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Abstract
Random constraint satisfaction problems play an important role in computer science and combinatorics.
For example, they provide challenging benchmark examples for algorithms, and they have been harnessed
in probabilistic constructions of combinatorial structures with peculiar features. In an important con-
tribution (Krzakala et al. 2007, Proc. Nat. Acad. Sci.), physicists made several predictions on the precise
location and nature of phase transitions in random constraint satisfaction problems. Specifically, they pre-
dicted that their satisfiability thresholds are quite generally preceded by several other thresholds that have
a substantial impact both combinatorially and computationally. These include the condensation phase
transition, where long-range correlations between variables emerge, and the reconstruction threshold. In
this paper we prove these physics predictions for a broad class of random constraint satisfaction problems.
Additionally, we obtain contiguity results that have implications for Bayesian inference tasks, a subject that
has received a great deal of interest recently (e.g. Banks et al. 2016, Proc. 29th COLT).
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1. Introduction
1.1 Background andmotivation
Random constraint satisfaction problems (‘CSPs’) have come to play a prominent role at the junc-
tion of combinatorics, computer science and statistical physics [7]. In combinatorics the study
of random CSPs goes back to the seminal paper by Erdős and Rényi that started the theory of
random graphs [40]. In modern language, they posed the problem of pinpointing the thresh-
old for q-colourability in random graphs, a question that remains open to this day but that has
nevertheless sparked ground-breaking contributions (e.g. [6, 72]). In computer science random
CSPs are of fundamental interest as algorithmic benchmarks for computationally hard problems
such as graph colouring or k-SAT and as gadgets for cryptographic constructions or reductions in
complexity theory (e.g. [22, 41, 42, 45, 50]).

Random CSPs also occur as models of disordered systems in statistical physics. Specifically,
whereas in classical models such as the Ising model on Z

d the interactions follow a regular lat-
tice structure, geometries induced by sparse random graphs have been proposed as models of
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(spin-)glasses [61]. Over the past 20 years physicists have devised a non-rigorous but analytic
technique for the study of these models, called the cavity method. The rigorous vindication of its
‘predictions’ has emerged as a challenging but fruitful endeavour, in the course of which novel
proof techniques have been discovered (e.g. the interpolation method [20, 44, 53, 67]).

A fundamental question in the study of random CSPs concerns their satisfiability thresholds,
which mark the largest density of constraints to variables up to which a solution likely exists.
There has been tremendous progress over the past two decades (e.g. [5, 6, 8, 29, 36, 35]). But
in an important paper [59] physicists predicted the existence of several further phase transi-
tions preceding the satisfiability threshold. At these other transition points the geometry of the
solution space and thus, probabilistically speaking, the Boltzmann distribution induced by the
CSP instance undergo qualitative changes. These are expected to affect, for example, the perfor-
mance of algorithms attempting to construct solutions or the mixing times of Markov chains
[3, 47, 46, 64].

The most important of these phase transitions is called the condensation phase transition.
Generally expected to occur at a constraint density within a whisker of the satisfiability threshold,
it is thought to mark the onset of extensive long-range correlations. More precisely, for densi-
ties below condensation, the correlations between variables that are far apart in the hypergraph
induced by the CSP instance are expected to decay. The regime of densities below the conden-
sation phase transition is therefore called the replica symmetric phase. By contrast, long-range
correlations are deemed to persist beyond the condensation threshold; in physics jargon, replica
symmetry is broken. Furthermore, the reconstruction threshold, which in most examples occurs at
a constraint density well below the condensation threshold, marks the onset of point-to-set corre-
lations where the value assigned to a variable x remains correlated with the values assigned jointly
to all the variables at distance � from x even as �→ ∞. In the physics literature this has been
associated with the shattering of the set of solutions into numerous tiny clusters [61, 62].

This paper contributes a systematic rigorous study of the replica symmetric phase for a broad
family of random CSPs, for which we prove many of the conjectures from [59]. In particular, we
pinpoint the precise condensation phase transition and we establish the absence of long-range
correlations below this threshold. Concrete examples of CSPs covered by theses results include
the random graph colouring problem, random hypergraph colouring and the random k-NAESAT
problem. In all of these specific examples the generic approach developed here enables us to
significantly strengthen prior results that were derived via problem-specific arguments.

In terms of techniques, the present paper builds upon [25, 27]. These papers almost exclusively
dealt with models with soft constraints only (such as the Potts antiferromagnet), whereas here
we extend those methods to the case of hard constraints that strictly forbid certain value com-
binations (such as graph colouring). While this difference may seem innocuous, the presence of
hard constraints causes substantial technical complications. Before stating the main results about
general CSPs in Section 2, in the following subsections we present some of their implications for
two particularly well-studied examples, the random k-NAESAT problem and the random graph
colouring problem.

1.2 Random k-NAESAT
Let k� 3 be an integer and consider the usual model Fk(n,m) of a random propositional formula
over the Boolean variables x1, . . . , xn. Thus, Fk(n,m) is obtained by insertingm independent ran-
dom clauses of length k such that no variable appears twice in the same clause. We recall that
a Boolean assignment σ of x1, . . . , xn is NAE-satisfying if, under both σ and its binary inverse
σ̄ , all m clauses evaluate to ‘true’. Here NAE stands for ‘not-all-equal’, because every clause must
contain at least one literal that evaluates to true as well as at least one that evaluates to false. To
parametrize the problem conveniently we will consider formulas withm= Po(dn/k) clauses for a
fixed number d> 0. Thus, any variable occurs in d clauses on average. The problem of deciding
whether a given k-CNF formula is NAE-satisfiable is NP-complete [71].
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The random k-NAESAT problem is one of the standard examples of random CSPs and has
received a great deal of attention. In particular, in an influential paper Achlioptas and Moore [5]
pioneered the use of the second moment method for estimating the partition functions of ran-
dom CSPs with the example of random k-NAESAT. To be precise, in the case of k-NAESAT
the partition function Z(Fk(n,m)) is simply the total number of NAE-satisfying assignments
of the random formula. A straightforward first moment calculation shows that with high
probability

n
√
Z(Fk(n,m))� 2(1− 21−k)d/k+o(1). (1.1)

Indeed, there are 2n possible truth assignments. Moreover, the probability that any fixed truth
assignment fails to NAE-satisfy one random k-clause is 21−k, because out of the 2k possible
assignments of k variables precisely two fail to be NAE-satisfying. In particular, (1.1) implies that
Fk(n,m) fails to be NAE-satisfiable w.h.p. if

d> k2k−1 ln 2− k ln 2/2.

The upper bound (1.1) is clearly tight for small densities d. For instance, if d< 1/(k− 1)
is so small that the random hypergraph induced by Fk(n,m) does not contain a giant com-
ponent w.h.p., then Z(Fk(n,m))=�(2n(1− 21−k)m) w.h.p., as is easily verified by counting
NAE-solutions of acyclic formulas. But remarkably, Achlioptas and Moore showed via the second
moment method that (1.1) remains tight for much larger densities, namely for d< k2k−1 ln 2−
k(1+ ln 2/2). Subsequently Coja-Oghlan and Zdeborová [32] improved this bound slightly and
showed that (1.1) continues to be tight as long as

d< k2k−1 ln 2− k
(
ln 2
2

+ 1
4

)
+ εk, (1.2)

where εk hides an error term that tends to zero in the limit of large k. In fact, up to the precise
value of εk the bound (1.2) matches the density up to which (1.1) has been predicted to be tight via
the cavity method [59]. However, due to the εk the expression (1.2) is informative only for (very)
large k.

By contrast, the following theorem establishes the exact physics prediction for every k� 3. To
state the result we introduce�(x)= x ln x with the convention that�(0)= 0. Further, γ signifies
a Po(d) random variable. Finally, let P∗[0, 1] be the set of all probability measures π on [0, 1] with
mean 1/2 and let (ρ(π)i )i�1 ∈ [0, 1]∞ denote a family of samples from π , mutually independent
and independent of γ .

Theorem 1.1. For k� 3, d> 0 and π ∈P∗[0, 1], let

B(d, π)=E

[�(∏γ
i=1 (1− ∏k−1

j=1 ρ
(π)
ki+j)+

∏γ
i=1 (1− ∏k−1

j=1 (1− ρ
(π)
ki+j)))

2(1− 21−k)γ

− d(k− 1)�(1− ∏k
j=1 ρ

(π)
j − ∏k

j=1 (1− ρ
(π)
j ))

k(1− 21−k)

]
,

dcond = inf
{
d> 0 : sup

π∈P∗[0,1]
B(d, π)> ln 2+ d

k
ln (1− 21−k)

}
.

Then, for all d< dcond,
n
√
Z(Fk(n,m)) n→ ∞−→ 2(1− 21−k)d/k in probability.

https://doi.org/10.1017/S0963548319000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000440


Combinatorics, Probability and Computing 349

By contrast, for any d> dcond there exists η > 0 such that

lim sup
n→∞

P
[ n
√
Z(Fk(n,m))> 2(1− 21−k)d/k − η]1/n < 1. (1.3)

Thus, dcond marks the precise threshold up to which (1.1) is tight. Indeed, (1.3) shows
that n

√
Z(Fk(n,m)) takes a strictly smaller value with probability 1− exp(−	(n)) for d> dcond.

Admittedly, the formula for dcond, involving an optimization problem over a probability mea-
sure on the unit interval, is not explicit, and it is potentially difficult to evaluate. But given the
combinatorial intricacy of the (NP-hard) k-NAESAT problem we may not be entitled to a simple
answer. More generally, the physics predictions typically take the form of distributional optimiza-
tion problems. Yet it also seems clear that elementary techniques such as the combinatorial second
moment method will hardly suffice to establish such predictions precisely.

Theorem 2.5 shows that dcond is a genuine phase transition, called the condensation phase
transition, since the functions d �→E

n
√
Z(Fk(n,m)) fail to converge to an analytic limit at the

point dcond. Indeed, the theorem implies that the limit exists and matches the entire function
2(1− 21−k)d/k for d< dcond. By contrast, for d> dcond the limit may not exist, and even if it does
it is strictly smaller than 2(1− 21−k)d/k.

Additionally, up to dcond there occurs an important decay of correlation phenomenon.
Formally, let σ , τ signify two independently chosen random NAE-satisfying assignments of
Fk(n,m) (given that the formula is NAE-satisfiable). Representing the Boolean values false and
true by ±1, we think of σ , τ as vectors in {±1}n. Let us denote the expectation with respect to
the choice of σ , τ given the random formula Fk(n,m) by 〈 · 〉Fk(n,m), whereas we use the stan-
dard symbols E[ · ], P[ · ] to refer to the choice of Fk(n,m) itself. The second moment argument
of Achlioptas and Moore [5] was based on showing by elementary calculations that for d/k<
2k−1 ln 2− (1+ ln 2/2), the vectors σ , τ are nearly perpendicular w.h.p. Formally, their inner
product satisfies σ · τ = o(n) w.h.p. According to the cavity method, this property should extend
right up to the condensation threshold dcond. The following theorem verifies this conjecture.

Theorem 1.2. Let k� 3. For all 0< d< dcond we have

lim
n→∞

1
n
E[〈|σ · τ |〉Fk(n,m) | Z(Fk(n,m))> 0]= 0. (1.4)

Due to standard results about probability measures on the cube {±1}n we can express (1.4)
in terms of pairwise correlations between the truth values assigned to variables [17]. Specifically,
(1.4) is equivalent to the statement

lim
n→∞

1
n2

n∑
i,j=1

E[|〈σ (xi) · σ (xj)〉Fk(n,m)| | Z(Fk(n,m))> 0]= 0. (1.5)

Hence, for d< dcond the truth values σ (xi), σ (xj) assigned to two randomly chosen variables xi, xj
are asymptotically independent. Physics calculations predict that neither (1.4) nor (1.5) continue
to hold for d> dcond.

Finally, let us refer to

dsat = inf
{
d> 0 : lim inf

n→∞ P[Z(Fk(n,m))> 0]< 1
}

as the satisfiability threshold of the random k-NAESAT problem. Coja-Oghlan and Panagiotou
[28] determined the asymptotic value of dsat, showing that

dsat = k2k−1 ln 2− k
(
ln 2
2

+ 1
4

)
+ εk, where εk → 0 as k→ ∞. (1.6)
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While (1.6) is asymptotically tight in the limit of large k, the condensation threshold dcond from
Theorem 1.1 yields a lower bound on dsat for every k� 3. This is the best current lower bound for
any specific k.

1.3 Random graph colouring
Let G=G(n, p) denote the random graph on n vertices {1, . . . , n} where each of the

(n
2
)
pos-

sible edges is present with probability p independently. If we set p= d/n for a fixed d> 0 and
a large n, then the average degree of the random graph will be asymptotically equal to d. Let
q� 3 be a number of colours and let Zq(G(n, p)) be the number of q-colourings of the random
graph. Understanding the random variable Zq(G(n, p)) for given d, q is one of the longest-standing
challenges in the theory of random graphs. In fact, the problem of identifying the q-colourability
threshold, i.e. the largest value of d up to which Zq(G(n, p))> 0 w.h.p., goes back to the seminal
paper of Erdős and Rényi [40].

Like in the random k-NAESAT problem it is easy to determine the number of q-colourings for
d< 1, where the there is no giant component yet. In this regime it is easily verified that

n
√
Zq(G(n, p)) n→ ∞−→ q(1− 1/q)d/2 in probability. (1.7)

In [27] the largest average degree dcond up to which this convergence in probability occurs was
determined. The precise formula involves a stochastic optimization problem akin to the one in
Theorem 1.1. Asymptotically in the limit of large q we have dcond = (2q− 1) ln q− 2 ln 2+ εq. By
comparison, for d> (2q− 1) ln q− 1+ εq the random graph fails to be q-colourable w.h.p. [24].

Equation (1.7) gives a ‘first-order’ approximation to Zq(G(n, p)) up to errors of size exp (o(n)).
But how large might the fluctuations of Zq(G(n, p)) be? Clearly, adding, removing or rewiring
a single edge is apt to change Zq(G(n, p)) by a constant factor (or even more). Consequently,
since key variables such as the number of vertices and edges in the giant component have fluctu-
ations of order�(

√
n) even once we condition on the total numberm of edges, one might expect

Zq(G(n, p)) to exhibit multiplicative fluctuations of order at least exp (�(
√
n)). However, Bapst,

Coja-Oghlan and Efthymiou [18] proved that for q exceeding a certain (undetermined but large)
constant q0 the random variable Zq(G(n, p)) is concentrated remarkably tightly for all d< dcond.
More specifically, Zq(G(n, p)) has bounded multiplicative fluctuations once we condition on the
number m of edges of the random graph. In fact, Raßmann [69] determined the precise lim-
iting distribution of Zq(G(n, p)) given m for all d< dcond under the assumption that q> q0 is
sufficiently large. As an application of our general results we obtain the limiting distribution of
ln Zq(G(n, p)) for d< dcond for all q� 3, thereby closing the gap left by [18, 69].

Theorem 1.3. Let q� 3 and 0< d< dcond(q). With (K�)��3 a sequence of independent Poisson
variables with means E[K�]= d�/(2�), let

K =
∞∏
�=3

(1+ δ�)K� exp
(

−d�δ�
2�

)
, where δ� = −(1− q)1−�.

Then K> 0 almost surely, and we have the following convergence in distribution:

Zq(G(n, p))
qn(1− 1/q)m

n→ ∞−→ √q
(
1+ d

q− 1

)(1−q)/2
exp

(
−dδ1

2
− d2δ2

4

)
K.

As an application of Theorem 1.3 we obtain a result that characterizes the combinatorial struc-
ture of typical q-colourings of the random graph for all d< dcond very accurately. A similar result
was obtained previously in [26], but required the extraneous assumption that q> q0 for some very
large constant q0. To formulate the result, let∇�(G, v) denote the subgraph ofG induced on the set

https://doi.org/10.1017/S0963548319000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000440


Combinatorics, Probability and Computing 351

of vertices at distance at most � from vertex v. For a fixed � and large n this subgraph is a tree w.h.p.
Furthermore, let μG,∇�(G,v) denote the distribution on the set of q-colourings of ∇�(G, v) induced
by a uniformly random q-colouring of the entire graph. For comparison, let μ∇�(G,v) be the uni-
form distribution on the set of all q-colourings of the subgraph ∇�(G, v) only. Clearly, a priori
μG,∇�(G,v) and μ∇�(G,v) could be quite different because the latter ignores the ‘external’ connec-
tions of the boundary vertices at distance � from v via (long) paths throughG− ∇�(G, v). Yet the
next theorem shows that for almost all vertices v the two distributions asymptotically coincide.

Theorem 1.4. Let q� 3, 0< d< dcond(q) and �� 1. Then

lim
n→∞

1
n

n∑
v=1

E[dTV(μG,∇�(G,v),μ∇�(G,v))]= 0.

As an application of Theorem 1.4 we obtain a further result about the reconstruction problem.
We will give a precise definition in Section 2 below, but intuitively reconstruction occurs when
the colour of the vertex v remains correlated with the colours assigned to all the boundary ver-
tices at distance precisely � from v even for large values of �. A well-known conjecture from [59]
asserts that the threshold for reconstruction on the random graph coincides with the reconstruc-
tion threshold on the Galton–Watson tree that mimics the local structure of the random graph.
Previously this was confirmed only under the assumption that q be large enough [18, 48, 64].

2. Main results
2.1 Random constraint satisfaction problems
In this section we present the main results of the paper for a general family of random CSPs. To
set the stage we introduce a comprehensive model of random CSPs. The variables take values in
a finite domain 	 �= ∅. They are bound by constraints that each involve precisely k� 2 variables
and either discourage or outright forbid certain value combinations. The formal definition reads
as follows.

Definition 2.1. Let 	 �= ∅ be a finite set and let � be a finite set of functions 	k → [0, 1]. A
�-constraint satisfaction problem G= (V , F, (∂a)a∈F , (ψa)a∈F) comprises

• a set V of variables,
• a set F of constraints,
• an ordered k-tuple ∂a= (∂1a, . . . , ∂ka) ∈Vk for each a ∈ F and
• a constraint function ψa ∈� for each a ∈ F.

An assignment σ ∈	V satisfies G if ψa(σ (∂1a), . . . , σ (∂ka))> 0 for all a ∈ F; in symbols, σ |=G.

A �-CSP G induces a bipartite graph with vertex sets V and F where a ∈ F is adjacent
to ∂1a, . . . , ∂ka. We will therefore use graph-theoretic terminology and, for example, refer to
∂1a, . . . , ∂ka as the neighbours of a. Moreover, the length of shortest paths in the bipartite graph
induces a metric on the nodes of G.

For a�-CSP G and an assignment σ ∈	V , we let

ψG(σ )=
∏
a∈F
ψa(σ (∂1a), . . . , σ (∂ka)).

Moreover, we introduce the partition function Z(G)= ∑
σ∈	V ψG(σ ) as well as the Boltzmann

distribution
μG(σ )=ψG(σ )/Z(G) (σ ∈	V ),
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providing that Z(G)> 0. Further, we let S(G)= {σ ∈	V : σ |=G} be the set of satisfying assign-
ments. Inmany cases the functionsψ ∈� are {0, 1}-valued. ThenZ(G)= |S(G)| is just the number
of solutions. But as we will see in Section 3 there are interesting cases where the functions ψ take
values strictly between 0 and 1.

Standard examples of CSPs fit the framework provided by Definition 2.1.

Example 2.2 (hypergraph colouring). Suppose that k� 2 is an integer, that q� 2 is a number
of colours and that g = (V , E) is a k-uniform hypergraph. Recall that a q-colouring of g is a map
σ :V →	= {1, . . . , q} such that for every edge e ∈ E there exist v,w ∈ ewith σ (v) �= σ (w) (i.e. no
edge is monochromatic). Let�k,q = {ψk,q} be the singleton containing the function

ψk,q :	k → {0, 1}, σ �→ 1− 1{σ1 = · · · = σk}.
Then we can express the q-colourability problem on g as a �k,q-CSP G whose variables are the
vertices V and whose constraints are the edges E of g. For each edge e the k-tuple ∂e simply
contains the vertices incident with e in g (in any order) and ψe =ψk,q. Of course, the case k= 2
corresponds to the classical graph colouring problem.

