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SHEAF RECURSION AND A SEPARATION THEOREM

NATHANAEL LEEDOMACKERMAN

Abstract. Define a second order tree to be a map between trees (with fixed codomain). We show that
many properties of ordinary trees have analogs for second order trees. In particular, we show that there is
a notion of “definition by recursion on a well-founded second order tree” which generalizes “definition by
transfinite recursion”. We then use this new notion of definition by recursion to prove an analog of Lusin’s
Separation theorem for closure spaces of global sections of a second order tree.

§1. Introduction. The concept of a tree is ubiquitous in mathematics and has
several different formulations. This paper is motivated by three concepts all of
which give rise to categories equivalent to a category of trees. First, there is the
notion of a tree as a partial order with a least element such that the collection
of predecessors of any element is finite and linearly ordered. Second, there is a
topological space Ñ such that the notion of a tree is equivalent to being a nonempty
separated presheaf on Ñ with no global sections. Finally, there is the notion of
sheaves on Ñ. In Section 2 we show that the categories associated with each of these
concepts are all equivalent.
In Section 3 we introduce the main objects studied in this paper, which we call
second order trees (over a tree T ). Like ordinary (or first order) trees, second order
trees (over T ) can be described in several ways. In this paper we consider three such
descriptions; as a map of first order trees S : T0 → T , as a nonempty separated
presheaf of a specific type over a topological space T̃ obtained from T , and as a
sheaf over T̃ . There is a category associatedwith each of these descriptions of second
order trees (over T ) and in Section 3.1 we show all of these categories are equivalent.
In Sections 3.2–3.4 we show that several concepts defined for first order trees have
analogs for second order trees. These include the notion of well-foundedness, the
notion of pruned, as well as a closure space of global sections where each closed set
is the collection of global sections of some sub (second order) tree.
In Section 4we showone of themain results of this paper, that transfinite recursive
definitions on well-founded trees can be generalized to well-founded second order
trees. We call the result of this generalization a sheaf recursive definition. We also
show, in Section 4.3, the statement that “each sheaf recursive definition yields an
associated partial function” is equivalent to the axiomof choice.We end this paper in
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Section 5 by using sheaf recursion to prove a generalization of the Lusin separation
theorem.
The results of this paper showmany concepts associatedwith first order trees have

analogs for second order trees. This suggests that many other such concepts should
also have analogs for second order trees. In particular, understanding precisely how
andwhen concepts related to first order trees generalize to second order trees should
be a fruitful line of research.

1.1. Background. Unless otherwise specified we will work inside a background
model of Zermelo-Fraenkel set theory with the Axiom of Choice. All categories in
this paper will be locally small.
For each topological space A, O(A) is the collection of open sets of A. In this

paper P will always be a topological space with underlying set P. There are a
few categories related to topological spaces which will play an important role in
this paper and which we give names to here. We let Sep+(P) be the category of
nonempty separated presheaves on P and we let Sh(P) be the category of sheaves
on P . Note that for each object X of Sep+(P), X (∅) has exactly one element. We
will call this element ∗X . We say that an object X of Sep+(P) is trivial if ∗X is its
only element, i.e., if (∀U ∈ O(P)− {∅}) X (U ) = ∅.
Recall a lower set of a lattice is any subset which is downward closed. We say

B ⊆ O(P) is a lower set if it is a lower set in the lattice (O(P),⊆). If B ⊆ O(P)
is a nonempty lower set, then we let Sep+(B) be the full subcategory of Sep+(P)
consisting of those X , where X (U ) = ∅ if U �∈ B. We will make the slightly
nonstandard assumption that all presheavesX onP are such thatX (U )∩X (V ) = ∅
whenever U,V ∈ O(P) with U �= V . This is done purely to simplify notation and
there will be no loss of generality with this assumption.
If U,V ∈ O(P) with U ⊆ V and X is a presheaf over P with x ∈ X (V ), then

we denote by x|U the restriction of x toU . If further V ⊆W we let xeW denote the
set {y ∈ X (W ) : y|V = x}, i.e., all those elements of X (W ) whose restriction to
V is x.
There are also several functors which will play an important role in this paper and

which we will now describe. Let ıP : Sh(P) → Sep+(P) be the inclusion functor
and let aP : Sep+(P) → Sh(P) be the sheafification functor, i.e., the left adjoint
of ıP . For any nonempty lower set B ⊆ O(P), we let �B : Sep+(B) → Sep+(P) be
the inclusion map. We also let bB : Sep+(P)→ Sep+(B) be the functor where, for
nonempty separated presheaves X , bB(X )(U ) is X (U ) if U ∈ B, and ∅ otherwise
(with bB doing the obvious thing on morphisms). Note �B is left adjoint to bB . We
will omit subscripts on these functors when they are clear from the context.
If L is a first order language and Th is a sentence of L∞,�(L) we let ModL(Th)

be the full subcategory of L-structures and homomorphisms consisting of those
L-structures which satisfy Th. When I is a partial function we use the notation
I (x) ↓ to mean “I (x) is defined” and I (x) ↑ to mean “I (x) is undefined”. If X
is a set we denote by P(X ), the powerset of X . If f : X → Y and A ⊆ X , then
f”[A] := {f(x) : x ∈ A}.
For any definitions or theorems not covered here the reader is referred to such

standard texts as [4] or [8] in the case of set theory, to [6] in the case of category
theory, to [7] in the case of sheaf theory, and to [1] in the case of model theory.
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§2. First order trees. In this section we give a theory ThTr of trees in a language
LTr and show that there is a topological space Ñ with a basis BasÑ such that
ModLTr (ThTr) is equivalent to both Sep

+(BasÑ) and to Sh(Ñ).
The observation that there is a category of trees equivalent to Sh(Ñ) is folklore and
not new here. This observation has been used in several places, including in [3], [5],
and [2] where recursion in this topos is studied. One of the main differences between
that work and the work in this paper is that while we do consider the relationship
between various categories (e.g., those with irreducible bases), our main focus is
not in the categories of second order trees but rather in concepts of particular first
order trees which have generalizations to particular second order trees.

2.1. Theory of trees.

Definition 2.1. Let LTr = {≤, <1, r}, where both ≤ and <1 are binary rela-
tions and r is a constant. Let ThTr be the conjunction of the following sentences
of L�1 ,�(LTr):
Partial Order:
– (∀x, y) x ≤ y ∧ y ≤ x → x = y.
– (∀x, y, z) x ≤ y ∧ y ≤ z → x ≤ z.
Root:
– (∀x) r ≤ x.
Tree:
– (∀x, y, z)[y ≤ x ∧ z ≤ x]→ [y ≤ z ∨ z ≤ y].
Levels:
– (∀y)

∨
n∈�(∃x0, . . . , xn)(∀z)z ≤ y →

∨
0≤i≤n z = xi .

Predecessor:
– (∀x, y) x <1 y ↔ [x ≤ y ∧ (∀z) z ≤ y ∧ z �= y → z ≤ x].

The following formulas will be useful (where m, n ∈ N and m ≤ n):
• Levn(x) := (∃x0, . . . xn) r = x0 ∧ xn = x ∧

∧
0≤i<n xi <1 xi+1.

• Prm,n(x, y) := Levm(x) ∧ Levn(y) ∧ x ≤ y.
We call ≤ and <1 the order and predecessor relations, respectively. We call r the
root of the tree. We say that x is on level n if Levn(x) holds, i.e., the set of elements
strictly less than x has size n. We also use familial terms for the relationship between
elements, e.g., x is the parent of y if x <1 y holds, y is a descendant of x if x ≤ y
holds, etc.

Notice that the relation<1 is definable from≤ by a first order formula.We include
<1 in our language so that homomorphisms of models of ThTr will preserve the
predecessor relation. This is important, because a function preserves the predecessor
relation and the root if and only if it preserves the formulas Levn(x) and Prm,n(x, y)
(for each m, n ∈ N). The following lemma is immediate.
Lemma 2.2. IfM |= ThTr andM |= Levn(y), then for all m ≤ n there is a

unique x ∈ M such thatM |= Prm,n(x, y).
It is worth pointing out that the only axiom in ThTr which is not first order is
the Levels axiom, which guarantees every element is on a finite level. An infinitary
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axiom here is necessary as any first order axiomatization of the concept of a tree
must allow trees to have nonstandard elements, i.e., elements which are not on any
finite level.
2.2. Separated presheaves.

Definition 2.3. Let Ñ be the topological space where:

• The underlying set is N′ := N− {0} = {1, 2, . . . }.
• Open sets are 0̃ := ∅, N′, and ñ = {1, . . . , n} for n ∈ N′.

Note that BasÑ := {0̃, 1̃, . . . } is a basis for the topology.
It is easily checked that Ñ is a topological space. Note that 〈BasÑ,⊆〉 ∼= 〈N,≤〉.

This is by design and will be generalized in Definition 3.2.

Proposition 2.4. There is an isomorphism between the category Sep+(BasÑ)
and the category ModLTr(ThTr).
Proof. We first define functors F : Sep+(BasÑ) → ModLTr (ThTr) and G :

ModLTr (ThTr) → Sep+(BasÑ). Using Lemma 2.2 we can associate with every
model T of ThTr a presheaf G(T ) on Ñ where:

• For n ∈ N, G(T )(ñ) = {x : T |= Levn(x)}.
• G(T )(N′) = ∅.
• If m ≤ n and x ∈ G(T )(ñ), then x|m̃ is the unique element of T such that
T |= Prm,n(x|m̃, x).

Further, as such a T has a unique element on level 0, G(T ) is separated and
nonempty and hence an object of Sep+(BasÑ).
To every object E of Sep+(BasÑ) we can associate a model F(E) of ThTr where:

• F(E) has underlying set
⋃
n∈NE(ñ).

• F(E) |= x <1 y if and only if there is some n ∈ N, where x ∈ E(ñ),
y ∈ E(ñ + 1), and x = y|ñ .

• ≤ is the transitive closure of <1.
• r is the (necessarily unique) element of E(0̃).

Note that becauseLTr has a constant, the construction of F(E) makes fundamental
use of the fact that E is nonempty.
It is immediate that F ◦ G(T ) = T for any model of ThTr and G ◦ F (E) = E

for any object of Sep+(BasÑ). Further it is clear that a function between models of
ThTr is a homomorphism if and only if it is also a natural transformation between
corresponding separated presheaves. Therefore if we let F(f) = G(f) = f for any
such map, then we have F and G are isomorphisms of categories. �
2.3. Irreducible bases. The basis BasÑ has a useful property: no element of the

basis can be expressed as the nonempty union of strictly smaller elements. This
property allows us to show an equivalence between the categories of nonempty
separated presheaves on the basis and sheaves on the topological space. We now
make this notion precise.

