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ABSTRACT

This paper focuses on the distribution of Poisson sums of discounted claims
over a finite or infinite time period. It gives two new results when claim amounts
follow Mittag-Leffler distributions and two new results when claim amounts
follow gamma distributions. Further, asMittag-Leffler distribution is of heavy-
tailed nature and its moments only exist for order strictly smaller than one,
this distribution can be used for modelling insurance whose claim amounts are
extremely large, that is, catastrophe insurance.
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1. INTRODUCTION

Consider a discounted sum model with continuous arrival time recorded up to
time t, that is,

Zt =
Nt∑
k=1

e−δTkXk, t≥ 0, (1.1)

where

1. δ is the discount factor, which could be the net interest rate or just the
interest rate;

2. Claim amount Xk is paid at time Tk and Xk’s are positive i.i.d;
3. Claim arrival process Nt is a renewal process with total waiting time Tk and

inter-arrival time τk, that is, Nt is the number of claims up to time t and τk’s
are i.i.d;

4. Claim amounts and the claim arrival process are independent.

Astin Bulletin 49(1), 169-187. doi:10.1017/asb.2018.28 c© 2018 by Astin Bulletin. All rights reserved.

https://doi.org/10.1017/asb.2018.28 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2018.28
https://doi.org/10.1017/asb.2018.28


170 Z. ZHANG

Equation (1.1) is a generalised version of the key component of the surplus
process in risk theory:

Ut = u+ pt−
Nt∑
k=1

Xk, (1.2)

where u≥ 0 is the initial reserve and p> 0 is the premium rate per unit time. As
we are investigating the surplus behaviour with respect to time t, we believe it
would be more realistic to introduce a discount factor to the claim payments.
However, the introduction of this discount factor increases the complexity as
the moments of Zt cannot be obtained by conditioning on Nt and then apply-
ing the independence between Nt and X . Various research has been done for
moments; see Léveillé and Garrido (2001a,b) and Garrido and Léveillé (2004).
For comprehensive applications of this loss distribution approach in insurance
analysis, see Cruz et al. (2014).

Although this model setting is no stranger to actuarial and financial studies,
the distributions of Zt are still mysterious under most cases. The usual tech-
nique is applying transforms on both sides of Equation (1.1) and invert back
once the transformed function, for example, the moment-generating function,
is achieved. However, in most cases, the transformed function is not achievable.
Further, even it can be derived, it is usually in a form we are unable to invert.

The distribution of Z∞, which can be considered as an infinite sum of
the product of random variables, has some history in the probability theory.
Earlier research can be traced back to Gerber (1979, p. 106) and Harrison
(1977). Vervaat (1979) establishes the conditions for the existence and unique-
ness of Z∞. Dufresne (1990) solves more cases and gives applications to risk
theory and pension funding. Paulsen (1993) generalises this model to stochas-
tic rate of return on investments as well as stochastic level of inflation. Nilsen
and Paulsen (1996) solve one specific result when the return process involves
a Brownian motion. Dufresne (1996) finds one more result through algebraic
properties of beta and gamma variables. Gjessing and Paulsen (1997) further
generalise the rate of return and the arrival process to be two independent
levy process. Dufresne (1998) systematically studies the algebraic properties of
beta and gamma variables and gives more results for the distribution of Z∞.
Recently, Dufresne and Zhang (2017) find the distribution of Z∞ when τ

follows a mixture of exponentials and X follows an exponential distribution.
For the distribution ofZt, t<∞, limited results have been revealed. Takács

(1954) proposes a formula for the characteristic function of Zt when Nt is a
Poisson process. Léveillé et al. (2010) propose two integral equations for the
moment-generating function of Zt and re-derive the formula under Poisson
case by renewal arguments. Wang (2010) proposes that the moment-generating
function of Zt can be solved from an nth order differential equation when
the inter-arrival times follow a particular gamma distribution. Wang et al.
(2016) propose an approximation method for inverting the moment-generating
function and calculating VaR and CTE of Zt. Dufresne and Zhang (2017)
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derive the explicit formula of the density function of Zt when Nt is a Poisson
process and X follows an exponential distribution.