Example 2.3 (k-NAESAT). Suppose that k� 2 is an integer and that g = a1 ∧ · · · ∧ am is a propo-
sitional formula over a set V = {x1, . . . , xn} of Boolean variables with clauses a1, . . . , am, each
containing precisely k literals. Let 	= {−1, 1} represent the Boolean values ‘true’ and ‘false’ and
recall that an assignment σ ∈	V is NAE-satisfying for g if the expression evaluates to ‘true’ under
both σ and its binary inverse −σ . This problem can be expressed as a CSP over the set �k−NAE
containing the 2k constraint functions

ψτ :	k → {0, 1}, σ �→ 1− 1{σ = τ } − 1{σ = −τ } (τ ∈	k).

Indeed, we turn g into a �k−NAE-CSP with variables V and constraints F = {a1, . . . , am}. We let
∂ai be the k-tuple of variables occurring in the clause ai. Moreover, letting τi,j = 1 if the jth literal
of ai is negated and τi,j = −1 otherwise, we let ψai =ψτi,1,...,τi,k .

We consider the following ‘Erdős–Rényi-like’ model of random CSP instances.

Definition 2.4. Suppose that � is a finite set of functions 	k → [0, 1] and that P is a probability
distribution on � . Then G(n,m, P) is the random �-CSP with variables Vn = {x1, . . . , xn} and
constraints Fm = {a1, . . . , am} such that

• ∂a1, . . . , ∂am ∈Vk
n are chosen uniformly from the set of all n(n− 1) · · · (n− k+ 1) tuples

consisting of pairwise distinct variables, requiring the k-sets ({∂1ai, . . . , ∂kai})i�m to be
pairwise distinct,

• the constraint functionsψa1 , . . . ,ψam ∈� are chosen independently from the distribution P.

Thus, the constraints a1, . . . , am are chosen nearly independently. The only condition is that
the hypergraph induced on Vn with edges {{∂1ai, . . . , ∂kai} : i= 1, . . . ,m} be k-uniform and sim-
ple. This condition is necessary to accommodate interesting examples such as the random graph
colouring problem.

The main results of this paper apply to all CSPs that satisfy a few (relatively) easy-to-check
assumptions. These come solely in terms of the distribution P on � . Throughout the paper we
always let ψ denote an element of� drawn from P. Moreover, we let

q= |	|, ξ = q−k
∑
σ∈	k

E[ψ(σ )].
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Furthermore, for ψ :	k → [0, 1] and a permutation θ of {1, . . . , k} we let
ψθ :	k → [0, 1], σ �→ψ(σθ(1), . . . , σθ(k))

denote the function obtained by permuting the coordinates according to θ . From here on we tac-
itly assume that the set � is closed under permutations, that is, for every ψ ∈� we have ψθ ∈�.
Moreover, we always assume that P(ψ)> 0 for all ψ ∈� and that

min
ψ∈� ,σ∈	k

ψ(σ )< max
ψ∈� ,σ∈	k

ψ(σ ). (2.1)

Let us write P(	) for the set of all probability distributions on 	. We identify P(	) with the
standard simplex in R

	. Moreover, we let P2∗(	) be the set of all probability distributions π on
P(	) such that

∫
P(	) μ(ω)dπ(μ)= 1/q for all ω ∈	. With these conventions the assumptions

on P read as follows.

SYM. For all i ∈ {1, . . . , k}, ω ∈	 and ψ ∈� we have∑
τ∈	k

1{τi =ω}ψ(τ )= qk−1ξ

and for every permutation θ and every ψ ∈� we have P(ψ)= P(ψθ ).

BAL. The function

φ :μ ∈P(	) �→
∑
τ∈	k

E[ψ(τ )]
k∏

i=1
μ(τi)

is concave and attains its maximum at the uniform distribution on	.

MIN. LetR(	) be the set of all probability distribution ρ = (ρ(s, t))s,t∈	 on	×	 such that∑
s∈	
ρ(s, t)=

∑
s∈	
ρ(t, s)= q−1 for all t ∈	.

The function

ϕ : ρ ∈R(	) �→
∑
σ ,τ∈	k

E[ψ(σ )ψ(τ )]
k∏

i=1
ρ(σi, τi)

has the uniform distribution on	×	 as its unique global minimizer.

POS. For all π , π ′ ∈P2∗(	) the following is true. With ρ1, ρ2, . . . chosen from π , ρ′
1, ρ

′
2, . . .

chosen from π ′ and ψ ∈� chosen from P, all mutually independent, we have for every �� 2,

E

[(
1−

∑
τ∈	k

ψ(τ )
k∏

i=1
ρi(τi)

)�
+ (k− 1)

(
1−

∑
τ∈	k

ψ(τ )
k∏

i=1
ρ′
i(τi)

)�

− k
(
1−

∑
τ∈	k

ψ(τ )ρ1(τ1)
k∏

i=2
ρ′
i(τi)

)�]
� 0.

UNI. If G is a �-CSP such that for every constraint a the variables ∂1a, . . . , ∂ka are pairwise
distinct and the bipartite graph induced by G is unicyclic, then G has a satisfying assignment.

Conditions SYM and BAL are symmetry assumptions. Specifically, SYM requires that no con-
straint exhibits an inherent ‘preference’ for any of the values ω ∈	 if the values of the other
variables are random. BAL is going to ensure that in a typical solution σ to a random CSP there
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are about n/q variables that take each value ω ∈	. Assumptions MIN and POS impose convex-
ity conditions that are required for technical reasons. Finally, UNI is going to ensure that in the
regime of constraint densities that we study, the probability of being satisfiable is either 1− o(1) or
o(1). (In particular, the condition rules out the random graph 2-colouring problem.) Conditions
SYM–POS occurred in earlier work on problems with soft constraints [25, 27].

Crucially, the above conditions only refer to the distribution P on the set� of weight functions.
They are usually (relatively) easy to check. Indeed, in Section 3 we will verify the conditions for
several well-known examples. Not all of our results require all of the assumptions, and we shall
always indicate in brackets which ones are needed.

2.2 The condensation phase transition
In order to state the main theorems in a unified way, we let m be a random variable with dis-
tribution Po(dn/k) and we introduce G=G(n,m, P). In this way we are left with just the single
parameter d. As in the examples in Section 1 we can easily calculate Z(G) for small values of d.
For instance, for d< 1/(k− 1) the bipartite graph induced by the random CSP does not feature
a giant component. Therefore, SYM implies that Z(G)= qnξm+o(n) w.h.p. The following theorem
determines the precise threshold up to which this identity holds, the condensation threshold. Recall
that�(x)= x ln x.

Theorem 2.5 (SYM, BAL,MIN,UNI). Let d> 0. With γ a Po(d)-random variable, ρ(π)1 , ρ(π)2 , . . .
chosen from π ∈P2∗(	) and ψ1,ψ2, . . . ∈� chosen from P, all mutually independent, let

B(d, P, π)=E

[
q−1ξ−γ�

(∑
σ∈	

γ∏
i=1

∑
τ∈	k

1{τk = σ }ψ i(τ )
k−1∏
j=1

ρ
(π)
ki+j(τj)

)

− d(k− 1)
kξ

�

( ∑
τ∈	k

ψ1(τ )
k∏

j=1
ρ
(π)
j (τj)

)]
, (2.2)

dcond = inf
{
d> 0 : sup

π∈P2∗ (	)
B(d, P, π)> ln q+ d

k
ln ξ

}
. (2.3)

Then for all d< dcond we have
n
√
Z(G) n→ ∞−→ qξd/k in probability. (2.4)

By contrast, if P also satisfies POS, then for any d> dcond there exists ε > 0 such that

lim sup
n→∞

P[ n
√
Z(G)> qξd/k − ε]1/n < 1− ε. (2.5)

The functional B that is used to detect the condensation phase transition is a compact version
of the so-called ‘Bethe free entropy’ from physics [61]. Generally, the Bethe free entropy provides
a formula for the free energy of tree factor graphs in terms of local quantities, i.e.marginal distri-
butions of variable and factor nodes. Alternatively, these marginal distributions can be described
as fixed points of the Belief Propagation message passing scheme, and so equivalently, the Bethe
free energy expresses the free energy of a finite tree factor graph in terms of the unique Belief
Propagation fixed point. The intuitive explanation of the appearance of B in Theorem 2.5 is
that asymptotically, up to a constraint density d< dcond, this line of computation remains true,
when applied to the random (and possibly infinite) Galton–Watson tree that describes the local
structure of the random graph.
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Thus, for d< dcond we have Z(G)= qn+o(n)ξm with high probability. By contrast, Z(G) is
exponentially smaller than this expression for d> dcond. To be precise, Z(G)� qn−	(n)ξm with
probability 1− exp(−	(n)) for d> dcond. Consequently, since d �→ qξd/k is an entire function,
Theorem 2.5 shows that E n√Z(G), viewed as a function of d, fails to converge to an analytic limit
at dcond as n→ ∞. Therefore, dcond marks a genuine phase transition.

Further, let us call

dsat = inf
{
d> 0 : lim inf

n→∞ P[Z(G)> 0]< 1
}

the satisfiability threshold of the random CSP. Since (2.1) guarantees that ξ > 0, we have qξd/k > 0
for all d> 0. Hence, (2.4) shows that Z(G)> 0 w.h.p. for all d< dcond. In effect,

dcond � dsat. (2.6)

Most of the prior contributions on lower-bounding satisfiability thresholds of various CSPs via
the second moment method (e.g. [5, 6, 13, 39]) actually lower-bound the condensation threshold.
To be precise, suppose that for some d> 0 the second moment bound

E[Z(G)2 |m]�O(E[Z(G) |m]2)

holds with high probability over the choice of m. (For second moment calculations it is vital to
condition on m.) Then the Paley–Zygmund inequality shows that there exists a constant δ > 0
such that w.h.p. over the choice ofm,

P[Z(G)� δqξm |m]�	(1).
Hence, (2.5) implies that d� dcond. In fact, in most examples of random CSPs (2.6) is strictly
better than any previously known lower bound on the satisfiability threshold.

2.3 The Kesten–Stigum bound
While exact, the formula for dcond from Theorem 2.5 may not be easy to evaluate. However, there
is an important upper bound that is. For a function ψ ∈� , let �ψ ∈R

	×	 be the matrix with
entries

�ψ (ω,ω′)= q1−kξ−1
∑
τ∈	k

1{τ1 =ω, τ2 =ω′}ψ(τ ) (ω,ω′ ∈	). (2.7)

Further, let� be the linear operator on the q2-dimensional space R	 ⊗R
	 defined by

�=E[�ψ ⊗�ψ ]. (2.8)

Additionally, with 1 denoting the vector with all entries equal to one, let

E = {z ∈R
q ⊗R

q : ∀y ∈R
q : 〈z, 1⊗ y〉 = 〈z, y⊗ 1〉 = 0} and

dKS =
(
(k− 1) max

x∈E : ‖x‖=1
〈�x, x〉

)−1
,

(2.9)

with the convention that dKS = ∞ if maxx∈E : ‖x‖=1〈�x, x〉 = 0.

Theorem 2.6 (SYM, BAL).We have dcond � dKS.

In the case of the random graph q-colouring problem (see Section 1.3 and Example 2.2) we
calculate dKS = (q− 1)2. This expression matches the Kesten–Stigum bound which plays a role
in broadcasting processes on random trees [56]. Moreover, for the graph colouring problem it
was shown in [27] that dcond � (q− 1)2. Thus Theorem 2.6 extends the Kesten–Stigum bound
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to general CSPs and shows that it always gives an upper bound on the condensation thresh-
old. While the Kesten–Stigum bound is conjectured to be tight in a few cases (such as random
graph 3-colouring), the bound fails to be tight in others (such as random graph 5-colouring) [73].
Generally the tightness of the Kesten–Stigum bound has implications for algorithmic problems, a
point we discuss further below.

2.4 The number of solutions
Theorem 2.5 determines the leading exponential order of the partition function for d< dcond. The
following theorem, which is the main result of the paper, takes a closer look and determines the
precise limiting distribution of Z(G) for d< dcond. Let

�=E[�ψ ] ∈R
	×	 (2.10)

and let Eig(�) be the multiset that contains the eigenvalues of � according to their geometric
multiplicities.

Theorem 2.7 (SYM, BAL, MIN, UNI). Suppose that 0< d< dcond. Let (K�)��1 be Poisson
variables with means

E[K�]= 1
2�

(d(k− 1))�

and let (ψ�,i,j)�,i,j�1 be a sequence of samples from P, all mutually independent. Then

K = exp
(
d(k− 1)(1− tr(�))

2
+ 1{k= 2}d

2(1− tr(�2))
4

)

×
∞∏

�=2+1{k=2}
exp

(
(d(k− 1))�

2�
(1− tr(��))

) K�∏
i=1

tr
�∏

j=1
�ψ�,i,j

satisfies K> 0 almost surely. Moreover, Eig(�)⊂ (− ∞, 0]∪ {1} and
Z(G)

qn+1/2ξm

∏
λ∈Eig(�)\{1}

√
1− d(k− 1)λ n→ ∞−→ K (2.11)

in distribution.

Thus, Theorem 2.7 shows that Z(G) is remarkably concentrated for d< dcond. Indeed, while
one might a priori expect that fluctuations of variables such as the order and size of the giant
component ofG have a significant knock-on effect on Z(G) and cause multiplicative fluctuations
of order at least exp (	(

√
n)), Theorem 2.7 shows that Z(G) merely has bounded multiplicative

fluctuations. We are not aware of a general physics prediction as to the limiting distribution of
the partition function of random CSPs, although there is a paper on the diluted version of the
Sherrington–Kirkpatrick model [43] (which does not have hard constraints).

2.5 The overlap
One of the main predictions of the physics paper [59] is that for densities d< dcond the Boltzmann
distribution μG does not exhibit extensive long-range correlations. The next theorem veri-
fies this conjecture. Define the overlap of assignments σ , τ ∈	Vn as the 	×	-matrix ρσ ,τ =
(ρσ ,τ (ω,ω′))s,t∈	 with

ρσ ,τ (ω,ω′)= |σ−1(ω)∩ τ−1(ω′)|/n.
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Since
∑
ω,ω′ ρσ ,τ (ω,ω′)= 1, we can view ρσ ,τ as a probability distribution on 	×	, namely

the empirical distribution of the value combinations (σ (xi), τ (xi))i=1,...,n. Let ρ̄ be the uniform
distribution on	×	. Moreover, write σ , τ for two independent samples chosen from μG, 〈 · 〉G
for the expectation with respect to σ , τ and E[ · ] for the expectation with respect to the choice
ofG.

Theorem 2.8 (SYM, BAL,MIN, UNI). For all 0< d< dcond we have

lim
n→∞ E[〈‖ρσ ,τ − ρ̄‖TV〉G | Z(G)> 0]= 0. (2.12)

For d< dcond the event Z(G)> 0 occurs w.h.p. due to (2.6).
Theorem 2.8 shows that for d< dcond the overlap of two random satisfying assignments σ , τ is

roughly uniform, that is, there is no extensive correlation between σ , τ . Using the general results
from [17] regarding probability measures on discrete cubes, we can express this result in terms
of pairwise correlations between variables. Specifically, for 1� i< j� n let μG,xi,xj be the joint
distribution of the values σ (xi), σ (xj). Thus, μG,xi,xj is a probability distribution on 	×	. Then
(2.12) can be rephrased equivalently as

lim
n→∞

1
n2

∑
1�i<j�n

E[‖μG,xi,xj − ρ̄‖TV | Z(G)> 0]= 0 (2.13)

(see Appendix A for a proof). In other words, for most pairs i, j the values σ (xi), σ (xj) are asymp-
totically independent. Equation (2.13) matches the precise definition of ‘static replica symmetry’
from [59, 61].

2.6 Local weak convergence
Since the expected distance between two uniform variables of G is 	( ln n), the correlation decay
property (2.13) mostly concerns pairs of variables that are far apart. Complementing this result,
the following theorem deals with the joint distribution of the values of variables in the vicinity of a
specific reference variable. Formally, for a variable x of a CSP instance G let ∇2�(G, x) be the CSP
obtained from G by deleting all variables and constraints at a distance greater than 2� from x. Of
course, μ∇2�(G,x) denotes the Boltzmann distribution of this CSP. For comparison, let μG,∇2�(G,x)
denote the joint distribution of the variables in ∇2�(G, x) under the Boltzmann distribution μG
of the entire CSP G. Thus, if all functions ψ are {0, 1}-valued, then μG,∇2�(G,x)(σ ) is proportional
to the number of possible ways of extending a satisfying assignment σ of ∇2�(G, x) to a satisfying
assignment of G.

A priori the two distributions μG,∇2�(G,xi) and μ∇2�(G,xi) might be rather different. Indeed,
under μ∇2�(G,xi) the boundary variables at distance precisely 2� from xi are subject to the sub-
CSP ∇2�(G, xi) only, whereas in μG,∇2�(G,xi) they are connected to further constraints. These
further constraints are apt to form longish chains (of a typical length of about �( ln n)) through
which the boundary variables are connected with each other, at least if d> 1/(k− 1) exceeds the
giant component threshold. Nevertheless, the following theorem shows that the correlations along
these chains decay quickly enough so that the two distributions are close to each other for most
variables xi.

Theorem 2.9 (SYM, BAL,MIN). Let 0< d< dcond. Then, for any �� 1,

lim
n→∞

1
n

n∑
i=1

E[‖μG,∇2�(G,xi) −μ∇2�(G,xi)‖TV | Z(G)> 0]= 0. (2.14)
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2.7 Reconstruction
Theorem 2.9 allows us to prove a prediction from [59] regarding a ‘point-to-set’ decorrelation
property called non-reconstruction. Recall that we let 〈 · 〉G denote the expectation with respect
to samples σ from μG. Further, let 〈 · | ∇2�(G, xi)〉G denote the conditional expectation given the
values σ (x) of all variables x at a distance greater than 2� from xi. Then we define

corr(d)= lim sup
�→∞

lim sup
n→∞

1
n

n∑
i=1

∑
ω∈	

E
[
1{Z(G)> 0}〈|〈1{σ (xi)=ω} | ∇2�(G, xi)〉G − 1/q|〉G

+ 1{Z(G)= 0}]. (2.15)

In words, we choose a random variable xi and a value ω ∈	. Then we choose a random CSP G

and check whetherG is satisfiable. If so, we draw a sample τ from the Boltzmann distribution μG

and fix the variables at a distance greater than 2� from xi to the values observed under τ (the outer
〈 · 〉G). Subsequently we draw a further sample σ from the Boltzmann distribution μG given the
boundary condition induced by τ (the inner 〈 · 〉G). The value that we record is by how much the
conditional marginal probability differs from 1/q. Additionally, unsatisfiableG contribute a value
of one. Thus, if corr(d)= 0 then typically the value of xi is independent of all the values at a large
enough distance �. The reconstruction threshold

drec = inf{d> 0 : corr(d)> 0} ∧ dcond (2.16)

is defined as the smallest density where this decorrelation property fails (or at most dcond).
A priori the reconstruction threshold seems extremely difficult to analyse because the defini-

tion of corr(d) involves the Boltzmann distribution induced by the random graph G. However,
verifying a prediction from [59], we prove that the Boltzmann distribution of the random graph
can be replaced by that of a random Galton–Watson tree, which is conceptually far simpler. This
multi-type Galton–Watson tree T(d, P) mimics the local structure of G. Its types are either vari-
ables or constraints, which come with a weight function ψ ∈� . The root is a variable r, and
the offspring of a variable is a Po(d) number of constraints whose weight functions are chosen
from P independently. The parent variable occurs in a random position from {1, . . . , k} in each of
these constraints; the positions are also chosen independently for each constraint. Moreover, each
constraint has precisely k− 1 children, which are variables. For an integer �� 0 we let T2�(d, P)
denote the top 2� layers of this tree and we define

corr�(d)= lim
�→∞

∑
ω∈	

E〈|〈1{σ (r)=ω} | ∇2�(T2�(d, P), r)〉T2�(d,P) − 1/q|〉T2�(d,P). (2.17)

Of course, the outer expectation E[ · ] refers to the Galton–Watson process, the outer 〈 · 〉T2�(d,P)
represents the choice of a random boundary condition (i.e. the values of all variables at distance
precisely 2� from r), and the inner 〈 · 〉T2�(d,P) stands for the conditional distribution of the value
σ (r) given the boundary condition. The tree reconstruction threshold is defined as

d�rec = inf{d> 0 : corr�(d)> 0}.

