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We investigate the motion of two immiscible fluids in a porous medium described by a two-

phase flow system. In the capillary pressure relation, we include static and dynamic hysteresis.

The model is well established in the context of the Richards equation, which is obtained by

assuming a constant pressure for one of the two phases. We derive an existence result for this

hysteresis two-phase model for non-degenerate permeability and capillary pressure curves.

A discretization scheme is introduced and numerical results for fingering experiments are

obtained. The main analytical tool is a compactness result for two variables that are coupled

by a hysteresis relation.
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1 Introduction

The two-phase flow system describes the motion of two incompressible, immiscible phases

in a porous medium. We consider a bounded Lipschitz domain Ω ⊂ �n, occupied by the

porous material, and a time interval [0, T ). We denote the pressures of the two fluids by

p1, p2 : Ω × [0, T ) → � and the saturation of the first fluid by s : Ω × [0, T ) → �. The

saturation s = s1 is defined as the volume fraction of pore space that is filled with fluid 1, we

think of the non-wetting phase. The saturation of the second fluid is s2 = 1 − s1 = 1 − s.

Darcy’s law for both velocities and conservation of mass can be combined into the

system

∂ts = ∇ · (k1(s)[∇p1 + g1]) , (1.1)

−∂ts = ∇ · (k2(s)[∇p2 + g2]) . (1.2)

We have performed a normalization of porosity and density, the gravity vectors g1, g2 ∈ �n

point in direction −en = (0, . . . , 0,−1) ∈ �n. The permeabilities k1(s) = k1(s(x, t), x) and

k2(s) = k2(s(x, t), x) are described by given functions k1, k2 : [0, 1] × Ω → [0,∞). The

interesting modelling problem is regarding the relation between the capillary pressure

p1−p2 and the saturation s. The simplest possibility is to assume the functional dependence

p1 − p2 = pc(s), where pc : � → � is the capillary pressure function.

https://doi.org/10.1017/S0956792512000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000307


50 J. Koch et al.

In order to take into account hysteresis and dynamic effects, the model with an algebraic

relation between p1 − p2 and s is replaced by

p1 − p2 ∈ pc(s) + γ sign(∂ts) + τ∂ts, (1.3)

where τ and γ � 0 are two parameters, and sign denotes the multi-valued function defined

by sign(±ξ) = {±1} for ξ > 0 and sign(0) := [−1, 1]. The model (1.3) was suggested in [8]

and receives considerable attention.

For τ > 0, the multi-valued function Φ : ξ �→ τξ + γsign(ξ) can be inverted, the inverse

Ψ := Φ−1 : � → � is the Lipschitz continuous function. With this notation, equation

(1.3) transforms into

∂ts = Ψ (p1 − p2 − pc(s)). (1.4)

Our main result is an existence theorem for systems (1.1)–(1.3) of partial differential

equations in the case τ > 0. The proof is based on the compactness result that was derived

in [17] for the treatment of the Richards equation. Loosely speaking, the compactness

result provides the following: For every family of pressure and saturation functions that

satisfies the evolution law (1.4) and the natural energy estimates, the saturation functions

converge strongly along a subsequence.

Numerical results. We include a numerical treatment of the two-phase flow equations

with hysteresis (1.1)–(1.3). In agreement with the theoretical results, the finite-element

scheme turns out to be stable; this holds true even though we include spatial and temporal

adaptivity. We calculate solutions for the case that corresponds to the experimental setup

which is used to observe fingering effects in porous media. The presented model and the

suggested discretization scheme provide numerical solutions that show gravity fingering in

porous media. A description of the scheme and the investigated parameters are presented

together with numerical results in Section 3.

1.1 Further literature on two-phase flow equations

Unfortunately, the name ‘two-phase flow’ is slightly ambiguous as it is not only used

for the above system but also for the Richards equation. The Richards equation is the

simplification of the above model obtained by assuming that the pressure of the second

phase is constant, e.g. p2 = 0, and by using only (1.1) instead of the set of equations (1.1)

and (1.2). Even though this simplified model describes the motion of two fluid phases,

we will use the term two-phase flow equations only when we refer to the system (1.1) and

(1.2).

1.1.1 Results on the Richards equation

Even in the case without hysteresis, i.e. with an algebraic relation p = pc(s) instead of

(1.3), the Richards equation is an interesting mathematical object due to the possible

degeneracies k(s) = 0 for some s and pc(s) → ±∞ for s tending to critical saturation

values. Existence results are obtained for example in [2] and [3], uniqueness is treated

for instance in [20] and [12] and the physical outflow boundary conditions are treated
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for instance in [1] and [24]. Regarding the numerical treatment of the Richards equation

without hysteresis, we mention [4, 22].

We want to highlight at this point the close connection between hysteresis effects and

fingering in porous media; we refer to [27] and the references therein for experimental

results on fingering. The analytical contributions of [20, 28] imply, loosely speaking, that

fingering is not possible in the Richards equation without hysteresis. On the other hand,

it was shown theoretically in [26] and with numerical experiments in [17] that fingering

can occur in the Richards equation if hysteresis is included.

The hysteresis relation (1.3), without coupling to a partial differential equation, already

poses interesting questions regarding the functional analytic description, we refer to [30]

for the corresponding discussion. In both cases, τ = 0 (rate-independent) and τ > 0

(rate-dependent), the hysteresis relation may be considered as a functional relation s(t) =

B(t, p|[0,t]), where B maps the history of p to a value s(t), given initial values s0. We

emphasize that, even in the equilibrium situation ∂ts = 0, we cannot determine p(t) from

s|[0,t]. In this sense, the hysteresis relation cannot be inverted.

An existence result for the Richards equation with hysteresis was provided in [23] in

the case that the partial differential equation is linear, i.e. in the case that k(.) does not

depend on s and that pc(.) is an affine function. In this situation, it was possible to treat

the case τ = 0. Existence results for the non-linear Richards equation with other hysteresis

relations were obtained in [5] and [6] under very general assumptions, but not covering

our model.

If the hysteresis model (1.3) is considered without the static part introduced by the sign

function, the model can be re-written as a pseudo-parabolic equation. Using this point

of view, existence results are derived in [10] and [19], including some degeneracies of

coefficients. Closest to the contribution at hand is [17], where the non-linear Richards

equation with hysteresis was studied and an existence result was derived. The compactness

result of Lemma 3.3 in [17] was crucial for the Richards equations and will be used again

in the work at hand.

1.1.2 Results on the two-phase flow equation

The two-phase flow equations without hysteresis have been studied under the aspect of

existence results in [13] and [16], uniqueness and regularity issues are treated in [13]

and [14], outflow conditions in [18] and maximum principles appear in [16] and [18].

Physical conditions across interior interfaces are investigated in [9] and [11]. We are not

aware of any contribution that derives an existence result for the two-phase flow system

with hysteresis. Regarding the numerical treatment of two-phase flow without hysteresis,

we refer to [7] and [21] and the references therein.

1.2 Assumptions and main result

In this section we fix the assumptions on the coefficient functions and formulate our

main result. We consider non-linear but non-degenerate permeabilities kj , j = 1, 2, and a

strictly increasing, non-degenerate capillary pressure curve pc. On the relaxation constant

we assume positivity τ > 0. We will construct solutions of the two-phase system with the
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specific hysteresis relation of (1.3), but the compactness result will exploit only the more

general relation (1.4).

1.2.1 Initial and boundary conditions

The unknowns in the porous media model (1.1)–(1.3) are p1, p2 and s. Let Ω ⊂ �n be

such that

Ω is a Lipschitz domain and ∂Ω is decomposed as ∂Ω = Γ̄1 ∪ Σ̄1 = Γ̄2 ∪ Σ̄2 (1.5)

with Γj ∩ Σj = ∅ two relatively open subsets of ∂Ω for j = 1, 2. We impose the Dirichlet

condition for pj on Σj and the Neumann condition for fluid j on Γj , for notational

convenience we impose only no-flux conditions on Γj . We assume positivity of the

Hausdorff measures Hn−1(Σj) > 0 for j = 1, 2. The Dirichlet conditions are given by

two functions p0,1, p0,2 ∈ L2(0, T ;H1(Ω)). We prescribe initial values for saturation by the

function s0 ∈ L2(Ω).

1.2.2 Coefficient functions

Our assumptions on the coefficient functions are as follows. For six positive numbers

Kj, κj , κ
0
j > 0, j = 1, 2, we assume

pc ∈ C0,1(� × Ω,�), γ ∈ C0,1(Ω, [0,∞)), (1.6)

kj ∈ C(� × Ω, [κj, κ
0
j ]), ‖kj(x, .)‖Lip(�,�) � Kj, for j ∈ {1, 2}, x ∈ Ω. (1.7)

We denote the Lipschitz constant of the capillary pressure by ρ := ‖pc‖Lip and emphasize

that the Lipschitz continuity of pc is assumed in x and s. We will always assume τ > 0 and

use Φ : � × Ω → �, (ξ, x) �→ τξ + γ(x)sign(ξ). Positivity of τ implies that Φ(., x) has the

Lipschitz continuous inverse, we denote the inverse by Ψ (., x). This defines Ψ : �×Ω → �
with 0 � ∂ζΨ (ζ, x) � 1/τ for all ζ ∈ �. We finally assume that pc has a positive primitive,

i.e.