As mentioned at the beginning, most of the papers of Zt concentrate on the
moments. However, moments and the moment-generating function may not be
enough. Because of the heavy tails of financial models, moments may not exist
after the first several orders and therefore the moment-generating function no
longer exists. For example, the second moment of claim amounts of the catas-
trophe insurance may go to infinity. This is the case of this paper, where the
first moment of claim amounts is infinity. If that is the case, then the premium
calculation and capital requirement based on the moments are unlikely to be
reliable. Fortunately, once the probability distribution function is derived the-
oretically, we can also find the Value at Risk (VaR), at least approximately,
which can be converted into the capital requirement.

In this paper, we restrict Nt to be a Poisson process. Section 2 introduces
two Mittag-Leffler distributions, which are slightly different from the litera-
ture and are used for modelling claim amounts later. Their Laplace transforms
are also discussed. Section 3 applies the formula in Takács (1954) and gives
the distribution of Zt when Xk follows a Mittag-Leffler distribution. This gen-
eralises the result in Dufresne and Zhang (2017, Theorem 9). This section also
reveals two new cases whereXk follows two particular gamma distributions and
t tends to infinity. Finally, Section 4 discusses the application ofZt for catastro-
phe insurance modelling. Throughout this paper, all numerical computations
were performed with Mathematica and “MachinePrecision” is adopted unless
specified.

2. MITTAG-LEFFLER DISTRIBUTION

Mittag-Leffler distributions have received great attention of mathematicians
and statisticians recently. Pillai (1990) first proposes this non-negative distri-
bution based on the Mittag-Leffler function and shows that the first moment
of this distribution already goes to infinity. Later, Lin (1998) and Jose et al.
(2010) generalise this distribution and the latter discuss their generalisation
in the time series modelling. Further, Cahoy (2013) shows that the first two
moments of logarithmic transform of a Mittag-Leffler distribution are finite.
In this section, we will introduce two generalised Mittag-Leffler distributions
and give the Laplace transforms of them.

We first recall three Mittag-Leffler functions:

1. Eβ(z)=∑∞k=0 zk

�(βk+1) ,

2. Eβ,γ (z)=∑∞k=0 zk

�(βk+γ ) ,

3. Eηβ,γ (z)=
∑∞

k=0
(η)kzk

k!�(βk+γ ) ,

where z, β, γ , η ∈C, �(β)> 0, �(γ )> 0, �(z) is the gamma function and
(η)k = �(η+k)

�(η) .
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In order to be parallel to the result that X being exponentially distributed
in Dufresne and Zhang (2017, Theorem 9), we introduce a more generalised
definition of Mittag-Leffler distribution.

Definition 1. If X ∼ML(α, θ) for α > 0 and 0< θ ≤ 1, then its cumulative
distribution function is

FX (x)=
∞∑
k=1

(− 1)k−1(αx)θk

�(1+ θk) , x≥ 0. (2.1)

Remarks

1. When α = 1, this definition goes back to Theorem 2.1 in Pillai (1990).
2. When θ = 1, X ∼Exp(α), that is, fX (x)= αe−αx.
3. FX (x)= 1−Eθ (− (αx)θ ) and fX (x)= α(αx)θ−1Eθ ,θ

(−(αx)θ).

Definition 2. If X ∼GML(α, θ , γ ) for α > 0, 0< θ ≤ 1 and γ > 0, then its
cumulative distribution function is

FX (x)=
∞∑
k=0

(− 1)k(γ )k(αx)θ (γ+k)

k!�(1+ θ(γ + k)) , x≥ 0. (2.2)

Remarks

1. When α = 1, this definition goes back to Equation (2) in Jose et al. (2010).
2. When θ = 1, X ∼G(γ , α), that is, fX (x)= αγ

�(γ )x
γ−1e−αx.

3. When γ = 1, this definition goes back to Equation (2.1).
4. FX (x)= (αx)θγEγθ ,θγ+1

(−(αx)θ) and fX (x)= α(αx)θγ−1Eγθ ,θγ
(−(αx)θ).

The Laplace transforms, LX (q) for X ∼ML(1, θ) and X ∼GML(1, θ , γ ),
appear several times in the references while the domain for q is not consistent.
Thus we are going to re-derive them and give the following theorem:

Theorem 1. For γ ∈N, GML(α, θ , γ ) is the γ -fold convolution of ML(α, θ).