Theorem 2.10 (SYM, BAL,MIN, POS, UNI).We have d�rec = drec.

Thus, Theorem 2.10 reduces the study of the reconstruction problem onG to the same problem
on the random tree T(d, P), a task that can be tackled via a number of techniques (such as the
‘contraction method’ [15]).
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2.8 Quiet planting
A random CSP organically gives rise to an associated distribution on inference problems called
the planted model. This is a random CSP instance built around a given ‘planted’ solution. The
algorithmic task is to detect and infer the planted solution from the CSP instance. This compu-
tational challenge, which has a remarkably long history, has been harnessed as a benchmark for
algorithms based on a broad variety of paradigms, ranging from combinatorial to spectral meth-
ods to semidefinite programming (e.g. [9, 38, 57]). In addition, planted models have been put
forward as one-way function candidates in cryptography [50].

To define the planted model, first draw an assignment σ ∗ ∈	Vn uniformly at random. Given
σ ∗, letG∗(n,m, P, σ ∗) be the random CSP instance drawn from the distribution

P[G∗(n,m, P, σ ∗)=G | σ ∗]= ψG(σ ∗)P[G(n,m, P)=G]
E[ψG(n,m,P)(σ ∗)]

. (2.18)

Thus, we reweigh the prior G(n,m, P) according to the weight ψG(σ ∗) of the planted assign-
ment. In the most common case where all functions ψ ∈� are {0, 1}-valued, (2.18) can be stated
equivalently as follows:

Draw G
∗(n,m, P, σ ∗) from the conditional distribution of G(n,m, P) given the event

{σ ∗ |=G(n,m, P)}.
In other words, G∗(n,m, P, σ ∗) is chosen uniformly from the set of all CSP instances for which
σ ∗ is satisfying.

In the event that

E[ψG(n,m,P)(σ ∗)]= 0,

the distribution G
∗(n,m, P, σ ∗) is undefined. To deal with this technicality we let G∗ be the con-

ditional distribution of G∗(n,m, P, σ ∗) given E[ψG(n,m,P)(σ ∗)]> 0, where we recall that m has
distribution Po(dn/k). Because in a random assignment σ ∗ each value ω ∈	 very likely occurs
about n/q times, condition SYM ensures that the event E[ψG(n,m,P)(σ ∗)]> 0 has probability
1− exp(−	(n)) for any fixed d> 0.

The most modest algorithmic question associated with the planted model is the detection prob-
lem (see [16, 33, 65]). It asks for an algorithm that can distinguish the planted model G∗ from
the null model G. Formally, with probability 1/2 the algorithm is given an input from the distri-
bution G, and with probability 1/2 the input is drawn from G

∗. The task is to discern correctly
with high probability fromwhich distribution the input was chosen. The following theorem shows
that dcond marks the threshold from where such an algorithm exists. Recall that the two random
graph models G,G∗ are mutually contiguous if, for any sequence (En)n�1 of events, we have the
equivalence

lim
n→∞ P[G ∈ En]= 0 ⇔ lim

n→∞ P[G∗ ∈ En]= 0.

By contrast, we call the modelsmutually orthogonal if there exists (En)n�1 such that

lim
n→∞ P[G ∈ En]= 1, while lim

n→∞ P[G∗ ∈ En]= 0.

Theorem 2.11 (SYM, BAL, MIN, UNI). For all d< dcond the models G and G
∗ are mutually

contiguous. If POS is satisfied as well, thenG andG∗ are mutually orthogonal for all d> dcond.

In particular, for d< dcond no algorithm can tell with high probability whether its input stems
from G or G∗, regardless of the running time. By contrast, the proof of Theorem 2.11 yields an
(exponential time) algorithm that distinguishes the two distributions w.h.p. for d> dcond.
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The first part of Theorem 2.11 can be sharpened in an important way. Namely, the contiguity
statement extends to the graph/satisfying assignment pairs (G∗, σ ∗) and (G, σ ), where we recall
that σ denotes a satisfying assignment drawn from the Boltzmann distribution μG.

Corollary 2.12 (SYM, BAL, MIN, UNI). For every d< dcond the pairs (G, σ ) and (G∗, σ ∗) are
mutually contiguous.

Corollary 2.12 enables us to study typical properties of the pair (G, σ ) by way of the planted
model (G∗, σ ∗), a technique known as quiet planting [3, 60]. This method has proved vital for the
analysis of many properties of specific examples of random CSPs (e.g. [10, 63]). Corollary 2.12
shows that quiet planting is a universal technique and establishes dcond as the precise threshold up
to which the method is applicable.

2.9 Discussion and related work
The results presented in this section vindicate and go in some ways beyond the predictions made
in [59] on the basis of the non-rigorous cavity method for a broad class of random constraint sat-
isfaction problems. In short, we obtain a very accurate description of the ‘replica symmetric’ phase
of random CSPs, i.e. of the regime of densities up to the condensation threshold. Since in many
prominent examples the condensation threshold is known to be quite close to the satisfiability
threshold, these results typically cover most of the satisfiable regime. Furthermore, we expect that
the ‘quiet planting’ result (Theorem 2.11 and Corollary 2.12) will pave the way for further detailed
results on the evolution of random CSPs.

That said, a number of questions remain open. Specifically, we know very little about the regime
d> dcond, i.e. beyond the replica symmetric phase. For instance, neither the decorrelation prop-
erty (2.13) nor the local convergence property (2.14) are conjectured to extend beyond dcond, but
we do not currently have a proof. Furthermore, in [59] the reconstruction threshold is simply
defined as drec = inf{d> 0 : corr(d)> 0}, without taking the min with dcond as in (2.16). We con-
jecture that these two definitions are equivalent, which would follow immediately if we knew that
(2.12) does not hold for d> dcond. Also, apart from the example of the regular k-NAESAT problem
for large k [74], the limit of n√Z(G) is not known for d> dcond for any random CSP.

An important feature of the results presented here is that they apply to CSPs with very small
average degrees. In most previous work, particularly in work based on combinatorial second
moment arguments [19, 28, 29, 36, 35], the assumption that the average variable degree is suf-
ficiently large is endemic. The assumption is usually made implicitly by requiring, for example,
that the number q of colours in the graph colouring problem or the clause length k in a random
k-NAESAT problem is sufficiently large. Roughly speaking, these combinatorial arguments effec-
tively use the notion that a sufficiently dense Erdős–Rényi graph is not very far from regular. By
contrast, since here we avoid such asymptotic arguments, we are in a position to do away with
implicit or explicit density assumptions.

One of the guiding themes in the theory of random CSPs is the quest for satisfiability thresh-
olds. Despite considerable efforts, to this day the exact thresholds are known in only a handful of
cases such as random 2-SAT, random 1-in-k-SAT, random k-XORSAT and random linear equa-
tions [4, 12, 23, 34, 37, 49, 68]. Additionally, a line of work on the second moment method
[5, 8, 28, 29, 36] culminated in the exact computation of the k-SAT threshold for large k [35].
In other cases such as (hyper-) graph colouring, upper and lower bounds are known that differ by
a small additive constant in the limit of large k and/or q [6, 13, 19, 24, 32, 39]. We observed that as
a by-product Theorem 2.7 yields lower bounds on the satisfiability thresholds of several problems,
particularly hypergraph colouring and random k-SAT for small k, which are at least as good as
(and likely better than) those obtained in prior work [8, 13, 39].
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While in Section 3 we will see many examples of random CSPs that satisfy the assumptions
SYM, BAL, etc., there are a few interesting ones that do not. For instance, the random k-SAT
problem fails to satisfy SYM. At the same time, it is easy to prove that in random k-SAT the
number of solutions is not as tightly concentrated as Theorem 2.7 shows it is in the case of prob-
lems that satisfy our assumptions. In fact, the random k-SAT partition function has multiplicative
fluctuations of order exp (	(

√
n)). Thus, random k-SAT is materially different.

Theorems 2.6 and 2.11 can be seen as generalizations of results obtained in [16, 25] for the
stochastic block model, a planted version of the Potts model that has become a prominent bench-
mark for Bayesian inference [1, 65]. In the stochastic block model the Kesten–Stigum bound
marks the point from where an efficient algorithm is known to solve the detection problem [2].
But generally the Kesten–Stigum bound is strictly greater than the condensation threshold, and it
has been conjectured that in the intermediate regime the detection problem can be solved in expo-
nential but not in polynomial time [33]. In light of Theorems 2.6 and 2.11 it would be interesting
to see if the detection problem can be solved efficiently for general random CSPs if d> dKS, and in
fact if there are examples of (in the worst case NP-hard) random CSPs where efficient algorithms
succeed for dcond < d< dKS.

With respect to proof techniques the present work builds strongly upon the methods devel-
oped in [25, 27]. The additional technical challenge that we need to confront is the presence of
hard constraints that strictly forbid certain value combinations. In other words, we allow con-
straint functionsψ that may take the value 0, whereas [25] deals with soft constraints only, as does
[27], apart from an ad hoc limiting result about the condensation threshold in the random graph
colouring problem. We will discuss the difficulties that hard constraints cause in more detail as
we proceed, but roughly speaking the matter is as follows. One of the main proof steps is to quan-
tify precisely the evolution of the partition function of the random CSP if we add one random
constraint after the other. While we can use the techniques from [25, 27] directly to analyse the
typical effect of adding a hard constraint, there is an error probability that these estimates are off.
In the case of soft constraints, this is not a very serious issue because the impact of a single soft
constraint cannot be catastrophic. But in the presence of hard constraints it can. In fact, a single
awkward constraint can wipe out all satisfying assignments in one stroke. In summary, we will
still follow the strategy developed in [25, 27], but we have to come up with new ideas to cope with
‘exceptional’ cases more accurately. Hence, throughout Sections 6 and 7 we repeatedly adapt or
apply arguments from [25, 27]. To avoid repetitions we put off those bits of the arguments that
required only minute amendments to the appendix. Additionally, we will be able to extend several
of the results from [25, 27] to the case of hard constraints directly by a limiting argument. More
details can be found in Section 5, which contains a proof outline.

The proofs of Theorems 2.9 and 2.10 about local weak convergence and the reconstruc-
tion problem are based on a new argument that is somewhat more straightforward than prior
ones from [25, 26, 64]. The basic proof idea, which goes back to the work of Gerschenfeld and
Montanari [48], is to derive the desired properties of the Boltzmann distribution from the overlap
result, Theorem 2.8 in our case. But the new insight here is that this implication can be obtained
fairly directly from a key statement called the Nishimori identity (Lemma 5.1 below). A similar
observation was made in [25, Section 11], but there the idea was used directly to deduce the recon-
struction threshold, without considering local weak convergence explicitly. Here we first establish
the local weak convergence result, from which we then derive the reconstruction statement. As it
turns out, this line of argument allows for a shorter, more transparent proof. The details can be
found in Section 8.

3. Examples
In the following we present several examples of well-studied CSPs that satisfy the assumptions of
the main results.
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3.1 Random k-NAESAT
In Example 2.3 we saw how the random k-NAESAT can be stated as a randomCSP over	= {±1}
with Pk−NAE being the uniform distribution on the 2k functions

ψτ : σ ∈	k �→ 1− 1{σ = τ } − 1{σ = −τ } for τ ∈	k.

Lemma 3.1. For any k� 3 the distribution Pk−NAE satisfies SYM, BAL,MIN, POS and UNI.

Proof. Clearly, q= 2 and ξ = 1− 21−k, and it is immediate that Pk−NAE is permutation-invariant.
Further, for either ω ∈	 and any τ ∈	k and any i ∈ [k] the number of assignments σ ∈	k with
σi =ω with ψτ (σ )= 1 is equal to 2k−1 − 1, which shows SYM. For BAL we observe that

φ(μ)=
∑
σ∈	k

E[ψ(σ )]
k∏

i=1
μ(σi)= 1− 2−k

∑
σ ,τ∈	k

(1{σ = τ } + 1{σ = −τ })
k∏

i=1
μ(σi)= 1− 21−k

(3.1)
is constant. Further, regardingMIN, fix a probability distribution ρ on	×	 such that ρ(1, 1)+
ρ(1,−1)= ρ(1, 1)+ ρ(− 1, 1)= 1/2 and let r = ρ(1, 1)+ ρ(− 1,−1). Then by (3.1),

ϕ(ρ)=
∑

σ ,σ ′∈	k

E[ψ(σ )ψ(σ ′)]
k∏

i=1
ρ(σi, σ ′

i )

= 1− 22−k + 2−k
∑

σ ,σ ′,τ∈	k

1{σ = ±τ , σ ′ = ±τ }
k∏

i=1
ρ(σi, σ ′

i )

= 1− 22−k + 21−k(rk + (1− r)k).
This function is convex and attains its minimum at r = 1/2, corresponding to ρ = ρ̄. Hence,
Pk−NAE satisfiesMIN.

Moving on to POS, fix two distributions π , π ′ ∈P2∗(	) and an integer �� 2. Then

E

[(
1−

∑
σ∈	k

ψ(σ )
k∏

i=1
ρi(σi)

)�]
= 2−k

∑
τ∈	k

E

[( k∏
i=1

ρi(τi)+
k∏

i=1
ρi(− τi)

)�]

= 2�−k
k∏

i=1
E[ρi(1)� + ρi(− 1)�]

= 2�−k
E[ρ1(1)� + ρ1(− 1)�]k. (3.2)

Analogously,

E

[(
1−

∑
σ∈	k

ψ(σ )
k∏

i=1
ρ′
i(σi)

)�]
= 2�−k

E[ρ′
1(1)

� + ρ′
1(− 1)�]k, (3.3)

E

[(
1−

∑
τ∈	k

ψ(τ )ρ1(τ1)
k∏

i=2
ρ′
i(τi)

)�]
= 2�−k

E[ρ1(1)� + ρ1(− 1)�]E[ρ′
1(1)

� + ρ′
1(− 1)�]k−1.

(3.4)

Due to the elementary inequalityXk + (k− 1)Yk − kXYk−1 � 0 for allX, Y � 0, POS follows from
(3.2)–(3.4). Finally, condition UNI is satisfied for k� 3 because every k-clause contains a variable
that does not belong to the cycle.
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Theorem 1.1 follows immediately by combining Lemma 3.1 with Theorem 2.5. Similarly,
Theorem 1.2 follows from Lemma 3.1 and Theorem 2.8.

3.2 Random (hyper-) graph colouring
The random hypergraph colouring problem was defined as a CSP in Example 2.2. The following
lemma shows that the problem satisfies all of our assumptions. Hence, Theorem 2.5 yields the
exact condensation threshold of this problem for all values of the uniformity parameter k and
the number q of colours, except naturally the trivial case q= k= 2. Additionally, Theorem 2.7
yields the limiting distribution of the number of colourings and Corollary 2.12 establishes quiet
planting. An asymptotically tight quiet planting result was obtained prior to the present work by
Ayre and Greenhill [14]. Specifically, for any fixed k� 3 they proved quiet planting for degrees
d< dcond − εk(q), where εk(q)→ 0 in the limit of large q. Additionally, Ayre and Greenhill obtain
the precise rigidity threshold in the random hypergraph problem, a question that we do not deal
with in the present work. Finally, for k= 2 we obtain Theorems 1.3 and 1.4 from Section 1.3.

Lemma 3.2. For any k� 2, q� 2with k+ q> 4 the random hypergraph colouring problem satisfies
SYM, BAL,MIN, POS and UNI.

Proof. We have 	= [q] and ξ = 1− q1−k and the single constraint function ψk,q is invari-
ant under permutations of its coordinates. Furthermore, if we fix the colour of one vertex in a
hyperedge, then there are qk−1 − 1 possible ways to colour the others so that the hyperedge is
bichromatic. Hence, SYM is satisfied. With respect to BAL we have

φ(μ)=
∑
σ∈	k

ψk,q(σ )
k∏

i=1
μ(σi)= 1−

∑
σ∈	

μ(σ )k. (3.5)

This function is concave with its maximum attained at the uniform distribution, whence BAL
follows. Coming to MIN, we fix a probability distribution ρ on 	 with uniform marginals. Then
(3.5) implies that

ϕ(ρ)=
∑
σ ,τ∈	k

ψk,q(σ )ψk,q(τ )
k∏

i=1
ρ(σi, τi)= 1− 2q1−k +

∑
σ ,τ∈	

ρ(σ , τ )k.

Clearly, the right-hand side is a convex function that attains its minimum at the uniform
distribution, whence we obtainMIN.

To show POS, fix two π , π ′ ∈P2∗(	) and �� 2. Then

E

[(
1−

∑
τ∈	k

ψk,q(τ )
k∏

i=1
ρi(τi)

)�]
=

∑
σ1,...,σ�∈	

E

[ k∏
i=1

�∏
j=1

ρi(σj)
]

=
∑

σ1,...,σ�∈	
E

[ �∏
j=1

ρ1(σj)
]k
.

(3.6)
Similarly,

E

[(
1−

∑
τ∈	k

ψk,q(τ )
k∏

i=1
ρ′
i(τi)

)�]
=

∑
σ1,...,σ�∈	

E

[ �∏
j=1

ρ′
1(σj)

]k
, (3.7)

E

[(
1−

∑
τ∈	k

ψk,q(τ )ρ1(τ1)
k∏

i=2
ρ′
i(τi)

)�]
=

∑
σ1,...,σ�∈	k

E

[ �∏
j=1

ρ1(σj)
]
E

[ �∏
j=1

ρ′
1(σj)

]k−1
. (3.8)
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Thus, POS follows from (3.6)–(3.8) and the elementary inequality Xk + (k− 1)Yk − kXYk−1 � 0
for X, Y � 0. Finally, it is well known that condition UNI is satisfied for all k, q� 2 except
k= q= 2.

3.3 Balanced satisfiability
The following CSP was introduced in [8] to derive a lower bound on the satisfiability threshold
for random k-SAT. Let	= {±1}, k� 3 and let λ= λ(k) ∈ (0, 1) be the unique root of

(1− λ)(1+ λ)k−1 − 1= 0. (3.9)
Further, for τ ∈	k let

ψτ (σ )= λ
∑k

j=1 1{σj=τj}
(
1−

k∏
i=1

1{σi = −τi}
)

(3.10)

and let Pk−BAL be the uniform distribution on these 2k functions.
If we omit the λ-factor in (3.10), then we recover the classical random k-SAT problem. Indeed,

if we identify the Boolean values true and false with −1 and +1, then a constraint endowed with
the function

σ ∈	k �→ 1−
k∏

i=1
1{σi = −τi} ∈ {0, 1} (3.11)

represents a k-clause in which the ith variable appears positively if τi = 1 and negatively if τi = −1.
However, as we explained in Section 2.9, the k-SAT problem fails to satisfy condition SYM, and
thus the results of the present paper do not cover this example. In fact, for the same reason it
is not possible to lower-bound the satisfiability threshold of random k-SAT by applying the sec-
ond moment method to the number of satisfying assignments (see [5, 8]). Therefore, in order to
lower-bound the k-SAT threshold, Achlioptas and Peres [8] introduced the weighted constraint
functions (3.10). The λ-factor weighs each σ according to the number of true literals; more specif-
ically, since λ ∈ (0, 1) there is a penalty for ‘over-satisfying’ clauses. This penalty factor guarantees
that SYM is satisfied in the resulting weighted CSP, which we call the balanced satisfiability prob-
lem. Achlioptas and Peres applied the second moment method to the corresponding partition
function Z(G(n,m, Pk−BAL)), which yields a lower bound on the number of satisfying assignments
as λ ∈ (0, 1).

The following lemma shows that the balanced satisfiability problem meets all our conditions
bar POS.

Lemma 3.3. For any k� 3 the distribution Pk−BAL satisfies SYM, BAL,MIN and UNI.