Definition 2.5. Suppose A = (A,�) is a bounded distributive lattice. We say
U ∈ A is completely join irreducible1 if for every nonempty {Ui : i ∈ I } ⊆ A,

1Note that this definition is slightly nonstandard as for us ⊥A is completely join irreducible even
though⊥A =

∨ ∅.
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∨
i∈I Ui = U implies U = Ui for some i ∈ I . We say BasA ⊆ A is an irreducible
basis of A if:
• The bottom element of A, ⊥A, is contained in BasA.
• For all U ∈ A there is a nonempty {Ui : i ∈ I } ⊆ BasA covering U , i.e., with
U =

∨
i∈I Ui .

• BasA is a lower set, i.e., ifU,V ∈ AwithU � V andV ∈ BasA, thenU ∈ BasA.
• Every element of BasA is completely join irreducible.
If P is a topological space we say BasP is an irreducible basis for P if it is an
irreducible basis for O(P).

While we will not make use of the following fact, it is worth mentioning that
if A is a bounded distributive lattice with irreducible basis BasA, then the only
element of BasA with a nontotal cover is ⊥A (which is covered by ∅). Hence if
Bas−A := BasA −{⊥A} with inA : Bas−A → BasA the inclusion map, then the functor
which takes anobjectX of Sep+(BasA) to the presheafX ◦inA onBas−A (anddoes the
obvious thing on morphisms) is an equivalence of categories between Sep+(BasA)
and the category of presheaves on Bas−A .
We immediately have the following.

Lemma 2.6. BasÑ ⊆ O(Ñ) is an irreducible basis of Ñ.
Note that if a lattice has an irreducible basis, it must be unique.

Lemma 2.7. Suppose B0,B1 are irreducible bases for a bounded distributive
lattice A. Then B0 = B1.

Proof. If U ∈ B0, then there must be a nonempty {Ui : i ∈ I } ⊆ B1 with
U =

∨
i∈I Ui . But then U ∈ {Ui : i ∈ I } as U is completely join irreducible. In

particular, U ∈ B1 and hence B0 ⊆ B1. By a similar argument B1 ⊆ B0 and so
B0 = B1. �
Definition 2.8. Suppose BasA is an irreducible basis of a bounded distributive

lattice A = (A,�). For U ∈ A we let BasA(U ) := {V ∈ A : V � U} ∩ BasA. We
let BasP(U ) denote BasO(P)(U ).

The following lemma lets us characterize covers in terms of irreducible bases.

Lemma 2.9. SupposeBasA is an irreducible basis of a bounded distributive lattice
A = (A,�) and U ∈ A. If {Ui : i ∈ I } is nonempty lower set, then

∨
{Ui : i ∈ I } is

a cover of U if and only if BasA(U ) ⊆ {Ui : i ∈ I }.
Proof. First suppose {Ui : i ∈ I } is a nonempty lower set which covers U . Let
V ∈ BasA with V � U . Then V = V ∧ U = V ∧

∨
{Ui : i ∈ I } =

∨
{V ∧ Ui :

i ∈ I }. But as V is completely join irreducible we have for some i ∈ I that
V = V ∧ Ui and hence V � Ui . However, as {Ui : i ∈ I } is a lower set we have
V ∈ {Ui : i ∈ I }. Hence as V was arbitrary we have BasA(U ) ⊆ {Ui : i ∈ I }.
Next assume BasA(U ) ⊆ {Ui : i ∈ I }. It is immediate from the definition of
irreducible basis that there is a nonempty collection {Wj : j ∈ J} ⊆ BasA(U ) such
that

∨
{Wj : j ∈ J} = U . Hence BasA(U ) is a cover of U and so {Ui : i ∈ I } is

also a cover of U . �
Principle bases determine the structure of the sheaves on the topological space in
the following sense.
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Proposition 2.10. Suppose BasP is an irreducible basis of P . Then bBasP ◦ ıP :
Sh(P) → Sep+(BasP) and aP ◦ �BasP : Sep+(BasP) → Sh(P) form an equivalence
of categories.

Proof. First, as BasP is an irreducible basis we have for every U ∈ BasP that
there are no nonempty, nontotal covers of U . Hence for every nonempty separated
presheaf X we haveX (U ) = a ◦ �(X )(U ), i.e., no new elements are added to X (U )
under sheafification. In particular, this implies (b ◦ ı) ◦ (a ◦ �)(X ) = X for all X an
object of Sep+(BasP). It is also clear that (b◦ ı)◦ (a◦ �) is the identity on morphisms
and so (b ◦ ı) ◦ (a ◦ �) is the identity functor on Sep+(BasP).
Now supposeY is an object of Sh(P) and letY ′ = �◦b◦ı(Y). ThenY ′(U ) = Y(U )

if U ∈ BasP and Y ′(U ) = ∅ if U ∈ O(P) − BasP . By Lemma 2.9 we have for
any U ∈ O(P) that BasP(U ) is a cover of U . Hence for every U ∈ O(P) and
y ∈ Y(U ), {(y|V ,V ) : V ∈ BasP(U )} is a compatible collection of elements with
amalgamation y.
Now consider the map αY : Y → a(Y ′) where:

• αYU is the identity if U ∈ BasP .
• For y ∈ Y(U ) with U �∈ BasP , αY(y) is the unique element of a(Y ′)(U )
which is an amalgamation of the compatible collection of elements {(y|V ,V ) :
V ∈ BasP(U )}.

Note that then for any U0 ⊆ U1 and y ∈ Y(U1) we have αYU1 (y)|U0 is an amalga-
mation of the compatible collection {(y|V ,V ) : V ∈ BasP(U1) ∩ {V ∈ O(P) :
V ⊆ U0}}.
However, we also have BasP(U0) = {V ∈ O(P) : V ⊆ U0} ∩ BasP =

{V ∈ O(P) : V ⊆ U0} ∩ ({V : V ⊆ U1} ∩ BasP) = {V ∈ O(P) :
V ⊆ U0} ∩ BasP(U1). Hence αYU (y)|U0 is an amalgamation of {(y|V ,V ) : V ∈
BasP(U0)} = {((y|U0 )|V ,V ) : V ∈ BasP(U0)}. But this implies αYU1 (y)|U0 and
αYU0 (y|U0 ) are both amalgamations of the same compatible collection of elements
and hence, as a(Y ′) is a sheaf, are equal. But as y, U0 and U1 were arbitrary this
implies αY is a natural transformation.
It is immediate from the fact thatY is separated thatαY is injective. We now show

αY is also surjective. First observe for any U ∈ BasP , Y(U ) = a(Y ′)(U ), and so
U ∈ BasP , αYU is surjective. Next suppose U ∈ O(P) − BasP and z ∈ a(Y ′)(U ).
There then must be some nonempty compatible collection Zz := {(zV ,V ) :
V ∈ Cz} of elements of Y ′, where Cz is a cover of U and z is an amalgama-
tion of Zz . But as Y ′(V ) = ∅ for V ∈ O(P)− BasP , we must have Cz ⊆ BasP(U )
and hence, by Lemma 2.9, we also have Cz = BasP(U ). In particular, this implies
that zV ∈ Y(V ) for all V ∈ Cz and hence as Y is a sheaf there must be some
yZ ∈ Y(U ) which is an amalgamation of Zz . But then by construction we have
αYU (yz) = z. Hence as z was arbitrary we have α

Y is surjective.
In particular, asαY is both injective and surjective it is an isomorphism of sheaves.

It is then easily checked that 〈Y, αY〉 is a natural isomorphism from the identity
functor on Sh(P) to (a ◦ �) ◦ (b ◦ ı).
In particular, we have shown that (b ◦ ı)◦ (a ◦ �) and (a ◦ �)◦ (b ◦ ı) are isomorphic

to the identity functors and so b ◦ ı and a ◦ � are equivalences of categories. �
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Proposition 2.4, Lemma 2.6, and Proposition 2.10 tell us that there is an equiv-
alence of categories between ModLTr(ThTr) and Sh(Ñ). In particular, this implies
that ModLTr (ThTr) is a localic Grothendieck topos.

Proposition 2.11. The following three categories are equivalent:
• ModLTr(ThTr),
• Sep+(BasÑ),
• Sh(Ñ).
Proposition 2.11 gives us three different representations for the category of trees.
In general the specific representation will not be important and so by CatTr we will
mean any one of the three categories in Proposition 2.11. Similarly, by a tree, or a
first order tree, we will mean an object of CatTr. When no confusion can arise we
will abuse notation and not specify which representation of a first order tree we are
using at a given time. For example, if T is a first order tree, then T is the underlying
set, ≤T and <T

1 are the order and predecessor relations, T (ñ) is the collection of
elements on level n, T (N′) is the collections of global sections of the tree, etc. In
what follows T will always be a first order tree.

§3. Second order trees. In this section we will introduce second order trees and
show how several concepts associated with first order trees generalize to second
order trees.

3.1. Equivalent definitions.

Definition 3.1. The category of second order trees over T is the category
TreeT := CatTr/T . A second order tree over T is an object of TreeT , i.e., a map of
first order trees with codomain T .

Notice we can consider N as a tree 〈{0, 1, . . . },≤〉. Then N is a terminal object in
CatTr and so there is an isomorphism of categories between CatTr and TreeN. In this
way every first order tree can be thought of as a second order tree over N where the
map to N takes an element and returns its level.
We now show that whenever a topological spaceP has an irreducible basis, BasP ,
we can use BasP to define from each object X of Sep+(BasP) a topological space
X̃ which itself has an irreducible basis. Further the lattice of open sets of X̃ will be
isomorphic to the lattice of subobjects of X .

Definition 3.2. SupposeP is a topological space with irreducible basis BasP .
Further suppose X is an object of Sep+(BasP). For each U ∈ BasP and t ∈ X (U )
let t̃ = {t|V : V ∈ BasP , ∅ �= V ⊆ U}. Let BasX̃ = {t̃ : t ∈ X (U ), U ∈ BasP}.
Define the topological space X̃ as follows:
• The underling set of X̃ is X ′ =

⋃
U∈BasP−{∅} X (U ).

• BasX̃ is a subbasis for X̃ .
Notice that in Definition 3.2 ∗̃X = ∅. Also notice for any first order tree T ,

〈T,≤T 〉 ∼= 〈BasT̃ ,⊆〉 and T ′ = T − {rT }. In particular, this notation is consistent
with the notation in Definition 2.3 considering N as a tree.