Proof. For X ∼GML(α, θ , γ ), the Laplace transform of X is

LX (q)=
∫ ∞
0

e−qx
∞∑
k=0

�(k+ γ )
�(γ )

(− 1)k

k!
x−1+(k+γ )θα(k+γ )θ

�((k+ γ )θ) dx

=
∞∑
k=0

�(k+ γ )
�(γ )

(− 1)k

k!
α(k+γ )θ

�((k+ γ )θ)
∫ ∞
0

e−qxx−1+(k+γ )θdx

=
∞∑
k=0

�(k+ γ )
�(γ )

(− 1)k

k!
α(k+γ )θ

�((k+ γ )θ)q
−θ (k+γ )�(θ(k+ γ )) ( ∗ �(q)> 0 ∗ )
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=
(
α

q

)γ θ ∞∑
k=0

�(k+ γ )
�(γ )

(− 1)k

k!

((
α

q

)θ)k

=
(
α

q

)γ θ (
1+

(
α

q

)θ)−γ (
∗
∣∣∣∣∣
(
α

q

)θ ∣∣∣∣∣< 1∗
)

=
(

αθ

qθ + αθ
)γ

.

By Definition 2 Remark 3, when γ = 1, X ∼ML(α, θ) and this completes the
proof. �
Remarks

1. We apply the Fubini theorem to exchange the order of integral and summation
for the second equation. Because the same calculation can show that (−1)m
under the summation does not affect the convergence for the same domain of q.

2. If q ∈R and 0< θ < 1, then we require q ∈ (α,∞) for the convergence of its
Laplace transform. Further, by analytic continuation, the domain of q can be
extended to [0,∞).

3. Differentiating the Laplace transform shows that the moments of a
GML(α, θ , γ ) only exist when θ = 1.

We will use notation Y (α,β) to represent a random variable following a distri-
bution Y (α, β). For example, a random variable following a beta distribution
with parameters α and β is written as B(α,β), that is, fB (α,β) = �(α+β)

�(α)�(β)x
α−1(1−

x)β−1. With this notation and the Theorem above, we have the additive and
multiplicative properties of generalised Mittag-Leffler random variables.

Corollary 1. For i ∈N,∑n
i=1 GML(α,θ ,γi) ∼GML(α, θ ,

∑n
i=1 γi).

Corollary 2. For c> 0, c ·GML(α,θ ,γ ) ∼GML( αc , θ , γ ).

Since the ML(α, θ) only has moments when θ = 1 by Remark 3 of
Theorem 1, we are going to discuss the tail behaviour of this distribution. One
famous subclass of heavy-tailed distributions is the class of distribution func-
tions with regularly varying tails. A non-negative distribution F belongs to the
class R if F̄(x)= 1− F(x)> 0 for all x≥ 0 and there exists some β > 0 such
that

lim
x→∞

F̄(yx)

F̄(x)
= y−β , (2.3)

for y> 0. We write F ∈R−β and if F is the distribution function ofX ,X ∈R−β .
On the one hand, when θ = 1, ML(α,1) ∼Exp(α) and F̄ML(α,1) (x)= e−αx. On

the other hand, when θ < 1, from the well-known asymptotic behaviour of the
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Mittag-Leffler function (Bateman and Erdélyi, 1953, p. 210, Equation (21)),

Eβ,γ (z)=−
∞∑
n=1

z−n

�(γ − βn) , z→∞,

∣∣∣∣arg(− z)<
(
1− 1

2
β

)
π

∣∣∣∣, (2.4)

it can be deducted that ML(α,θ ) has the heavy power tail. This is illustrated in
the following theorem:

Theorem 2. If 0< θ < 1, ML(α,θ ) ∈R−θ .

Proof. For y> 0, applying the third Remark of Definition 1 and
Equation (2.4) gives

lim
x→∞

F̄ML(yx)

F̄ML(x)
= lim

x→∞
yfML(yx)
fML(x)

= lim
x→∞

y α
−θ (yx)−θ−1θ
�(1−θ )

α−θx−θ−1θ
�(1−θ )

= y−θ . �

3. DISTRIBUTION OF Zt

In this section, we will give one new result for Zt when claim amounts fol-
low a Mittag-Leffler distribution and two new results for Z∞ when the claims
amounts follow two particular gamma distributions. We start by recalling one
result from Takács (1954) and rewriting it into the Laplace transform context.

Let Nt follow a Poisson process with rate λ> 0. Then for any t> 0, the
Laplace transform of Zt is

LZt(q)= eλ
∫ t
0 (LX (qe

−δv)−1)dv. (3.1)

Theorem 3. If Nt follows a Poisson process with rate λ and X ∼ML(α, θ), then
for δ > 0 and z> 0, Zt has a defective density function:

fZt(z)= e−λt
∞∑
n=1

(− λ

θδ

)
n

(
1− eθδt)n
n!