∃Pc ∈ C(� × Ω,�) with Pc(s, x) � 0, ∂sPc(s, x) = pc(s, x) for all s ∈ �, x ∈ Ω. (1.8)

The gravity vectors g1, g2 ∈ �n are constant vectors. The above assumptions cover

physically relevant models. The main restriction is that we assume the capillary pressure

curve pc to be non-degenerate for s ∈ � such that, in particular, all saturation values

s ∈ � could be observed. Physical models use degenerate capillary pressures, for an

analysis see [25] and the references therein. Our model can be used in practice once the

pc-relation is truncated at pressure levels that cannot be obtained in physical setting.

1.2.3 Weak form of equations (1.1) and (1.2)

The first two evolution equations are expressed in the usual weak form. We say that

s, p1, p2 ∈ L2(0, T ;L2(Ω)) with ∂ts ∈ L2(0, T ;L2(Ω)) and ∇p1,∇p2 ∈ L2(0, T ;L2(Ω)) solve

(1.1) and (1.2) and the no-flux condition on Γj in the weak form if, for all test-functions
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ϕj ∈ L2(0, T ;H1(Ω)) with ϕj = 0 on Σj , there holds

∫
ΩT

k1(s)[∇p1 + g1]∇ϕ1 +

∫
ΩT

k2(s)[∇p2 + g2]∇ϕ2 = −
∫
ΩT

(ϕ1 − ϕ2) ∂ts. (1.9)

Main Theorem. Our main result concerns the existence of solutions to the non-degenerate

two-phase flow equations.

Theorem 1.1 (Existence for the two-phase flow problem with hysteresis) Let the Lipschitz

domain Ω ⊂ �n with boundary parts Γj and Σj be as in (1.5). Let initial and bound-

ary conditions be given by s0 ∈ L2(Ω) and p0,1, p0,2 ∈ L2(0, T ;H1(Ω)). Let the coefficients

satisfy τ > 0 and (1.6)–(1.8).

Then there exists a solution p1, p2 ∈ L2(0, T ;H1(Ω)) and s ∈ H1(0, T ;L2(Ω)) of the two-

phase hysteresis system (1.1)–(1.3). More precisely, equations (1.1) and (1.2), and the no-flux

condition are satisfied in the weak form (1.9), the hysteresis relation (1.3) holds pointwise

almost everywhere, initial and the Dirichlet boundary conditions are satisfied in the sense of

traces.

1.3 A priori estimates and solution concept

We start our analysis of system (1.1)–(1.3) by presenting the formal a priori estimates.

These indicate natural norms and function spaces. At the same time, we will observe a

lack of spatial regularity for the saturation variable s. It is this lack of compactness that

makes the existence proof interesting.

We multiply (1.1) with p1 − p0,1 and (1.2) with p2 − p0,2 and integrate over Ω. Adding

the equations, we obtain (1.9) with ϕj = pj − p0,j . Inserting (1.3) gives

∫
Ω

k1(s)[∇p1 + g1]∇[p1 − p0,1] +

∫
Ω

k2(s)[∇p2 + g2]∇[p2 − p0,2]

= −
∫
Ω

[(p1 − p2) − p0,1 + p0,2] ∂ts

∈ −
∫
Ω

(pc(s) + γ sign(∂ts) + τ∂ts) ∂ts +

∫
Ω

(p0,1 − p0,2) ∂ts.

By assumption (1.8), the monotone function pc has a convex, positive primitive Pc.

Integration over t ∈ [0, T ] and application of the Cauchy–Schwarz and the Poincaré

inequality yields in the standard fashion the estimate

∫
Ω

Pc(s)

∣∣∣∣
t=T

+

∫
ΩT

{
k1(s)|∇p1|2 + k2(s)|∇p2|2 + γ|∂ts| + τ|∂ts|2

}
� C0, (1.10)

where the constant C0 depends on the data gj , p0,j , s0, on τ and the other system

constants introduced before (1.6). We exploited that pc is Lipschitz continuous and that,

as a consequence, Pc has at most quadratic growth in s. The domain of integration is

ΩT = Ω × (0, T ).
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Variational weak solutions. In the solution concept of Theorem 1.1 we demand that

relation (1.3) holds for almost all (x, t) ∈ ΩT . In order to verify this condition, it is

convenient to use, in addition, the notion of variational weak solutions.

Definition 1.2 (Variational weak solution) Let (s, p1, p2) be a triple of functions with

s ∈ L∞(0, T ;L2(Ω)), ∂ts ∈ L2(0, T ;L2(Ω)), p1, p2 ∈ L2(0, T ;H1(Ω)) (1.11)

satisfying, in the sense of traces, the initial condition s = s0 on Ω × {0} and the boundary

conditions pj = p0,j on Σj × (0, T ). The triple is called a variational weak solution of the

two-phase equation if the following three conditions are satisfied:

(1) The evolution equations (1.1) and (1.2) and the no-flux conditions are satisfied in the

weak sense of (1.9).

(2) The relation p1(x, t) − p2(x, t) − pc(s(x, t), x) − τ∂ts(x, t) ∈ [−γ(x), γ(x)] holds for almost

every (x, t) ∈ ΩT .

(3) The variational inequality

0 �

∫
ΩT

(
pc(s) − p0,1 + p0,2

)
∂ts +

∫
ΩT

{
τ |∂ts|2 + γ |∂ts|

}

+

∫
ΩT

k1(s)[∇p1 + g1]∇[p1 − p0,1] +

∫
ΩT

k2(s)[∇p2 + g2]∇[p2 − p0,2] (1.12)

is satisfied.

Lemma 1.3 Let (s, p1, p2) be a variational weak solution as in Definition 1.2. Then (1.3) is

satisfied almost everywhere. In particular, (s, p1, p2) is a solution of (1.1)–(1.3) as described

in Theorem 1.1.

Proof We only have to show that (1.3) holds almost everywhere. For weak solutions, the

two distributions ∇ · (kj(s)[∇pj + gj]) = ±∂ts are actually L2(ΩT ) functions, hence we can

perform an integration by parts in the last two integrals of (1.12). Then the inequality

(1.12) simplifies to

0 �

∫
ΩT

(pc(s) − p1 + p2) ∂ts +

∫
ΩT

{
τ |∂ts|2 + γ |∂ts|

}
.

We write this as ∫
ΩT

γ |∂ts| �

∫
ΩT

[p1 − p2 − pc(s) − τ∂ts]∂ts.

By property 2 of variational weak solutions, the integrand on the right-hand side satisfies

[p1 − p2 − pc(., s) − τ∂ts]∂ts � γ|∂ts| almost everywhere, and is therefore smaller or equal

to the integrand on the left-hand side. Since the integral inequality is in the opposite

direction, the integrands must coincide, [p1 − p2 − pc(., s) − τ∂ts]∂ts = γ |∂ts| holds almost

everywhere. This, together with property 2 of variational weak solutions, implies the

pointwise inclusion (1.3). �
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We see that Theorem 1.1 is shown once that we prove the existence of a variational

weak solution as in Definition 1.2.

2 Discrete system and proof of the main theorem

2.1 The discrete system

Our next aim is to define the Galerkin scheme such that the original equations (1.1)–

(1.3) are approximated by a system of ordinary differential equations. With this aim we

introduce space-discretization with parameter h > 0. We recall that three positive (and

possibly small) physical parameters appear in the equations: the numbers κ1, κ2 > 0 are

lower bounds for permeabilities and τ > 0 is the time delay parameter.

In the case of a vanishing time delay, τ = 0, the play-type relation (1.3) can be written

with the multi-valued function Φ0(σ) := γ sign(σ) as p1 − p2 ∈ pc(s) + Φ0(∂ts). In the

general case τ � 0 and with γ = γ(x) we use Φτ := Φ0 + τ id, or, more precisely,

Φτ(σ, x) :=

⎧⎪⎪⎨
⎪⎪⎩

[−γ(x), γ(x)] for σ = 0

γ(x) + τσ for σ > 0

−γ(x) + τσ for σ < 0

. (2.1)

With this choice, (1.3) can be written as p1 − p2 ∈ pc(s) + Φτ(∂ts); we suppress the

dependence on x whenever possible. We denote the inverse by Ψτ(., x) := (Φτ(., x))−1.

The inverse Ψτ : � × Ω → � is multi-valued only in the case τ = 0. For positive τ, the

function Ψτ is single-valued with maximal slope τ−1. In this sense, τ > 0 can be regarded

as a regularization of the system.

2.1.1 Spatial discretization

We next discretize the spatial domain Ω. In order to simplify notation, we describe the

method for the case that the domain Ω is polygonal; in the case of a general Lipschitz

domain, it poses no problem to use boundary elements that are not simplices.