Proposition 3.3. If P has an irreducible basis BasP and X is an object of
Sep+(BasP), then BasX̃ is an irreducible basis for X̃ .
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Proof. First we show BasX̃ is a basis. Suppose U,V ∈ BasP , s ∈ X (U ), t ∈
X (V ). IfW =

⋃
{W ′ ∈ BasP : t|W ′ = s |W ′}, then t|W = s |W (as X is separated)

and s̃ ∩ t̃ = {(t|W )|Z : Z ∈ BasP , ∅ �= Z ⊆ W }. But if U,V ∈ BasP , then
W ∈ BasP and so s̃ ∩ t̃ = t̃|W ∈ BasX̃ . Hence, as s, t were arbitrary, BasX̃ is an
actual basis and not just a subbasis.
Next we show BasX̃ is an irreducible basis. First notice that as it is a basis every

open set in O(X ) is the union of a nonempty collection of sets in BasX̃ . Further
notice as ∅ ∈ BasP and ∗X ∈ X (∅) we have ∅ = ∗̃X ∈ BasX̃ . To show each
element of BasX̃ is completely join irreducible suppose U ∈ BasP , t ∈ X (U ), and
t̃ =

⋃
i∈I t̃i with I �= ∅. Then for each i ∈ I , t̃i ⊆ t̃ and hence ti = t|Ui , where

Ui ∈ BasP and ti ∈ X (Ui ). But we know that t ∈ t̃ and so there must be some i ∈ I
such that t ∈ t̃i and hence t = ti |U . But then we must have U = Ui and t = ti as
t = ti |U and ti = t|Ui . Hence t̃ is completely join irreducible and as t was arbitrary
every element of BasX̃ is completely join irreducible.
Finally, to showBasX̃ is a lower set supposeU ∈ BasX , t ∈ X (U ), andV ∈ O(X̃ )

with V ⊆ t̃. We then have V =
⋃
i∈I t̃i , where ti ∈ X (Ui ), for some {Ui : i ∈ I } ⊆

BasP . Further as ∗̃X = ∅ we can assume without loss of generality thatUi = ∅, and
ti = ∗X for some i ∈ I (and, in particular, I is nonempty). We have for each i ∈ I
that ti = t|Ui . So if U ′ =

⋃
i∈I Ui , then U

′ ⊆ U and hence U ′ ∈ BasP . But then
U ′ is completely join irreducible and so U ′ = Uj for some j ∈ I . Hence ti = tj |Ui
for all i ∈ I and, in particular, t̃i ⊆ t̃j for all i ∈ I . But this implies that V = t̃j
and so V ∈ BasX̃ . But as V and t are arbitrary this implies BasX̃ is a lower set and
hence an irreducible basis. �
We next show that there is a close relationship between open sets in O(X̃ ) and

subobjects of X in Sep+(BasP).
Proposition 3.4. If P has an irreducible basis BasP , X is an object of

Sep+(BasP), and Sub(X ) is the lattice of subobjects of X in Sep+(BasP), then
(O(X̃ ),⊆) is isomorphic to (Sub(X ),⊆) (as lattices).
Proof. Define � : Sub(X ) → O(X̃ ) by �(Z) :=

⋃
U∈BasP{t̃ : t ∈ Z(U )} and

α : O(X̃ ) → Sub(X ) given by α(Y )(U ) := {t ∈ X (U ) : t̃ ⊆ Y}. (Note α is
well-defined as t̃ ⊆ t̃′ whenever t is a restriction of t′).
First let us show that for any Z ∈ Sub(X ), Z = α ◦ �(Z). For any U ∈ O(P),

α ◦ �(Z)(U ) = {t ∈ Z(U ) : t̃ ⊆ �(Z)} = {t ∈ Z(U ) : t̃ ⊆
⋃
U∈BasP{t̃′ : t

′ ∈
Z(U )}}. HenceZ ⊆ α◦�(Z). In particular, this implies thatZ(∅) = α◦�(Z)(∅) =
X (∅).
Next let t ∈ α ◦ �(Z)(U ) for some U ∈ BasP − {∅}. Then t̃ ⊆ �(Z) and hence

t ∈ �(Z). In particular, there must be some t′ ∈ Z(U ′) with U ⊆ U ′ such that
t ∈ t̃′, or equivalently, t = t′|U . But then we must also have t ∈ Z(U ), as Z is a
presheaf. Hence α ◦ �(Z)(U ) ⊆ Z(U ), as t was arbitrary. Finally, asZ(U ) = ∅ for
all U ∈ O(P)− BasP we have α ◦ �(Z) = Z.
Next we show for any Y ∈ O(X̃ ) that � ◦ α(Y ) = Y . First note that it is

immediate that � ◦ α(Y ) =
⋃
U∈BasP{t̃ : t ∈ α(Y )(U )} =

⋃
U∈BasP{t̃ : t ∈ {t′ ∈

X (U ) : t̃′ ⊆ Y}} ⊆ Y .
Now as BasX̃ is a basis for O(X̃ ) we must have Y =

⋃
i∈I t̃i for some nonempty

collection {t̃i : i ∈ I } ⊆ BasX̃ . Choose t ∈ Y . Then t = ti |W for some i ∈ I and
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W ∈ BasP . But then t̃ ⊆ t̃i ⊆ Y and so t ∈ � ◦α(Y ). Hence Y ⊆ � ◦α(Y ) and so
Y = � ◦ α(Y ).
Finally, it is easily checked that ifY,Y ′ ∈ O(X̃ )withY ⊆ Y ′, thenα(Y ) ⊆ α(Y ′)
and ifZ,Z′ ∈ Sub(X ) withZ ⊆ Z′, then �(Z) ⊆ �(Z′). But then because α and �
are (inverse) isomorphisms of the setsO(X̃ ) and Sub(X ) we have α and � are also
(inverse) isomorphisms of lattices. �
Just as in the case of first order trees we have three different characterizations of
second order trees over T .
Proposition 3.5. For any first order tree T , the following categories are

equivalent:

(1) TreeT ,
(2) Sep+(BasT̃ ),
(3) Sh(T̃ ).
Proof. The equivalence of (2) and (3) follows from Propositions 2.10 and 3.3.
To see (1) is equivalent to (3) recall that CatTr is equivalent to Sh(Ñ) and hence
a localic Grothendieck topos. So, TreeT = CatTr/T is equivalent to Sh(Sub(T )),
where Sub(T ) is the lattice of subobjects of T in Sh(Ñ). However, because BasÑ is
an irreducible basis of Ñ, we have by Proposition 2.10 that Sh(Ñ) is equivalent to
Sep+(BasÑ). But then by Proposition 3.4 we have Sub(T ) is isomorphic to O(T̃ )
and so Sh(Sub(T )) is equivalent to Sh(T̃ ). �
As in the case of first order trees when no confusion will arise we will abuse
notation and consider a second order tree simultaneously as an object of all three
categories. For example, if S is a second order tree over T we let S(T ′) be the
collection of global sections, dom(S) = 〈S,≤S , <S

1 , r
S〉 be the domain of the S as

a map of first order trees, etc. However, we will also sometimes mention which of
the three categories it is most helpful to think of our second order tree as belonging
to. In what follows S (and its variants) will be second order trees over T .

3.2. Well-foundedness. We now introduce the notion of a well-founded second
order tree.

Definition 3.6. We say a sheaf S is well-founded if S(T ′) = ∅, i.e., if S has no
global sections.

This definition of well-founded will be important when we define sheaf recursion
in Section 4.2. It is worth pointing out that this notion agrees with the definition
for first order trees, i.e., a first order tree T is well-founded if and only if there are
no infinite paths through T , which is true if and only if T (N′) = ∅.
While this notion of well-foundedness of a second order tree is the proper analog
(for our purposes) of well-foundedness of first order trees, it need not be the case that
if a second order tree S : dom(S)→ T is well-founded that dom(S) is well-founded.

Example 3.7. Let T = 2<� with t0 ≤T t1 if t1|len(t0) = t0. In particular, T is a
complete binary branching tree. Let S : dom(S)→ T be the second order tree over
T (considered as a map of first order trees) where:
• S−1(rT ) has a single element.
• For any sequence t ∈ T containing at least one 0 S−1(t) = ∅.
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• For any sequence t ∈ T containing all 1’s, if x ∈ S−1(t), then there are two
y0, y1 ∈ S−1(t∧〈1〉) such that x <S

1 y0 and x <
S
1 y1.

We then have

• S is a well-founded second order tree.
• dom(S) is isomorphic to T (as first order trees).

In particular, by moving to the domain of this second order tree we loose structure
which is necessary in order to ensure there are no global sections.

Similarly, it is not the case that if S is a second order tree with dom(S) well-
founded that S must also be well-founded. In particular, the following is immediate
from the fact that maps of trees reflect well-foundedness.

Lemma 3.8. If T is a well-founded first order tree and S is a second order tree
over T , then dom(S) is a well-founded first order tree with the height of dom(S) no
more than the height of T .
Finally, note that if T is trivial, then there is a unique second order tree over T

and that tree is not well-founded.

3.3. Almost flabby sheaves. There is a great deal known about the collection of
global sections (i.e., infinite paths) of first order trees. In this section and Section
3.4 we show that many facts about these collections of global sections generalize to
global sections of second order trees.
Recall that a sheaf is said to be flabby if every section can be extended to a global

section, i.e., if every map from a subobject of the terminal object into a the sheaf
factors through a map from the terminal object into the sheaf.

Definition 3.9. If X is an object of Sep+(P) we say X is almost flabby
if either it is flabby or it is trivial. We let SubF (X ) be the collection of almost
flabby subpresheaves of X .
The following is then immediate from the definition of almost flabby presheaf

and is the reason we are dealing with almost flabby objects instead of flabby ones.

Lemma 3.10. For every object X of Sep+(P) the map αX : SubF (X ) →
P(X (T ′)) given by αX (Y ) = Y (T ′) is an isomorphism between the lattices
〈SubF (X ),⊆〉 and 〈P(X (T ′)),⊆〉.
The previous lemma tells us that there is a close connection between subsets of

global sections and almost flabby objects of Sep+(P). We will see in Section 3.4 that
in the case of second order trees this connection extends to a relationship between
almost flabby sheaves and closed sets of global sections.
In the study of global sections of a first order tree, an important class of trees are

those that are pruned. These are the trees T such that for every element t ∈ T there
is a path through the tree which contains t. Recall T =

⋃
U∈BasN T (U ) and paths

through a first order tree correspond to global sections. Hence another definition of
a pruned first order tree T is one where every completely join irreducible element in
the lattice of subobjects (i.e., every finite path) has an extension to a global section
(i.e., an infinite path through the tree). This suggests the following definition of a
pruned second order tree.