Theorem 2.5 and (2.6) therefore show that dcond is a lower bound on the satisfiability thresh-
old of the balanced satisfiability problem. In fact, because the ψτ are upper-bounded by the
unweighted (3.11), dcond is also a lower bound on the actual k-SAT threshold for every k� 3.
This lower bound, although difficult to evaluate numerically, improves over the one that can
be obtained via the second moment method. Furthermore, the contiguity result provided by
Theorem 2.11 proves a statistical physics conjecture of Krzakala, Mézard and Zdeborová [58].

Proof of Lemma 3.3. For SYM, note that for any σ ∈	k,

E[ψ(σ )]= 2−k
∑
τ∈	k

λ
∑k

j=1 1{σj=τj}
(
1−

k∏
i=1

1{σi = −τi}
)

= 2−k((1+ λ)k − 1)= 21−k λ

1− λ ,
(3.12)
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which directly implies ξ = 21−kλ/(1− λ). Hence, for all i ∈ {1, . . . , k}, ω ∈	 and τ ∈	k we have

∑
σ∈	k

1{σi =ω}ψτ (σ )=
∑
σ∈	k

1{σi =ω}
k∏

j=1
λ1{σj=τj} −

∑
σ∈	k

k∏
j=1

1{σj = −τj}1{σi =ω}

= (1+ λ)k−1λ1{τi=ω} − 1{τi �=ω}
= λ

1− λ = 2k−1ξ .

Thus, SYM is satisfied. As (3.12) implies that for any μ ∈P(	), φk−BAL(μ)= ξ , BAL is also
satisfied.

We next turn to condition MIN. Fix a probability distribution ρ on 	×	 such that
ρ(1, 1)+ ρ(1,−1)= ρ(1, 1)+ ρ(− 1, 1)= 1/2 and let r = ρ(1, 1)+ ρ(− 1,−1). Then ϕ(ρ)=
ϕ(r)= 2−kf (r) with f from [8, equation (8)] and thus

ϕ(r)=
(
r
2
(1− λ)2 + λ

)k
− 2

(
r
2
(1− λ)+ λ

2

)k
+

(
r
2

)k
. (3.13)

Using the definition of λ, we obtain

ϕ′(r)= k
2

k−1∑
j=1

(
k− 1
j

)(
r
2

− 1
4

)j(1
4

)k−1−j(
1−

(
1− λ
1+ λ

)j)2
. (3.14)

It is immediate from (3.14) that ϕ′(1/2)= 0, while ϕ′(r)> 0 for r ∈ (1/2, 1]. For r< 1/2, all terms
corresponding to odd j in (3.14) are negative, while those corresponding to even j are positive. Let

cj =
(
k− 1
j

)(
1
4

)k−1−j(
1−

(
1− λ
1+ λ

)j)2
such that ϕ′(r)= k

2

k−1∑
j=1

cj
(
r
2

− 1
4

)j
.

The ratio of an odd coefficient j and its even successor j+ 1 works out to be

cj
cj+1

= (j+ 1)
4(k− (j+ 1))

(
1−

(
1− λ
1+ λ

)j)2(
1−

(
1− λ
1+ λ

)j+1)−2
,

which is increasing in j. Thus, ϕ′(r) is negative for all r ∈ (0, 1/2) such that
1
4

− r
2
<

c1
c2
,

which is the case for

r>
1
2

− (1+ λ)2
4(k− 2)

= r∗k .

Unfortunately, only r∗3 � 0, and for k� 4 we upper-bound ϕ′(r) by hand for all r ∈ [0, r∗k ) to show
that is is negative. By [8, Lemma 7] for all k� 3 the following bounds on λ hold:

21−k + k4−k < 1− λ< 21−k + 3k4−k. (3.15)

Let

g(r)= (1− λ)2k−1 − 2λk−1 + rk−1

1− λ .
Using

r
2
(1− λ)2 < (1− λ) and

r
2
(1− λ)� 0,
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we obtain

ϕ′(r)= k
2

(
(1− λ)2

(
r
2
(1− λ)2 + λ

)k−1
− 2(1− λ)

(
r
2
(1− λ)+ λ

2

)k−1
+

(
r
2

)k−1)

< k2−k(1− λ)
(
(1− λ)2k−1 − 2λk−1 + rk−1

1− λ
)

= k2−k(1− λ)g(r).
As g(r) is strictly increasing in r, finding a r̄k ∈ [r∗k , 1/2) such that g(r̄k)� 0 for all k� 3 suffices to
establishMIN. To this end, for all k� 5, set

r̄k = λ
(
(1− λ)

(
2− 1+ 3 · 2−(k+1)k

1− (k− 1)21−k − 3k(k− 1)4−k

))1/(k−1)
.

Using (3.15) yields that

g(r̄k)= (1− λ)2k−1 − λk−1
(

1+ 3 · 2−(k+1)k
1− (k− 1)21−k − 3k(k− 1)4−k

)

� 1− λk−1

1− (k− 1)21−k − 3k(k− 1)4−k + 3k2−(k+1)
(
1− λk−1

1− (k− 1)21−k − 3k(k− 1)4−k

)

� 0,

because

λk−1 � (1− 21−k − 3k4−k)k−1 � 1− (k− 1)21−k − 3k(k− 1)4−k.

To verify that r̄k � r∗k , we have by (3.15) that for all k� 6

(1+ k2−(k+1))
(
2− 1+ 3 · 2−(k+1)k

1− (k− 1)21−k − 3k(k− 1)4−k

)
� 1

2
,

(k− 1)(21−k + 3k4−k)� 0.2 and (1+ λ)2 � 3.8. (3.16)

Thus, combining (3.15) and (3.3) yields

r̄k �
λ

2

(
exp

(
− ln 2
k− 1

))

� 1
2
(1− 21−k − 3k4−k)

(
1− ln 2

k− 1

)

� 1
2

− 2 ln 2+ 4(k− 1)(21−k + 3k4−k)
4(k− 1)

� 1
2

− 2.2
4(k− 1)

� r∗k .

For k= 5 we calculate that r∗5 < 0.19 whereas r̄5 > 0.32. We are left with the case k= 4 where
r∗4 < 0.083, but using g as an upper bound turns out to be too crude. We have 0.14< 1− λ< 0.18,
and thus for all r ∈ [0, 0.1] we calculate

ϕ′(r)� 2(0.182(0.1 · 0.182 + 0.18)3 − 2 · 0.14 · 0.73 + 0.13)�−0.18.

Finally, UNI is satisfied for k� 3 because every k-clause contains a variable that does not belong
to the cycle.
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3.4 Parity–majority
We consider the following compound CSP, which has been suggested as a device for construct-
ing one-way functions in cryptography [11].1 Each constraint function evaluates the XOR of two
structurally different parts, namely a parity check and a majority function. Formally, let	= {±1}
and k� 3 be an odd integer. For τ ∈	2k and a permutation θ of [2k], define the constraint
function ψτ ,θ :	2k → {0, 1},

ψτ ,θ (σ )= 1
{ k∏
i=1
σθ(i)τi = 1

}
1
{ 2k∑
i=k+1

σθ(i)τi < 0
}

+ 1
{ k∏
i=1
σθ(i)τi = −1

}
1
{ 2k∑
i=k+1

σθ(i)τi > 0
}
.

Let

� = {ψτ ,θ : τ ∈	2k, θ permutation of [2k]}
and let PMAJ be the uniform distribution over � . In words, a sample from PMAJ is generated by
uniformly choosing a vector of ‘signs’ (determining for each position whether the correspond-
ing input is negated) and k positions participating in the parity check and the majority function,
respectively. Now, an assignment σ satisfies ψτ ,θ if either the parity of the literals (σθ(i)τi)i=1,...,k
equals 1 and the majority of literals (σθ(i)τi)i=k+1,...,2k votes for −1, or vice versa.

Lemma 3.4. For any k� 3, the parity–majority problem satisfies SYM, BAL,MIN and UNI.

Permuting the inputs of the constraint functions is necessary for the second part of SYM
to hold. However, as for the rest of the arguments the particular choice of θ does not make a
structural difference, we may work with the identity map and lighten the notation to ψτ ,id =ψτ .
Claim 3.5. For any k� 3, the parity–majority problem satisfies SYM, BAL and UNI.

Proof. Let σ ∈	2k be arbitrary. The number of τ ∈	2k with ψτ (σ )= 1 equals 22k−1, as for any
(τ2, . . . , τ2k) there is exactly one choice of τ1 which leads to ψτ (σ )= 1. As each τ ∈	2k is chosen
with equal probability, this implies that E[ψ(σ )]= 1/2, irrespective of σ ∈	2k. Thus, ξ = 1/2.

Similarly, for each τ ∈	2k, i ∈ [2k],ω ∈	, the number of σ ∈	2k with ψτ (σ )= 1 and σi =ω
is 22k−2, as k� 3 and any choice of 2k− 1 components which satisfies σi =ω and does not fix one
of the first k parity components (σj, say) can be extended to a satisfying assignment by choosing
this variable σj in a unique way. Thus,

∑
σ∈	2k

1{σi =ω}ψτ (σ )= 22k−2 = 22k−1ξ ,

and due to the construction of� and the uniformity of PMAJ, SYM is satisfied. Further, the above
calculation shows that φMAJ(μ)= ξ for any μ ∈P(	), and thus BAL is also satisfied as well.
Finally, UNI is satisfied because, again, k� 3 and every k-clause contains a variable that does
not belong to the cycle.

To proveMIN we need to do a bit of calculus. Fix a probability distribution ρ on 	×	 such
that ρ(1, 1)+ ρ(1,−1)= ρ(1, 1)+ ρ(− 1, 1)= 1/2 and let r = ρ(1, 1)+ ρ(− 1,−1).

1This problem was brought to our attention by Chris Brzuska.
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Claim 3.6. We have

ϕMAJ(ρ)=
∑

σ ,σ ′∈	2k

E[ψ(σ )ψ(σ ′)]
2k∏
i=1
ρ(σi, σ ′

i )=
∑

σ ,σ ′∈	2k

ψ(1,...,1)(σ )ψ(1,...,1)(σ ′)
2k∏
i=1
ρ(σi, σ ′

i ).

(3.17)

Proof. Indeed, something stronger is true: for any τ , τ ′ ∈	2k,

∑
σ ,σ ′∈	2k

ψτ (σ )ψτ (σ ′)
k∏

i=1
ρ(σi, σ ′

i )=
∑

σ ,σ ′∈	2k

ψτ ′(σ )ψτ ′(σ ′)
k∏

i=1
ρ(τ ′

i τiσi, τ
′
i τiσ

′
i )

=
∑

σ ,σ ′∈	2k

ψτ ′(σ )ψτ ′(σ ′)
k∏

i=1
ρ(σi, σ ′

i ),

and the claim follows by applying the above to τ ′ = (1, . . . , 1).

Define

f : [0, 1]→R, r �→ 2−k
∑

σ ,σ ′∈	k

1
{ k∏
i=1
σi = 1

}
1
{ k∏
i=1
σ ′
i = 1

}
r
∑k

i=1 1{σi=σ ′
i }(1− r)k−

∑k
i=1 1{σi=σ ′

i },

(3.18)

g : [0, 1]→R, r �→ 2−k
∑

σ ,σ ′∈	k

1
{ k∑
i=1
σi < 0

}
1
{ k∑
i=1
σ ′
i < 0

}
r
∑k

i=1 1{σi=σ ′
i }(1− r)k−

∑k
i=1 1{σi=σ ′

i }.

(3.19)

Claim 3.7. With f and g defined in (3.18), (3.19), we have
ϕMAJ(r)= 2(f (r)g(r)+ f (1− r)g(1− r)). (3.20)

Proof. Using Claim 3.7, we rewrite

ϕMAJ(r)=
∑

σ ,σ ′∈	2k

(
1
{ k∏
i=1
σi = 1

}
1
{ 2k∑
i=k+1

σi < 0
}

+ 1
{ k∏
i=1
σi = −1

}
1
{ 2k∑
i=k+1

σi > 0
})

×
(
1
{ k∏
i=1
σ ′
i = 1

}
1
{ 2k∑
i=k+1

σ ′
i < 0

}
+ 1

{ k∏
i=1
σ ′
i = −1

}
1
{ 2k∑
i=k+1

σ ′
i > 0

})

×
2k∏
i=1
ρ(σi, σ ′

i )

= 2
∑

σ ,σ ′∈	2k

1
{ k∏
i=1
σi = 1

}
1
{ 2k∑
i=k+1

σi < 0
}
1
{ k∏
i=1
σ ′
i = 1

}
1
{ 2k∑
i=k+1

σ ′
i < 0

}

×
( 2k∏
i=1
ρ(σi, σ ′

i )+
2k∏
i=1
ρ(σi,−σ ′

i )
)

= 2( f (r)g(r)+ f (1− r)g(1− r)), (3.21)
as desired.

We can easily write down an explicit expression for the parity component.
https://doi.org/10.1017/S0963548319000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000440


Combinatorics, Probability and Computing 369

Claim 3.8. For all r ∈ [0, 1] we have

f (r)= 1
4
(1+ (1− 2r)k).

Proof. For odd k a pair (σ , σ ′) ∈	2k with exactly i common positions has the same parity, if and
only if i is odd, thus

f (r)= 2−k
∑
σ∈	k

1
{ k∏
i=1
σi = 1

} ∑
i∈[k] : i is odd

(
k
i

)
ri(1− r)k−i = 1

2
∑

i∈[k] : i is odd

(
k
i

)
ri(1− r)k−i.

Now, since

1+ (1− 2r)k = (r + (1− r))k − (1− (1− r))k = 2
∑

i∈[k] : i is odd

(
k
i

)
ri(1− r)k−i,

the assertion follows.

Claim 3.9. For all r ∈ [0, 1] we have 2f (r)+ 2f (1− r)= 2g(r)+ 2g(1− r)= 1.

Proof. Let f̄ (r)= 1/2− f (r) and ḡ(r)= 1/2− g(r), respectively. Rewriting ϕMAJ(r) in a slightly
different fashion than before yields

ϕMAJ(r)= 2
∑

σ ,σ ′∈	2k

(
1
{ k∏
i=1
σi = 1

}
1
{ 2k∑
i=k+1

σi < 0
}
1
{ k∏
i=1
σ ′
i = 1

}
1
{ 2k∑
i=k+1

σ ′
i < 0

}

+ 1
{ k∏
i=1
σi = 1

}
1
{ 2k∑
i=k+1

σi > 0
}
1
{ k∏
i=1
σ ′
i = −1

}
1
{ 2k∑
i=k+1

σ ′
i < 0

}) 2k∏
i=1
ρ(σi, σ ′

i )

= 2(f (r)g(r)+ f̄ (r)ḡ(r)).
Thus, combining this with (3.21) we obtain

f (1− r)g(1− r)= f̄ (r)ḡ(r). (3.22)
Since k is odd, Claim 3.8 yields

2f̄ (r)= 1− 1
2
(1+ (1− 2r)k)= 1

2
(1+ (1− 2(1− r))k)= 2f (1− r). (3.23)

The claim now readily follows from (3.22), (3.23) and the definitions of f̄ , ḡ.

Claim 3.10. The function f is strictly increasing on (0, 1) \ {1/2}, while g is increasing on [0, 1).

Proof. Given Claim 3.8 and recalling that k is odd, we see that f is strictly increasing on [0, 1/2)
and (1/2, 1] with a saddle point at r = 1/2.

The function g, which corresponds to themajority part, is more complicated. For j ∈ {1, . . . , k},
let Sj be the set of pairs of assignments with majority vote −1 which agree on exactly the first j
components, and let gj = |Sj| be the number of such pairs. Then

g(r)= 2−k
k∑

j=1

(
k
j

)
gjrj(1− r)k−j,

2kg′(r)= g1(1− r)k−1 +
k−1∑
j=1

(
k− 1
j

)
(gj+1 − gj)rj(1− r)k−(j+1).
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It is therefore sufficient to show that gj+1 � gj for all j ∈ {1, . . . , k− 1}. To this end, we consider
the following injective map h from Sj to Sj+1. Given a pair of solutions (s(1), s(2)) ∈ Sj, we let
(s̄(1), s̄(2)) ∈	2k denote the assignment pair obtained from (s(1), s(2)) by swapping their (j+ 1)th
component. There are two possible cases. If (s̄(1), s̄(2)) is not in Sj, we set the (j+ 1)th component
of both s(1) and s(2) to −1 and obtain a valid solution pair in Sj+1. On the other hand, if both
(s(1), s(2)), (s̄(1), s̄(2)) ∈ Sj, then in order for h to be injective, we assign 1 to the (j+ 1)th component
of s̄(1), s̄(2). This gives a valid solution in Sj+1, because the fact that both (s(1), s(2)) and (s̄(1), s̄(2))
are solutions implies that they have a majority vote of−1 irrespective of the value of their (j+ 1)th
component. Thus g is increasing on [0, 1).

Proof of Lemma 3.4. Claim 3.5 establishes SYM, BAL and UNI. With respect to MIN,
Claims 3.6–3.10 show that ϕMAJ has a unique minimum at 1/2, as

ϕ′
MAJ(r)= 2(f ′(r)(2g(r)− 1/2)+ g′(r)(2f (r)− 1/2)).

4. Preliminaries and notation
4.1 Basics
Throughout the paper we continue to use the notation introduced in Sections 2 and 5. In partic-
ular, we write Vn = {x1, . . . , xn} for a set of n variable nodes and Fm = {a1, . . . , am} for a set of
m constraint nodes. Further, m(d, n) is a random variable with distribution Po(dn/k) and we just
write m(d) or m if n and/or d are apparent. Additionally, we let M(d) be the set of all sequences
m=m(n) such that |m(n)− dn/k|� n3/5 for all n.

We write P(X ) for the set of probability measures on a finite set X . We identify P(X ) with the
standard simplex in R

X , thereby turning P(X ) into a Polish space. Further, for σ1, . . . , σl :Vn →
	 let ρσ1,...,σl ∈P(	l) denote the l-wise overlap, defined by

ρσ1,...,σl (ω1, . . . ,ωl)= |σ−1
1 (ω1)∩ · · · ∩ σ−1

l (ωl)|/n. (4.1)
We use this notation also in the case l= 1, and then ρσ1 ∈P(	) is just the empirical distribution
of the spins under σ1. Further, we let ρ̄l signify the uniform distribution on 	l. In particular, ρ̄1
is the uniform distribution on 	. We usually omit the index l to ease the notation. An assign-
ment σ :Vn →	 is nearly balanced if ‖ρσ − ρ̄‖TV � n−2/5. In addition, for two spin assignments
σ , τ :V →	 we let σ�τ = {v ∈V : σ (v) �= τ (v)}.

The entropy of a probability distribution μ ∈P(X ) is always denoted byH(μ). Thus, recalling
that�(z)= z ln z for z> 0 and setting�(0)= 0, we haveH(μ)= − ∑

x∈X �(μ(x)).
By default we use O notation to refer to the limit n→ ∞. On the few occasions where we refer

to a different limit we say so.

4.2 Constraint satisfaction problems
In a few places we will need to look at a slightly more general class of constraint satisfaction prob-
lems than introduced in Section 2.1. Namely, let 	 be a finite set. By extension of Definition 2.1,
a general constraint satisfaction problem G= (V , F, (∂a)a∈F , (ψa)a∈F) consists of a finite set V of
variables, a finite set F of constraints, a function ψa :	ka → [0, 1] for some integer ka � 1, and a
tuple ∂a ∈Vka . The difference here is that the ψa are not required to belong to a fixed finite set,
and that the arities ka of the constraints can be different. As before, we introduce

ψG(σ )=
∏
a∈F
ψa(σ (∂1a, . . . , ∂kaa)) (σ ∈	V ),

Z(G)=
∑
σ∈	V

ψG(σ ).

https://doi.org/10.1017/S0963548319000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000440


Combinatorics, Probability and Computing 371

Further, if Z(G)> 0 we introduce the Boltzmann distribution by letting μG(σ )=ψG(σ )/Z(G) for
σ ∈	V .

We will need the following general observation about random CSPs.

Lemma 4.1 (SYM). The function

φ :R	 →R, ρ �→
∑
τ∈	k

E[ψ(τ )]
k∏

i=1
ρ(τi)

satisfies Dφ(ρ̄)= kξ1 and D2φ(ρ̄)= qk(k− 1)ξ�. Moreover, φ is strictly positive on the interior of
P(	).

