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Abstract. A fusion plasma is modeled by a one-dimensional Vlasov–Maxwell system
of equations. Particle annihilation is considered by a dedicated factor in the Vlasov
equation. A term describing background damping mechanisms is considered in
the equation relating the electric field to the current (Berk–Breizman model).
Results are presented for simulations in a one-dimensional velocity space, the
extension by a further velocity dimension is sketched. As an initial condition, a
bump-on-tail distribution is assumed. The time evolution of the system is studied
and characterized with respect to different points in parameter space. A fractional
steps method using cubic splines interpolation is applied for time-integrating this
system.

1. Introduction
An important method for the numerical solution of the Vlasov equation is the
direct solution for the velocity distribution function as a partial differential equa-
tion in phase space. This differential equation is discretized on a fixed Eulerian
grid. Interest in Eulerian grid-based Vlasov solvers arise from the very low noise
level associated with these methods, which provide a powerful tool to accurately
investigate the physics associated with the low-density regions of phase space. It
is the purpose of this work to apply the second-order splitting scheme of Cheng
and Knorr (1976) by studying the Vlasov–Maxwell system of equations (Berk and
Breizman 1990; Arber and Vann 2002; Vann et al. 2003), which is used to model the
self-consistent interaction between energetic particles and wave-fields or collective
modes in tokamaks.

2. The problem equations
The numerical method presented here consists of fractional shifts which are applied
to the distribution function (Pohn et al. 2005). The performance of this second-order
splitting scheme is evaluated by studying a Berk–Breizman augmentation of the
Vlasov–Maxwell system for one spatial and one velocity dimension. This system
reads as follows. The Vlasov equation is written in the form

∂tf + v · ∂xf + E · ∂vf = −νa(f − F0), (2.1)

https://doi.org/10.1017/S0022377806005800 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377806005800


1140 E. Pohn, M. Shoucri and G. Kamelander

where f = f(x, v, t) is the density distribution function and F0(v) is the steady state
solution of the system. The parameter νa models a particle annihilation rate. For
t> 0 the electric field is determined from

∂tE = −j − γdE, j =
∫

vf dv (2.2)

and from Poisson’s equation for t = 0. The parameter γd describes the combined ef-
fect of all background damping mechanisms acting on the electric field. The steady
state solution F0 of (2.1) is assumed to be composed of two parts, F0 = ηFbulk+(1−
η)Fsource, with

Fbulk(v) =
1

vt
√

2π
e−1/2(v/vt)

2
, Fsource(v) =

1
vst

√
2π

e−1/2(v−vs/vst)
2

(2.3)

where η is the bulk particle share, vt the thermal velocity of the plasma, vs the aver-
age particle source velocity and vst the thermal broadening of the source particles.
The system is initially disturbed, f(x, v, t= 0) = (1 + ε cos(2πx/L))F0(v), where L
is the spatial dimension of the plasma, and ε is a small perturbation term.
Generalizations of splitting schemes to higher dimensions were presented a long

time ago (Cheng 1977). However, due to the higher computational resources it took
a long time for the applications of these methods to Eulerian Vlasov codes to be
presented (see Pohn et al. (2005) and references therein). If the velocity space of
the system is extended to two dimensions, f = f(x, vx, vy, t), gyration of particles
becomes active. The normalized Vlasov equation is then

∂tf + vx · ∂xf + (E + ωcpvy) · ∂vx
f − ωcpvx · ∂vy

f = −νa(f − F0), (2.4)

where ωcp =ωc/ωp is the ratio of cyclotron frequency and plasma frequency. Equa-
tion (2.4) represents a system where the magnetic field is perpendicular to x and y.
Some results for this two-dimensional case will also be presented here.

3. Results
The parameters of the simulations are chosen as follows: periodic phase-space length
L= 21, velocity interval is [−V, V ] with V = 8, share of bulk particles η = 0.9,
thermal velocity of bulk particles vt = 1.0 (i.e. velocity is normalized to thermal
velocity), source particle velocity vs = 4.5 with thermal broadening vst = 0.5, per-
turbation ε= 0.01, grid size Nx = 128 and Nv = 512 and a time step ∆t = 0.1.
Depending on the choice of the parameter pair (γd, νa) the evolution of the

system shows qualitatively different behavior (Vann et al. 2003). The electric field
energy W (t)= L−1