Let Th be a triangulation of Ω, decomposing Ω into finitely many simplices A ∈ Th.

Let h > 0 be an upper bound for the diameter of all elements of Th. We denote by

Ωh = {x1, . . . , xN} a suitable subset of N points such that we can associate to every

triangle A ∈ Th a uniquely determined point x ∈ Ωh ∩A. The set of points (xk)k�N defines

a projection Xh : Ω → Ωh. The map Xh can also be used to define an invertible map that

identifies �N with piecewise constant functions (defined almost everywhere),

J : �N ≡ {f : Ωh → �} −→ {f̂ : Ω → � piecewise constant} =: P0(Ω,Th), (2.2)

by (Jf)(x) = f(Xh(x)) for almost every x ∈ Ω. We will furthermore use the L2(Ω)-

orthogonal projection P := Ph : L2(Ω) → L2(Ω) to the space of piecewise constant

functions P0(Ω,Th). A continuous function on Ω can be discretized with the help of

Xh : Ω → Ωh. To give an example, given γ = γ(x), we can restrict to the relevant

corners and consider γ|Ωh
, and correspondingly the piecewise constant parameter function

γh(x) := J(γ|Ωh
)(x) = γ(Xh(x)). Accordingly, we define the piecewise constant (in x)
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coefficient function phc(s, x) := pc(s, X
h(x)) and its primitive Ph

c (s, x) = Pc(s, X
h(x)) with

∂sP
h
c (s, x) = phc(s, x). Analogously, the function Φτ(σ, x) of (2.1) is discretized in space to

Φτ
h(σ, x) := Φτ

h(σ,X
h(x)) and its inverse (in the variable σ) is Ψτ

h (., x) = (Φτ
h(., x))−1. With

this notation, we can now define the Galerkin scheme.

Definition 2.1 (Galerkin scheme) Our unknowns are piecewise constant functions phj : Ω ×
[0, T ] → �, j = 1, 2 and sh : Ω × [0, T ] → �, identified with maps ph1, p

h
2, s

h : [0, T ] →
P0(Ω,Th). We demand, for almost every x ∈ Ω and almost every t ∈ (0, T ),

∂ts
h(x, t) =Ψτ

h (p
h
1(x, t) − ph2(x, t) − phc(s

h, x)) ,

sh(x, 0) =(Phs0)(x) ,
(2.3)

where we suppressed the explicit dependence of Ψτ
h on x. The pressures ph1 and ph2 are

reconstructed from sh as follows. We solve with two functions p̃hj ∈ H1(Ω,�), j = 1, 2, in a

weak sense the elliptic system

−∇ ·
(
k1(s

h, x)(∇p̃h1 + g1)
)

= Ψτ
h

(
pc(s

h, x) − Ph[p̃
h
1 − p̃h2]

)
in Ω, (2.4)

−∇ ·
(
k2(s

h, x)(∇p̃h2 + g2)
)

= −Ψτ
h

(
pc(s

h, x) − Ph[p̃
h
1 − p̃h2]

)
in Ω, (2.5)

p̃hj (·, t) = p0,j(·, t) on Σj for j = 1, 2, (2.6)

for all t ∈ [0, T ], with no-flux conditions on Γj . The discrete pressures are recovered by a

projection, phj = Php̃
h
j for j = 1, 2.

For later use we note that the evolution equation in (2.3) can also be written as

Φτ
h(∂ts

h) = Φ0
h(∂ts

h(x, t)) + τ∂ts
h � ph1 − ph2 − phc(s

h). (2.7)

We note that Φτ
h and Φ0

h depend via γh(x) also in a direct way on x ∈ Ω.

2.2 Well-posedness of the Galerkin scheme

Our aim is to prove that (2.3) is an ordinary differential equation for sh : [0, T ] →
P0(Ω,Th). With this perspective, we want to show that the system (2.4)–(2.6) defines

the Lipschitz-continuous map sh �→ (ph1, p
h
2) = (Php̃

h
1, Php̃

h
2). Once this is shown, we have

verified that the Galerkin scheme consists of the ordinary differential equation (2.3) (the

image space P0(Ω,Th) is finite dimensional) with an intricate, but Lipschitz continuous

right-hand side. We exploit here the Lipschitz property of the parameter functions.

The aim of the next lemma is precisely this analysis of the stationary system (2.4)–(2.6).

We write p̃hj = p0,j+uj for j = 1, 2 such that (2.4) and (2.5) read, omitting the h-dependence

of function s,

−∇ · (k1(s)∇u1) =Ψτ
h

(
pc(s) − Ph(u1 − u2) − Ph(p0,1 − p0,2)

)
+ ∇ ·

(
k1(s)(∇p0,1 + g1)

)
,

−∇ · (k2(s)∇u2) = − Ψτ
h

(
pc(s) − Ph(u1 − u2) − Ph(p0,1 − p0,2)

)
+ ∇ ·

(
k2(s)(∇p0,2 + g2)

)
.
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We introduce some abbreviations. Let f : � × � × Ω → � be the function

f(s, z, x) := −Ψτ
h (pc(s, x) − z − Ph(p0,1 − p0,2)(x), x). (2.8)

Then s �→ f(s, z, x) is Lipschitz continuous with the Lipschitz constant ρτ−1. The map

z �→ f(s, z, x) is monotonically non-decreasing and Lipschitz continuous with the Lipschitz

constant τ−1. In the following, we suppress the explicit x-dependece of Ψτ
h . We use

F : L2(Ω) × L2(Ω) → L2(Ω),

F(s, z)(x) := f(s(x), z(x), x). (2.9)

Later on, we will insert Ph(u1 − u2) for variable z. With this choice, the expression

f(s, z, x) coincides, up to signs, with the first part on the right-hand sides of (2.4) and

(2.5). To abbreviate also the other lower order terms, we use, for j = 1, 2, the map

Ḡj : L2(Ω) → L2(Ω),

Ḡj(s)(x) := kj(s(x), x)(∇p0,j(x) + gj). (2.10)

We intend to use piecewise constant functions s, z ∈ P0(Ω,Th) and note that functions,

such as pc(s, x), F(s, z) or Ḡj(s), are not piecewise constant functions in general.

Lemma 2.2 (Local existence result for the discrete stationary system) Let the data Ω, pc,

kj , gj , p0,j and τ > 0 satisfy (1.5)–(1.8). Let the hysteresis function Ψτ
h and the projection Ph

be as described before Definition 2.1. Let F and Ḡj be as in (2.8)–(2.10). Then there exists

a positive number h0 > 0 such that the following statements hold.

Existence. Let h ∈ (0, h0) and S ∈ L∞(Ω) be arbitrary. We consider the spaces H0,j(Ω) :=

{uj ∈ H1(Ω) : uj = 0 on Σj} and search for solutions u = (u1, u2) in the product space

u ∈ H0,1(Ω) × H0,2(Ω). For arbitrary right-hand sides Gj ∈ H0,j(Ω)′, j = 1, 2, there exists a

unique weak solution u = (u1, u2) of

−∇ · (k1(S)∇u1) = −F(S, Ph(u1 − u2)) + G1

−∇ · (k2(S)∇u2) = F(S, (Ph(u1 − u2)) + G2

(2.11)

in Ω, with a weak no-flux condition n · [∇(p0,j + uj) + gj] = 0 on Γj .

Lipschitz continuity. For every R > 0, there exists a positive constant C = C(R) such that

the following holds. Let s, s̃ ∈ L∞(Ω) with ‖s‖∞, ‖s̃‖∞ � R. Let u = (u1, u2) be a solution of

(2.11) for S = s and Gj : ϕ �→ −
∫
Ω
Ḡj(s)∇ϕ. Let ũ = (ũ1, ũ2) be a solution of (2.11) for

S = s̃ and Gj : ϕ �→ −
∫
Ω
Ḡj (̃s)∇ϕ. Then

‖u − ũ‖H1(Ω,�2) � C‖s − s̃‖L∞(Ω). (2.12)

Proof We search for solutions in the product space H := H0,1(Ω) × H0,2(Ω). The space

H is a Hilbert space with the norm of H1(Ω) × H1(Ω) and the dual space is H ′ =

H0,1(Ω)′ × H0,2(Ω)′.
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Step 1. Re-formulation of the system: In a later step, we want to use the continuity

method. We therefore generalize the system slightly and consider, for λ ∈ [0, 1], the

following system for u = (u1, u2) ∈ H ,

−∇ · (k1(S, x)∇u1) = −λF(S, Ph(u1 − u2)) + G1

−∇ · (k2(S, x)∇u2) = λF(S, Ph(u1 − u2)) + G2

(Eλ)

in the weak form and with the same no-flux condition. With this choice of (Eλ), problem

(E1) for λ = 1 coincides with the original problem (2.11). On the space H we define a

bilinear form BS : H × H → � as

BS [u, ϕ] :=

∫
Ω

k1(S, x)∇u1(x)∇ϕ1(x) + k2(S, x)∇u2(x)∇ϕ2(x) dx

for u = (u1, u2), ϕ = (ϕ1, ϕ2) ∈ H . The pair G := (G1, G2) satisfies G ∈ H ′. Equation (Eλ)

now reads

BS [u, ϕ] = −λ

∫
Ω

F(S, Ph(u1 − u2))(ϕ1 − ϕ2) + 〈G,ϕ〉 (2.13)

for all ϕ ∈ H; here 〈·, ·〉 denotes the duality pairing between H ′ and H .