α(αz)θn−1En
θ ,θn

(−(αz)θ) (3.2)

and a cumulative distribution function:

FZt(z)= e−λt + e−λt
∞∑
n=1

(− λ

θδ

)
n

(
1− eθδt)n
n!

(αz)θnEn
θ ,θn+1

(−(αz)θ), (3.3)

with P(Zt = 0)= e−λt.

Proof. By Equation (3.1), we have

λ

∫ t

0

(
LX

(
qe−δv

)− 1
)
dv= λ

∫ t

0

αθ

αθ + qθe−θδv dv− λt.
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Let u= qθe−θδv. Then v=− 1
θδ
log

(
u
qθ

)
and dv=− 1

uθδdu. We have

λ

∫ t

0

(
LX

(
qe−δv

)− 1
)
dv= λ

θδ
log

(
αθ + qθe−θδt
αθ + qθ

)
,

which gives

LZt(q)=
(
1+ ( q

α
e−δt

)θ
1+ ( q

α

)θ
) λ

θδ

= e−λt
(
eθδt + ( q

α

)θ
1+ ( q

α

)θ
) λ

θδ

. (3.4)

In order to invert the Laplace transform, rewrite LZt(q) as

LZt(q)= e−λt
(
1+ eθδt − 1

1+ ( q
α

)θ
) λ

θδ

= e−λt
∞∑
n=0

�
(
n− λ

θδ

)
�
(− λ

θδ

)

(
− eθδt−1

1+( qα )
θ

)n

n!

= e−λt + e−λt
∞∑
n=1

�
(
n− λ

θδ

)
�
(− λ

θδ

)
(
1− eθδt)n

n!

(
1

1+ ( q
α

)θ
)n

.

Applying Theorem 1, we have

fZt(z)= e−λt
∞∑
n=1

(− λ

θδ

)
n

(
1− eθδt)n
n!

∞∑
m=0

�(m+ n)
�(n)

(− 1)m

m!
z−1+(m+n)θα(m+n)θ

�((m+ n)θ) . �

Remarks

1. When θ = 1, we have

fZt(z)=
λ

δ
e−zα−tλ

(−1+ etδ) α 1F1

(
1− λ

δ
, 2,

(
1− etδ) zα

)
, (3.5)

where 1F1(z) is the Kummer confluent hypergeometric function, that is,
1F1(a, b;z)=∑∞n=0 (a)n

(b)n
zn

n! . Further, if α = 1, this restores Theorem 9 in
Dufresne and Zhang (2017).

2. When θ = 1
2 , we have

fZt(z)= e−λt
∞∑
n=1

(− 2λ
δ

)
n

(
1− e 1

2 δt
)n

(αz)
n
2

n!

×
[
1
z

1
�( n2 )

1F1

(
1+ n
2

,
1
2
, zα

)
−
(α
z

) 1
2 1

�
(
n
2 + 1

2

) 1F1

(
1 + n

2
,
3
2
, zα
)]

.

(3.6)
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FIGURE 1: fZ10 with δ = 0.015, α = 1 and λ= 5.

FIGURE 2: FZ10 with δ= 0.015, α = 1 and λ= 5.

Figures 1 and 2 illustrate probability density and distribution functions, respec-
tively, of Z10 under different θ ’s, with δ = 0.015, α = 1 and λ= 5. During the
computations, the infinite series in Equations (3.2) and (3.3) are truncated after
2000 terms and the “Precision” of Mathematica is set at 200. These two figures
show the tail of Z10 increases significantly as θ decreases. The mode of fZ10

under θ = 0.9 is already less than half of that under θ = 1, that is, X ∼Exp(1).
Although the shape of the density function when θ = 1 looks symmetrical, it is
actually not the case, which can be verified by skewness.

When t tends to infinity, this question is simplified to some extent and more
results could be found in the literature. The reason for simplification is not only
that one parameter is gone but also that Markov property can be established,
which leads to a well-known result (Vervaat, 1979):

Z∞
dist= V (X +Z∞), (3.7)
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where V = e−δτ and all the random variables on the right-hand side are
independent. A known instance of Equation (3.7) is

G(α,1) dist= B(α,θ )
(
G(θ ,1) +G(α,1)

)
. (3.8)

Theorem 4. If Nt follows a Poisson process with rate λ and X ∼ML(α, θ), then
for δ > 0 and t→∞, Z∞ ∼GML

(
α, θ , λ

θδ

)
.