Definition 3.11. We call S pruned if for all t ∈ T and s ∈ S(t̃) there is an
xs ∈ S(T ′) with xs |t̃ = s .
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In the case of first order trees, because the only set inO(Ñ)which is not completely
join irreducible isN′, every pruned tree is in fact flabby as well. In the case of second
order trees, however, there may be many sets U ∈ O(T̃ ) which are not completely
join-irreducible. However, despite this fact we will see in Proposition 3.12 that for a
second order tree to be flabby it suffices to be pruned, i.e., it suffices for the extension
condition to hold only of completely join irreducible subobjects.

Proposition 3.12. A second order tree S is pruned if and only if when considered
as an object of Sh(T̃ ) it is flabby.
Proof. For this proof consider S as an object of Sh(T̃ ). It is immediate from
Definition 3.11 that if S is flabby, then it is also pruned.
Next assume S is pruned. It suffices to show that for any U ∈ O(T̃ )− BasT̃ and
any s ∈ S(U ) that there is some xs ∈ S(T ′) with xs |U = s . In particular, if there
are no such U and s , then S is flabby and we are done. Note this will only occur if
BasT̃ = O(T ), i.e., if T is linearly ordered and finite.
Now suppose that there is aU1 ∈ O(T̃ )−BasT̃ and s1 ∈ S(U1). As ∅ ∈ BasT̃ we
can assume U1 �= ∅. We can therefore choose an ordering T ′ := 〈ti+1 : 0 ≤ i < �〉
with t1 ∈ U1. We next define a sequence 〈Ui : 1 ≤ i ≤ �〉 and a sequence 〈si : 1 ≤
i ≤ �〉 such that:
• for all 1 ≤ i ≤ �, t̃i+1 ⊆ Ui+1 and si ∈ S(Ui ), and
• for all 1 ≤ i ≤ j ≤ �, Ui ⊆ Uj and sj |Ui = si .
We define our sequences by induction.

Suppose i = j + 1:
Case 1: If t̃i ⊆ Uj , let Ui = Uj and si = sj .
Case 2:Otherwise, letUi = Uj∪ t̃i . Define t∗ ∈ T to be such that t̃∗ = Uj∩ t̃i and let
s∗ = sj | ˜t∗ . By assumption there is an element x∗ ∈ S(T ′) such thatx∗| ˜t∗ = s∗. Now
if we let xi = x∗|t̃i , then 〈(sj,Uj), (xi , t̃i)〉 is a compatible collection of elements, so
there must be an si ∈ S(Ui) such that si |Uj = sj .

i is a limit:
Let Ui =

⋃
j<i Uj . By construction 〈(sj ,Uj) : 1 ≤ j < i〉 is a compatible collection

of elements and hence there must be a (unique) si ∈ S(Ui) compatible with each sj
(as S is a sheaf).
It is clear by construction that T ′ = U� and that s� ∈ S(T ′) with s� |U1 = s1. Hence
s� is the desired global section.
In particular, as U1 and s1 were arbitrary we have S is flabby. �

3.4. Closure space of global sections. Some of the most important topological
spaces in descriptive set theory, such as 2� or �� , are those consisting of global
sections of a first order tree where each closed set corresponds to all global sections
of a given subtree. As we will see in this section, the global sections of a second
order tree also form a closure space with each closed set being the global sections of
a sub second order tree. In this section we define these closure spaces and consider
some of their properties.

Lemma 3.13. If X is an almost flabby object of Sep+(T̃ ), then a(X ) is also
almost flabby.
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Proof. Suppose X is almost flabby. First note if X is trivial, then a(X ) = X
and so a(X ) is also trivial. Now assume X is nontrivial and hence flabby. We know
X (t̃) = a(X )(t̃) for all t ∈ T as each t̃ is completely join irreducible and X is
nonempty. Hence for every t ∈ T and x ∈ a(X )(t̃) there is an x∗ ∈ a(X )(T ′) such
that x∗|t̃ = x (as X ⊆ a(X ) and X is flabby). In particular, a(X ) is pruned and so
by Proposition 3.12, a(X ) is flabby as well. �

Corollary 3.14. If S is a sheaf over T̃ , then there is an almost flabby sheaf S∗

over T̃ such that S∗ ⊆ S and S(T ′) = S∗(T ′).

Proof. By Lemma 3.10 there is a unique almost flabby subpresheaf S∗ ⊆ S
with S∗(T ′) = S(T ′). But we have S∗(T ′) ⊆ a(S∗)(T ′) ⊆ a(S)(T ′) = S(T ′).
Hence a(S∗)(T ′) = S∗(T ′). But, by Lemma 3.13, a(S∗) is almost flabby and hence
S∗ = a(S∗) by Lemma 3.10. �
Note Lemma 3.13 and Corollary 3.14 are not true for sheaves over arbitrary

topological spaces.

Lemma 3.15. If S is an almost flabby sheaf on T̃ , then a(·) is a closure operator
on SubF (S).
Proof. If SubP(S) is the collection of subpresheaves of S, then a(·) is a closure

operator on SubP . But by Lemma 3.13, a(·) takes an element of SubF (S) to another
element of SubF (S) and hence is also a closure operator on SubF (S). �
In particular, if we let clS(·) = αS(a(α−1S (·))) (where αS is from Lemma 3.10),

then α is an isomorphism from (SubF (S),⊆, a) to (P(S(T ′)),⊆, clS). Hence there
is a closure space of global sections of a second order tree where each closed set is
the collection of global section of a sub (second order) tree. We will sometimes refer
to this space by the abbreviated (S(T ′), clS).
In general, the closure space of global sections of a second order tree will not be

a topological space. However, even though (S(T ′), clS) may not be a topological
space, it still does have a basis of clopen sets.

Definition 3.16. If x ∈ S(t̃) for some t ∈ T let Sx := {y ∈ S(T ′) : y|t̃ = x}
and otherwise let Sx = ∅. Let BS = {Sx : x ∈

⋃
t∈T S(t̃)}. We call the elements

of BS the basic clopen sets.

We say a set C ⊆ S(T ′) is closed if clS(C ) = C and a set U is open if S(T ′)−U
is closed. If U is both open and closed we say it is clopen.

Lemma 3.17. If U ∈ BS , then clS(U ) = U and clS(S(T ′)−U ) = S(T ′)−U ,
i.e., U is clopen with respect to clS(·).
Proof. We begin with an important observation. For any t ∈ T and A ⊆ S(t̃)

let r(A) is the separated presheaf, where for each U ∈ O(T̃ ) we have r(A)(U ) :=
{y ∈ S(U ) : (∃x ∈ A)x|t̃∩U = y|t̃∩U}. Now suppose 〈(yi ,Ui ) : i ∈ I 〉 is a
compatible collection of elements from r(A) with I �= ∅. Then as S is a sheaf, there
must be some y∗ ∈ S(

⋃
i∈I Ui) which is an amalgamation of 〈(yi ,Ui ) : i ∈ I 〉.

There then must be some t′ with t̃′ ⊆ t̃ such that
⋃
i∈I Ui ∩ t̃ = t̃′. But as t̃′

is completely join irreducible there must be some j such that Uj ∩ t̃ = t̃′. Then
y∗|⋃

i∈I Ui∩t̃ = y
∗|Uj∩t̃ = yj |Uj∩t̃ = x|Uj∩t̃ = x|⋃i∈I Ui∩t̃ for some x ∈ A. Therefore

y∗ ∈ r(A) and r(A) is a subsheaf of S.
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In particular, for each t ∈ T and x ∈ S(t̃), Sx = r({x}) and so Sx is a sheaf and
hence closed. Similarly, S(T ′) − Sx = {y ∈ S(T ′) : y|t̃ �= x} = r((S(t̃) − {x}))
and hence is closed. Therefore each Sx is a clopen set. �
Lemma 3.18. A set U ⊆ S(T ′) is open if and only if it is the union of basic

clopen sets.

Proof. Suppose U =
⋃
x∈i Sx is an arbitrary union of basic clopen sets. Then

S(T ′) − U =
⋂
x∈I S(T ′) − Sx . But each S(T ′) − Sx is closed by Lemma 3.17.

Therefore, as in any closure space the intersection of closed sets is closed, we have
S−U is closed andU is open.Hence, asU was arbitrary, the union of any collection
of basic clopen sets is open.
Next let C ⊆ S(T ′) be closed to show S(T ′) − C is the union of basic clopen
sets. Recall α−1(C ) is the almost flabby object of Sep+(T̃ ) with α−1(C )(T ′) = C .
If C = S(T ′), then S(T ′) − C = ∅ which is the empty union of basic clopen sets
and so we are done. We can therefore there is an x ∈ S(T ′) − C . By Lemma 3.13
α−1(C ) is a sheaf and so there must be some t ∈ T such that x|t̃ �∈ C ∗(t̃). But then
Sx|t̃ ∩C = ∅ and so Sxt̃ ⊆ S(T ′)−C . Hence S(T ′)−C is the union of basic clopen
sets, as every element of S(T ′) − C is contained in a basic clopen set contained in
S(T ′)− C . �
In particular, we have three equivalent notions of a closed set of global sections.

Proposition 3.19. If C ⊆ S(T ′), then the following are equivalent.

(1) S(T ′)− C is the union of basic clopen sets.
(2) C = clS(C ), i.e., there is a separated presheaf S∗ ⊆ S with C = a(S∗)(T ′).
(3) There is an almost flabby sheaf S∗ ⊆ S with C = S∗(T ′).

Proof. That (1) is equivalent to (2) follows from Lemma 3.18. That (2) is
equivalent to (3) follows from Lemma 3.10 and Corollary 3.14. �

3.5. Splitting numbers and universal objects. One pictorial way to think of a first
order tree is as collection of points moving forward in a series of steps where each
time a point moves forward (i.e., each time we go from one level to the next larger
level) a point may split into several distinct points. Building on this picture we can
think of a second order tree as a collection of points where, instead of just being able
to move forward in one direction, the points can move along the underlying tree T .
In this picture, just like in the picture of a first order tree, each time a point moves,
it might split into several points. However, the number of distinct points a point
will split into might depend on the direction the point has moved on the underlying
tree T . In this picture the splitting number of a second order tree measures the
smallest number larger than the maximum number of distinct points a single point
can split into after moving one step.