Proof. The first and second derivatives can be computed along the lines of the proof of [25,
Lemma 4.4]. The positivity bit is immediate as the product

∏k
i=1 ρ(τi) is uniformly bounded below

and
∑
τ∈	k E[ψ(τ )]= qkξ > 0.

4.3 Boltzmann distributions
Suppose that X ,V are finite sets and let N = |V|. For a measure μ ∈P(XV ), a subset U ⊂V and
σ ∈XU we let

μU(σ )=
∑
τ∈XV

1{∀i ∈U : τi = σi}μ(τ ).

Thus, μU is the marginal distribution that μ induces on U. Where the reference to U is evident
we just write μ(σ ). Additionally, we use the shorthand μi1,...,ih for μ{i1,...,ih} if i1, . . . , ih ∈V .

If μ ∈P(XV ), then σμ, τμ, σ 1,μ, σ 2,μ, . . . ∈XV denote mutually independent samples from
μ. Whereμ is apparent from the context we omit the index and just write σ , τ , etc. If X : (XV )l →
R is a random variable, then we write

〈X〉μ = 〈X(σ 1, . . . , σ l)〉μ =
∑

σ1,...,σl∈	Vn

X(σ1, . . . , σl)
l∏

j=1
μ(σj).

Thus, 〈X〉μ is the mean of X over independent samples from μ.
If μ=μG is the Boltzmann distribution induced by a CSP instance G, we write σG etc. instead

of σμG and we also write 〈 · 〉G rather than 〈 · 〉μG . We use this notation to distinguish averages over
μG from other sources of randomness (e.g. the choice of the random CSP), for which we reserve
the symbols E[ · ] and P[ · ].

Let ε > 0 and �� 2. Following [17], we say that the probability measure μ ∈P(XV ) is (ε, �)-
symmetric if ∑

1�i1<···<i��N
‖μi1,...,i� −μi1 ⊗ · · · ⊗μi�‖TV < εN�.

(The idea is to express that the joint distribution of � randomly chosen coordinates is likely
to be close to a product distribution.) Further, an (ε, 2)-symmetric measure is simply called
ε-symmetric. We need the following two results from [17].

Lemma 4.2 ([17, Corollaries 2.3 and 2.4]). For any X �= ∅, l� 3, δ > 0 there is ε > 0 such that for
all N > 1/ε the following is true:

If μ ∈P(X I) is ε-symmetric, then μ is (δ, l)-symmetric.

Let μ⊗� ∈P((XV )�) be the distribution μ⊗�(σ1, . . . , σ�)= ∏�
j=1 μ(σj).
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Lemma 4.3 ([17, Proposition 2.5]). For any ε > 0, �� 1, X �= ∅ there exists δ > 0 such that for all
N > 1/δ the following is true:

If μ ∈P(XV ) is δ-symmetric, then μ⊗� is ε-symmetric.

The following lemma relates ε-symmetry and the overlap.

Lemma 4.4. For any ε > 0, X �= ∅ there exist δ > 0, n0 > 0 such that for all n> n0 and all μ ∈
P(X n) the following is true:

If 〈‖ρσ ,τ − ρ̄‖TV〉μ < δ, then μ is ε-symmetric and
∑n

i=1 ‖μi − ρ̄‖TV < εn.
Conversely, for any ε > 0,X �= ∅ there exist δ > 0, n0 > 0 such that for all n> n0 and allμ ∈P(X n)
the following is true:

If μ is δ-symmetric and
∑n

i=1 ‖μi − ρ̄‖TV < δn, then 〈‖ρσ ,τ − ρ̄‖TV〉μ < ε.

Although Lemma 4.4 was known (and used) before, we are not aware of a convenient reference.
We therefore prove the lemma in Appendix A.

Corollary 4.5. For any finite set X , any ε > 0 and any l� 3 there exist δ = δ(X , ε, l) and n0 =
n0(X , ε, l) such that for all n> n0 and all μ ∈P(XVn) the following is true:

If 〈‖ρσ 1,σ 2 − ρ̄‖TV〉< δ, then 〈‖ρσ 1,...,σ l − ρ̄l‖TV〉< ε.

Proof. This follows from Lemmas 4.3 and 4.4.

The following lemma shows that there is a generic (randomized) way of perturbing a given
measure in such a way that the outcome is likely ε-symmetric.

Lemma 4.6 ([27, Lemma 5.3]). For any ε > 0 and any X �= ∅, there exists a bounded integer ran-
dom variable θε � 0 such that for allμ ∈P(XV ) for sufficiently large N the following is true. Obtain
a random probability measure μ̌ ∈P(XV ) as follows.

• Choose a set U ⊂V of size θε uniformly at random.
• Independently draw σ̌ ∈XV from μ.
• Define the (random) probability measure

μ̌(σ )= μ(σ )1{∀i ∈U : σi = σ̌ i}
μ({τ ∈XV : ∀i ∈U : τi = σ̌ i}) (σ ∈XV ).

Then μ̌ is ε-symmetric with probability at least 1− ε.

Thus, in order to obtain an ε-symmetric measure it suffices to peg a bounded number of ran-
domly chosen coordinates to a ‘reference configuration’ σ̌ . Throughout the paper we let θε denote
the random variable from Lemma 4.6. It will be convenient to use the convention that θ1 = 0.

Finally, we need the following fact.

Lemma 4.7 ([27, Lemma 4.7]). For any ε > 0 there is δ > 0 such that for all sufficiently large N
the following is true. If μ ∈P(XV ) satisfies 〈‖ρσ ,τ − ρ̄‖TV〉μ < δ, then for all nearly balanced τ we
have 〈‖ρσ ,τ − ρ̄‖TV〉μ < ε.

Thus, if the overlap of two samples σ , τ is typically close to the uniform overlap ρ̄, then in fact
the overlap of a random σ with an arbitrary nearly balanced τ ∈XV is likely close to uniform.
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5. Proof strategy
In this section we outline the proofs of the main results presented in Section 2, deferring some of
the details to later sections. Following [25] we approach the proofs of the main results by way of
analysing the partition function of the plantedmodelG∗. This will enable us to construct a suitable
random variable to which we can apply the small subgraph conditioning technique, originally
developed by Robinson andWormald [70] to count Hamilton cycles in random regular graphs, to
prove Theorem 2.7. The other results then derive from Theorem 2.7.

5.1 The plantedmodel revisited
Before we begin let us get a technical issue out of the way. The constraints of the randomCSPG are
not quite independent because we require the hypergraph underlyingG to be simple. However, in
the proofs this slight dependence becomes a nuisance. We therefore introduce a tweaked model
G(n,m, P) with variables Vn = {x1, . . . , xn} whose constraints a1, . . . , am are chosen indepen-
dently from the following distribution: for each ai, the k-tuple ∂ai ∈Vk

n is chosen uniformly at
random, and the function ψai ∈� is chosen from P independently of ∂ai. Thus, it is possible that
the same variable occurs twice in the constraint ai.

Recall the function φ which appeared in BAL and Lemma 4.1. Due to independence of the
constraints in G(n,m, P), we have the identity

E[ψG(n,m)(σ )]= φ(ρσ )m, (5.1)

which will be used in various places below.
Naturally, there is a planted model that goes with G(n,m, P). Namely, let �n be the set of all

σ ∈	Vn such that E[ψG(n,m,P)(σ )]> 0. In other words, �n is the set of assignments that may
occur as satisfying assignments of some random CSP instance. By adaptation of (2.18), for σ ∈�n
we define the planted model G∗(n,m, P, σ ) by letting

P[G∗(n,m, P, σ )=G]= ψG(σ )P[G(n,m, P)=G]
E[ψG(n,m,P)(σ )]

, (5.2)

for any possible CSP instance G. Equivalently, because the m constraints of G(n,m, P) are drawn
independently, (5.2) can be stated as follows: the constraints a1, . . . , am are drawn independently
from the distribution

P[∂ai = (xi1 , . . . , xik),ψai =ψ]=
ψ(σ (xi1 ), . . . , σ (xik))P(ψ)∑n

j1,...,jk=1 E[ψ(σ (xj1 ), . . . , σ (xjk))]
. (5.3)

We continue to let σ ∗ = σ ∗
n denote a uniformly random assignment Vn →	. Suppose we first

choose a random assignment σ ∗ ∈�n uniformly and then draw G∗(n,m, P, σ ∗) from the planted
model. What will be the resulting distribution on CSP instances? If we assume that all ψ ∈�
take values in {0, 1}, then this distribution on CSPs should roughly weigh each possible instance
G according to its number Z(G) of satisfying assignments; for G has one chance to come up as
G∗(n,m, P, σ ) for each of its satisfying assignments σ . But of course this is only approximately
right because the denominator in (5.2) may depend on σ . To correct for this, we introduce a
distribution on assignments by letting

P[σ̂ n,m,P = σ ]= E[ψG(n,m,P)(σ )]
E[Z(G(n,m, P))]

for σ ∈	Vn . (5.4)

Condition SYM guarantees that the denominatorE[Z(G(n,m, P))] is non-zero for all n� q. It will
emerge in due course that the distributions σ ∗ and σ̂ n,m,P are mutually contiguous (see Lemma 7.8
below). From now on we tacitly assume that n� q.
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We claim that the random CSP G∗(n,m, P, σ̂ n,m,P) is distributed exactly as the distribution
G(n,m) reweighed according to the partition function. Formally, let Ĝ(n,m, P) be the random
CSP with distribution

P[Ĝ(n,m, P)=G]= Z(G)P[G(n,m, P)=G]
E[Z(G(n,m, P))]

. (5.5)

Then we have the following.

Lemma 5.1. For all σ ,G we have

P[σ̂ n,m,P = σ ] · P[G∗(n,m, P, σ )=G]=μG(σ ) · P[Ĝ(n,m, P)=G]. (5.6)

Proof. From the definitions (5.2), (5.4) and (5.5) it is immediate that

P[σ̂ n,m,P = σ ] · P[G∗(n,m, P, σ )=G]= E[ψG(n,m,P)(σ )]
E[Z(G(n,m, P))]

· ψG(σ )P[G(n,m, P)=G]
E[ψG(n,m,P)(σ )]

=μG(σ ) · Z(G)P[G(n,m, P)=G]
E[Z(G(n,m, P))]

=μG(σ ) · P[Ĝ(n,m, P)=G],

as claimed.

Borrowing a term from the statistical physics literature [75], we call (5.6) theNishimori identity.
This identity will play a fundamental role because it allows us to analyse the partition function by
way of the planted model. The definitions of the models Ĝ(n,m, P), σ̂ (n,m, P) and Lemma 5.1
already appeared in [27] for the case that all ψ ∈� are strictly positive (soft constraints).

To unclutter the notation we will skip the reference to P where possible and just write G(n,m),
Ĝ(n,m), etc. Further, recalling that m=md(n) is a random variable with distribution Po(dn/k),
we introduce Ĝ= Ĝ(n,m, P), G∗ =G∗(n,m, P, σ ∗) and σ̂ = σ̂ n,m,P.

5.2 The heat is on
As mentioned earlier, the point of the present work is that we manage to accommodate hard
constraints, i.e. functions ψ that may take the value 0. A natural first idea might be to deal with
this case by softening the constraints so that the results from [25] apply and to deal with hard
constraints by taking the ‘softening parameter’ to 0. Unfortunately, matters are not quite so simple.
But we can still get some mileage out of this idea.

To be precise, for a parameter β � 0 and a function ψ :	k → [0, 1], define

ψβ(σ )= e−β + (1− e−β)ψ(σ ). (5.7)

Thus, ψβ � e−β is a softened version of ψ , and we think of e−β as the softening parameter. In
physics jargon, (5.7) corresponds to a ‘positive temperature’ variant of the CSP, and β might be
called the ‘inverse temperature’. We let �β = {ψβ :ψ ∈�}. Further, let Pβ be the distribution of
ψβ and define

ξβ = q−k
∑
σ∈	k

E[ψβ(σ )]= e−β + (1− e−β)ξ .

Accordingly, we introduce the symbols Gβ(n,m)=G(n,m, Pβ), Ĝβ(n,m)= Ĝ(n,m, Pβ), etc.
In order to apply the results from [25] to the ‘softened’ CSP we observe that Pβ satisfies our

main assumptions; condition UNI is obsolete because all ψβ are strictly positive.
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Lemma 5.2. If P satisfies any of the conditions SYM, BAL,MIN and POS, then so does Pβ for any
β > 0.

Proof. Assuming that P satisfies SYM, we find∑
τ∈	k

1{τi =ω}ψβ(τ )= e−βqk−1 + (1− e−β)
∑
τ∈	k

1{τi =ω}ψ(τ )

= qk−1(e−β + (1− e−β)ξ )
= qk−1ξβ .

Similarly, if P satisfies BAL, then

∑
τ∈	k

E[ψβ(τ )]
k∏

i=1
μ(τi)= e−β + (1− e−β)

∑
τ∈	k

E[ψ(τ )]
k∏

i=1
μ(τi)

is a concave function of μ that attains its maximum at the uniform distribution. Moving on to
conditionMIN, we observe that for any ρ ∈R(	),

∑
σ ,τ∈	k

E[ψ(σ )]
k∏

i=1
ρ(σi, τi)= q−k

∑
σ∈	k

E[ψ(σ )]= ξ .

Hence,

∑
σ ,τ∈	k

E[ψβ(σ )ψβ(τ )]
k∏

i=1
ρ(σi, τi)

= e−2β + 2e−β(1− e−β)ξ + (1− e−β)2
∑
σ ,τ∈	k

E[ψ(σ )ψ(τ )]
k∏

i=1
ρ(σi, τi).

Clearly, if P satisfies MIN, then the uniform distribution on 	×	 will be the unique global
minimizer ρ ∈R(	) of the last expression. Finally, regarding POS we calculate

E

[(
1−

∑
τ∈	k

ψβ(τ )
k∏

i=1
ρi(τi)

)�]
= (1− e−β)� ·E

[(
1−

∑
τ∈	k

ψ(τ )
k∏

i=1
ρi(τi)

)�]
,

E

[(
1−

∑
τ∈	k

ψβ(τ )
k∏

i=1
ρ′
i(τi)

)�]
= (1− e−β)� ·E

[(
1−

∑
τ∈	k

ψ(τ )
k∏

i=1
ρ′
i(τi)

)�]
,

E

[(
1−

∑
τ∈	k

ψβ(τ )ρ1(τ1)
k∏

i=2
ρ′
i(τi)

)�]
= (1− e−β)� ·E

[(
1−

∑
τ∈	k

ψ(τ )ρ1(τ1)
k∏

i=2
ρ′
i(τi)

)�]
.

Hence, if P satisfies POS, then so does Pβ .

Can we use the softened CSP directly to, say, prove Theorem 2.5 about the condensation phase
transition? Suppose we fix a CSP G with (hard) constraints from � and let Zβ(G) denote the
partition function of the CSP with soft constraints obtained by replacing each ψ with the corre-
sponding ψβ . Then we verify immediately that limβ→∞ Zβ(G)= Z(G). In other words, G comes
out as the ‘zero temperature’ limit of Gβ . Consequently, we obtain

lim
β→∞ E

n
√
Z(Gβ)=E

n
√
Z(G)
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and therefore

lim
n→∞ lim

β→∞ E
n
√
Z(Gβ)= lim

n→∞ E
n
√
Z(G), (5.8)

where the second line is conditional on the existence of limits. Furthermore, using the results from
[25, 27], we can determine the condensation threshold of the softened CSP Z(G(n,m, Pβ)). Hence,
we should be able to compute

lim
β→∞ lim

n→∞ E
n
√
Z(G(n,m, Pβ)), (5.9)

at least for d< dcond.
Alas, the order of the limits in (5.8) and (5.9) is reversed. Whether the limits commute is

arguably one of the most challenging open problems in the theory of random CSPs (see the dis-
cussion in [30]). The following result, which constitutes one of the main technical contributions
of this paper, proves that in planted models the limits do indeed commute. Recall the expression
B(d, P, π) from (2.2).

Theorem 5.3 (SYM, BAL). For every d> 0 we have

lim sup
n→∞

1
n
E[ ln Z(Ĝ)]� lim

β→∞ sup
π∈P2∗ (	)

B(d, Pβ , π)= sup
π∈P2∗ (	)

B(d, P, π). (5.10)

Furthermore, if POS is satisfied as well, then

lim
n→∞

1
n
E[ ln Z(Ĝ)]= lim

β→∞ lim
n→∞

1
n
E[ ln Z(Ĝβ)]

= lim
β→∞ sup

π∈P2∗ (	)
B(d, Pβ , π)

= sup
π∈P2∗ (	)

B(d, P, π). (5.11)

Apart from being a vital step toward the proofs of the main results, we believe that Theorem 5.3
may be of independent interest for the study of planted instances of CSPs. The proof of
Theorem 5.3, which we carry out in Section 6, combines techniques from [25, 27] with new
arguments required to deal with hard constraints.

5.3 The Kesten–Stigum bound
We are going to combine Theorem 5.3 with small subgraph conditioning to prove Theorem 2.7.
To pave the way for this argument we need two preparations. First, because the eigenvalues of the
operator� from (2.8) will come up a lot, we need to investigate the spectrum of�. Also recall the
matrix� from (2.10) and the space E from (2.9). Additionally, let

E ′ = {x ∈R
q ⊗R

q : 〈x, 1⊗ 1〉 = 0} ⊃ E . (5.12)

Finally, let us introduce the matrices

�ψβ (ω,ω
′)= q1−kξ−1

β

∑
τ∈	k

1{τ1 =ω, τ2 =ω′}ψβ(τ ) for ω,ω′ ∈	,

�β =E[�ψβ ],
�β =E[�ψβ ⊗�ψβ ].
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Lemma 5.4 (SYM, BAL). The matrices�,� enjoy the following properties.

(i) � is symmetric and doubly stochastic andmaxx⊥1〈�x, x〉� 0.
(ii) � is self-adjoint, �(1⊗ 1)= 1⊗ 1 and for every x we have �(x⊗ 1)= (�x)⊗ 1, �(1⊗

x)= 1⊗ (�x) and

〈�(x⊗ 1), x⊗ 1〉� 0, 〈�(1⊗ x), 1⊗ x〉� 0 if x⊥ 1. (5.13)

Furthermore, �E ⊂ E and �E ′ ⊂ E ′.

Proof. Lemma 5.2 shows together with [25, Lemmas 3.5 and 3.6] that statements (i) and (ii) hold
for�β and�β for any β > 0. Since limβ→∞ �β =� and limβ→∞ �β =�, the assertion follows.

Since the self-adjoint operator � induces an endomorphism of the subspace E , we define the
multi-set

Eig∗(�)= {λ ∈R : ∃x ∈ E \ {0} :�x= λx} (5.14)

that contains each eigenvalue according to its geometric multiplicity. To apply small subgraph
conditioning we need the following bound on the spectral radius.

Proposition 5.5 (SYM, BAL).We have dcond(k− 1) maxλ∈Eig∗(�) |λ|� 1.

Proposition 5.5 is almost immediate from the following statement about the softened version
of the random CSP. By extension of (2.3) and (2.9) we define

dcond(β)= inf
{
d> 0 : sup

π∈P2∗ (	)
B(d, Pβ , π)> ln q+ d

k
ln ξ

}
,

dKS(β)=
(
(k− 1) max

x∈E : ‖x‖=1
〈�βx, x〉

)−1
.

The following lemma paraphrases several results from [25, Section 5].

Lemma 5.6 (SYM, BAL).We have

dcond(β)(k− 1) max
λ∈Eig∗(�β )

|λ|� 1 for all β > 0.

Moreover, if d> 0, β0 > 0 are such that d> dcond(β) for all β > β0, then there exists ε > 0 such that

sup
π∈P∗

2 (	)
B(d, Pβ , π)> ln q+ d

k
ln ξβ + ε for all β > β0. (5.15)

Proof of Proposition 5.5. Suppose that d is such that d(k− 1) maxλ∈Eig∗(�) |λ|> 1. Then for all
sufficiently large β we have d(k− 1) maxλ∈Eig∗(�β ) |λ|> 1, because limβ→∞ �β =�. Therefore,
Lemma 5.6 yields ε > 0 such that (5.15) is satisfied for all large enough β . Finally, since
limβ→∞ ξβ = ξ , (5.10) yields supπ∈P2∗ (	) B(d, P, π)> ln q+ d ln ξ/k. Hence, d> dcond.