Proof. Let t→∞ in Equation (3.4) and the result follows by identifying
the Laplace transform. �
Remarks If τ ∼Exp(λ), then δτ ∼Exp

(
λ

δ

)
and therefore e−δτ ∼B ( λ

δ
, 1
)
. By

Equation (3.7) we have the following distribution identities:

1. For α > 0, 0< θ ≤ 1, γ > 0, λ> 0 and δ > 0,

GML(α,θ ,
λ
θδ ) dist= B(

λ
δ
,1)
(
GML(α,θ ,1) +GML(α,θ ,

λ
θδ )
)
. (3.9)

This can be further verified by checking whether both sides have the same
Laplace transform. Starting from the right-hand side, we have

E

[
e
−qB( λδ ,1)

(
GML(α,θ ,1)+GML(α,θ ,

λ
θδ )

)]

=E

[
E

[
e
−qB( λδ ,1)

(
GML(α,θ ,1)+GML(α,θ ,

λ
θδ )

)

|B( λδ ,1)
]]

= λ
δ

∫ 1

0

(
1

1+ ( qb
α

)θ
) λ

θδ
+1
b
λ
δ
−1db

= λ
δ

(
α

q

) λ
δ 1
θ

∫ ( qα )θ

0
(1+ u)− λ

θδ
−1u

λ
θδ
−1du

= λ
δ

(
α

q

) λ
δ 1
θ

∞∑
k=0

�
(
λ

θδ
+ 1+ k)

�
(
λ

θδ
+ 1

) (− 1)k

k!
∫ ( qα )θ

0
uk+

λ
θδ
−1 du

=
(

1

1+ ( q
α

)θ
) λ

θδ

,

which is the Laplace transform of left-hand side by Theorem 1.
2. For α > 0, γ > 0, λ> 0 and δ > 0,

G(
λ
δ
,α) dist= B(

λ
δ
,1)
(
G(1,α) +G( λδ ,α)

)
, (3.10)

which is the X ∼Exp(α) case. This can also be proved by that G(γ1,α)

G(γ1,α)+G(γ2,α) is
independent with G(γ1,α) +G(γ2,α) (Lukacs, 1955) and follows B (γ1, γ2).
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FIGURE 3: fZ∞ with δ= 0.015, α = 1 and λ= 5.

FIGURE 4: FZ∞ with δ = 0.015, α= 1 and λ= 5.

Figures 3 and 4 illustrate the probability density function and probability
distribution function ofZ∞ under different θ ’s, with δ = 0.015, α = 1 and λ= 5.
During the computations, the infinite series in Definition 2 are truncated after
5000 terms and the “Precision” of Mathematica is set at 700. Figure 3 shows
the tail of Z∞ is much heavier than that of Z10, as modes are much lower, only
half of previous ones. Further, with smaller θ , the tails become much heavier,
as the mode under θ = 0.9 is only a quarter of that under θ = 1.When t= 10, all
density functions rise almost the same time, whereas when t→∞, the density
function of θ = 0.9 has not risen until that of θ = 1 almost vanishes.

For X ∼G(γ , α), no general formula for Zt has been found yet. Léveillé
et al. (2010, Example 3.6) give the moment-generating function of Zt when
claim amounts have an Erlang(n) distribution. However, their expression is
not friendly for inverting. The following theorems give the explicit density
functions of Z∞ under two particular cases:
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Theorem 5. If Nt follows a Poisson process with rate λ and X ∼G(2, α), then for
δ > 0 and t→∞, Z∞ has a density function:

fZ∞(z)= e− λ
δ

∞∑
n=0

(
λ

δ

)n
n!

αn+
λ
δ

�
(
n+ λ

δ

)z λδ +n−1e−αz, (3.11)

and a cumulative distribution function:

FZ∞(z)= 1− e− λ
δ

∞∑
n=0

(
λ

δ

)n
n!

�
(
n+ λ

δ
, αz

)
�
(
n+ λ

δ

) , (3.12)

where �(a, z) is the incomplete gamma function.