Definition 3.20. We define the splitting number of S to be

Split(S) = sup{|xe
Ṽ
|+ : U,V ∈ T,U <T1 V and x ∈ S(U )}.

Notice that a first order tree has splitting number κ+, for κ > �, if and only if
it has size κ. However, it is possible for the splitting number of a countably infinite
first order tree to be finite. For example, the splitting number of the perfect binary
branching tree is 3.
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Definition 3.21. Let κ be a cardinal. For U ∈ O(P) let κ[P](U ) = {f
s.t. f : U → κ} and for U ⊆ V with f ∈ κ[P](V ) let f|U be the unique function
with domain U such that (∀u ∈ U )f|U (u) = f(u).

It is then immediate thatκ[P] is a flabby sheaf overP and further that Split(κ[P̃]) =
κ+. For any first order tree T and any κ, κ[T̃ ] is universal for second order trees
over T with splitting number at most κ+.

Lemma 3.22. If S is a sheaf on T̃ and has splitting number ≤ κ+, then there is
a monicm : S → κ[T̃ ] in the category Sh(T̃ ).
Proof. For t ∈ T we will define maps mt̃ : S(t̃) → κ[T̃ ](t̃) which will cohere to

give our monic m. We will define the maps mt̃ by induction on the level of t.
First, |S(r̃T )| = |κ[T̃ ](r̃T )| = 1 so we can let m

r̃T
be the unique isomorphism

between S(r̃T ) and κ[T̃ ](r̃T ). In particular, as rT is the only element of T (0̃) we
have defined mt̃ for all t ∈ T (0̃). This completes the base case of our definition.
Now assume ms̃ has been defined for all s ∈ T (ñ) and let t ∈ T (ñ + 1). We

know for each x ∈ S(t|ñ) that there is an injection ix,t : xet̃ → κ. For each y ∈ xe
t̃

let mt̃(y) = mt|ñ (x) ∪ 〈t, ix,t(y)〉, i.e., for all α ∈ t̃|ñ, mt̃(y)(α) = mt̃|ñ (x)(α) and
mt̃(y)(t) = ix,t(y).
Letm′ be the function where for any t ∈ T and x ∈ S(t̃) we havem(x) = mt̃(x).

It is clear that each mt̃ is injective and that for all s, t ∈ T with s̃ ⊆ t̃ and x ∈ S(t̃)
that ms̃ (x|s̃ ) = mt̃(x)|s̃ . Hence m′ is a monic map of separated presheaves and
hence extends uniquely to a monic map m : S → κ[T̃ ] in the category of sheaves
on T̃ . �
We now show that there is a closure space of global sections which is universal

for all second order trees with splitting number at most κ+ over a tree with splitting
number at most κ+.

Lemma 3.23. Let T be a first order tree with splitting number at most κ+ (e.g., a
tree of size at most κ) and let S be any second order tree over T with splitting number
at most κ+. Then there is a monic mS : S(T ′) → κ[κ̃[Ñ]](κ[Ñ]

′
) such that for any set

C ⊆ S(T ′), C is a closed subset of S(T ′) if and only if mS”[C ] is a closed subset

of κ[κ̃[Ñ]](κ[Ñ]
′
).

Proof. First observe by Lemma 3.22 that it suffices to prove this lemma for
S = κ[T̃ ]. Next let κ<N =

⋃
n∈N−{0} κ

[Ñ](ñ), which is the underlying set of the first

order tree κ[Ñ] (considered as a LTr-structure).
Now by assumption and Lemma 3.22 there is a monomorphism iT : T → κ[Ñ] in

the category of first order trees. Let IT ⊆ κ<N be the image of iT . For f ∈ κ[T̃ ](T ′)

let mS(f) ∈ κ[κ̃[Ñ]](κ[Ñ]
′
) be such that mS(f)(x) := f(i−1T (x)) if x ∈ IT and 0 if

x ∈ κ<N − IT . NotemS is well defined and injective as iT is injective. Let Im be the

image of mS on κ[κ̃
[Ñ]](κ[Ñ]

′
).

For n ∈ N andf ∈ κ<N letNf = {g ∈ κ[κ̃[Ñ]](f̃): where (∃y �∈ im(iT ))g(y) �= 0}.
Then h ∈ κ[κ̃[Ñ]](κ[Ñ]

′
) is in the image of mS if and only if (∀f ∈ κ<Nh|f̃ �∈ Nf .
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Now for notational convenience, for n ∈ N, f ∈ κ[Ñ](ñ) and h ∈ κ[κ̃[Ñ]](f̃)
letKh := κ[κ̃

[Ñ]]
h fromDefinition 3.16, i.e.,Kh = {h∗ ∈ κ[κ̃[Ñ]](κ[Ñ]

′
) : h∗|dom(h) = h}.

We then have Im =
⋂
f∈κ<N

⋂
h∈Nf κ

[κ̃[Ñ]](κ[Ñ]
′
) − Kh hence by Lemma 3.18, Im is

closed.
We will now prove if C ⊆ κ[T̃ ](T ′) we have C is closed in κ[T̃ ](T ′) if and only if

mS”[C ] is closed in κ[κ̃
[Ñ]](κ[Ñ]

′
). First suppose C is closed. Then by Lemma 3.18

there is a set NC ⊆
⋃
n∈N

⋃
t∈T (ñ) κ

[T̃ ](t̃) such that C =
⋂
t∈NC κ

[T̃ ](T ′) − κ[T̃ ]t .
But thenmS”[C ] = Im ∩

⋂
t∈NC κ

[κ̃[Ñ]](κ[Ñ]
′
)−KmS (t) which is closed as Im is closed

and by Lemma 3.18 each κ[κ̃[Ñ]](κ[Ñ]
′
)−KmS (t) is closed as well.

Now suppose mS”[C ] is closed. Then once again by Lemma 3.18 we know that

there is a collectionN∗
C ⊆

⋃
t∈κ<N κ

[κ̃[Ñ]](t̃) such thatmS”[C ] =
⋂
t∈N∗

C
κ[κ̃

[Ñ]](κ[Ñ]
′
)−

Kt . Further as mS”[C ] ⊆ Im we can assume that Nf ⊆ NC for all f ∈ κ<N. Let
N∗ = NC∗ −

⋃
f∈κ<N Nf .

For each g ∈ NC∗ there is a maximal �(g) ⊆ g such that dom(�(g)) ∈ im(iT ).
Let D =

⋂
g∈N∗ κ[T̃ ](T ′) − κ[T̃ ]i−1T (�(g))

. By Lemma 3.18 we have that D is closed.
But by construction we have that mS”[D] = mS”[C ] and hence D = C as mS is
injective. But this implies C is closed completing our proof. �
It is worth mentioning that even though every closure space of the form

(S(T ′), clS) is a subclosure space of (κ[κ̃
[Ñ]](κ[Ñ]

′
), cl

κ[κ̃
[Ñ] ]
) whenever T and S have

splitting number at most κ+, this does not mean that the there is any specific rela-

tionship between the sheaves S and κ[κ̃[Ñ]], as these sheaves are, in general, over
different topological spaces.

Proposition 3.24. For any κ > 1 the following are equivalent:

(1) T is linearly ordered (e.g., isomorphic to N).
(2) 〈κ[T̃ ](T ′), clκ[T̃ ]〉 is a topological space.
(3) Every two point set in κ[T̃ ](T ′) is closed.

Proof. It is immediate that (1) implies (2) and that (2) implies (3).
We now show (3) implies (1) by showing ¬ (1) implies ¬ (3). Assume T is not
linearly ordered. So there are t0, t1 ∈ T which are incomparable with common
parent t∗. We can assume, without loss of generality, that t∗ has minimal level
among those elements withmultiple children. Consider the elementsf0, g0 : t̃0 → κ,
f1, g1 : t̃1 → κ such that
• f0(t) = g0(t) = f1(t) = g1(t) = 0 if t ∈ t̃∗.
• f0(t0) = f1(t1) = 0.
• g0(t0) = g(t1) = 1.
Now let c0, c1 be the functions where c0, c1 are the constant function 0 on t̃∗ and
which take values 0, 1, respectively, on every element of T ′− t̃∗. If {c0, c1} is closed,
then by Proposition 3.19 there is a flabby sheaf C with C (T ′) = {c0, c1}. But then
f0, g0 ∈ C (t̃0) and f1, g1 ∈ C (t̃1). So, as C is a flabby sheaf and {f0, g1} is a
compatible collection of elements, there must be some x ∈ C (T ′) with x|t̃0 = f0
and x|t̃1 = g1. But this is a contradiction as for any such x we would have x �= c0
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and x �= c1. Hence {c0, c1} is not closed and (3) does not hold. In particular, ¬ (1)
implies ¬ (3) so (3) implies (1). �

§4. Sheaf recursion. The method of “definition by recursion” is one of the most
useful tools we have for defining a function whose domain is the natural numbers.
The key feature of definition by recursion is the reduction of the definition at an
element to the definition at a simpler element. When infinite well-founded trees
began to be studied it was realized that the methods of definition by recursion
worked when the domain N was replaced by any well-founded tree. The resulting
method is known as definition by transfinite recursion. In this section we show that
transfinite recursion can be further expanded to what we call definition by sheaf
recursion, i.e., recursion on well-founded second order trees.

4.1. Transfinite recursion. In this section we give a presentation of definition by
transfinite recursion. We will present this notion in such a way that it can be easily
generalized to definition by sheaf recursive in Section 4.2.
For the rest of this section fix a well-founded first order tree W on which we

wish to define a function using transfinite recursion. If Split(W) ≤ κ+, then by
Lemma 3.22 there is a monicm :W � κ[Ñ]. Hence we can assume, without loss of
generality, thatW ⊆ κ[Ñ] (for some κ) withW(N′) = ∅.
When using transfinite recursion to define a function f on a well-founded tree

W , we will assume that f(x) is defined from the set {〈y,f(y)〉 : x <W
1 y}. In

other words there will be a function F such that if I is a function with domain
{〈y,f(y)〉 : x <W

1 y} that could arise via the definition by transfinite recursion,
then f(x) = F (I ). In this way the value of f(x) will depend only on the values of
f at the immediate successors of x.
In the description of transfinite recursion of the previous paragraph we have

only required f to be defined on {y : x <W
1 y} in order for f(x) to be defined.