Theorem 2.6 drops out as an immediate consequence of Lemma 5.4 and Proposition 5.5.

Proof of Theorem 2.6. We have maxx∈E : ‖x‖=1〈�x, x〉 =maxλ∈Eig∗(�) |λ| because Lemma 5.4
shows that� is self-adjoint. Therefore, Theorem 2.6 follows from Proposition 5.5.
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5.4 The overlap
As a second preparation for the small subgraph conditioning we need to investigate the overlap of
two randomly chosen satisfying assignments in the planted model.

Proposition 5.7 (SYM, BAL,MIN).

(1) Suppose that d< dcond. There exists a sequence ζ = ζ (n)= o(1) such that for all m ∈M(d)
we have

E〈‖ρσ 1,σ 2 − ρ̄‖TV〉Ĝ(n,m) � ζ . (5.16)

(2) Conversely, let D> 0 and assume that POS is satisfied as well. If for all d<D we have

E〈‖ρσ 1,σ 2 − ρ̄‖TV〉Ĝ(n,m) = o(1), (5.17)

then dcond �D.

We defer the proof of Proposition 5.7 to Section 7. With ζ from Proposition 5.7 we define

Z(G)= Z(G)1{〈‖ρσ 1,σ 2 − ρ̄‖TV〉G � ζ }. (5.18)

Thus, Z(G) is a truncated version of the partition function Z(G), where an instance G con-
tributes only if its overlaps concentrate about ρ̄. A similar truncated variable was used in [25]
in the case of soft constraints and in [27] in the special case of the random graph colouring
problem.

Corollary 5.8 (SYM, BAL,MIN). If d< dcond, then

E[Z(G(n,m))]∼E[Z(G(n,m))]

uniformly for all m ∈M(d).

Proof. This is immediate from the first part of Proposition 5.7 and definition (5.5) of Ĝ(n,m).

5.5 Small subgraph conditioning
We are ready to conduct small subgraph conditioning for the random variable Z(G(n,m)). We
begin by computing the first and second moments.

Proposition 5.9 (SYM, BAL). Let d> 0. Then, uniformly for all m ∈M(d),

E[Z(G(n,m))]∼ qn+1/2ξm∏
λ∈Eig(�)\{1}

√
1− d(k− 1)λ

. (5.19)

Proposition 5.10 (SYM, BAL). Let 0< d< dcond. Then uniformly for all m ∈M(d),

E[Z(G(n,m))2]� (1+ o(1))q2n+1ξ 2m∏
λ∈Eig∗(�)

√
1− d(k− 1)λ

. (5.20)

The expression on the right-hand side of (5.19) makes sense because Eig(�) \ {1} ⊂R�0 by
Lemma 5.4. Similarly, Lemma 5.4 and Proposition 5.5 show that in (5.20) we only take square
roots of positive numbers if d< dcond.

The proofs of Propositions 5.9 and 5.10 are virtually identical to the moment calculations per-
formed in [25, Section 7]; we included them in Appendix B. Both are fairly straightforward, but
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the calculation of the second moment hinges on the fact that only CSP instances whose over-
lap concentrates about ρ̄ contribute to Z(G(n,m)). In fact, the second moment of the original
random variable Z(G(n,m)) is generally much bigger (by an exponential factor). In effect, we
could not possibly base our small subgraph conditioning argument on the plain random vari-
able Z(G(n,m)). Note, however, that up to dcond the first moments of Z(G(n,m)) and Z(G(n,m))
are asymptotically the same by Corollary 5.8.

Combining Corollary 5.8 with Propositions 5.9 and 5.10 and applying Lemma 5.4, we obtain

E[Z(G(n,m))2]
E[Z(G(n,m))]2

∼
∏

λ∈Eig∗(�)

1√
1− d(k− 1)λ

if d< dcond, m ∈M(d). (5.21)

Thus, Proposition 5.5 shows that the ratio of the second moment and the square of the first is
bounded. However, the quotient does not generally converge to 1 as n→ ∞. Following the general
small subgraph paradigm as set out in [55, 70], we will ‘explain’ the remaining variance in terms
of the bounded-length cycles of the bipartite graph induced by the random CSP instance.

A similar strategy was used in [25] for problems with soft constraints, and we can re-use some
of the terminology introduced there. A signature of order � is a family

Y = (ψ1, s1, t1,ψ2, s2, t2, . . . ,ψ�, s�, t�)

such that ψ1, . . . ,ψ� ⊂� , s1, t1, . . . , s�, t� ∈ [k] and si �= ti for all i ∈ [�] and s1 < t1 if �= 1. Let
Y� be the set of all signatures of order �, let Y�� = ⋃

l�� Yl and let Y = ⋃
��1 Y�. For a CSP G

with variables Vn and constraints Fm, we call a family (xi1 , ah1 , . . . , xi� , ah�) a cycle of signature Y
in G if

CYC1. i1, . . . , i� ∈ [n] are pairwise distinct and i1 =min{i1, . . . , i�},
CYC2. h1, . . . , h� ∈ [m] are pairwise distinct and h1 < h� if � > 1,
CYC3. ψahj =ψj and ∂sjahj = xij for all j ∈ {1, . . . , �}, ∂tjahj = xij+1 for all j< � and ∂t�ah� = xi1 .

Thus, the cycle, which, of course, alternates between variables and constraints, begins with the
variable with the smallest index (CYC1). From there it is directed toward the constraint with
the smaller index (CYC2). Furthermore, the constraint functions along the cycle are the ones
prescribed by the signature, the cycle enters the jth constraint through its sjth position and leaves
through position number tj (CYC3).

Let CY (G) be the number of cycles of signature Y . Moreover, for an event ψ ∈� and h, h′ ∈
{1, . . . , k} define the q× qmatrix�ψ ,h,h′ by letting

�ψ ,h,h′(ω,ω′)= q1−kξ−1
∑
τ∈	k

1{τh =ω, τh′ =ω′}ψ(τ ) (ω,ω′ ∈	). (5.22)

In addition, for a signature Y = (ψ1, s1, t1, . . . ,ψ�, s�, t�) define

κY = 1
2�

(
d
k

)� �∏
i=1

P(ψi), �Y =
�∏

i=1
�ψi,si,ti , κ̂Y = κY tr (�Y ). (5.23)

Finally, letS be the event that the factor graphG(n,m) is simple, that is, ∂1ai, . . . , ∂kai are pairwise
distinct for every i ∈ [m] and {∂1ai, . . . , ∂kai} �= {∂1aj, . . . , ∂kaj} for all 1� i< j�m. The follow-
ing proposition, whose proof we put off to Section 7, characterizes the joint distributions of the
cycle counts in G(n,m) and Ĝ(n,m).
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Proposition 5.11 (SYM, BAL,UNI).We have κY > 0 for all Y ∈Y , and if κ̂Y = 0, then Y has order
one and CY (Ĝ(n,m))= 0 deterministically for all n,m. Further, if Y1, Y2, . . . Yl ∈Y are pairwise
distinct and y1, . . . , yl � 0, then for any d> 0,

P[∀t� l : CYt (G(n,m))= yt]∼
l∏

t=1
P[Po(κYt )= yt] (5.24)

uniformly for all m ∈M(d). If, in addition, κ̂Y1 , . . . , κ̂Yl > 0, then, uniformly for all m ∈M(d),

P[∀t� l : CYt (Ĝ(n,m))= yt]∼
l∏

t=1
P[Po(κ̂Yt )= yt]. (5.25)

Finally,

P[G(n,m) ∈S]∼ exp
(

−d(k− 1)
2

− 1{k= 2}d2
4

)
,

P[Ĝ(n,m) ∈S]∼ exp
(

−d(k− 1)
2

tr (�)− 1{k= 2}d2
4

tr (�2)
)
.

Based on Propositions 5.9, 5.10 and 5.11 the proof of Theorem 2.7 is fairly standard. We will
carry out the details in Section 5.6. Then in Section 6 we will prove Theorem 5.3. Several of the
proof ingredients will be re-used later in Section 7, where we establish Propositions 5.9, 5.10
and 5.11. With all the tools in place, in Section 7 we also complete the proofs of Theorems 2.5,
2.8 and 2.11. Finally, in Section 8 we prove Theorems 2.9 and 2.10.

5.6 Proof of Theorem 2.7
Fix 0< d< dcond and let m ∈M(d). Let F� = F�(n,m) be the σ -algebra generated by the cycle
counts (CY )Y∈Y�� . The proof of Theorem 2.7 follows the original strategy from [70] by studying
the conditional variance ofZ(G(n,m)) given F�. Janson [55] stated a relatively general results that
covers many applications of this strategy, but unfortunately not ours. The issue is that the number
m of constraints in the statement of Theorem 2.7 is random. Therefore, we use a combinatorial
argument that goes back to [31], which was also used in [25]. The proof here is similar to the one
in [25], and actually considerably simpler because in the present paper the set � of constraint
functions is finite. Only the very last part of the proof requires a new argument to accommodate
hard constraints.

We aim to prove that E[Var(Z(G(n,m))|F�)] is much smaller than E[Z(G(n,m))] for large
enough �. Then we will apply Chebyshev’s inequality to E[Z(G(n,m))|F�] to derive that

Z(G(n,m))∼E[Z(G(n,m))|F�]
w.h.p. in the limit of large �, n. Formally, we will prove the following.

Lemma 5.12 (SYM,BAL,MIN,UNI). For any η > 0 there exists �0(η) such that for every � > �0(η)
uniformly for all m ∈M(d),

lim
n→∞ P[|Z(G(n,m))−E[Z(G(n,m))|F�]|>ηE[Z(G(n,m))]]= 0.

We prove Lemma 5.12 by way of the basic identity

Var[Z(G(n,m))]=Var(E[Z(G(n,m))|F�])+E[Var(Z(G(n,m))|F�)]. (5.26)
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Due to (5.26), to prove that E[Var(Z(G(n,m))|F�)] is small it suffices to show that
Var(E[Z(G(n,m))|F�])=E[E[Z(G(n,m))|F�]2]−E[Z(G(n,m))]2 (5.27)

is nearly as big as Var[Z(G(n,m))], so that will be our first intermediate goal. We begin with the
following little calculation. Let δY = tr(�Y )− 1= (κ̂Y − κY )/κY .

Lemma 5.13 (SYM, BAL).We have∑
��1

∑
Y∈Y��

δ2YκY = −1
2

∑
λ∈Eig∗(�)

ln(1− d(k− 1)λ).

Proof. The proof is essentially identical to that of [25, Lemma 9.1]. Let

�� =
�∏

i=1
�ψ i .

Then
∑

Y∈Y��

δ2YκY =
∑

Y∈Y��

(κ̂Y − κY )2
κY

=
�∑

j=1

(d(k− 1))j

2j
E[(tr�j − 1)2]. (5.28)

Hence, applying (2.8), (2.10) and Lemma 5.4, we obtain

E[( tr�j − 1)2]= trE[�j ⊗�j]− 2 trE[�j]+ 1= tr(�j)− 2 tr(�j)+ 1. (5.29)
Finally, since

tr (�j)=
∑

λ∈Eig(�)
λj = 1+ 2

∑
λ∈Eig(�)\{1}

λj +
∑

λ∈Eig∗(�)
λj = −1+ 2 tr(�j)+

∑
λ∈Eig∗(�)

λj,

combining (5.28) and (5.29) gives

∑
Y∈Y��

(κ̂Y − κY )2
κY

=
�∑

j=1

∑
λ∈Eig∗(�)

(d(k− 1)λ)j

2j
. (5.30)

Proposition 5.5 shows d(k− 1) maxλ∈Eig∗(�) |λ|< 1 for d< dcond, and thus we may take � to
infinity in (5.30).

Lemma 5.14 (SYM, BAL, MIN, UNI). Suppose that 0< d< dcond, � > 0. Then, uniformly for all
m ∈M(d),

E[E[Z(G(n,m))|F�]2]� (1+ o(1))E[Z(G(n,m))]2 · exp
∑

Y∈Y��

δ2YκY .

Proof. Fix a number α > 0, pick B= B(α, �)> 0 large, let

C = {(cY )Y∈Y�� ∈Z
Y�� : 0� cY � B for all Y ∈Y��}

and let
C = {(CY (G(n,m)))Y∈Y�� ∈ C}.

Then (5.5) yield

E[1C ·E[Z(G(n,m))|F�]2]
E[Z(G(n,m))]2

=
∑
c∈C

P[∀Y ∈Y�� : CY (Ĝ(n,m))= cY ]2

P[∀Y ∈Y�� : CY (G(n,m))= cY ]
. (5.31)
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Proposition 5.11 yields

P[∀Y ∈Y�� : CY (G(n,m))= cY ]∼
∏
Y

P[Po(κY )= cY ]

uniformly for all c ∈ C. Similarly, if cY = 0 for all Y with κ̂Y = 0, then Proposition 5.11 yields

P[∀Y ∈Y�� : CY (Ĝ(n,m))= cY ]∼
∏
Y

P[Po(κ̂Y )= cY ].

By contrast, if cY > 0 for some Y with κ̂Y = 0, then

P[∀Y ∈Y�� : CY (Ĝ(n,m))= cY ]= 0.

Thus, (5.31) gives

E[1C ·E[Z(G(n,m))|F�]2]
E[Z(G(n,m))]2

∼
∑
c∈C

∏
Y∈Y��

P[Po((1+ δY )κY )= cY ]2

P[Po(κY )= cY ]

= exp
[
−

∑
Y∈Y��

(1+ 2δY )κY
] ∑

c∈C

∏
Y∈Y��

((1+ δY )2κY )cY
cY ! . (5.32)

Choosing B sufficiently large, we can ensure that
∑
c∈C

∏
Y∈Y��

[((1+ δY )2κY )cY /cY !]� exp
(

−α/2+
∑
Y∈Y�

(1+ δY )2κY
)
.

Hence, (5.32) implies that for large n,

E[1C ·E[Z(G(n,m))|F�]2]
E[Z(G(n,m))]2

� exp
[
−α +

∑
Y∈Y�

δ2YκY

]
. (5.33)

Further, as 0�Z(G(n,m))� Z(G(n,m)),

E[1C · (E[Z(G(n,m))|F�]2 −E[Z(G(n,m))|F�]2)]
=E[1C · (E[Z(G(n,m))|F�]+E[Z(G(n,m))|F�])(E[Z(G(n,m))|F�]−E[Z(G(n,m))|F�])]
� 2‖1C ·E[Z(G(n,m))|F�]‖∞E[E[Z(G(n,m))|F�]−E[Z(G(n,m))|F�]]. (5.34)

Since B is (large but) fixed, Proposition 5.11 yields

‖1C ·E[Z(G(n,m))|F�]‖∞ �O(E[Z(G(n,m))]),

whereas Corollary 5.8 shows

E[E[Z(G(n,m))|F�]−E[Z(G(n,m))|F�]]= o(E[Z(G(n,m))]).

Plugging these estimates into (5.34), we get

E[1C · (E[Z(G(n,m))|F�]2 −E[Z(G(n,m))|F�]2)]= o(E[Z(G(n,m))]).

Thus, the lemma follows from (5.33).

Proof of Lemma 5.12. Given η > 0 choose α = α(η)> 0 small enough. We introduce the auxil-
iary random variable

X(G(n,m))= |Z(G(n,m))−E[Z(G(n,m))|F�]|
× 1{|Z(G(n,m))−E[Z(G(n,m))|F�]|>α1/3E[Z(G(n,m))]}
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so that
X(G(n,m))<α1/3E[Z(G(n,m))]

⇒ |Z(G(n,m))−E[Z(G(n,m))|F�]|� α1/3E[Z(G(n,m))]. (5.35)
Combining (5.21), (5.27) and Lemmas 5.13 and 5.14, we obtain

E[Var[Z(G(n,m))|F�]]<αE[Z(G(n,m))]2,
providing �, n are large enough. Therefore, Chebyshev’s inequality yields
E[X(G(n,m))]

� α1/3E[Z(G(n,m))]
∑
j�0

2j+1
P[X(G(n,m))> 2jα1/3E[Z(G(n,m))]]

� α1/3E[Z(G(n,m))]
∑
j�0

2j+1
P[|Z(G(n,m))−E[Z(G(n,m))|F�]|> 2jα1/3E[Z(G(n,m))]]

� 4α−1/3
E[Z(G(n,m))] ·E

[
Var[Z(G(n,m))|F�]
E[Z(G(n,m))]2

]

� 4α2/3E[Z(G(n,m))]. (5.36)
Finally, the assertion follows from (5.35), (5.36) and Markov’s inequality.

Proof of Theorem 2.7. Let (KY )Y�1 be a family of mutually independent Poisson variables with
means E[KY ]= κY , let (Kj)j�1 be mutually independent Poisson variables with means E[Kj]=
(d(k− 1))j/(2j) and let (ψh,i,j)h,i,j�1 be a family of samples from P, mutually independent and
independent of the Kj. We first use an argument from [55] to show that the random variable K
from Theorem 2.7 is well-defined. Let �� 1. Then (5.23) shows that the random variables

K′
� =

∏
Y∈Y�

(tr�Y )KY

exp(κYδY )
, K� = exp

[
(d(k− 1))�

2�
(1− tr(��))

] K�∏
i=1

tr
�∏

j=1
�ψ�,i,j

are identically distributed. Further, since E[(tr�Y )KY ]= exp(κYδY ) and because the KY are mutu-
ally independent, we have E[K�]=E[K′

�]= 1. Therefore, the random variables K�� = ∏
l�� Kl

form a martingale. Additionally, since E[(tr�Y )2KY ]= exp(2κYδY + κYδ2Y ), Lemma 5.13 shows
that the martingale is L2-bounded. Therefore, (K��)��1 converges to a limit K∗ almost surely
and in L2. The random variableK is obtained fromK∗ by disregarding the factors �= 1 and �= 2
if k= 2.

As a next step we show that K> 0 almost surely (this is where there is a significant difference
between hard constraints and soft ones). There are two cases to consider. First, assume that d<
dcond � (k− 1)−1. Then

∑
��1 E[K�]=O(1). Consequently, for any ε > 0 we can find L> 0 such

that P[∀� > L :K� = 0]> 1− ε. But given thatK� = 0 for all � > L,K is a finite product of positive
terms, and thus K is positive. Next, suppose that dcond > (k− 1)−1. Then Lemma 5.13 implies
that

∑
Y∈Y δ2Y <∞. Hence, there exists �0 > 1 such that for all � > �0 and all Y ∈Y� we have

|δY |� 1/2. Thus, for � > �0 we obtain

E[K−1
� ]=

∏
Y∈Y�

exp(κYδY )
(1+ δY )KY

= exp
[ ∑
Y∈Y�

κYδ
2
Y

1+ δY
]
� exp

[
4

∑
Y∈Y�

κYδ
2
Y

]
.

