory values of MSE and R2 between the
chosen input and output variables of the ELM network. In the second phase of the algorithm,
the investigation of the aerodynamic parameters confirmed that the GN method performed
better with the ELM network in terms of computational cost and its convergence. It was
noticed that the under-fit as well as the over-fit of the non-linear ELM network may lead to
non-optimum estimates in spite of a lower value of MSE; hence, the network size was appro-
priately determined based on the variables of the input-output space and the number of data
samples. The proposed method did not encounter the numerical divergence as reported in
the FEM method and converged in a few iterations. The algorithm of FEM was found to be
sensitive to the selection of the initial guess values, whereas such issue was not reported with
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Figure 16. Comparison of measured and simulated flight data using estimates of RFD03.

that of the ELM-GN. The aerodynamic estimates of the longitudinal as well as the lateral-
directional motion were estimated in terms of quantity and quality as compared to those of
obtained through EEM and FEM. It was also observed that the proposed method was able
to estimate the weak as well as the strong derivatives. Finally, the proof-of-match exercise
performed on the estimates demonstrated their applications in the field of flight simulation
operations. The proposed algorithm neither requires the integration of the equations of the
dynamic system nor was found to be sensitive to the initial guess values of the parameters.
Moreover, the neural model can capture the flight dynamics of the aircraft at a lower com-
putational cost, and the parameters are optimised along with their corresponding standard
deviations in a few iterations. Therefore, the ELM-GN algorithm could be a better alternative
to estimate the aerodynamic parameters where the system dynamics are difficult to express
due to the non-linearities associated with the unsteady aerodynamics at higher angle-of-attack
regions and when a lower value of the computational cost persists.
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Figure 17. Comparison of measured and simulated flight data using estimates of RFD04.

REFERENCES
1. WASZK, M.R. and SCHMIDT, D.K. Flight dynamics of aero-elastic vehicle, Journal of Aircraft, 1988,

25, (6), pp 563–571. doi:10.2514/3.45623.
2. ETKIN, B. Dynamic of Flight Stability and Control, John Wiley and Sons, 1982, New York, US.
3. MAINE, R.E. and ILIFF, K.W. Application of Parameter Estimation to Aircraft Stability and Control

– The Output Error Approach. NASA RP 1168, January 1986.
4. RAOL R., JITENDRA G.G. and SINGH J. Modelling and Parameter Estimation of Dynamic System, IET,

2004, London, UK.
5. JATEGAONKAR R.V. Flight Vehicle System Identification: A Time Domain Methodology, 1st

ed, vol. 216, Progress in Astronautics and Aeronautics, AIAA, 2006, Reston, VA, US.
doi:10.2514/4.866852.

6. KLEIN, V. and MORELLI, E. Aircraft System Identification: Theory and Practice, AIAA Education
Series, AIAA, 2006, Reston, VA, US.

https://doi.org/10.1017/aer.2019.123 Published online by Cambridge University Press

https://doi.org/10.2514/3.45623
https://doi.org/10.2514/4.866852
https://doi.org/10.1017/aer.2019.123


294 THE AERONAUTICAL JOURNAL FEBRUARY 2020

7. JATEGAONKAR R.V. and PLAETSCHKE E. Identification of moderately nonlinear flight mechanics sys-
tems with additive process and measurement noise, Journal of Guidance, Control, and Dynamics,
1990, 13, (2), pp 277–285. doi:10.2514/3.20547.

8. CHOWDHARY G. and JATEGAONKAR R.V. Aerodynamic parameter estimation from flight data apply-
ing extended and unscented Kalman filter, AIAA Atmospheric Flight Mechanics Conference,
Keystone, CO, US, 2006. doi:10.2514/6.2006-6146.

9. HORNIK K. Approximation capabilities of multilayer feed-forward networks, Neural Network, 1991,
4, (2), pp 251–257. doi:10.1016/0893-6080(91)90009-T.

10. RUMELHART D.E. HINTON G.E. and WILLIAMS R.J., Learning representations by back propagation
errors, Nature, 1986, 323, pp 533–536. doi:10.1038/323533a0.