However, when dealing with transfinite recursion we will have that f is defined on
{y : x <W

1 y} if and only if f is defined on {y : x ≤W y and y �= x}. As such we
might think to instead give a definition by transfinite recursion where the value of
f(x) depends on the values of the entire set {y : x ≤W y and y �= x} and not just
the values {〈y,f(y)〉 : x <W

1 y}.
It is worth stressing though thatwe loose no generality by assuming our definition

off only depends on {〈y,f(y)〉 : x <W
1 y}. The reason is that if we had a definition

of a function f where the value of x depended on {〈y,f(y)〉 : x ≤W y and y �= x}
we could consider the function f∗, where f∗(x) = 〈f(y) : x ≤W y and x �= y〉. It
would then be easy to transform the definition of f into a transfinite definition of
f∗(x) where the value of f∗(x) only depends on {〈y,f∗(y)〉 : x <W

1 y}. Further
we could then read off the values of f from the values of f∗.
The reason why we require our definition by transfinite recursion only to make

use of values at the immediate successors of an element is that when we move to
sheaf recursion it will not be the case that because our function is defined at every
child of a node that it will be defined on all descendants of the node as well.

Definition 4.1. SupposeX is a function with domain
⋃
n∈N κ

[Ñ](ñ) and range
the universe of sets. We say a partial function H is an X -function if the domain
of H is a subset of

⋃
n∈N κ

[Ñ](ñ) and H (x) ∈ X (x) whenever H (x) ↓. We also say
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H is anX -function in the first variable ifH is a partial function on
⋃
n∈N κ

[Ñ](ñ)×A
(for some set A) whereH (x, a) ∈ X (x) whenever H (x, a) ↓.
It is worth emphasizing that in Definition 4.1 X is a set function and we do not
assume any compatibility with the presheaf structure.

Definition 4.2. We say partial functions X,G , and 〈Fn : n ∈ N − {0}〉 from
a transfinite recursive definition on the pair (W , κ[N]) if
• The domain of G is

⋃
n∈N

(
κ[Ñ](ñ)−W(ñ)

)
and G is an X -function.

• For each n ∈ N − {0}, each Fn takes two arguments, the first of which is an
element of κ[Ñ](ñ) and the second of which is an X -function I ∗. Further Fn is
an X -function in its first argument.

• For each n ∈ N and all x ∈ κ[Ñ](ñ), I ∗ is total on xe
ñ+1
if and only if Fn+1(x, I ∗)

is defined.
• For each n ∈ N and all x ∈ κ[Ñ](ñ) if I ∗0 , I ∗1 are defined and equal on xeñ+1,
then Fn+1(x, I ∗0 ) = Fn+1(x, I

∗
1 ).

In Definition 4.2 G represents the base case of the transfinite recursion while
〈Fn : n ∈ N − {0}〉 represents the induction case. Note that we have broken the
inductive case into infinitely many parts, one for each level extending the first
argument. This is done so that the notion of transfinite recursion will be a special
case of sheaf recursion. While in the case of transfinite recursion the functions
〈Fn : n ∈ N − {0}〉 can be combined into a single function, in the case of sheaf
recursion we might not be able to do this as a pair (x, I ∗) could be assigned many
possible values, depending on the “direction” of extensions we are considering.
What makes transfinite recursion work is the following result.

Proposition 4.3 (Transfinite recursion). SupposeX ,G , and 〈Fn : n ∈ N−{0}〉
are a transfinite recursive definition on (W , κ[Ñ]). Then there is an X -function I such
that:

(0) For all x ∈
⋃
n∈N

(
κ[Ñ](ñ)−W(ñ)

)
, I (x) = G(x).

(1) (∀n ∈ N)(∀x ∈ W(ñ))I (x) ↓→ [(∀y ∈ xe
ñ+1
)I (y) ↓ and I (x) = Fn+1(x, I )].

(2) (∀n ∈ N)(∀x ∈ κ[Ñ](ñ))[(∀y ∈ xe
ñ+1
)I (y) ↓]→ I (x) ↓.

(3) (∀n ∈ N)(∀x ∈ κ[Ñ](ñ))I (x) ↓→ [(∀y ∈ xe
ñ+1
)I (y) ↓].

(4) I is defined on the unique element of κ[Ñ](0̃).

Condition (0) is the base case, it tells us where to send those elements which
are not in the well-founded tree. Condition (1) guarantees that if I is defined at
a point x on level n in our well-founded tree, the value of I is determined by the
corresponding function Fn+1. In particular, because of how Fn+1 is defined, our
function only depends on the values of the immediate successors of x. Condition
(2) says that if I is defined on all successors of x (for any x ∈

⋃
n∈N κ

[Ñ](ñ)), then
I is defined on x. Condition (3) is the converse of Condition (2), i.e., that if I is
defined at x, then I is defined on all successors of x. Finally, Condition (4) says
that I is defined on the root.
Notice that Conditions (3) and (4) together imply that I is total on

⋃
n∈N κ

[Ñ](ñ).
However, in Proposition 4.3 we have not explicitly stated that I is total as in the
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analogous proposition for sheaf recursion the resulting function will not (neces-
sarily) be total, and all we will be able to guarantee is that it is defined on the
root. Similarly, it is also the case that such a function I is uniquely determined by
G and 〈Fn : n ∈ N − {0}〉 and Conditions (0)–(4). However, we have not men-
tioned this in Proposition 4.3 as this will not be the case when we consider sheaf
recursion.
We now move on to the proof of Proposition 4.3.

Proof. We define partial functions Iα for α ∈ ORD as follows:
(a) I0(x) := G(x) if x ∈

⋃
n∈N

(
κ[Ñ](ñ)−W(ñ)

)
and undefined otherwise.

(b) Iα :=
⋃
�<α I� if α is a limit ordinal.

(c) Iα(x) breaks into three cases if α = � + 1, x ∈ κ[Ñ](ñ), and n ∈ N:
(i) If I�(x) is defined, then Iα(x) := I� (x).
(ii) If I�(x) is undefined and (∀y ∈ xe

ñ+1
)I� (y) ↓, then Iα(x) := Fn+1(x, I� ).

(iii) Otherwise Iα(x) is undefined.

We let I =
⋃
α∈ORD Iα . Note that each Iα as well as I are X -functions.

It is immediate that Conditions (0)–Condition (2) hold for I .
To see that Condition (3) holds suppose I (x) ↓ and x ∈ κ[Ñ](ñ) with n ∈ N.

If x �∈ W(ñ), then we know xe
ñ+1

∩ W(ñ + 1) = ∅ (as W is a tree and hence

closed under predecessors). In particular, this means that for all y ∈ xe
ñ+1
we have

I (y) = G(y) and hence I (y) is defined. However, if x ∈ W(ñ), then there must be
a least α such that Iα+1(x) is defined . But then because of how I was constructed,
we must have that Iα is defined for all y ∈ xe

ñ+1
and hence I must also be defined

on xe
ñ+1
.

All that is left is to show Condition (4) holds. As this is the most important
condition, we will make it its own claim.

Claim 4.4. I is defined on the unique element x0 ofW(0̃) = κ[Ñ](0̃).
Proof. Assume to get a contradiction that I is not defined on x0. We will first

use ordinary recursion on N to construct a sequence 〈xn : n ∈ N〉 such that
• for each n ∈ N, xn ∈ W(ñ),
• for all m, n ∈ N with m̃ ⊆ ñ, xn|m̃ = xm, and
• for all n ∈ N, I (xn) is undefined.

Note that the base case of x0 is done by assumption. Now suppose xn is defined
as above in order to find an xn+1 which also satisfies the above conditions. Note
because I (xn) is undefined and xn ∈ W(ñ), there must be some y ∈ κ[Ñ](ñ + 1)
such that xn <κ

[Ñ]

1 y and I (y) is undefined. But as I (y) is undefined we must also
have y ∈ W(ñ + 1). Therefore if we let xn+1 = y, we are done.
By ordinary recursion we can therefore find some sequence 〈xn : n ∈ N〉 as above.

Then asW is a sheaf, and 〈(xn, ñ) : n ∈ N〉 is a compatible collection of elements
from W there must be an x∗ ∈ W(N′). But this contradicts our assumption that
W is well-founded.
Therefore I (x0) must be defined. �

�
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4.2. Sheaf recursion. We now have all of the components necessary to define
sheaf recursion. Fix a flabby second order treeK over T , and a well-founded second
order treeW ⊆ K.
Definition 4.5. Suppose X is a function with domain

⋃
t∈T K(t̃) and range

the universe of sets. We say a partial function H is an X -function if the domain of
H is a subset of

⋃
t∈T K(t̃) and H (x) ∈ X (x) whenever H (x) ↓. We also say H is

an X -function in the first variable if H is a partial function on
⋃
t∈T K(t̃) × A (for

some set A) whereH (x, a) ∈ X (x) whenever H (x, a) ↓.
Note that it is consistent for X (x) = ∅ and yet still to have H be an X function
so long asH (x) is undefined.

Definition 4.6. We say partial functionsX,G and 〈FV : V ∈ T −{rT }〉 form
a sheaf recursive definition on the pair (W ,K) if
• The domain of G is

⋃
V∈T

(
K(Ṽ )−W(Ṽ )

)
and G is an X -function.

• For each V ∈ T − {rT }, FV takes two arguments, the first of which is an
element of K(Ũ ) whereU <T

1 V and the second of which is an X -function I
∗.

Further FV is an X -function in its first argument.
• For each U,V ∈ T with U <T

1 V and all x ∈ W(Ũ ), I ∗ is total on xe
Ṽ
if and

only if FV (x, I ∗) is defined.
• For each U,V ∈ T with U <T

1 V and all x ∈ W(Ũ ) if I ∗0 , I ∗1 are defined and
equal on xe

Ṽ
, then FV (x, I ∗0 ) = FV (x, I

∗
1 ).

Notice that every transfinite recursive definition is also a sheaf recursive definition
by considering first order trees κ[Ñ] and W as second order trees over Ñ. The key
to making sheaf recursion work is the following result which is a direct analog of
Proposition 4.3.

Theorem 4.7 (Sheaf recursion). Suppose X,G , and 〈FV : V ∈ T − {rT }〉 is a
sheaf recursive definition. Then there is a (partial ) X -function I such that:
(0) For all x ∈

⋃
V∈T

(
K(Ṽ )−W(Ṽ )

)
, I (x) = G(x).

(1) (∀U ∈ T )(∀x ∈ W(Ũ ))I (x) ↓→ [(∃V >T
1 U )[(∀y ∈ xe

Ṽ
)I (y) ↓ and I (x) =

FV (x, I )]].
(2) (∀U ∈ T )(∀x ∈ K(Ũ ))[(∃V >T

1 U )(∀y ∈ xe
Ṽ
)I (y) ↓]→ I (x) ↓.

(3) (∀U ∈ T )(∀x ∈ K(Ũ ))I (x) ↓→ [(∃V >T
1 U )(∀y ∈ xe

Ṽ
)I (y) ↓].