Consequently, Lemma 5.13 shows that the expected reciprocals E[K−1
��] remain bounded for all �,

whence K> 0 almost surely.
To complete the proof of Theorem 2.7, we recall that

E|Z(G(n,m))− Z(G(n,m))| = o(E[Z(G(n,m))])
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by Corollary 5.8. Hence, Lemma 5.12 yields

lim
n→∞ P[|Z(G(n,m))−E[Z(G(n,m))|F�]|>ηE[Z(G(n,m))]]= 0 for any η > 0. (5.37)

Further, by Proposition 5.11 the conditional expectation E[Z(G(n,m))|F�] is distributed as
follows: for any non-negative integer vector (cY )Y∈Y�� such that cY = 0 if κ̂Y = 0 we have

E[Z(G(n,m)) | ∀Y ∈Y�� : CY (G(n,m))= cY ]
E[Z(G(n,m))]

= P[∀Y ∈Y�� : CY (Ĝ(n,m))= cY ]
P[∀Y ∈Y�� : CY (G(n,m))= cY ]

(by (5.5))

∼
∏

Y∈Y��

P[Po(κ̂Y )= cY ]
P[Po(κY )= cY ]

=
∏

Y∈Y��

(tr�Y )cY
exp(κ̂Y − κY ) , (5.38)

while

E[Z(G(n,m)) | ∀Y ∈Y�� : CY (G(n,m))= cY ]= 0

if cY > 0 for some signature Y with κ̂Y = 0. Indeed, Proposition 5.11 shows that κ̂Y = 0 can only
occur for signatures of order one, and for such signatures we obtain tr�Y = 0. Consequently,
the conditional expectation is given by (5.38) in all cases. In other words, letting Q�(G(n,m))=
E[Z(G(n,m))|F�]/E[Z(G(n,m))], we conclude that

Q�(G(n,m)) n→ ∞→ W��(G(n,m))=
∏

Y∈Y��

(tr�Y )CY (G(n,m))

exp(κ̂Y − κY ) (5.39)

in probability. Therefore, Proposition 5.11 implies thatQ�(G(n,m)) converges toK�� in distribu-
tion for every �� 1. Since (K��)� converges to K∗ almost surely and in L2, (5.37) shows that for
any bounded continuous g :R→R,

∀ε > 0 ∃�0(ε) ∀�� �0(ε) : lim sup
n→∞

E[g(K∗)]−E[g(K��)]< ε,

∀ε > 0 ∃�′0(ε) ∀�� �′0(ε) : lim sup
n→∞

E[g(K��)]−E

[
g
(

Z(G(n,m))
E[Z(G(n,m))]

)]
< ε.

Combining these two statements, we conclude that Z(G(n,m))/E[Z(G(n,m))] converges toK∗ in
distribution. Further, as

P[G(n,m) ∈S�{C1(G(n,m))+ 1{k= 2}C2(G(n,m))= 0}]=O(1/n),

we see that Z(G(n,m))/E[Z(G(n,m))] converges to K in distribution. Finally, plugging in the
formula for the first moment from (5.19) yields (2.11).

6. The planted model
In this section we prove Theorem 5.3. Specifically, in Section 6.1–6.4 we prove via an adapta-
tion of the interpolation argument from [27] that the functional B provides a lower bound on
E[ln Z(Ĝ)]. Some of the intermediate steps of this proof will be re-used in Section 7. Subsequently,
in Section 6.5 we show how the results from [25] can be combined with a limiting argument to
derive a matching upper bound on E[ln Z(Ĝ)].
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6.1 The interpolationmethod
We are going to prove the following lower bound on E[ln Z(Ĝ)]. It is worth mentioning that here,
in contrast to other applications of the interpolation method, the scheme gives a lower bound on
the free energy. This is because we apply the interpolation method to a planted model; see [27] for
more comments.

Proposition 6.1 (SYM, BAL, POS). If π ∈P2∗(	) is supported on a finite set, then

lim inf
n→∞

1
n
E[ ln Z(Ĝ)]� B(d, P, π).

We prove Proposition 6.1 via the interpolation method. Specifically, we adapt the interpolation
argument developed in [27] for the case of soft constraints. The basic idea is to construct a family
of random CSPs, parametrized by t ∈ [0, 1], such that for t = 1 the model coincides with Ĝ, while
for t = 0 the CSP is so simple that we can calculate the partition function easily. Indeed, we will see
that the logarithm of the partition function at t = 0 is asymptotically equal to nB(d, P, π) w.h.p.
To obtain the desired lower bound on E[ln Z(Ĝ)] we will prove that the mean of the logarithm of
the partition function is a monotonically increasing function of t.

The intermediate models parametrized by t ∈ [0, 1] comprise a blend of unary and k-ary con-
straints, and t governs the proportion of k-ary constraints. Thus, at t = 0 all constraints are unary,
whereas at t = 1 there are k-ary constraints only. This interpolating family is best introduced
by way of the following generalized random CSP. Suppose that π ∈P2∗(	) has finite support.
Moreover, let γ = (γv)v∈[n] be a sequence of integers, let θ � 0 be an integer and letU ⊂ [n]. Define
a randomCSPG(n,m, γ , π ,U) with variablesVn = {x1, . . . , xn}, k-ary constraints a1, . . . , am and
unary constraints (bi,j)i∈[n],j∈[γi], (ci)i∈U , all chosen mutually independently, as follows.

INT1. For i ∈ [m] choose ∂ai ∈Vk
n uniformly and independently pick ψai ∈� from the distribu-

tion P.

INT2. For i ∈ [n] and j ∈ [γi] the constraint bi,j is adjacent to xi only. The random function
ψbi,j is defined as follows: with (ρi,j,h)h∈[k−1] drawn from π and ψ i,j drawn from P mutually
independently, let

ψbi,j(σ )=
∑

τ1,...,τk−1∈	
ψ i,j(τ1, . . . , τk−1, σ )

k−1∏
h=1

ρi,j,h(τh) (σ ∈	).

INT3. For i ∈U the unary constraint ci is adjacent to xi and for a uniformly random χ i ∈	 we let

ψci(σ )= 1{σ = χ i}.
Thus, a1, . . . , am are chosen just as the constraints of G(n,m). Moreover, the unary con-

straints bi,j acting on xi come with random constraint functions ψ i,j whose other k− 1 inputs are
drawn independently from the distributions ρi,j,1, . . . , ρi,j,k−1. Finally, the constraints ci simply
peg variable xi to a specific value χ i.

Like in Section 5.1 we consider several assorted random CSP models, such as a planted version
of G(n,m, γ , π ,U). First, given an integer 0� θ � n let U denote a random subset of [n] of size
θ and let G(n,m, γ , π , θ)=G(n,m, γ , π ,U). Thus, in G(n,m, γ , π , θ) we peg a random set of θ
variables. Further, let Ĝ(n,m, γ , π , θ) be the random CSP obtained by reweighingG(n,m, γ , π , θ)
according to its partition function: for any possible outcome G of G(n,m, γ , π , θ) let

P[Ĝ(n,m, γ , π , θ)=G]= Z(G) · P[G(n,m, γ , π , θ)=G]
E[Z(G(n,m, γ , π , θ))]

. (6.1)
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The denominator is positive for all n� q because of SYM and because
∫
P(	) ρdπ(ρ) is the uni-

form distribution on 	. Further, by extension of (5.4) we define a distribution on assignments by
letting

P[σ̂ n,m,γ ,π ,θ = σ ]= E[ψG(n,m,γ ,π ,θ)(σ )]
E[Z(G(n,m, γ , π , θ))]

for any σ ∈	Vn . (6.2)

Additionally, let �(n,m, γ , π , θ)⊂	Vn be the support of σ̂ n,m,γ ,π ,θ . Then for σ ∈
�(n,m, γ , π , θ) we define, by extension of (5.2), a planted random CSP by letting

P[G∗(n,m, γ , π , θ , σ )=G]= ψG(σ )P[G(n,m, γ , π , θ)=G]
E[ψG(n,m,γ ,π ,θ)(σ )]

(6.3)

for any possible outcome G of G(n,m, γ , π , θ).
We obtain the interpolating family of random CSPs by choosing the parameters m, γ , θ as

appropriate random variables parametrized by t. Specifically, given d> 0 and t ∈ [0, 1] the num-
ber mt of k-ary constraints has distribution Po(tdn/k). Moreover, for each i ∈ [n] let γ t,i have
distribution Po((1− t)d) and let γ t = (γ t,i)i∈[n]. Additionally, let θε be distributed as the ran-
dom variable from Lemma 4.6, with the convention that θ1 = 0. All of these random variables are
mutually independent. Finally, we let

Gt,ε =G(n,mt , γ t , π , θε), Ĝt,ε = Ĝ(n,mt , γ t , π , θε),
σ̂ t,ε = σ̂ n,mt ,γ t ,π ,θε , G∗

t,ε =G∗(n,mt , γ t , π , θε , σ̂ t,ε).

The following proposition provides the monotonicity in t that we alluded to above.

Proposition 6.2 (SYM, BAL, POS). For every δ > 0 there is ε > 0 such that, for large enough n, the
following holds. Let

�t = td(k− 1)
kξ

E

[
�

( ∑
τ∈	k

ψ(τ )
k∏

j=1
ρ
(π)
j (τj)

)]
.

and define

φε(t)=E[ ln Z(Ĝt,ε)]/n+ �t for t ∈ [0, 1].

Then
∂

∂t
φε(t)>−δ for all t ∈ (0, 1).

We observe that the random CSP Ĝ1,ε at t = 1 contains Po(dn/k) k-ary constraints as well as
a bounded number θε of unary constraints as per INT3. As we will see shortly, this implies that
E[ ln Z(Ĝ1,ε)]�E[ ln Z(Ĝ)]. Therefore, Proposition 6.2 shows that for any fixed δ > 0 for large
enough n,

1
n
E[ln Z(Ĝ)]� 1

n
E[ln Z(Ĝ0,ε)]− �1 − δ. (6.4)

Further, Ĝ0,ε consists of unary constraints only, and thus E[ ln Z(Ĝ0,ε)] is going to be easy to
compute. Hence, we will ultimately obtain Proposition 6.1 from (6.4).

But first we need to prove Proposition 6.2. In the special case of soft constraints (i.e. ψ > 0 for
allψ ∈�) the above construction of the interpolating family Ĝt,ε is identical to the one from [27],
and Proposition 6.2 comes down to [27, Proposition 3.25]. In fact, the proof of Proposition 6.2
re-uses several of the steps and arguments from [27]. But the presence of hard constraints causes

https://doi.org/10.1017/S0963548319000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000440


Combinatorics, Probability and Computing 387

subtle difficulties. This is because in order to calculate the derivative of φε(t) we need to inves-
tigate the impact of adding a further random constraint to the random CSP instance Ĝt,ε on the
logarithm of the partition function. Clearly, in the case of soft constraints the impact of a sin-
gle constraint is bounded. But this need not be true in the case of hard constraints, and new
arguments are required to deal with this issue. We will come to this in Section 6.3, just after estab-
lishing some basic facts about Ĝt,ε . Then we will complete the proofs of Propositions 6.1 and 6.2 in
Section 6.4.

6.2 Groundwork
Toward the proof of Proposition 6.2 we need a few basic observations regarding the probability
distributions from the previous section. All of the following results are straightforward adap-
tations of the corresponding soft constraint versions from [27]. We begin with the following
extension of the Nishimori identity.

Lemma 6.3. For any G, σ we have

P[σ̂ n,m,γ ,π ,θ = σ ] · P[G∗(n,m, γ , π , θ , σ )=G]=μG(σ )P[Ĝ(n,m, γ , π , θ)=G].

Proof. The proof is essentially identical to that of Lemma 5.1: (6.1), (6.2) and (6.3) yield

P[σ̂ n,m,γ ,π ,θ = σ ] · P[G∗(n,m, γ , π , θ , σ )=G]= ψG(σ )P[G(n,m, γ , π , θ)=G]
E[Z(G(n,m, γ , π , θ))]

=μG(σ ) · Z(G)P[G(n,m, γ , π , θ)=G]
E[Z(G(n,m, γ , π , θ))]

=μG(σ )P[Ĝ(n,m, γ , π , θ)=G],
as desired.

We are going to apply the Nishimori identity as follows. Suppose that F(σ0, . . . , σ�) is a
function of �+ 1 assignments. Then Lemma 6.3 yields

E〈F(σ 0, . . . , σ �)〉Ĝ(n,m,γ ,π ,θ) =
∑
σ0∈	n

E[μĜ(n,m,γ ,π ,θ)(σ0)〈F(σ0, σ 1, . . . , σ �)〉Ĝ(n,m,γ ,π ,θ)]

=E〈F(σ̂ n,m,γ ,π ,θ , σ 1, . . . , σ �)〉G∗(n,m,γ ,π ,θ ,σ̂ n,m,γ ,π ,θ ). (6.5)

Of course, in order to put (6.5) to work we need to get a handle on the distribution of σ̂ n,m,γ ,π ,θ .

Lemma 6.4 (SYM). For any assignment σ ∈	Vn we have

E[ψG(n,m,γ ,π ,θ)(σ )]= q−θ ξ
∑

v∈V γvφ(ρσ )m. (6.6)
In particular, σ̂ n,m,γ ,π ,θ and σ̂ n,m,γ ′,π ,θ ′ are identically distributed for all γ , γ ′, θ , θ ′.

Proof. The last factor in (6.6) emerges due to (5.1), because the k-ary constraints a1, . . . , am are
mutually independent and also the functions ψai and are independent of the neighbourhoods ∂ai
by INT1. Similarly, step INT2 of the construction gives rise to the middle factor because the ψ i,j
are chosen independently of the ρi,j,h and E[ρi,j,h(τ )]= 1/q for every τ ∈	. Hence, SYM yields
E[ψbi,j(σ )]= ξ for every σ ∈	. Finally, the factor q−θ results from INT3.

Corollary 6.5 (SYM, BAL). Let D> 0 and θ > 0. Then, uniformly for all m�Dn/k and all γ , we
have

P[‖ρσ̂ n,m,γ ,π ,θ − ρ̄‖TV > n−1/2 ln n]�O(n− ln n).
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Furthermore, for any η > 0 uniformly for all m�Dn/k and all γ we have
P[‖ρσ̂ n,m,γ ,π ,θ − ρ̄‖TV >η]� exp(−	(n)).

Proof. Let σ ∈	Vn and recall that ρσ ∈P(	) stands for the empirical distribution of σ .
Lemma 6.4, (6.2) and (5.1) yield

P[σ̂ n,m,γ ,π ,θ = σ ]= P[σ̂ n,m,0,π ,0 = σ ]= φ(ρσ )m

E[Z(G(n,m))]
and BAL provides that the rightmost expression is concave in ρσ and attains its maximum
at ρ̄.

Finally, we introduced the unary constraints from INT3 in order to obtain the following.

Lemma 6.6. For any ε > 0 there is n0 > 0 such that for all d> 0, t ∈ [0, 1] we have
P[μĜt,ε

is ε-symmetric]� 1− ε.
Proof. By Lemma 6.3 the random factor graph Ĝt,ε has the same distribution as G∗

t,ε . Spelling
out (6.3) and using the second part of Lemma 6.3, we see that G∗

t,ε is obtained by first drawing
G∗(n,mt , γ t , π , 0, σ̂ n,mt ,γ t ,π ,0) without pinning and subsequently pinning a random set U of θε
variables to their planted values σ̂ n,mt ,γ t ,π ,0. Applying the first part of Lemma 6.3, we see that this
experiment is equivalent to first generating a random factor graph Ĝ(n,mt , γ t , π , 0), then drawing
a sample σ from its Gibbs measure and subsequently pinning the variables in a random set U of
size θε to the values σ (xi), i ∈U. This last experiment precisely matches the perturbation from
Lemma 4.6, which therefore implies the assertion.

6.3 Adding a constraint
As already mentioned, in order to prove Proposition 6.2 we basically need to study the impact
of adding a single constraint to the random CSP Ĝt,ε . The following proposition delivers this
analysis. From here on we let x1, . . . , xk ∈Vn denote a family of uniformly random variables,
chosen mutually independently and independently of everything else.

Proposition 6.7 (SYM, BAL). Let D> 0 and θ > 0. Uniformly for all m�Dn/k and all γ we have

E[ln Z(Ĝ(n,m+ 1, γ , π , θ))]−E[ln Z(Ĝ(n,m, γ , π , θ))]
= o(1)+ ξ−1

E[�(〈ψ(σ (x1), . . . , σ (xk))〉Ĝ(n,m,γ ,π ,θ))].

Proposition 6.7 extends [27, Proposition 3.30] from soft to hard constraints. To prove the
proposition we need the following statement. The proof, although essentially identical to [27,
Corollary 3.29], is included for the sake of completeness.

Lemma 6.8 (SYM, BAL). Let D> 0 and θ > 0. Uniformly for all m�Dn/k and all γ the following
is true. There is a coupling of σ̂ n,m,γ ,π ,θ , σ̂ n,m+1,γ ,π ,θ such that

P[σ̂ n,m,γ ,π ,θ �= σ̂ n,m+1,γ ,π ,θ ]=O(n−1 ln4 n),
P[|σ̂ n,m,γ ,π ,θ�σ̂ n,m+1,γ ,π ,θ |>√

n ln n]=O(n−2).

Proof. The second bound is immediate from Corollary 6.5. To prove the first we bound the total
variation distance of σ̂ n,m,γ ,π ,θ , σ̂ n,m+1,γ ,π ,θ . By Lemma 6.4 we may assume that θ = 0, γ = 0, and
thus σ̂ n,m,γ ,π ,θ = σ̂ n,m. Moreover, due to Corollary 6.5 we may condition on the event that

‖ρσ̂ n,m − ρ̄‖TV + ‖ρσ̂ n,m+1 − ρ̄‖TV =O(n−1/2 ln n).
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Hence, consider σ such that ‖ρσ − ρ̄‖TV =O(n−1/2 ln n). By SYM and BAL the first derivative
of the function

φ(ρ)=
∑
τ∈	k

E[ψ(τ1, . . . , τk)]
k∏

j=1
ρ(τj)

vanishes at ρ̄ and thus φ(ρ)= ξ +O(‖ρ − ρ̄‖2TV). Therefore, by Lemma 6.4 and (5.1),
E[ψG(n,m+1)(σ )]
E[ψG(n,m)(σ )]

= φ(ρσ )= ξ +O( ln2 n/n). (6.7)

Summing (6.7) on σ and applying BAL a second time, we obtain
E[Z(G(n,m+ 1))]
E[Z(G(n,m))]

= ξ +O( ln2 n/n). (6.8)

Plugging (6.7) and (6.8) into (6.2), we obtain dTV(σ̂ n,m, σ̂ n,m+1)=O( ln4 n/n), as desired.

The main difference between soft and hard constraints is that the addition of a single hard
constraint can potentially have a dramatic impact on the partition function. In fact, a single hard
constraint can diminish log Z by a linear amount �(n); one of the main technical challenges of
this work is to cope with this possibility. However, the following crucial lemma shows that in
the planted model such ‘high-impact’ constraints are unlikely to be present, and that even the
collective impact of n3/4 constraints is typically sublinear.

Lemma 6.9 (SYM, BAL). For any D> 0 and θ > 0 there is n0 > 0 such that for all n> n0 for
all m�Dn/k and all γ the following is true. With probability 1− exp (− n0.8) the random CSP
Ĝ(n,m, γ , π , θ) has the following property:

If G′ is obtained from Ĝ(n,m, γ , π , θ) by deleting any set U of at most n3/4 constraints,
then ln Z(G′)− ln Z(Ĝ(n,m, γ , π , θ))� n0.9.

Proof. The proof is based on a double-counting argument; throughout we assume that n is suf-
ficiently large. Let Ǧ= Ĝ(n,m, γ , π , θ) for brevity. For a specific set U, let E(U) be the event that
the factor graph G′ satisfies ln Z(G′)− ln Z(Ǧ)> n0.9. Also, let E be the union of all the events
E(U) with |U|� n3/4. Additionally, let I be the event that Ǧ has at least n0.9 isolated variables and
that no variable has degree larger than n0.8. A standard balls-into-bins calculation shows that

P[I]� 1− exp (− 2n0.8). (6.9)
Hence, it suffices to bound

P[E ∩ I]�
∑

U : |U|�n3/4
P[E(U)∩ I]. (6.10)

Let Ũ be the set of all k-ary constraints in U together with all the k-ary constraints that are
adjacent to the unique variable appearing in a unary constraint fromU. For a graph Ǧ ∈ E(U)∩ I
obtain G̃ by rewiring the constraints a ∈ Ũ such that in G̃ each is adjacent to distinct variables that
are isolated in Ǧ. There is a sufficient supply of isolated variables because Ǧ ∈ I and |U|� 2n0.8
on I ; the isolated vertices used and the rewiring protocol are deterministic given Ǧ. We claim that
almost surely (with respect to choice of Ǧ),

Z(G′)� exp (O(|U|))Z(G̃). (6.11)
Indeed, each k-ary constraint of G̃ not present in G′ is connected with k variables that do not have
any further neighbours. Hence, SYM ensures that the addition of these constraints decreases the
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partition function by no more than a factor of ξ |U|. Further, Lemma 6.3 ensures that each of the
unary constraints contained in U is satisfiable (because we can think of Ǧ as being obtained by
first planting an assignment and then adding constraints that are satisfied under this assignment).
Consequently, being connected in G̃ exclusively to variables that are adjacent to unary constraints
only, the unary constraints in U have an impact of no more than exp (O(|U|)) on the partition
function. Thus, (6.11) follows.