11. HAYKIN S. Neural Networks and Learning Machines, 3rd ed, Prentice-Hall, 2009, Englewood Cliffs,
NJ, US.

12. PRATIHAR D.K. Soft Computing: Fundamentals and Applications, Narosa Publishing House, 2008,
New Delhi, India.

13. LINSE D.J. and STENGEL R. Identification of aerodynamic coefficients using computational neu-
ral networks, Journal of Guidance, Control, and Dynamics, 1993, 16, (6), pp 1018–1025.
doi:10.2514/3.21122.

14. RAISINGHANI S.C., GHOSH A.K. and KALRA P.K. Two new techniques for aircraft parame-
ter estimation using neural networks, Aeronautical Journal, 1998, 102, (1011), pp 25–30.
doi:10.1017/S0001924000065702.

15. SINGH S. and GHOSH A.K. Estimation of lateral-directional parameters using neural net-
work based modified delta method, Aeronautical Journal, 2007, 111, (1124), pp 659–667.
doi:10.1017/S0001924000004838.

16. GARHWAL R., HALDER A. and SINHA M. Sensitivity analysis using neural network for estimating air-
craft stability and control derivatives, IEEE International Conference on Intelligent and Advanced
Systems, Kuala Lumpur, Malaysia, 2007. doi:10.1109/ICIAS.2007.4658380.

17. DAS S., KUTTERI R.A., SINHA M. and JATEGAONKAR R.V. Neural partial differential method for
extracting aerodynamic derivatives from flight data, Journal of Guidance, Control, and Dynamics,
2010, 33, (2), pp 376–384. doi:10.2514/1.46053.

18. PEYADA N.K. and GHOSH A.K. Aircraft parameter estimation using new filtering technique based on
neural network and Gauss-Newton method, Aeronautical Journal, 2009, 113, (1142), pp 243–252.
doi:10.1017/S0001924000002918.

19. KUMAR R. and GHOSH A.K. Nonlinear longitudinal aerodynamic modeling using neural Gauss-
Newton method, Journal of Aircraft, 2011, 48, (5), pp 1809–1812. doi:10.2514/1.C031253.

20. SADERLA S., DHAYALAN R. and GHOSH A.K. Non-linear aerodynamic modelling of unmanned
cropped delta configuration from experimental data, Aeronautical Journal, 2017, 121, (1237),
pp 320–340. doi:10.1017/aer.2016.124.

21. KUMAR R., GANGULI R., OMKAR S.N. and KUMAR M.V. Rotorcraft parameter identification from real
time flight data, Journal of Aircraft, 2008, 45, (1), pp 333–341. doi:10.2514/1.32024.

22. SANWALE J. and SINGH D.J. Aerodynamic parameters estimation using radial basis function
neural partial differentiation method, Defence Science Journal, 2018; 68, (3), pp 241–250.
doi:10.14429/dsj.68.11843.

23. KUMAR A. and GHOSH A.K. ANFIS-delta method for aerodynamic parameter estimation
using flight data, Journal of Aerospace Engineering, 2019, 233, (8), pp 3016–3032.
doi:10.1177/0954410018791621.

24. ROY A.G. and PEYADA N.K. Aircraft parameter estimation using hybrid neuro fuzzy and artificial
bee colony optimization (HNFABC) algorithm, Journal of Aerospace Science and Technology,
2017, 71, pp 772–782. doi:10.1016/j.ast.2017.10.030.

25. HUANG G.B., ZHU Q.Y. and SIEW C.K. Extreme learning machine: a new learning scheme of feed for-
ward neural networks, IEEE International Joint Conference on Neural Networks, 2004, Budapest,
Hungary. doi:10.1109/IJCNN.2004.1380068.

26. HUANG G.B., ZHU Q.Y. and SIEW C.K. Extreme learning machine: theory and applications,
Neurocomputing, 2006, 70, (1–3), pp 489–501. doi:10.1016/j.neucom.2005.12.126.