Step 2. A priori estimates: We use ϕ = u in (2.13). Poincaré’s inequality and the positiviy

of k1, k2 imply the coercivity of BS and we obtain with c > 0

c‖u‖2
H �

∫
Ω

k1(S) |∇u1|2 + k2(S) |∇u2|2 = BS [u, u]

= −λ

∫
Ω

F(S, Ph(u1 − u2))(u1 − u2) + 〈G, u〉.

The second term on the right-hand side can be estimated directly and treated with Young’s

inequality as 〈G, u〉 � ‖G‖H ′ ‖u‖H � δ‖u‖2
H + δ−1‖G‖2

H ′ for arbitrary δ > 0.

Concerning the integral containing F , we exploit the monotonicity of f in z, furthermore

the triangle inequality and Cauchy–Schwarz’s inequality.

−
∫
Ω

F(S, Ph(u1 − u2))(u1 − u2)

= −
∫
Ω

F(S, Ph(u1 − u2))Ph(u1 − u2) + F(S, Ph(u1 − u2))(u1 − u2 − Ph(u1 − u2))

� −
∫
Ω

F(S, 0)Ph(u1 − u2) + |F(S, Ph(u1 − u2))| |u1 − u2 − Ph(u1 − u2)|

� ‖F(S, 0)‖L2(Ω)‖Ph(u1 − u2)‖L2(Ω)

+ ‖F(S, Ph(u1 − u2)‖L2(Ω)‖u1 − u2 − Ph(u1 − u2)‖L2(Ω).

We exploit the following properties of Ph. For w ∈ H1(Ω) we have ‖Phw‖L2(Ω) � ‖w‖L2(Ω)

by Hölder’s inequality, and ‖Phw − w‖L2(Ω) � CTh‖w‖H1(Ω) by Poincaré’s inequality for

some CT > 0. We use the Lipschitz continuity of f in z with constant τ−1, Young’s and
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Poincaré’s inequality to calculate

‖F(S, 0)‖L2(Ω)‖Ph(u1 − u2)‖L2(Ω)

+ ‖F(S, Ph(u1 − u2)‖L2(Ω)‖u1 − u2 − Ph(u1 − u2)‖L2(Ω)

� ‖F(S, 0)‖L2(Ω)‖u1 − u2‖L2(Ω) +
1

τ
‖u1 − u2‖L2(Ω)CTh‖u1 − u2‖H1(Ω)

+ ‖F(S, 0)‖L2(Ω)CTh‖u1 − u2‖H1(Ω)

�
CTh

τ
‖u1 − u2‖2

H1(Ω) + (1 + CTh)‖F(S, 0)‖L2(Ω)‖u1 − u2‖H1(Ω)

� 2

(
CTh

τ
+ δ(1 + CTh)2

)
‖u‖2

H +
1

δ
‖F(S, 0)‖2

L2(Ω)

for arbitrary δ > 0. Choosing δ and h0 sufficiently small, we can absorb the first term and

find the a priori estimate

‖u‖2
H �

2

cδ
‖F(S, 0)‖2

L2(Ω) + CG = C(‖S‖L∞(Ω), ‖G‖H ′ ). (2.14)

Estimate (2.14) holds for every h ∈ (0, h0) and we emphasize that the number h0 is

independent of data S and Gj .

Step 3. The continuity method: We define the set

Λ := {λ ∈ [0, 1]| ∀(G1, G2) ∈ H ′ there exists a unique solution u ∈ H of (Eλ)},

with the aim to show that Λ contains λ = 1. It is an immediate observation that Λ

contains λ = 0. Indeed, equation (Eλ) for λ = 0 consists of two decoupled linear elliptic

equations that can be solved uniquely with the Lax–Milgram theorem.

We will show the following Claim: For every λ0 ∈ Λ, there exists ε > 0 independent of

λ0, such that (Eλ) has a unique solution for all λ ∈ (λ0, λ0 + ε). Once the claim is verified,

we can apply it for a finite number of times and obtain 1 ∈ Λ and thus the existence and

uniqueness result.

In order to prove the claim, we use a fixed point method. We define an iteration by

considering, for given ũ = (ũ1, ũ2) ∈ H , the following equation for u = (u1, u2),

BS [u, ϕ] = −λ0

∫
Ω

F(S, Ph(u1 − u2))(ϕ1 − ϕ2)

−ε

∫
Ω

F(S, Ph(ũ1 − ũ2))(ϕ1 − ϕ2) + 〈G,ϕ〉 (2.15)

for all ϕ = (ϕ1, ϕ2) ∈ H . Since λ0 is an element of Λ, by definition of Λ, we find a

unique solution (u1, u2) of (2.15). We exploit here that the vector G − ε(−F(S, Ph(ũ1 −
ũ2)), F(S, Ph(ũ1 − ũ2))) is an element of H ′. The unique solvability property defines an

operator T : H → H , T (ũ) = u. We note that a fixed point (u1, u2) = (ũ1, ũ2) provides a

solution of (Eλ) for λ = λ0 + ε.

It therefore suffices to show that the map T as above is contractive for ε > 0 sufficiently

small (the smallness must be independent of λ0). Let ũ = (ũ1, ũ2), ṽ = (ṽ1, ṽ2) ∈ H be

different data, we consider solutions T (ũ) = u = (u1, u2) and T (ṽ) = v = (v1, v2). We

https://doi.org/10.1017/S0956792512000307 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792512000307


60 J. Koch et al.

investigate (2.15) for u and v, subtract both equations and set ϕ = u − v ∈ H , i.e.

ϕ1 = u1 − v1 and ϕ2 = u2 − v2. We find, for some c > 0,

c‖u − v‖2
H � BS [u − v, u − v]

= −λ0

∫
Ω

[F(S, Ph(u1 − u2)) − F(S, Ph(v1 − v2))]((u1 − v1) − (u2 − v2))

− ε

∫
Ω

[F(S, Ph(ũ1 − ũ2)) − F(S, Ph(ṽ1 − ṽ2))]((u1 − v1) − (u2 − v2)).

In the first integral, we apply the monotonicity and the Lipschitz continuity of f in z,

Cauchy–Schwarz and the properties of the projection Ph. We obtain

− λ0

∫
Ω

[F(S, Ph(u1 − u2)) − F(S, Ph(v1 − v2))]((u1 − v1) − (u2 − v2))

�

∫
Ω

|F(S, Ph(u1 − u2)) − F(S, Ph(v1 − v2))| ·

· |u1 − u2 − (v1 − v2) − Ph((u1 − u2) − (v1 − v2))|

�
2

τ
‖Ph(u − v)‖L2(Ω,�2)‖u − v − Ph(u − v)‖L2(Ω,�2) �

2

τ
CTh‖u − v‖2

H.

The second integral is treated with the Lipschitz continuity of f in z,

− ε

∫
Ω

[F(S, Ph(ũ1 − ũ2)) − F(S, Ph(ṽ1 − ṽ2))]((u1 − v1) − (u2 − v2))

� ε
2

τ
‖ũ − ṽ‖H‖u − v‖H �

( ε

τ

)2 1

δ
‖ũ − ṽ‖2

H + δ‖u − v‖2
H

for arbitrary δ > 0. Summarizing, we have now obtained

c‖u − v‖2
H �

2

τ
CTh‖u − v‖2

H +
( ε

τ

)2 1

δ
‖ũ − ṽ‖2

H + δ‖u − v‖2
H .

We choose h0 > 0 and δ > 0 small to absorb the first and the third terms. These choices

depend on τ and the lower bounds for permeabilities, but they are independent of S and

λ0. For sufficiently small ε, we obtain the contraction property of T . Using the special

argument ũ = 0 and the solution T (0), we find that T maps a sufficiently large ball

into itself. The Banach fixed point theorem yields the existence of a solution in this ball.

The fixed point is globally unique, since T is contractive on any ball. This provides that

for such ε > 0 the equation (Eλ) has a unique solution for λ < λ0 + ε and hence the

claim.