(4) I is defined on the unique element of K(r̃T ).
Conditions (0)–(4) are in direct analog with conditions (0)–(4) in Proposition
4.3. The main difference is that when dealing with transfinite recursion, in order
to define I at an element in the well-founded first order tree we need that I is first
defined on every successor of the element. However, in the case of sheaf recursion
we can think of the successors of an element in K(Ũ ) as being in several different
directions (indexed by elements V ∈ T , V >T

1 U ) and in order to define I at an
element, our definition only needs that there is some direction such that I is defined
on all successors of the element in that direction.
We now prove Theorem 4.7.

Proof. First, choose an arbitrary well-ordering � of T . We define partial
functions Iα for α ∈ ORD as follows:
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(a) I0(x) := G(x) if x ∈
⋃
V∈T K(Ṽ )−W(Ṽ ) and undefined otherwise.

(b) Iα :=
⋃
�<α I� if α is a limit ordinal.

(c) Iα(x) breaks into three cases if α = � + 1, x ∈ K(Ũ ), and U ∈ T :
(i) If I�(x) is defined, then Iα(x) = I�(x).
(ii) If I�(x) is undefined and (∃V >T

1 U )(∀y ∈ xe
Ṽ
)I� (y) ↓.

Then let Q ∈ T be the �-minimal such V and Iα(x) := FQ(x, I� ).
(iii) Otherwise Iα(x) is undefined.

We let I =
⋃
α∈ORD Iα .

It is immediate that Conditions (0), (2), and (3) of Theorem 4.7 hold. Further
(1) follows from the fact that FV (x, I ) only depends on the values of I on xeṼ . All
that is left is to show Condition (4) holds. As with Proposition 4.3 this is the most
important part of the theorem so we make it its own claim.

Claim 4.8. I is defined on the unique element xrT ofW(r̃T ) = K(r̃T ).
Proof. Assume to get a contradiction that I is not defined on xrT . We will first

use ordinary recursion on N to construct a sequence 〈xU : U ∈ T 〉 such that
• for each U ∈ T , xU ∈ W(Ũ ),
• for all U,V ∈ T with Ũ ⊆ Ṽ , xV |Ũ = xU , and
• for all U ∈ T , I (xU ) is undefined.
First note T (0̃) = {rT } and so for all U ∈ T (0̃) we have xU is defined. This is

the base case of the ordinary recursion.
Now assume for n ∈ N that for all U ∈ T (ñ) we have xU is defined and satisfies

the above. Let V ∈ T (ñ + 1) be such that U <T
1 V . Note that if I is defined on all

y ∈ (xU )eṼ ⊆ K(Ṽ ), then because of how I was constructed, I is defined on xU .
Therefore there must be some y ∈ (xU )eṼ with I (y) undefined. Further, because
I is defined outside ofW , we must have that such a y is inW(Ṽ ). Let xU be such
a y. We have then defined xV for all V ∈ T (ñ + 1).
By ordinary recursion we can therefore find some collection 〈xU : U ∈ T 〉 as

above. Now suppose we have U0, U1 ∈ T with U ∗ ∈ T such that Ũ0 ∩ Ũ1 = Ũ ∗.
By our construction we therefore have that xU0 |Ũ0∩Ũ1 = xU0 |Ũ∗ = xU∗ = xU1 |Ũ∗ =
xU1 |Ũ0∩Ũ1 . Hence 〈xU : U ∈ T 〉 is a compatible collection of elements fromW .
But as W is a sheaf this implies that there must be an x∗ ∈ W(T ′) which is an

amalgamation of 〈xU : U ∈ T 〉. This however contradicts the well-foundedness
ofW .
Therefore I (xrT ) must be defined. �

�

4.3. Axiom of choice. Our proof of Theorem 4.7 made use of the axiom of
choice both in the well-ordering of the tree T as well as in our choice of elements
〈xV : V ∈ T 〉. In this section we show that the axiom of choice is in fact needed.

Theorem 4.9. IfM is amodel of Zermelo-Fraenkel set theory, then the following
are equivalent:

(1) M |= Axiom of Choice.
(2) For all sheaf recursive definitions inM Theorem 4.7 holds inM .
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Proof. That (1) implies (2) is Theorem 4.7.Nowassume (2) to show (1). Suppose
〈Aj : j ∈ J 〉 ∈ M is an arbitrary collection of (disjoint) nonempty sets. We will
show there is an element of

∏
j∈J Aj inM . For the rest of the proof we work inM .

Let T := {r} ∪ 〈� × J 〉 where
• for all m ∈ � and all α ∈ J , we have rT ≤T 〈m,α〉, and
• for allm, n ∈ � and all α, � ∈ J , we have 〈m,α〉 <T

1 〈n, �〉 if and only if α = �
and n = m + 1.

In particular, (T,≤) consists of J incompatible copies of � with a minimal element
adjoined.
We now let K(r) := {�} and for all n ∈ � and j ∈ J we let K(〈n, j〉) :=

{n} × (Aj ∪ {〈∗, j〉}) and for all a ∈ Aj ∪ {〈∗, j〉} let 〈n + 1, a〉|〈n,j〉 := 〈n, a〉. Let
W ⊆ K be such thatW(〈n, j〉) = {n} × Aj .
Claim 4.10. K is flabby.
Proof. Suppose ∅ �= U ∈ O(T̃ ) and a ∈ K(U ). Notice for any j ∈ J , Pj ⊆ �
with s = sup{i + 1 : i ∈ Pj},

⋃
n∈Pj 〈̃n, j〉 =

⋃
n<s 〈̃n, j〉. So as U is open and

hence of the form
⋃
j∈J

⋃
n∈Pj⊆� 〈̃n, j〉 we know there is a collection of elements of

T such thatU =
⋃
{〈̃n, jh〉 : h ∈ H, n < nh}, where jh �= jh′ for h �= h′ and nh ≤ �.

For h ∈ H and n < nh let 〈n, ah〉 = a|〈̃n,jh〉. The following is then a compatible
collection of elements:

• {〈n, ah〉 : n ∈ �, h ∈ H} and
• {〈n, 〈∗, l〉〉 : n ∈ �, l ∈ (J − {jh : h ∈ H})}.
Hence there is an element a∗ ∈ K(T ′) which is an amalgamation of the above
collection. But then we also have a∗|U = a. But as a was arbitrary and K is
nontrivial we haveK is flabby. �
Let κ ∈ ORD be infinite and such that any well-founded tree with underlying
set

⋃
V∈T K(Ṽ ) has rank in κ. Let X be the constant function on

⋃
V∈T K(Ṽ ) with

value the set κ. Let G be the constant function on
⋃
V∈T

(
K(Ṽ )−W(Ṽ )

)
with

value 0. G is clearly an X -function. Finally, for each U,V ∈ T with U <T
1 V every

x ∈ W(Ũ ) and every X -function I ∗, let FV (x, I ∗) = sup{I ∗(y) + 1 : y ∈ xe
Ṽ
}. It

is immediate that FV is an X -function in its first variable.

Claim 4.11. W is not a well-founded sheaf.
Proof. Assume to get a contradiction that W is well-founded. We then have
X,G, 〈FV : V ∈ T − {rT }〉 is a definition by sheaf recursion. Hence by our
assumption there is a witness I to this fact, where I (�) ↓. But then we must have
some 〈0, j〉 ∈ T (1̃) such that I is total onW(〈0, j〉) = {0}×Aj. However, for each
n ∈ �, 〈n, j〉 only has one successor in T (i.e., 〈n+1, j〉). Hence we must have that
I is total onW(〈̃n, j〉) for each n.
Now consider the first order treeW∗ := 〈W ∗,≤W∗

, <W∗

1 〉 where
• the underlying set isW ∗ := {∗W} ∪

⋃
n∈�W(〈n, j〉),

• ∗W is the root, and
• for each m, n ∈ � and α, � ∈ J , we have 〈m,α〉 ≤W∗ 〈n, �〉 if and only if
� = α and m ≤ n, i.e., if 〈n, �〉|〈̃m,j〉 = 〈m,α〉.
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Because of how I was defined, I assigns an ordinal number to each element ofW∗

in such a way that if a <W∗

1 b, then I (a) > I (b). But this is a contradiction as then
〈I (〈n, α〉) : n ∈ �〉 is an infinite descending sequence of ordinals (for any α ∈ Aj).
In particular, this impliesW must not be well-founded. �
Let x ∈ W(T ′) and let 〈aj : j ∈ J 〉 be such that x|〈̃0,j〉 = 〈0, aj〉. Then for each

j ∈ J we have aj ∈ Aj and hence 〈aj : j ∈ J 〉 ∈
∏
j∈J Aj as desired. In particular,

as 〈Aj : j ∈ J 〉 was arbitrary, the axiom of choice holds inM . �

§5. Separation theorems.
5.1. Borelian and analytic sets. The following definitions are motivated by their

counterparts for κ� .

Definition 5.1. The set of κ-Borelian subsets of S(T ′), Borκ(S), is the
smallest collection of subsets of S(T ′) such that:

• All closed subsets of S(T ′) are in Borκ(S).
• Borκ(S) is closed under < κ-unions and < κ-intersections.

The set of κ-Borel subsets of S(T ′), Bor∗κ(S), is the smallest collection of subsets
such that:

• All closed subsets of S(T ′) are in Bor∗κ(S).
• Bor∗κ(S) is closed under < κ-unions and complements.

Note by Lemma 3.18 the following is immediate.

Lemma 5.2. If κ > |
⋃
t∈T S(t̃)|, then Borκ(S) = Bor

∗
κ(S).

If κ ≤ |
⋃
t∈T S(t̃)| though, the κ-Borelian and κ-Borel sets need not coincide.

Definition 5.3. SupposeK andN are flabby second order trees over T . A set
X ⊆ N (T ′) is said to be K-Suslin if there is a closed D ⊆ K(T ′) × N (T ′) with
X = pK[D] = {x : (∃y ∈ K(T ′))(y, x) ∈ D}.