∫ L

0 E(x, t)2 dx is used for characterizing these differences. Fig-
ure 1 shows examples with chaotic and periodic evolution. Steady state and damped
evolution is also obtained.
Figure 2(a) shows the density distribution function f at t = 1116 for a simulation

in the periodic region of the parameter space (γd = 1.00, νa = 0.03). The figure is
constricted to the relevant part near the phase velocity vph, where f flattens with
respect to v. The total particle number is conserved very well during the simulations.
The relative change in density is less than 2 × 10−10.
Previous theoretical work has been restricted to various limiting parameter re-

gimes. For the case of small values of νa and γd Breizman et al. (1993) showed that
the system undergoes relaxation oscillation for νa < γd and the system saturates

https://doi.org/10.1017/S0022377806005800 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377806005800


Vlasov–Maxwell system for the nonlinear Berk–Breizman phenomenology 1141

0 500 1000
0

0.001

0.002

0.003
γ

d
=1, ν

a
=0.01

(a)

1000 1500 2000
    0

0.001

0.002

0.003
γ

d
=1, ν

a
=0.03

(b)

Figure 1. Time evolution of electric field energy for different points in parameter space:
(a) chaotic; (b) periodic.
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Figure 2. (a) f(x, v, t=1116) for γd =1, νa =0.03. (b) Bifurcation.

to the steady state for νa > γd. Fasoli et al. (1998) studied the case of slow linear
growth. The present code, however, provides fully nonlinear behavior over the whole
(γd, νa) parameter space.
When varying νa while retaining γd unchanged, qualitatively different regions of

the parameter space are passed through. Figure 2(b) shows a bifurcation diagram
coming from such a simulation with a constant value of γd = 1 and initial value
νa = 0.05. The initial value of νa is kept constant until t = 5000 and then linearly
decreased until νa = 0.02 is reached at t = 30 000.
In the beginning of the evolution the system is strongly oscillating until the

energy saturates at t ≈ 1500 and reaches a steady state due to nonlinear effects.
The system then remains in a steady state until the linear decrease of νa sets in
at t = 5000 causing a linear dropping of the electric field energy. Then, the typical
behavior of a nonlinear system—period doubling and alternating regions of chaotic
and non-chaotic behavior—is observed. We note that frequency splitting of the
toroidal Alfvén eigenmode (TAE) has been observed in experiments (Fasoli et al.
1998).
The transition from one- to two-dimensional velocity space (see (2.4)) is carried

out in a stepwise way (Pohn et al. 2001). For obtaining a plausibility check, a
simulation with identical results for one and two dimensions is done (Fig. 3, dashed
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Figure 3. Time evolution of electric field energy: (a) one-dimensional velocity space;
(b) two-dimensional velocity space.

curves). The system develops towards a steady state and a kind of numerical
recurrence effect is observed (recurrence time TR = 2π/k∆v ≈ 160 for L= 5). After
switching on γd = 0.3 and νa = 0.02 the results for the one- and two-dimensional
cases still stay the same, because these parameters are only effective in space (Fig. 3,
dotted curve). Based on the results from this cross-validation the investigation
of the two-dimensional system can be started by switching on the magnetic field
(ωcp = 1.56). An oscillation with period Tc = 4.03 due to gyration is observed (Fig. 3,
solid curve).

4. Conclusions
We have applied a method of fractional steps (Cheng and Knorr 1976; Shoucri and
Gagné 1977) associated to cubic spline interpolation to present a numerical solution
of the nonlinear Berk–Breizman augmentation model of the Vlasov–Maxwell sys-
tem, and to study the full range of parameters (γd, νa) associated with this model.
The results agree nicely with what has been presented by Vann et al. (2003). In the
code we developed, the relative change in density is less than 2 × 10−10 for all simu-
lations. In the (γd, νa) parameter space, four types of different system behavior have
been identified, namely chaotic, periodic, steady state and damped. The longtime
simulation presented in Fig. 2(b) by slowly varying νa and the plotting of extrema
observed in the electric field energy shows that the system bifurcates from steady
state to periodic behavior and through a series of period doubling bifurcations to
chaos. This demonstrates how the system naturally shows the phenomenology of
frequency splitting as reported experimentally in Fasoli et al. (1998). It confirms
that the qualitative expectation of period doubling (Breizman et al. 1997 ) may be
the mechanism underlying the phenomenology observed experimentally.
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