Step 4. Proof of the Lipschitz estimate (2.12): In contrast to the previous steps, we

now investigate how variations of the parameter function S affect solutions. With this

aim, let u be a solution of (2.11) for S = s ∈ L∞(Ω) with Gj = ∇ · Ḡj(s) in the sense

of Gj(s) : ϕ �→ −
∫
Ω
Ḡj(s)∇ϕ for ϕ ∈ H0,j(Ω), where Ḡj is as in (2.10). For the other

saturation data s̃ ∈ L∞(Ω), let ũ be the solution of (2.11) for S = s̃ with Gj = ∇ · Ḡj (̃s).
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In order to compare u with ũ, we choose ϕ = u − ũ as a test-function in both variants

of equation (2.11). We calculate

c‖u − ũ‖2
H � Bs[u − ũ, u − ũ] =

∫
Ω

k1(s) |∇(u1 − ũ1)|2 + k2(s) |∇(u2 − ũ2)|2

=

2∑
j=1

∫
Ω

(kj (̃s) − kj(s))∇ũj · ∇(uj − ũj)

−
∫
Ω

[F(s, Ph(u1 − u2)) − F (̃s, Ph(ũ1 − ũ2))] ((u1 − ũ1) − (u2 − ũ2))

+

2∑
j=1

∫
Ω

(Ḡj(s) − Ḡj (̃s))∇(uj − ũj). (2.16)

We next use the a priori estimate (2.14), providing ‖ũ‖H � Cap(R) for some constant

Cap(R) > 0. Hence, the first sum on the right-hand side can be estimated exploiting the

Lipschitz continuity of k1 and k2, Poincaré’s and Young’s inequality,

2∑
j=1

∫
Ω

(kj (̃s) − kj(s))∇ũj · ∇(uj − ũj)

� Lk‖s − s̃‖L∞(Ω)‖ũ‖H‖u − ũ‖H � L2
k

Cap(R)2

δ
‖s − s̃‖2

L∞(Ω) + δ‖u − ũ‖2
H

for Lk > 0, which depends on the Lipschitz constants of k1 and k2. We can choose δ > 0

sufficiently small to absorb the last term into the left-hand side.

The second integral on the right-hand side of (2.16) is treated with the monotonicity of

f in z. We furthermore use the Lipschitz continuity of f in s and z and the properties of

the L2-orthogonal projection Ph,

−
∫
Ω

[F(s, Ph(u1 − u2)) − F (̃s, Ph(ũ1 − ũ2))] ((u1 − ũ1) − (u2 − ũ2))

= −
∫
Ω

[F(s, Ph(u1 − u2)) − F (̃s, Ph(u1 − u2))] ((u1 − ũ1) − (u2 − ũ2))

−
∫
Ω

[F (̃s, Ph(u1 − u2)) − F (̃s, Ph(ũ1 − ũ2))] ((u1 − ũ1) − (u2 − ũ2))

� Lf‖s − s̃‖L∞(Ω) Cap(R)‖u − ũ‖H

+

∫
Ω

|F (̃s, Ph(u1 − u2)) − F (̃s, Ph(ũ1 − ũ2))|

· |(u1 − ũ1) − (u2 − ũ2) − Ph((u1 − ũ1) − (u2 − ũ2))|

�
L2
f

δ
Cap(R)2‖s − s̃‖2

L∞(Ω) + δ‖u − ũ‖2
H +

1

τ
CTh‖u − ũ‖2

H

for arbitrary δ > 0, where Lf > 0 depends on the Lipschitz constant of f in s. Choosing

h0, δ > 0 sufficiently small, we can absorb the last two terms into the left-hand side. Once

more, the choice of h0 and δ is independent of s, s̃ and R.
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The estimate of the last integral on the right-hand side of (2.16) exploits the Lipschitz

continuity of kj ,

2∑
j=1

∫
Ω

(Ḡj(s) − Ḡj (̃s))∇(uj − ũj)

�
2∑

j=1

∫
Ω

|kj(s) − kj (̃s)| |∇p0,j + gj | |∇(uj − ũj)|

� C Lk‖s − s̃‖L∞(Ω)‖u − ũ‖H � δ‖u − ũ‖2
H + C2L

2
k

δ
‖s − s̃‖2

L∞(Ω),

where C depends only on the data p0,j and gj for j = 1, 2. Once more, we can choose

δ > 0 sufficiently small to absorb the first term.

We conclude as follows. We insert the three intermediate estimates into (2.16), choose

δ, h0 > 0 sufficiently small and absorb terms containing ‖u − ũ‖2
H on the left-hand side.

As a result, we obtain (2.12). �

Remark 2.3 The Lipschitz continuity of kj in s was not used in the existence part of the

above lemma. Furthermore, the above proof is not restricted to our special choice of the

non-linearity Ψτ
h . The essential properties are the Lipschitz continuity of Ψτ

h and the fact

that Ψτ
h (·, x) is monotonically nondecreasing for every x ∈ Ω. The special choice of Ψτ

h is

used later in the compactness Lemma 2.5 and it was used in Lemma 1.3.

With Lemma 2.2, we have shown that (2.3) is an ordinary differential equations with

Lipschitz continuous right hand side in P0(Ω,Th) for every t. Hence a local solution of

the Galerkin scheme of Definition 2.1 exists. In addition, as a consequence of the general

theory of ordinary differential equations, we know the following: If we can show that the

norm ‖s(t)‖∞ is bounded for every solution s on an arbitrary time interval (0, T ), with

a bound that is independent of T , then the solution can be extended, and exists for all

times.

In the next section we will derive such a uniform bound and thus obtain, in particular,

the global existence of solutions to the Galerkin scheme.

2.3 A priori estimates for the time-dependent system

We intend to perform the limit h → 0 for the solutions sh, p̃h1, p̃
h
2 of the Galerkin scheme

of Definition 2.1. In the first step, we derive h-independent estimates for such solutions

of the time-dependent system. Lemmas 2.4 and 2.7 are very similar to the results of [17],

they are essentially adaptations to the two-phase flow system. The two proofs follow the

standard scheme.

Lemma 2.4 (Energy estimates) Let the coefficient functions, initial and boundary data be

given as in Lemma 2.2 and s0 ∈ L2(Ω). Then there exists a number C > 0, independent of

h > 0 and T > 0, such that every solution p̃h1, p̃
h
2, s

h to the Galerkin scheme of Definition 2.1
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satisfies the uniform bound

‖p̃h1‖2
L2(0,T ;H1(Ω)) + ‖p̃h2‖2

L2(0,T ;H1(Ω)) + ‖∂ts
h‖2

L2(0,T ;L2(Ω)) � C. (2.17)

Proof We abbreviate the pressure differences as p̃h := p̃h1 − p̃h2 and ph := ph1 − ph2 = Php̃
h.

Concerning the boundary data, we use p0 := p0,1 − p0,2.

We start by writing the Galerkin evolution equation in a form that is similar to the

continuous formulation (1.1)–(1.2). We write (2.3) and (2.4) as

∂ts
h − ∇ ·

(
k1(s

h, x)(∇p̃h1 + g1)
)

= −Ψτ
h (p

h
c(s

h, x) − ph1 + ph2) + Ψτ
h (pc(s

h, x) − ph1 + ph2), (2.18)

and write (2.3) and (2.5) as

−∂ts
h − ∇ ·

(
k2(s

h, x)(∇p̃h2 + g2)
)

= Ψτ
h (p

h
c(s

h, x) − ph1 + ph2) − Ψτ
h (pc(s

h, x) − ph1 + ph2). (2.19)

We multiply (2.18) with p̃h1 − p0,1 and (2.19) with p̃h2 − p0,2 and integrate over Ω. Summing

up the resulting equations yields

∫
Ω

∂ts
h(p̃h − p0) dx +

2∑
j=1

∫
Ω

kj(s
h, x)(∇p̃hj + gj)(∇p̃hj − ∇p0,j) dx

= −
∫
Ω

[
Ψτ

h (p
h
c(s

h, x) − ph) − Ψτ
h (pc(s

h, x) − ph)
]
(p̃h − p0) dx. (2.20)

The space derivatives on the left-hand side provide a positive term,∫
Ω

kj(s
h, x)(∇p̃hj + gj)∇p̃hj �

κj

2
‖∇p̃hj‖2

L2(Ω) − C1
j ,

where constant C1
j , j = 1, 2, depends on the bounds κj and κ0

j of permeabilities and the

gravity vectors gj .

The time derivative on the left-hand side of (2.20) is treated with the hysteresis

differential equation (2.7), which reads

Φ0
h(∂ts

h(x, t)) + τ∂ts
h(x, t) + phc(s

h, x) � ph(x, t).

Using the monotonicity Φ0
h(ξ)ξ � 0 for all ξ ∈ �, we can calculate with the primitive

Ph
c (·, x) of phc(·, x), exploiting that Ph is an L2(Ω)-orthogonal projection,

∫
Ω

∂ts
hp̃h =

∫
Ω

∂ts
hph �

∫
Ω

τ|∂ts
h|2 + phc(s

h)∂ts
h = τ‖∂ts

h‖2
L2(Ω) + ∂t

∫
Ω

P h
c (sh, x) .

We have assumed that Pc and thus Ph
c can be chosen as positive functions. We have

therefore recognized three relevant positive terms on the left-hand side of (2.20).
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Concerning the remaining integrals on the left-hand side of (2.20) we calculate

∣∣∣∣
∫
Ω

∂ts
hp0

∣∣∣∣ +

2∑
j=1

∣∣∣∣
∫
Ω

kj(s
h)(∇p̃hj + gj)∇p0,j

∣∣∣∣
�

τ

2
‖∂ts

h‖2
L2(Ω) +

κ1

4
‖∇p̃h1‖2

L2(Ω) +
κ2

4
‖∇p̃h2‖2

L2(Ω) + C2
1 + C2

2 ,

where the constant C2
j , j = 1, 2, depends on κj and κ0

j on the data p0,j (directly and

through p0 = p0,1 − p0,2) and the gravity vectors gj .