In the case where T is Ñ, N = �[Ñ], and K = κ[Ñ], then a set Y ⊆ κ[Ñ](N′) is
κ-Borelian (κ[Ñ]-Suslin) if and only if it is κ-Borelian (κ-Suslin) in the usual sense.
It is worth mentioning that in the case of second order trees, unlike in the case of

first order trees, theK-Souslin subsets need not be closed under all finite unions. An
easy example of this is when K = 1[T̃ ] is a terminal second order tree 1[T̃ ]-Souslin
sets are just the closed sets. Hence by Proposition 3.24 the 1[T̃ ]-Souslin sets are
closed under finite unions if and only if T is a linear order.
We say a pair of sets CA,CB separates A and B if A ⊆ CA, B ⊆ CB(,) and

CA ∩ CB = ∅. We say a class of sets Γ can be separated by κ-Borelian sets if for
every A,B ∈ Γ with A ∩ B = ∅, there is a pair of κ-Borelian sets which separates
A from B. The following is then immediate.

Lemma 5.4. The class of all subsets of S(T ′) can be separated by |S(T ′)|+-
Borelian sets.
Proof. Because every one point set in S(T ′) is closed, every set is the |S(T ′)|+-

union of closed sets and hence |S(T ′)|+-Borelian. �
Given a class of sets we can think of the smallest κ needed to separate any two

elements of the class by κ-Borelain sets as a measure of the complexity of the class.
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5.2. Lusin separation theorem. Oneof themost important theoremsof descriptive
set theory is the Lusin separation theorem.2

Theorem 5.5 (Lusin separation theorem). Suppose κ is an infinite cardinal and
A and B are disjoint κ-Suslin subsets of �� . Then there is a pair of κ+-Borel sets
which separates A and B.
This is the best possible, as we could not hope to have all κ-Souslin sets separated
by κ-Borel subsets seeing as every κ+-Borelian subset is also κ-Souslin. We can
think of κ-Souslin sets as being “close” to κ+-Borel sets. In fact a consequence
of this theorem is that any set which is both κ-Souslin and whose complement is
κ-Souslin is actually κ+-Borel.
We will now give an analog of this theorem for second order trees. Just as
the proof of the Lusin separation theorem made fundamental use of transfinite
recursion, the proof of our separation theorem will make fundamental use of
sheaf recursion. The interested reader is encouraged to compare the below proof
to a standard proof of the Lusin separation theorem such as that given in [8]
(2E.1:Constructive Proof).
We first need a standard lemma.

Lemma 5.6. Suppose A =
⋃
i∈I Ai and B =

⋃
j∈J Bj and suppose C

A
i,j , C

B
i,j

separate Ai and Bj . Then the sets CA =
⋃
i∈I

⋂
j∈J C

A
i,j and CB =

⋃
j∈J

⋂
i∈I C

B
i,j

separate A and B.
Proof. First notice that asAi ⊆

⋂
j∈J C

A
i,j for each i ∈ I , we haveA =

⋃
i∈I Ai ⊆⋃

i∈I
⋂
j∈J C

A
i,j = CA. Similarly, we have B ⊆ CB .

Now notice

CA ∩CB =

⎡
⎣⋃
i∈I

⋂
j∈J
CAi,j

⎤
⎦ ∩

⎡
⎣ ⋃
j′∈J

⋂
i′∈I
C Bi′ ,j′

⎤
⎦

=
⋃
i∈I

⋃
j′∈J

⋂
j∈J

⋂
i′∈I
CAi,j ∩ CBi′ ,j′ .

However, for each i ∈ I, j′ ∈ J ,
⋂
j∈J

⋂
i′∈I C

A
i,j ∩ CBi′ ,j′ = ∅ as CAi,j′ ∩ CBi,j′ = ∅ by

assumption. Hence CA ∩CB = ∅. �
Theorem 5.7 (Separation theorem). SupposeN andK are flabby second order

trees over T with Split(K×N ) = κ, a regular cardinal. Further supposeA and B are
disjointK-Suslin subsets ofN (T ′). Then there are κ+-Borelian setsCA,CB ⊆ N (T ′)
which separates A and B.
Proof. In the proof we will treat K and N as sheaves. For each U ∈ T and

〈k0, k1, n〉 ∈ K × K×N (Ũ ) we will let 	(〈k0, k1, n〉) = 〈k0, n〉 and 
(〈k0, k1, n〉) =
〈k1, n〉.
As A and B are K-Souslin, there are sheaves A+, B+ ⊆ K × N be such that
A = pK[A+(T ′)] and B = pK[B+(T ′)]. Now let W ⊆ K × K × N , where for all
U ∈ O(T̃ ),W(U ) = {s ∈ K ×K ×N (U ) : 	(s) ∈ A+(U ) and 
(s) ∈ B+(U )}.

2This is sometimes, such as in [8], called theSouslin-Kleene Separation Theorem or theSouslin-Kleene-
Addison Separation Theorem.
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Claim 5.8. W is a well-founded sheaf over T̃ .
Proof. ThatW is a separated presheaf is immediate from the fact that A+ and

B+ are separated presheaves. Now suppose we have 〈(〈xi , yi , zi 〉, Ui ) : i ∈ I 〉 is a
compatible collection of elements fromW with U =

⋃
i∈I Ui . Then 〈(〈xi , zi〉, Ui ) :

i ∈ I 〉 and 〈(〈yi , zi 〉, Ui) : i ∈ I 〉 are compatible collections of elements fromK×N
and hence must have amalgamations 〈x, z〉 ∈ K ×N (U ) and 〈y, z′〉 ∈ K ×N (U ),
respectively. But then both z and z′ are amalgamations of 〈(zi , Ui) : i ∈ I 〉, hence
z = z′ as K is a sheaf. Therefore 〈x, y, z〉 ∈ K × K ×N (U ) is an amalgamation of
{(〈xi , yi , zi 〉, Ui) : i ∈ I }. In particular, this implies thatW is a sheaf.
Finally, because pK[A+(T ′)] ∩ pK[B+(T ′)] = ∅, we have that W(T ′) = ∅ and

henceW is well-founded. �
Let X be the function with domain

⋃
U∈T K ×K ×N (Ũ ) such that X (x) is the

collection of pairs CA,CB ⊆ N (T ′) such that CA,CB are κ-Borelian and separate
pK[A+	(x)(T

′)] from pK[B+
(x)(T
′)] (where A+

	(x) andB
+

(x) are as in Definition 3.16).

We will now use sheaf recursion onW to produce an element of X (r̃T ).
First we take care of the base case and define G . Suppose s ∈ K ×K ×N (Ũ )−

W(Ũ ) for some U ∈ T . We now have two cases:

Case 1: 	(s) �∈ A+(Ũ ). In this case let G(s) = (∅,N (T ′)).

Case 2: Otherwise. In this case we must have 
(s) �∈ B+(Ũ ) so let G(s) =
(N (T ′), ∅).

It is easy to check that in Case 1 A+
	(s)(T

′) = ∅ and hence ∅,N (T ′) separates
A+
	(s)(T

′) and B+

(s)(T

′) and in Case 2 B+

(s)(T

′) = ∅ and hence N (T ′), ∅ separates
A+
	(s)(T

′) and B+

(s)(T

′). Therefore in either case G(s) ∈ X (s) and so G is an
X -function.
Now, for each U <T

1 V , x ∈ K × K ×N (Ũ ) and I ∗ which is an X -function on⋃
Z∈T K × K × N (Z̃) we need to define FV (x, I ∗). First notice that we only need
FV (x, I ∗) to be defined if I ∗ is total on xeṼ and in this case FV (x, I

∗) should only
depend on x and the values of I ∗ restricted to xe

Ṽ
.

Suppose, for all a ∈ 	(x)e
Ṽ
and b ∈ 
(x)e

Ṽ
we can find, using only x and

I ∗ restricted to xe
Ṽ
, κ+-Borelain Da,b and Ea,b which separate pK[A+a (T ′)] from

pK[B+b (T ′)]. Then, because K is flabby and

pK[A+	(x)(T
′)] =

⋃
a∈	(x)e

Ṽ

pK[A+a (T ′)] and pK[B+
(x)(T
′)] =

⋃
b∈
(x)e

Ṽ

pK[B+b (T
′)],

we have by Lemma 5.6 the sets D+ :=
⋃
a∈	(x)e

Ṽ

⋂
b∈
(x)e

Ṽ

Da,b and E+ :=⋃
b∈
(x)e

Ṽ

⋂
a∈	(x)e

Ṽ

Ea,b separate pK[A+	(x)(T
′)] and pK[B+
(x)(T

′)]. Further, as κ is
the splitting number of K × N , each Da,b, Ea,b are κ-Borelian, and κ is regular,
D+, E+ are also κ-Borelian. We can then let FV (x, I ∗) = (D+, E+).
All that is left in the definition of FV is to find such Da,b, Ea,b for all a ∈ 	(x)e

Ṽ

and b ∈ 
(x)e
Ṽ
. To do this we break into cases.
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Case 1: There is a y ∈ W(Ṽ ), where a = 	(y), b = 
(y).
In this case we can choose Da,b, Ea,b so that (Da,b, Ea,b) = I ∗(y). These have the
desired properties as I (y) ∈ X (y).
Case 2: There is a y ∈ K ×K ×N (Ṽ )−W(Ṽ ), where a = 	(y), b = 
(y).

Case 2a: a = 	(y) �∈ A+(Ṽ ). In this case pK[A+a (T ′)] = ∅ and we can let Da,b = ∅,
while Ea,b = N (T ′).

Case 2b: b = 
(y) �∈ B+(Ṽ ). In this case pK[B+b (T ′)] = ∅ and we can let Da,b =
N (T ′), while Ea,b = ∅.
Case 3: Otherwise, i.e., a = (ka, na) and b = (kb, nb) with na �= nb .
In this case pK[(K ×N )a(T ′)] ⊆ Nna (T ′) and pK[(K ×N )b(T ′)] ⊆ Nnb (T ′) with
Nna (T ′) ∩ Nnb (T ′) = ∅. We can therefore let Da,b = Nna (T ′) and Ea,b = Nnb (T ′).

Note FV (x, I ∗) is defined if and only if I ∗ is total on xeṼ . Hence X,G, 〈FV :
V ∈ T ′〉 form a sheaf recursive definition on the pair (W ,K × K × N ). In par-
ticular, there must be some X -function I which is defined on the unique element
∗ ∈ K × K × N (r̃T ). But then I (∗) ∈ X (∗) (and, in particular, X (∗) �= ∅).
So if I (∗) = (CA,CB), then CA,CB must be κ-Borelian and must separate
pK[A+	(∗)(T

′)] = pK[A+(T ′)] = A and pK[B+
(∗)(T
′)] = pK[B+(T ′)] = B. �
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