27. SUN, Z.L., CHOI, T.M., AU, K.F. and YU Y. Sales forecasting using extreme learning machine
with applications in fashion retailing, Decision Support Systems, 2008, 46, (1), pp 411–419.
doi:10.101 6/j.dss.2008.07.009.

https://doi.org/10.1017/aer.2019.123 Published online by Cambridge University Press

https://doi.org/10.2514/3.20547
https://doi.org/10.2514/6.2006-6146
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1038/323533a0
https://doi.org/10.2514/3.21122
https://doi.org/10.1017/S0001924000065702
https://doi.org/10.1017/S0001924000004838
https://doi.org/10.1109/ICIAS.2007.4658380
https://doi.org/10.2514/1.46053
https://doi.org/10.1017/S0001924000002918
https://doi.org/10.2514/1.C031253
https://doi.org/10.1017/aer.2016.124
https://doi.org/10.2514/1.32024
https://doi.org/10.14429/dsj.68.11843
https://doi.org/10.1177/0954410018791621
https://doi.org/10.1016/j.ast.2017.10.030
https://doi.org/10.1109/IJCNN.2004.1380068
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.dss.2008.07.009
https://doi.org/10.1017/aer.2019.123


VERMA AND PEYADA PARAMETER ESTIMATION OF AIRCRAFT... 295

28. CHACKO, B.P., KRISHNAN, V.R.V., RAJU, G. and ANTO, P.B. Handwritten character recognition using
wavelet energy and extreme learning machine, International Journal of Machine Learning and
Cybernetics, 2012, 3, (2), pp 149–161. doi:10.1007/s13042-010049-5.

29. ZHAO Z., LI P. and XU X. Forecasting model of coal mine water inrush based on extreme
learning machine, Applied Mathematics and Information Sciences, 2013, 7, (3), pp 1243–1250.
doi:10.12785/amis/070349.

30. PAL M. Extreme learning machine-based land cover classification, International Journal of Remote
Sensing, 2009, 30, (14), pp 3835–3841. doi:10.1080/01431160902788636.

31. ZONG W.W. and HUANG G.B. Face recognition based on extreme learning machine,
Neurocomputing, 2011, 74, (16), pp 2541–2551. doi:10.1016/j.neucom.2010.12.041.

32. PAMADI B.N. Performance, Stability, Dynamics and Control of Airplanes, AIAA Education Series,
1998, Virginia.

33. SOLA J. and SEVILLA J. Importance of input data normalization for the application of neural net-
works to complex industrial problems, IEEE Transactions on Nuclear Science, 1997, 44, (3),
pp 1464–1468. doi:10.1109/23.589532.

34. PEYADA N.K. Parameter Estimation from Flight Data Using Feed Forward Neural Networks. PhD
Thesis, IIT Kanpur, India, 2009.

35. SAHIN M. Comparison of modelling ANN and ELM to estimate solar radiation over Turkey using
NOAA satellite data, International Journal of Remote Sensing, 2013, 34, (21), pp 7508–7533.
doi:10.1080/01431161.2013.822597.

36. FILIPPONE A. Flight Performance of Fixed and Rotary Wing Aircraft, Elsevier, 2006, Oxford, UK.
37. VERMA, H.O., PEYADA N.K. Parameter estimation of stable and unstable aircraft using extreme learn-

ing machine, AIAA Atmospheric Flight Mechanics Conference 2018. doi:10.2514/6.2018-0526.
38. RANGARANJAN R. and VISHWANATHAN S. Wind Tunnel Test Results on a 1/5 Scale HANSA Model.

NAL TR-01 1997.
39. MORELLI E.A. Practical aspects of the equation error method for aircraft parameter esti-

mation, AIAA Atmospheric Flight Mechanics Conference, Keystone, CO, US, 2006.
doi:10.2514/6.2006-6144.

https://doi.org/10.1017/aer.2019.123 Published online by Cambridge University Press

https://doi.org/10.1007/s13042-010049-5
https://doi.org/10.12785/amis/070349
https://doi.org/10.1080/01431160902788636
https://doi.org/10.1016/j.neucom.2010.12.041
https://doi.org/10.1109/23.589532
https://doi.org/10.1080/01431161.2013.822597
https://doi.org/10.2514/6.2018-0526
https://doi.org/10.2514/6.2006-6144
https://doi.org/10.1017/aer.2019.123

	Light automation for aircraft fuselage assembly
	INTRODUCTION
	RELATED WORK
	EQUIPMENT WORKING PRINCIPLES
	Laser radar
	Photogrammetric camera head K-610
	KR-210 and KR-500 KUKA industrial robots
	Adaptivefoot11 robot control

	METHODS
	Equipment setup
	EN ISO 9283: a robot evaluation standard

	EXPERIMENTAL PROCEDURE
	RESULTS AND DISCUSSION
	CONCLUSIONS