It remains to treat the term on the right-hand side of (2.20). Exploiting the Lipschitz

continuity of pc in x with constant ρ we find

∣∣[Ψτ
h (p

h
c(x, s

h) − ph) − Ψτ
h (pc(x, s

h) − ph)
]∣∣ �

ρ

τ
h,

and the corresponding product is treated with the Cauchy–Schwarz inequality.

Summarizing, we find

κ1

4
‖∇p̃h1‖2

L2(Ω) +
κ2

4
‖∇p̃h2‖2

L2(Ω) +
τ

2
‖∂ts

h‖2
L2(Ω) + ∂t

∫
Ω

P h
c (sh, x) dx

� C1
1 + C1

2 + C2
1 + C2

2 +
ρh

τ
(‖p̃h‖2

L2(Ω) + ‖p0‖2
L2(Ω)).

For sufficiently small h, depending only on coefficient and boundary data, we can absorb

the term containing ‖p̃h‖2
L2(Ω)

. An integration over (0, T ) provides the estimate (2.17). The

constant C depends on the coefficient and boundary data and, in addition, on the L2-norm

of the initial data, ‖s0‖L2(Ω), since the integral
∫
Ω
P h
c (Phs0) enters the estimate. �

2.4 Compactness

We are now in a position to apply a compactness result that has been developed in the

context of the Richards equation. Lemma 3.3 of [17] concludes from uniform estimates

for the family p̃h and the hysteresis relation for sh an L2(ΩT )-compactness result for the

sequence sh. Here, we repeat the precise statement and recall that the Lipschitz continuity

of pc was also assumed in [17].

Lemma 2.5 ( [17, Lemma 3.3], regularity and compactness from the hysteresis relation)

Let sh and p̃h satisfy the ordinary differential equation of the hysteresis relation

∂ts
h(xk, t) = −Ψτ

δ,h(pc(xk, s
h) − ph(xk, t)) ∀xk ∈ Ωh

sh(xk, 0) = Phs0(xk)

for ph = Php̃
h. Let q ∈ [1,∞] be a number and let s0 ∈ Lq(Ω) define initial values. Then

there holds an estimate

‖∂ts
h‖L2(0,T ;Lq(Ω)) + ‖sh‖L2(0,T ;Lq(Ω)) � C‖p̃h‖L2(0,T ;Lq(Ω)), (2.21)

where the constant C does not depend on h and δ.
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Let, in addition, the following estimate holds with C independent of h and δ,

‖p̃h‖L2(0,T ;H1(Ω)) � C. (2.22)

Then the family sh is pre-compact in the space L2(Ω × (0, T )).

Regarding our application of the lemma, we remark the following: (i) We use Lemma

2.5 with δ = 0. The non-linear function Ψτ
δ,h = Ψτ

0,h of Lemma 2.5 then coincides with our

function Ψτ
h ; (ii) our non-linear function pc satisfies the conditions that have been imposed

for Lemma 2.5; (iii) the projection Ph is as in the present contribution; (iv) we apply

Lemma 2.5 to ph := ph1 − ph2 and p̃h := p̃h1 − p̃h2, emphasizing that, by linearity, Php̃
h = ph

is also satisfied. With this setting, the hysteresis equation of the lemma is identical to our

equation (2.3).

Lemma 2.6 (Compactness of the family of saturations) Let the coefficient functions, ini-

tial and boundary data be as in Lemma 2.2 and s0 ∈ L2(Ω). Let p̃h1, p̃
h
2, s

h be a family of

solutions to the Galerkin scheme of Definition 2.1 for a sequence h → 0. Then

the sequence sh is pre-compact in L2(Ω × (0, T )). (2.23)

Proof By the above remarks, we can apply Lemma 2.5 to the pressure difference p̃h :=

p̃h1 − p̃h2. We use the integrability exponent q = 2. The a priori estimates of Lemma 2.4

provide the boundedness

‖p̃h‖2
L2(0,T ;H1(Ω)) � 2(‖p̃h1‖2

L2(0,T ;H1(Ω)) + ‖p̃h2‖2
L2(0,T ;H1(Ω))) � C

with C independent of h. This shows that (2.22) is satisfied. We can apply the second part

of Lemma 2.5 and conclude (2.23). �

2.5 Limit procedure h → 0

We now consider limit functions to the solution sequence (sh, p̃h1, p̃
h
2) for h → 0. Due to the

uniform estimates of Lemma 2.4, we find a subsequence h → 0 and limit functions s, p1, p2

such that

p̃hj ⇀ pj in L2(0, T ;H1(Ω)) for j = 1, 2, (2.24)

sh ⇀ s, ∂ts
h ⇀ ∂ts in L2(0, T ;L2(Ω)). (2.25)

Furthermore, by the compactness result of (2.23), we find the strong convergence

sh → s in L2(0, T ;L2(Ω)). (2.26)

The following lemma concludes the proof of Theorem 1.1.

Lemma 2.7 Let the data be as in Lemma 2.2 and s0 ∈ L2(Ω). Let p̃h1, p̃
h
2, s

h be a family of

solutions to the Galerkin scheme of Definition 2.1 for a sequence h → 0. For a subsequence,
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let p1, p2, and s be limit functions as in (2.24)–(2.26). Then the limit triple (s, p1, p2) ∈
L2(0, T ;L2(Ω)) ×L2(0, T ;H1(Ω,�2)) is a variational weak solution according to Definition

1.2.

Proof The limit functions are contained in the function spaces as described in (1.11). The

weak convergence allows us to take limits in the initial and boundary conditions, hence

they are satisfied by the limit functions. We have to check the three items of Definition 1.2.

In the calculations below we use once more ph = ph1 −ph2, p̃
h = p̃h1 − p̃h2, and p0 = p0,1 −p0,2.

Item 1. We have to show that (1.1)–(1.2), i.e. ∂ts = ∇ · (k1(s)[∇p + g1]) and ∂ts =

−∇ · (k2(s)[∇p + g2]) are satisfied in the weak sense with no-flux boundary conditions. To

verify these equations, it suffices to consider test functions ϕj ∈ C∞
c

(
(0, T ) × (Ω ∪ Γj)

)
.

We start from the ordinary differential equation (2.3) of the Galerkin scheme and the

elliptic equations (2.4) to write

∫ T

0

∫
Ω

∂ts
hϕ1 dx dt +

∫ T

0

∫
Ω

k1(s
h, x)(∇p̃h1 + g1)∇ϕ1 dx dt

= −
∫ T

0

∫
Ω

[
Ψτ

h (p
h
c(s

h, x) − ph) − Ψτ
h (pc(s

h, x) − ph)
]
ϕ1 dx dt.

As seen already in the proof of Lemma 2.4, the Lipschitz continuity of pc guarantees that

the right-hand side tends to be zero as h → 0. On the left-hand side we can pass to the

limit functions, thanks to (2.24)–(2.26). This shows that the evolution equation (1.1) holds

with the no-flux condition.

Equation (2.3) of the Galerkin scheme can also be combined with (2.5), tested with ϕ2.

The result is a relation similar to the above, but expressing ∂ts
h in terms of k2 and p̃2. The

limit can be performed in the same way and provides the second evolution equation (1.2).

Item 2. We want to show the pointwise inclusion for ph = ph1 − ph2 as demanded in item

2 of Definition 1.2. The discrete hysteresis system (2.7) provides, pointwise in Ω × (0, T ),

[−γh(x), γh(x)] � ph(x, t) − phc(s
h(x, t), x) − τ∂ts

h(x, t) (2.27)

for almost every x ∈ Ω and t ∈ (0, T ). Introducing small error terms, we write this relation

as

[−γ(x), γ(x)] � p̃h(x, t) − pc(s
h(x, t), x) − τ∂ts

h(x, t) (2.28)

+
(
ph − p̃h

)
(x, t) +

(
pc(s

h(x, t), x) − phc(s
h(x, t), x)

)
+ rh(x, t),

where the error term rh(x, t) concerns the replacement of γ by γh and satisfies |rh(x, t)| �
|γh(x)−γ(x)| � Ch due to the Lipschitz continuity of γ in x. Similarly, the error introduced

by pc(s
h) − phc(s

h) is uniformly bounded by h.