Proof. Applying Example 3.6 (Léveillé et al., 2010) and letting t→∞
or applying differential equation technique on Equation (3.7) (Dufresne and
Zhang, 2017, Section 2), we have

LZ∞(q)= e− λ
δ e

λ
δ

α
α+q

(
α

α + q
) λ

δ

.

Expand e
λ
δ

α
α+q into the Taylor series and the result is obtained after identifying

that
(

α

α+q
) λ
δ

is the Laplace transform of gamma distributions. �

Theorem 6. If Nt follows a Poisson process with rate λ and X ∼G( 12 , α), then for
δ > 0 and t→∞, Z∞ has a density function:

fZ∞(z)= 22
λ
δ

∞∑
n=0

�
(
2 λ
δ
+ n)

�
(
2 λ
δ

) (− 1)n

n!
α

1
2 (n+ 2λ

δ )

�
(
1
2

(
n+ 2λ

δ

))z 1
2 (n+ 2λ

δ )−1e−αz, (3.13)

and a cumulative distribution function:

FZ∞(z)= 1− 22
λ
δ

∞∑
n=0

�
(
2 λ
δ
+ n)

�
(
2 λ
δ

) (− 1)n

n!

�
(
n
2 + λ

δ
, αz

)
�
(
n
2 + λ

δ

) . (3.14)

Proof. Applying Equation (3.1), we have

LZ∞(q)= e
λ
∫ t
0

⎛
⎝
(

1
1+ q

α e
−δv

) 1
2 −1

⎞
⎠dv

.

For the integral part, make a change of variable u= q
α
e−δv and realise

∫ b

a

(
1

1+ u
) 1

2 1
u
du= log

[(
1−√1+ b) (1+√1+ a)(
1−√1+ a) (1+√1+ b)

]
.
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After that, doing some simplifications and letting t→∞, we end up with

LZ∞(q)=
⎛
⎝ 2

1+
√
1+ q

α

⎞
⎠

2 λ
δ

=
⎛
⎝ 2√

1+ q
α

⎞
⎠

2 λ
δ (

1+
(
1+ q

α

)− 1
2
)−2 λ

δ

= 22
λ
δ

∞∑
n=0

�
(
2 λ
δ
+ n)

�
(
2 λ
δ

) (− 1)n
(
1+ q

α

)− 1
2 (n+2 λδ )

n!
.

Finally, the result follows after inverting LZ∞ back. �
The density functions in the above two theorems can be written into the

hypergeometric functions, which are much easier to deal with for numerical
purpose.

1. If X ∼G(2, α), Z∞ has a density function:

fZ∞(z)=
e−

λ
δ e−αzα

λ
δ z−1+

λ
δ

�
(
λ

δ

) 0F1

(
λ

δ
,
λ

δ
αz
)
, (3.15)

where 0F1(a, z)=∑∞n=0 zn

(a)nn!
.

2. If X ∼G( 12 , α), Z∞ has a density function:

fZ∞(z)= 22
λ
δ α

λ
δ e−αzz

λ
δ
−1
{

1

�
(
λ

δ

) 2F1

(
1
2
+ λ
δ
,
1
2
, αz

)

−�
(
λ

δ
+ 1

)
2
√
α
√
z

�
(
λ

δ

)
�
(
1
2 + λ

δ

) 2F1

(
δ + λ
δ

,
3
2
, αz

)}
. (3.16)

Figure 5 is the comparison of fZ∞ when X follows three different distributions
with the same expectation, that is, Exp(1),G(2, 2) andG( 12 ,

1
2 ). During the com-

putations, the infinite series in Equations (3.15) and (3.16) do not need to be
truncated, since the hypergeometric functions are well built in Mathematica,
and the “Precision” of the software is set at 500. As the mode of fZ∞ is the small-
est whenX ∼G( 12 , 1

2 ) and the largest whenX ∼G(2, 2) , the graph shows the tail
is the heaviest under the former case and the thinnest under the latter case. This
is expected becauseE[(E(α))k]<E[(G(α,α))k] for α < 1 andE[(E(α))k]≥E[(G(α,α))k]
for α ≥ 1, where k ∈N. Finally, comparing with Figure 3, the tails where claim
amounts follow gamma distributions are much lighter than those where claim
amounts followMittag-Leffler distributions whose second parameter is smaller
than one. This is also expected as gamma distributions have moments to any
order.
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FIGURE 5: fZ∞ with E[X ]= 1, δ= 0.015 and λ= 5.