Since [−γ(x), γ(x)] ⊂ � is a convex set, the set of functions f : ΩT → � with

f(x, t) ∈ [−γ(x), γ(x)] is convex. As a convex and closed subset of L2(ΩT ), it is also weakly

closed. The right-hand side of (2.28) converges weakly in L2(ΩT ) to p − pc(s) − τ∂ts,

therefore this limit again satisfies the pointwise inclusion.
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Item 3. We have to prove the variational inequality (1.12) for (s, p1, p2). To this end we

multiply equation (2.4) with p̃h1 − p0,1 and equation (2.5) with p̃h2 − p0,2 and integrate over

(0, T ) × Ω. We find

0 =

∫ T

0

∫
Ω

k1(s
h, x)(∇p̃h1 + g1)(∇p̃h1 − ∇p0,1) dx dt

−
∫ T

0

∫
Ω

Ψτ
h (pc(s

h, x) − ph1 + ph2)(p̃
h
1 − p0,1) dx dt

and

0 =

∫ T

0

∫
Ω

k2(s
h, x)(∇p̃h2 + g2)(∇p̃h2 − ∇p0,2) dx dt

+

∫ T

0

∫
Ω

Ψτ
h (pc(s

h, x) − ph1 + ph2)(p̃
h
2 − p0,2) dx dt.

Adding these two equations yields

0 =

2∑
j=1

[∫ T

0

∫
Ω

kj(s
h, x)(∇p̃hj + gj)(∇p̃hj − ∇p0,j)

]
dx dt

−
∫ T

0

∫
Ω

Ψτ
h (pc(s

h, x) − ph)(p̃h − p0) dx dt. (2.29)

The rest of this proof consists in performing the limit h → 0 in (2.29). The limiting relation

will be the variational inequality (1.12).

We start with some lower order terms. The weak convergences (2.24) and (2.25) and

the strong convergence (2.26) together with the continuity of kj allow us to take the limits

−
∫ T

0

∫
Ω

kj(s
h, x)

(
∇p̃j h + gj

)
∇p0,j dx dt → −

∫ T

0

∫
Ω

kj(s, x)
(
∇pj + gj

)
∇p0,j dx dt,∫ T

0

∫
Ω

kj(s
h, x)gj∇p̃j h dx dt →

∫ T

0

∫
Ω

kj(s, x)gj∇pj dx dt.

Concerning the quadratic term, we can use lower semi-continuity of the norm. Strong

convergence of sh together with the continuity of kj , using an argument based on Egorov’s

Theorem, provides

lim inf
h→0

∫ T

0

∫
Ω

kj(s
h, x)

∣∣∇p̃hj ∣∣2 dx dt �

∫ T

0

∫
Ω

kj(s, x) |∇pj |2 dx dt.

We finally consider the terms in (2.29) containing Ψτ
h . We exploit the Galerkin relation

(2.3) to re-write the remaining term as

−
∫ T

0

∫
Ω

Ψτ
h

(
pc(s

h) − ph
)
(p̃h − p0) dx dt =

∫ T

0

∫
Ω

∂ts
h(p̃h − p0) dx dt

+

∫ T

0

∫
Ω

[
Ψτ

h (p
h
c(s

h) − ph) − Ψτ
h

(
pc(s

h) − ph
)]

(p̃h − p0) dx dt. (2.30)
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As noted before, the last integral of (2.30) tends to zero by the Lipschitz continuity of pc
in x. In the other integral, the convergence

−
∫ T

0

∫
Ω

∂ts
h p0 dx dt → −

∫ T

0

∫
Ω

∂ts p0 dx dt

is an immediate consequence of the weak convergence of ∂ts
h.

In the remaining integral on the right-hand side of (2.30) we use the hysteresis relation

(2.7),

∫ T

0

∫
Ω

∂ts
h p̃h dx dt =

∫ T

0

∫
Ω

∂ts
h ph dx dt

∈
∫ T

0

∫
Ω

∂ts
h

(
Φ0

h(∂ts
h) + τ∂ts

h + phc(s
h, x)

)
dx dt

=

∫ T

0

∫
Ω

γh(x) |∂ts
h| + τ|∂ts

h|2 + ∂ts
h phc(s

h) dx dt.

In the first two terms, the limit can be estimated by the weak lower semi-continuity of

the L2-norm,

lim inf
h→0

∫ T

0

∫
Ω

γh(x) |∂ts
h| + τ

∣∣∂ts
h
∣∣2 dx dt �

∫ T

0

∫
Ω

γ(x) |∂ts| + τ |∂ts|2 dx dt.

Here we exploited the uniform convergence γh → γ on Ω, which is a consequence of the

Lipschitz continuity of γ.

The remaining integral over ∂ts
hphc(s

h, x) is a total time derivative, but this fact is not

needed here. We use the weak convergence of the first factor and the strong convergence

of the second factor (note that phc is Lipschitz continuous in s) to conclude

∫ T

0

∫
Ω

∂ts
hphc(x, s

h) dx dt →
∫ T

0

∫
Ω

∂ts pc(x, s) dx dt

as h tends to 0. With this, we have analyzed all limits of integrals on the right-hand

side of (2.30), and thus of all integrals in (2.29). The variational inequality (1.12) is

derived. �

Lemma 2.7 provides the existence of a variational weak solution. By Lemma 1.3,

this variational weak solution is a solution of the original problem as described in The-

orem 1.1. Therefore, the existence of a solution to the two-phase problem with hysteresis is

shown.

3 Numerical treatment

We propose a straightforward generalization of the numerical scheme presented in [17].

We introduce Φτ
δ as a regularization of Φτ in (2.1) with a positive regularizing parameter

δ, see (3.4), the inverse is denoted by Ψτ
δ : � → �, see (3.5). Here we assume that γ > 0
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Figure 1. Plots of the functions Ψτ
δ , pc, k1, k2 for parameters γ = 4, τ = 0.1, δ = 10−7, κ1 = 10−4,

κ2 = 10−2, k0,1 = 1, k0,2 = 0.1, a1 = 0.32, a2 = 0, α+ = 0.1, α− = 50, εp = 10−10.

and τ > 0 are constant. The two-phase system that we consider then reads

∂ts = ∇ · (k1(s)(∇p1 + �1en)), (x, t) ∈ Ω × (t0, T ), (3.1)

−∂ts = ∇ · (k2(s)(∇p2 + �2en)), (x, t) ∈ Ω × (t0, T ), (3.2)

∂ts = Ψτ
δ (p1 − p2 − pc(s)), (x, t) ∈ Ω × (t0, T ). (3.3)

The functions Φτ
δ and Ψτ

δ read

Φτ
δ = Φτ

δ(σ) =

⎧⎨
⎩
γ + τσ for σ > δ,

( γ
δ

+ τ)σ for σ ∈ [−δ, δ],

−γ + τσ for σ < −δ,

(3.4)

and

Ψτ
δ = Ψτ

δ (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z − γ

τ
for z > γ + τδ,( γ

δ
+ τ

)−1

z for z ∈ [−(γ + τδ), γ + τδ],

z+γ
τ

for z < −(γ + τδ).

(3.5)

In all numerical experiments, we use the permeabilities

k1(s) =

{
κ1 for s < a1,

κ1 + k0,1(s − a1)
2 for s � a1,

and

k2(s) =

{
κ2 for s > 1 − a2,

κ2 + k0,2((1 − a2) − s)2 for s � 1 − a2,

with a1, a2 ∈ [0, 1] and κ1, κ2, k0,1, k0,2 > 0. For pc we assume the van Genuchten-type

relation

pc(s) =

⎧⎨
⎩α+

(
1

1−a2−s+εp
− 1

1−a2−a1+εp

)
for s > a1,

α−(s − a1) for s � a1

with α± ∈ � and a small regularizing parameter εp > 0. For plots of the previously

defined functions, see Figure 1.
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For the numerical results presented here, we consider domains Ω := (−L,L)n ⊂ �n

with L > 0. With the definition Γ± := {x ∈ Ω : xn = ±L} ⊂ ∂Ω and given functions

p1,−, j2,− : Γ− × (t0, T ] → � and j1,+, p2,+ : Γ+ × (t0, T ] → �, we assume the Dirichlet

boundary conditions p1 = p1,− for x ∈ Γ− and p2 = p2,+ for x ∈ Γ+ and the Neumann

boundary conditions

j1 := −k1(s)(∇p1 + �1en) · ν+ = j1,+ for x ∈ Γ+, (3.6)

j2 := −k2(s)(∇p2 + �2en) · ν− = j2,− for x ∈ Γ−, (3.7)

ν± = ±en denoting the outer normals to Γ±. In the lateral directions, i.e. for xi ∈ {−L,L},
i ∈ {1, . . . , n − 1}, we assume periodic pressures p1 and p2.

3.1 Discretization

The numerical approach is to discretize the Galerkin scheme of Definition 2.1 and to

regard the corresponding set of equations (for every time-step) as one large system for

saturation and pressures. We split the time interval [t0, T ] by discrete time instants

t0 < t1 < . . . , which leads to time-steps Δtm := tm+1 − tm, m = 0, 1, . . . . Moreover, for

m = 0, 1, . . . we introduce time-discrete solutions s(m)
i and p

(m)
i , i = 1, 2. Then all non-linear

terms are linearized in a similar way as proposed in [17]: We approximate

Ψ (p(m+1)
1 − p

(m+1)
2 − pc(s

(m+1)))

≈ Ψi(p
(m+1)
1 , p

(m+1)
2 , s(m+1), p

(m)
1 , p

(m)
2 , s(m)) + Ψe(p

(m)
1 , p

(m)
2 , s(m)),

where we drop δ and τ in the Ψ -notation and define

Ψi(p
(m+1)
1 , p

(m+1)
2 , s(m+1), p

(m)
1 , p

(m)
2 , s(m))

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(m+1)
1 − p

(m+1)
2 − p′

c(s
(m))s(m+1)

τ
for p

(m)
1 − p

(m)
2 − pc(s

(m)) > γ + τδ,

p
(m+1)
1 − p

(m+1)
2 − p′

c(s
(m))s(m+1)

γ/δ + τ
for p

(m)
1 − p

(m)
2 − pc(s

(m)) ∈ [−(γ + τδ), γ + τδ],

p
(m+1)
1 − p

(m+1)
2 − p′

c(s
(m))s(m+1)

τ
for p

(m)
1 − p

(m+1)
2 − pc(s

(m)) < −(γ + τδ)

and

Ψe(p
(m)
1 , p

(m)
2 , s(m))

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−γ − pc(s
(m)) + p′

c(s
(m))s(m)

τ
for p

(m)
1 − p

(m)
2 − pc(s

(m)) > γ + τδ,

−pc(s
(m)) + p′

c(s
(m))s(m)

γ/δ + τ
for p

(m)
1 − p

(m)
2 − pc(s

(m)) ∈ [−(γ + τδ), γ + τδ],

γ − pc(s
(m)) + p′

c(s
(m))s(m)

τ
for p

(m)
1 − p

(m+1)
2 − pc(s

(m)) < −(γ + τδ).
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Furthermore, for i = 1, 2 we linearize

ki(s
(m+1)) ≈ k′

i(s
(m))s(m+1) + ki(s

(m)) − k′
i(s

(m))s(m).

Then from system (3.1)–(3.3) we obtain the semi-implicit Euler scheme

s(m+1) − s(m)

Δtm
= ∇ · (k1(s

(m))∇p(m+1)
1 ) + ∇ · (k′

1(s
(m))s(m+1)�1en)

+ ∇ · ((k1(s
(m)) − k′

1(s
(m))s(m))�1en) in Ω,

− s(m+1) − s(m)

Δtm
= ∇ · (k2(s

(m))∇p(m+1)
2 ) + ∇ · (k′

2(s
(m))s(m+1)�2en)

+ ∇ · ((k2(s
(m)) − k′

2(s
(m))s(m))�2en) in Ω,

s(m+1) − s(m)

Δtm
= Ψi(p

(m+1)
1 , p

(m+1)
2 , s(m+1), p

(m)
1 , p

(m)
2 , s(m))

+ Ψe(p
(m)
1 , p

(m)
2 , s(m)) in Ω

for m = 0, 1, . . ..

In space, we apply linear finite elements to discretize the above system. We apply

adaptivity in space with an L2-like error indicator for the discrete saturation based on the

jump residual as discussed in [17]. Furthermore, we use a simple adaptive strategy in time,

where the time-step Δtm is inversely proportional to the maximum of the discrete time

derivative of saturation [17]. We present numerical examples which show the validity of

the algorithm implemented in the FEM toolbox AMDiS [29]. The resulting linear system

of equations is solved by a direct solver for sparse linear systems (UMFPACK; [15]).

3.2 Numerical results

For the numerical results presented in the following, we have used a time-dependent

boundary flux

j1,+ =

{
j0
1,+ for t < ts,

js1,+ for t � ts,

with ts > t0 and j0
1,+, j

s
1,+ ∈ �. The change in the upper boundary condition at a switching

time ts is important in the modelling of fingering experiments, see [26]. On the lower

boundary, we assume the constant flux,

j2,− ≡ j0
2,−

for a given value j0
2,− ∈ �. The Dirichlet boundary conditions are

p1,− ≡ γ − α−a1, p2,+ ≡ p0
2,+

with a constant pressure p0
2,+. We study perturbations of the initial condition s = 0 of the

form

s0(x) =

10∑
i=1

Ai(1 − tanh(3(|x − x0,i| − 1/2))), (3.8)
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Table 1. Parameters used for numerical results

Parameter γ κ1 κ2 k0,1 k0,2 δ τ a1 a2

Value 4 10−4 10−2 1 0.1 10−7 0.1; 0.5 0.32 0

Parameter �1 �2 εp α+ α− j0
1,+ js1,+ p0

2,+ j0
2,− L

Value 1 0 10−10 0.1 50 0.524 0.01 0 0 24

Figure 2. (Colour online) Discrete saturation for τ = 0.5 at times t = −2, t ≈ 106, t ≈ 205 and

t ≈ 421.

where x0,i = (−L+ (2i−1)
10

L, 23.5), i = 1, . . . , 10 and amplitudes A1 = 0.6, A2 = 0.4, A3 = 0.2,

A4 = 0.5, A5 = 0.2, A6 = 0.3, A7 = 0.1, A8 = 0.7, A9 = 0.5, A10 = 0.1. We provide a list of

all other parameters in Table 1.

In the following, we will compare numerical results for the two-phase system with results

for the hysteresis Richards system which is solved by the numerical method described

in [17]. In order to compare solutions at similar times t, we have chosen a time-dependent

parameter,

κ2 = κ2(t) =

{
105 for t < ts,

10−2 for t � ts.

Formally, in the limit κ2 → ∞, the two-phase system reduces to the hysteresis Richards

model treated in [17]. The above choice of κ2 has the effect that the discrete saturation

fields for the two models are almost identical at time t = ts. We emphasize that, also after

the switching time ts, in regions of low saturation, the permeability of the second fluid is

much larger than the permeability of the first fluid, see Figure 1.

3.2.1 First results for two-phase flow evolution

Numerical results for the evolution of fingers in the two-phase flow model are presented

in Figure 2. The grey-scale picture indicates the saturation sh for the parameter τ = 0.5

and the initial condition (3.8). From the perturbations, fingers start to grow and evolve

basically into the direction of gravity.

We observe that fingers can develop in the two-phase flow system with hysteresis. Some

fingers cease to grow after some time, the surviving fingers have a comparable length,

but there are differences in width and length. We also observe that fingers can repel each

other, we refer to the last two long fingers in Figure 2.
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Table 2. Description of the data set generating four different solutions

Two-phase flow, τ = 0.5 Richards equation, τ = 0.5

Figure 3, left Figure 3, middle

Two-phase flow, τ = 0.1 Richards equation, τ = 0.1

Figure 4, left Figure 4, middle

–24

–16
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 0

 8

 16

 24

–16 –8  0  8  16  24

Two-phase

Richards

Figure 3. (Colour online) Discrete saturation for two-phase flow (left) and Richards equation

(middle) at time, t ≈ 421, plot of level sets {sh = 1
2
} (right, black: two-phase; red/grey: Richards

equation). In both cases τ = 0.5 has been used.

We recall that the hysteresis terms contribute only in an indirect way to the evolution

of fingers. Below the highly wetted top layer of the domain, the system is in an imbibition

process, hence the static hysteresis is not of relevance in that region. In contrast, in the

top layer of the domain, the effect of the hysteresis terms is that the variations of the

saturation distribution cannot be removed during the evolution.

3.2.2 Comparison with the Richards equation

Our aim is to compare numerically the two-phase flow equations with the Richards

equation. More precisely, we investigate if the presence of the second fluid has an effect

that can be compared with the effect of variations in the time-delay parameter τ. For this

study, we compare four different solutions as indicated in Table 2.

Three qualitative observations can be made. First, the deviations of growth directions

from the direction of gravity are present for several fingers in the case of two-phase flow,

but not for the Richards equation. Second, for the two-phase flow system, fingers tend to

be thicker. Third, long fingers are shorter and short fingers are longer if compared with

the results for the Richards equation. These differences are further illustrated in the right

part of Figure 3, where level sets {sh = 1
2
} are displayed in one plot for both cases.

A similar comparison is shown in Figure 4 for τ = 0.1. Basically, the same qualitative

differences between the two-phase flow and the Richards equation are visible. In addition,

in both cases, reduction of τ corresponds to reduction of the thickness of fingers.

We conclude with the observation that in the parameter setup investigated here, the

influence of including the second phase in the model is not comparable with the influence

of reducing parameter τ.
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Figure 4. (Colour online) Discrete saturation for two-phase flow (left) and Richards equation

(middle) at times t ≈ 529 and t ≈ 528, respectively, plot of level sets {sh = 1
2
} (right, black:

two-phase; red/grey: Richards equation). In both cases, τ = 0.1 has been used.

4 Conclusion

We have analyzed a hysteresis model for two-phase flow in porous media. The model

extends a standard physical model from the Richards equation to the two-phase flow

system. The existence of a solution and the convergence of a finite element scheme

are shown. Numerical results show the appearance of gravity fingers in a perfectly

homogeneous medium. The fingering effect is comparable to the corresponding situation

in the Richards equation, but we obtain qualitative differences, e.g. that fingers can be

weakly repelling in the two-phase flow evolution.
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