4. CATASTROPHE INSURANCE MODELLING

While the probabilistic catastrophe risk modelling appeared in the late 1980s,
the use of such technique was not widely accepted until Hurricane Andrew
made landfall in Southern Florida in 1992. The Florida case also shows the
catastrophe risk is concentrated, because it alone accounts for 80% of extreme
hurricane risk in the USA. The 1990 January windstorm (Cat 90A) exposes
that the problem facing the UK insurance industry is the likelihood of large
losses exceeding the largest value in the data set. Both cases imply that the
claim amounts of catastrophe insurances are likely to be much higher than
expected and this is also pointed out in Sanders (2005). Underestimation issues
also happen in Northridge Earthquake (1995) and Florida and the southern
states hurricanes (2004), due to the calibration error and the unawareness of
the potential for patterns of losses.

The pattern of catastrophe insurance data suggests that large claim
amounts can occur in a sample with non-negligible probability, which pro-
poses that we need distributions whose right tails decrease more slowly than
exponential decay for modelling purpose. In that case, distributions with regu-
larly varying tails, or more generally, subexponential distributions, are natural
candidates. Therefore, the Mittag-Leffler distribution is one of the candidates
by Theorem 2. Meanwhile, Embrechts et al. (2013, p. 35, Table 1.2.6) suggest
that Pareto distributions, that is, if X ∼P(β, α),

F̄X (x)=
(

α

α + x
)β

, β, α, x> 0,

and loggamma distributions, that is, if X ∼LG(β, α),

fX (x)= βα

�(α)
(1+ x)−(β+1) (log (1+ x))α−1, β, α, x> 0,
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TABLE 1

αp AND αlg WITH α = 15.

θ 0.9 0.6 0.3
Median 0.04446 0.04038 0.03812
αp 0.03832 0.01857 0.00420
αlg 0.24128 0.20765 0.17106

FIGURE 6: Tails with θ = 0.9.

are suitable candidates as well. It should be noticed that these three types
of distributions can have finite or infinite moments by feeding different val-
ues to their parameters. By Theorem 2 and Embrechts et al. (2013, p. 134,
Example 3.3.11),

P(θ ,αp),LG(θ ,αlg),ML(α,θ ) ∈R−θ , 0< θ < 1,

and then none of them has a finite first moment. In order to compare these
three distributions, we first fix α, θ ∈ (0, 1), that is, the tail behaviour and the
median of them, and then use the median to find αp and αlg.

Figures 6–8 give the tail behaviour of P(θ ,αp), LG(θ ,αlg) andML(α,θ ) for differ-
ent θ ’s. For illustration purpose, we fix α = 15 and the corresponding values of
αp and αlg are given in Table 1.ML(α,θ ) has the lightest tail when θ = 0.9, drop-
ping to zero much quicker than the other two. However, as θ decreases, all
the tails become heavier. In particular, the tail ofML(α,θ ) almost coincides with
P(θ ,αp)’s when θ = 0.6 and becomes the heaviest when θ = 0.3. These figures sug-
gest that the Mittag-Leffler distribution has greater flexibility in tail behaviour
and therefore is suitable for modelling claim amounts of catastrophe insurance.

The main analysis tool of a probabilistic catastrophe insurance model is the
Exceedance Probability (EP) curve, which illustrates the annual probability of
exceeding a certain level of loss. Once the formula of Zt is derived, we can have
the annual exceedance probability curve by Z1. Now, for illustration purpose,
assuming the claim arrival intensity is five per year, interest rate is 0.015 and
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FIGURE 7: Tails with θ = 0.6.

FIGURE 8: Tails with θ = 0.3.

claim amount is counted in millions and follows a Mittag-Leffler distribution
with parameters (1, θ), we can compare EP curves under different θ ’s. As for
how to apply Mittag-Leffler distributions to real data sets see Cahoy (2013)
and Jose and Abraham (2011).

As FZt is expressed in terms of infinite summations, it is difficult to ascertain
the value of z for a given EP(z). However, once the exact formula is given, we
can always approximate it using some well-behaved functions. Thus, based on
the analytical formula of FZt in Section 3, we plot EP(z) from z= 0 with step
0.5 and then use linear interpolations to find z for a given EP(z). During the
numerical calculations, it is expected that the tails of θ = 0.95 and θ = 0.9 are
so heavy that they cannot be put in one figure with θ = 1 case neatly. Therefore,
we cut the tail at z= 80. For z> 80, claim amounts are all calculated by the
line interpolated by (79, EP(79)) and (80, EP(80)). We place these numbers in
brackets if that happens. However, the linear interpolation will underestimate
claim amounts as the tails of EP(z) fall much slower as z increases.
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TABLE 2

SUMMARY OF EP ANALYSIS.

Loss amount ($m)

EP (%) Return period θ = 1 θ = 0.95 θ = 0.9

10 10 9.2 11.4 14.9
5 20 10.9 14.9 22.7
2 50 12.9 23.4 47.1
1 100 14.3 38.7 (89.7)
0.5 200 15.7 71.3 (123.9)

FIGURE 9: AEP with δ = 0.015, α= 1 and λ= 5.

Figure 9 and Table 2 are the main output of catastrophe modelling analysis.
During the computations, the infinite series in Equation (3.3) are truncated
after 2000 terms and the “Precision” of Mathematica is set at 200. Taking
θ = 1 as a benchmark, results show that EP(z)’s fall very slowly for θ < 1. More
specifically, at the return period of 50, claim amounts are more than doubled
when θ decreases from 1 to 0.95 and from 0.95 to 0.9. For each return period,
loss amounts increase by a larger amount when θ decreases from 0.95 to 0.9
than those when θ decreases from 1 to 0.95. Further, $123.9m in Table 2 is
underestimated as we believe the number should be more than twice of that
under θ = 0.95, that is, $71.3m. For applications, we suggest to undertake
interpolation across the neighbourhood of desired EP(z) for higher accuracy.

Next we are going to propose an approximation to EP. Tang (2005) gives
an asymptotic formula of F̄Zt(z) for subexponential claim amounts. Further, if
X ∈R−β , F̄Zt(z) is proportional to F̄X (z). More specifically, for large z,

EP(z)≈ λ

βδ
F̄X (z)(1− e−βδ). (4.1)
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TABLE 3

EP APPROXIMATION.

θ = 0.95 z= 80 z= 160 z= 240 z= 320 z= 400

X ∼P(θ , αp) 0.0496382 0.0257905 0.0175677 0.013375 0.0108241
X ∼LG(θ , αlg) 0.0462685 0.0234818 0.0157892 0.0119153 0.00957894
X ∼ML(α, θ ) 0.00408678 0.00208514 0.00141168 0.00107147 0.000865504

θ = 0.9 z= 80 z= 160 z= 240 z= 320 z= 400

X ∼P(θ , αp) 0.0580848 0.0312271 0.0217029 0.0167612 0.013716
X ∼LG(θ , αlg) 0.0531649 0.0278114 0.01904 0.0145546 0.0118187
X ∼ML(α, θ ) 0.010454 0.00551549 0.00380852 0.0029316 0.00239412

In comparison with formulas in Theorem 3, this approximation can be calcu-
lated much quicker, as those cumulative distribution functions are well built in
software.

Table 3 gives the approximated values for EP(z), where αp and αlg are esti-
mated in the same way as those in Table 1. From EP analysis, theoretically,
EP(80)= 0.00441851 when θ = 0.95 and EP(80)= 0.0114112 when θ = 0.9. In
comparison with the corresponding numbers in Table 3, it is safe to con-
clude that the approximation works well. This is expected as we only apply
this approximation to the tail of Z1. When θ decreases from 0.95 to 0.9,
EP(z) increases the most when X ∼ML(α, θ), larger than doubled. This is
also expected because EP(z) is determined by F̄X (z) in the approximation and
ML(α,θ ) is more flexible in tail control, that is, the tail changes from the thinnest
to the heaviest among these distributions as θ decreases.

Another possible issue is the pricing of this insurance product. Since most
of the premium calculation principles involve calculations of the first and sec-
ond moments, we need to investigate alternatives as these indexes do not exist
for θ < 1. One alternative is to use the median and the interquartile range,
that is, F−1( 34 )− F−1( 14 ), for replacements of the first and second moments.
Another alternative is to use the moments of θ = 1 as benchmarks and add
loadings for θ < 1 cases, where the calculation of loadings could be based on
the EP analysis. Similarly, we can start with the inverse of the mode of the
density function, which can be derived by various approximation techniques
or graphically. Under this numerical illustration, loss amounts are $3.5m, $3m
and $3m for θ =1, 0.95 and 0.9, respectively. Then, premiums can be calculated
by adjusting different risk loadings.
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