Let Ǧ = E(U)∩ I and let G̃ be the set of all possible graphs G̃ that can be obtained from some
Ǧ ∈ Ǧ. We define a bipartite graph structure on the (finite) sets Ǧ, G̃ by connecting each Ǧ with
the corresponding G̃. Thus, each vertex in Ǧ has degree one, but those in G̃ may have many
neighbours. However, we claim that for every G̃ ∈ G̃∑

G∈∂G̃
P[G(n,m, γ , π , θ)=G]� exp (n0.81)P[G(n,m, γ , π , θ)= G̃]. (6.12)

Indeed, the only difference between G̃ and any neighbour G ∈ ∂G̃ is that O(n0.8) constraints have
different neighbours. Since in G(n,m, γ , π , θ) the neighbours are chosen uniformly, we obtain
(6.12) from double-counting.

To complete the proof recall that Z(Ǧ)� exp (n0.9)Z(G′) for Ǧ ∈ E(U). Hence, (6.11) implies

Z(G̃)� Z(Ǧ) exp(n0.9/2).
Therefore, (6.12) gives

P[Ǧ ∈ E(U)∩ I]� E[Z(G(n,m, γ , π , θ))1{G(n,m, γ , π , θ) ∈ E(U)∩ I}]
E[Z(G(n,m, γ , π , θ))]

� exp(n0.81) ·
∑

G∈G Z(G)P[G(n,m, γ , π , θ)=G]∑
G∈G Z(G̃)P[G(n,m, γ , π , θ)=G]

� exp(− n0.9/3). (6.13)
Finally, the assertion follows from (6.9), (6.10) and (6.13).

Equipped with Lemma 6.9 we can complete the proof of Proposition 6.7. The argument is
similar to the proof of [27, Lemma 3.32], except that we have to apply Lemma 6.9 tomake coupling
work.

Proof of Proposition 6.7. The proof is by way of a coupling of

Ĝ(n,m, γ , π , θ), Ĝ(n,m+ 1, γ , π , θ).
By Lemma 6.8 we can couple

σ̂
′ = σ̂ n,m,γ t ,mt ,θε , σ̂

′′ = σ̂ n,m,γ t ,mt+1,θε

such that
P[σ̂ ′ = σ̂

′′]= 1−O( ln4 n/n), P[|σ̂ ′�σ̂ ′′|>√
n ln n]=O(n−2). (6.14)

Further, given σ̂ ′, σ̂ ′′ we couple

G′ d=G∗(n,m, γ , π , θ , σ̂ ′), G′′ d=G∗(n,m+ 1, γ , π , θ , σ̂ ′′)
as follows.
Case 1. σ̂ ′ = σ̂

′′. We couple so that all of their unary constraints as well as the first m k-ary con-
straints coincide. Additionally, G′′ contains a single further random k-ary constraint a drawn
according to (6.3) with respect to the planted assignment σ̂ ′. Hence,

E

[
ln

Z(G′′)
Z(G′)

∣∣∣ σ̂ ′ = σ̂
′′
]

=E[ln〈ψa(σG′)〉G′ | σ̂ ′ = σ̂
′′]. (6.15)
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Case 2. |σ̂ ′�σ̂ ′′|�√
n ln n. The definition (6.3) of the planted distribution ensures that with prob-

ability 1−O(n−2) the total number X of constraints in either G∗(n,m, γ , π , θ , σ̂ ′) or G∗(n,m+
1, γ , π , θ , σ̂ ′′) that are adjacent to a variable in σ̂ ′�σ̂ ′′ is bounded by n2/3. Hence, we couple the
first m constraints such that G′,G′′ coincide on those constraints that are not adjacent to any
variable in σ̂ ′�σ̂ ′′, while the constraints that are adjacent to a variable in σ̂ ′�σ̂ ′′ are chosen inde-
pendently. Additionally, G′′ contains an (m+ 1)th constraint that is chosen independently of the
rest. Thus, Lemma 6.9 implies that

E

[
ln

Z(G′′)
Z(G′)

∣∣∣ |σ̂ ′�σ̂ ′′|�√
n ln n

]
=O(n0.9). (6.16)

Case 3. |σ̂ ′�σ̂ ′′|>√
n ln n. In this case we choose G′, G′′ independently from their respective

distributions. The deterministic bound | ln Z(G′)|, | ln Z(G′′)|�O(n+m) implies

E

[
ln

Z(G′′)
Z(G′)

∣∣∣ |σ̂ ′�σ̂ ′′|>√
n ln n

]
=O(n). (6.17)

Combining (6.14)–(6.17), Lemma 6.3 and applying Lemma 6.9 a second time, we conclude that

E

[
ln

Z(Ĝ(n,m+ 1, γ , π , θ))
Z(Ĝ(n,m, γ , π , θ))

]
=E[ln〈ψa(σG′)〉G′ | σ̂ ′ = σ̂

′′]+ o(1)

=E[ln〈ψa(σG′)〉G′]+ o(1). (6.18)

To compute E[ln〈ψa(σG′)〉G′] we write σ , σ 1, σ 2, . . . for independent samples fromμG′ . Thus,
spelling out the definition of a, we find

E[ln〈ψa(σG′)〉G′]= E[ψ(σ̂ ′(y1), . . . , σ̂
′(yk)) ln〈ψ(σ (y1), . . . , σ (yk))〉G′]

E[ψ(σ̂ ′(y1), . . . , σ̂
′(yk))]

.

Since by Corollary 6.5 the empirical distribution ρσ̂ ′ is asymptotically uniform with very high
probability, the denominator equals ξ + o(1) with probability 1−O(n−2). Thus,

E[ln〈ψa(σG′)〉G′]= (ξ−1 + o(1))E[ψ(σ̂ ′(y1), . . . , σ̂
′(yk)) ln〈ψ(σ (y1), . . . , σ (yk))〉G′]. (6.19)

To proceed we are going to use the series expansion of the logarithm. This expansion applies
because we may assume that the argument of the logarithm lies in the interval (0, 1]. Indeed,
to obtain the lower bound we simply observe that ψ(σ̂ ′(y1), . . . , σ̂

′(yk))> 0 because otherwise
the prefactor vanishes, and μG′(σ̂ ′)> 0 by Lemma 6.3. Moreover, ψ � 1 by the definition of the
constraint functions. Thus, expanding the logarithm we obtain

E[ln〈ψa(σG′)〉G′]= −(ξ−1 + o(1))E
[∑
��1

ψ(σ̂ ′(y1), . . . , σ̂
′(yk))

�
〈1−ψ(σ (y1), . . . , σ (yk))〉�G′

]
.

Because the constraint functions are upper-bounded by 1, the sum is absolutely convergent.
Hence, we may swap the sum and the expectation and obtain

E[ln〈ψa(σG′)〉G′]= −(ξ−1 + o(1))
∑
��1

1
�
E[ψ(σ̂ ′(y1), . . . , σ̂

′(yk))〈1−ψ(σ (y1), . . . , σ (yk))〉�G′].

Further, applying Lemma 6.3 once more we obtain
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E[ln〈ψa(σG′)〉G′]
= −(ξ−1 + o(1))

×
∑
��1

1
�
E

[
(1− (1−ψ(σ̂ ′(y1), . . . , σ̂

′(yk))))
〈 �∏
h=1

1−ψ(σ h(y1), . . . , σ h(yk))
〉
G′

]

= −(ξ−1 + o(1))

×
∑
��1

1
�
E

[〈 �∏
h=1

1−ψ(σ h(y1), . . . , σ h(yk))
〉
G′

]
− 1
�
E

[〈�+1∏
h=1

1−ψ(σ h(y1), . . . , σ h(yk))
〉
G′

]

= −(ξ−1 + o(1))

×
[
1−E[〈ψ(σ (y1), . . . , σ (yk))〉G′]−

∑
��2

1
�(�− 1)

E[〈1−ψ(σ (y1), . . . , σ (yk))〉�G′]
]
.

(6.20)

Due to the series expansion

�(1− x)+ x=
∑
��2

x�

�(�− 1)
,

the assertion follows by combining (6.18) and (6.20).

6.4 The lower bound
Thanks to Proposition 6.7, the rest of the proof of Proposition 6.2 is almost identical to the proof
of [27, Proposition 3.30], except that we have to pay a bit of attention to some convergence issues.
Write 〈 · 〉t,ε for the expectation with respect to the Gibbs measure of Ĝt,ε . Unless specified oth-
erwise, σ 1, σ 2, . . . denote independent samples from μĜt,ε

. Moreover, we write ψ for a sample
from P and x1, . . . , xk ∈Vn for independently and uniformly chosen variables. Toward the proof
of Proposition 6.2 we establish the following formula for the derivative of

φε(t)=E[ ln Z(Ĝt,ε)]/n+ �t .

Lemma 6.10 (SYM, BAL). Let ρ1, . . . , ρk be chosen from π , mutually independently and indepen-
dently of everything else. Set

�t,� =E

[
〈1−ψ(σ (y1), . . . , σ (yk))〉�t,ε − k

〈
1−

∑
τ∈	k−1

ψ(τ , σ (y1))
∏
j<k

ρj(τj)
〉�
t,ε

+ (k− 1)
(
1−

∑
τ∈	k

ψ(τ )
k∏

j=1
ρj(τj)

)�]
.

Then
∂

∂t
φε(t)= o(1)+ d

kξ
∑
��2

�t,�
�(�− 1)

uniformly for all ε, t ∈ (0, 1).
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Let

 t =E[ln Z(Ĝt,ε(mt + 1, γ t))]−E[ln Z(Ĝt,ε(mt , γ t))],
 ′

t =E[ln Z(Ĝt,ε(mt , γ t + 1x1 ))]−E[ln Z(Ĝt,ε(mt , γ t))].

Thus,  t is the expected impact of adding one more k-ary constraint to Ĝt,ε . Similarly,  ′
t quan-

tifies the average impact of adding a unary constraint as per INT2. The following standard
calculation shows how

∂

∂t
E[ ln Z(Ĝt,ε)]

can be expressed in terms of t , ′
t .

Claim 6.11 (SYM, BAL).We have
1
n
∂

∂t
E[ ln Z(Ĝt,ε)]= d

k
 t − d ′

t .

Proof. Let Pλ(j)= λj exp (− λ)/j!. By the construction, the parameter t only affects the distribu-
tion of random variablesmt , γ t . Indeed,

E[ln Z(Ĝt,ε)]=
∑
m,γ

E[ ln Z(Ĝt,ε)|mt =m, γ t = γ ]Ptdn/k(m)
∏
x∈V

P(1−t)d(γx). (6.21)

Since the derivatives of the Poisson densities come out as
∂

∂t
Ptdn/k(m)= dn

k
[1{m� 1}Ptdn/k(m− 1)− Ptdn/k(m)],

∂

∂t
P(1−t)d(γv)= −d[1{γv � 1}P(1−t)d(γv − 1)− P(1−t)d(γv)],

the assertion follows from (6.21) and the product rule.

We proceed to calculate t , ′
t .

Claim 6.12 (SYM, BAL).We have

 t = o(1)− 1− ξ
ξ

+
∑
��2

1
�(�− 1)ξ

E[〈1−ψ(σ (y1), . . . , σ (yk))〉�t,ε].

Proof. Recalling the expansion

�(1− x)+ x=
∑
��2

x�

�(�− 1)
,

we obtain from Proposition 6.7 that

 t = o(1)+ ξ−1
E[�(〈ψ(σ (y1), . . . , σ (yk))〉t,ε)]

= o(1)− ξ−1(1−E[〈ψ(σ (y1), . . . , σ (yk))〉t,ε])
+

∑
��2

1
�(�− 1)ξ

E[〈1−ψ(σ (y1), . . . , σ (yk))〉�t,ε].

Further, Lemma 6.3, Corollary 6.5 and SYM yield

E[〈ψ(σ (y1), . . . , σ (yk))〉t,ε]= ξ + o(1).
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Claim 6.13 (SYM, BAL). With ρ1, ρ2, . . . drawn from π mutually independently and indepen-
dently of everything else,

 ′
t = −1− ξ

ξ
+

∑
��2

1
�(�− 1)ξ

E

[〈
1−

∑
τ1,...,τk−1∈	

ψ(τ1, . . . , τk−1, σ (y1))
k−1∏
j=1

ρj(τj)
〉�
t,ε

]
.

Proof. Lemma 6.3 shows that σ̂ n,m,γ t ,mt ,θε , σ̂ n,m,γ t+1x ,mt ,θε are identically distributed and hence
we can couple them identically. Let us write σ̂ for brevity. Further, we couple

G′ d=Ĝt,ε(mt , γ t), G′′ d=Ĝt,ε(mt , γ t + 1y1 )

in the natural way: first choose G′ from the distribution Ĝt,ε(mt , γ t), then obtain G′′ simply by
adding one more unary constraint b with ∂b= y1 according to step G2 of our construction. Then

E[ln Z(Ĝt,ε(mt , γ t + 1x))]−E[ln Z(Ĝt,ε(mt , γ t))]=E

[
ln

Z(G′′)
Z(G′)

]
=E[ln〈ψb(σ (y1))〉G′].

(6.22)
Since ψb(σ̂ (y1))> 0 by construction, we see that 0< 〈ψb(σ (y1))〉G′ � 1 and therefore by Fubini’s
theorem

E[ln〈ψb(σ (y1))〉G′]= −E

[∑
��1

1
�
〈1−ψb(σ (y1))〉�G′

]
= −

∑
��1

1
�
E[〈1−ψb(σ (y1))〉�G′].

Hence, due to INT2, the upper bound ψb � 1, Lemma 6.3 and assumption SYM,
E[ln〈ψb(σ (y1))〉G′]

= −
∑
��1

1
ξ�

E

[( ∑
τ∈	k−1

ψ(τ , σ̂ (y1))
∏
j<k

ρj(τj)
)〈 �∏

h=1

(
1−

∑
τ∈	k−1

ψ(σ h(y1))
∏
j<k

ρj(τj)
)〉

G′

]

= −
∑
��1

1
ξ�

E

[〈
1−

∑
τ∈	k−1

ψ(σ (y1))
k−1∏
j=1

ρj(τj)
〉�
G′

−
〈
1−

∑
τ∈	k−1

ψ(σ (y1))
k−1∏
j=1

ρj(τj)
〉�+1

G′

]

= ξ−1[E[ψ(σ (y1))]− 1+
∑
��2

1
�(�− 1)

E[〈1−ψ(σ (y1))〉�G′]]

= −1− ξ
ξ

+
∑
��2

1
ξ�(�− 1)

E[〈1−ψ(σ (y1))〉�G′],

as claimed.

Claim 6.14 (SYM, BAL). With ρ1, ρ2, . . . drawn from π mutually independently and indepen-
dently of everything else,

 ′′
t = k

d(k− 1)
∂

∂t
�t = −1− ξ

ξ
+

∑
��2

1
�(�− 1)ξ

E

[(
1−

∑
τ∈	k

ψ(τ )
k∏

j=1
ρj(τj)

)�]
.

Proof. Since

E

[ ∑
τ∈	k

ψ(τ )
k∏

j=1
ρj(τj)

]
= ξ ,

this follows along the lines of the proof of Claim 6.12.
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Proof of Lemma 6.10. The assertion is immediate from Claims 6.11–6.14.

Proof of Proposition 6.2. Let π t,ε be the empirical distribution of the marginals of the random
probability measure μĜt,ε

. Write ν1, ν2, . . . for independent samples drawn from π t,ε and define

�′
t,� =E

[(
1−

∑
σ∈	k

ψ(σ )
k∏

j=1
νj(σj)

)�
− k

(
1−

∑
τ∈	k

ψ(τ )ν1(τk)
∏
j<k

ρj(τj)
)�

+ (k− 1)
(
1−

∑
τ∈	k

ψ(τ )
k∏

j=1
ρj(τj)

)�]
.

Lemma 4.2 implies that for any η > 0, �� 1 there is ε > 0 such that, in the case that μĜt,ε
is

ε-symmetric for all ψ ∈� and all t ∈ [0, 1], we have

1
nk

∑
y1,...,yk∈V

∣∣∣∣〈1−ψ(σ (y1), . . . , σ (yk))〉�Ĝt,ε
−

(
1−

∑
σ∈	k

ψ(σ )
k∏

j=1
〈1{σ (yj)= σj}〉Ĝt,ε

)�∣∣∣∣<η.
(6.23)

Further, μĜt,ε
is ε-symmetric with probability at least 1− ε by Lemma 4.6. Consequently, for any

� and any η > 0 we can pick ε > 0 small enough so that |�t,� −�′
t,�|<η. Finally, since |�t,�|� 2k

for all t, � and because the series
∑
��2 1/(�(�− 1)) converges, the assertion follows from POS,

(6.23) and Lemma 6.10.

Proof of Proposition 6.1. By construction, Ĝ1,ε is obtained from Ĝ by adding further constraints.
Therefore, invoking Proposition 6.2 and the fundamental theorem of calculus, we find that for any
δ > 0 there is ε > 0 such that

E[ln Z(Ĝ)]�E[ln Z(Ĝ1,ε)]�E[ln Z(Ĝ0,ε)]− �1n− δn+ o(n). (6.24)

Furthermore, since Ĝ0,ε consists of unary constraints only and since the number θε of pinned
variables is bounded, we see that

E[ln Z(Ĝ0,ε)]�E[ln Z(Ĝ0,1)]−O(1).
Hence, taking n→ ∞ and then ε→ 0, we obtain from (6.24) that

lim inf
n→∞

1
n
E[ln Z(Ĝ)]� lim inf

n→∞
1
n
E[ln Z(Ĝ0,1)]− �1. (6.25)

Thus, we are left to compute E[ln Z(Ĝ0,1)]. We claim that with independent γ = Po(d), ψ i
from P and (ρh,i)h,i�1 chosen from π ,

1
n
E[ln Z(Ĝ0,1)]= 1

q
E

[
ξ−γ�

(∑
σ∈	

γ∏
h=1

∑
τ∈	k

1{τk = σ }ψh(τ )
k−1∏
j=1

ρh,j(τj)
)]

. (6.26)

Indeed, since Ĝ0,1 has unary constraints only, E[ln Z(Ĝ0,1)] is equal to n times the contribution of
just the component of Ĝ0,1 that contains the constraint x1. Formally, we have

E[ln Z(Ĝ0,1)]= n
q
E[ξ−γ x1�(z)], where z =

∑
σ∈	

γ x1∏
j=1
ψb1,j(σ ), (6.27)

because the constraints are chosen with a probability that is proportional to the partition function.
Finally, the assertion follows from INT2 and (6.24)–(6.27).
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6.5 The upper bound
To bound E[ln Z(Ĝ(n,m, P))] from above we use the formula for E[ln Z(Ĝ(n,m, Pβ))] from [27]
and take the limit β→ ∞. To this end we need to show thatE[ln Z(Ĝ(n,m, Pβ))] is an asymptotic
upper bound on E[ln Z(Ĝ(n,m, P))] for large β .

Proposition 6.15 (SYM, BAL). For any d> 0 and any ε > 0 there exists β0 > 0 and n0 > 0 such
that, for all m ∈M(d), β > β0 and n> n0, we have

E[ln Z(Ĝ(n,m, P))]�E[ln Z(Ĝ(n,m, Pβ))]+ εn.

To prove Proposition 6.15 we need the following basic fact about the random assignments σ̂ n,m,
σ̂ n,m,Pβ .

Lemma 6.16 (BAL). For any d> 0 and any ε > 0 there exists β0 > 0 and n0 > 0 such that, for all
m ∈M(d), β > β0 and n> n0 for any nearly balanced σ , we have

E[ln Z(G∗(n,m, Pβ , σ ))]�E[ln Z(G∗(n,m, Pβ , σ̂ n,m,Pβ ))]+ εn.

Proof. Lemma 6.5 shows that σ̂ n,m,P is nearly balanced with probability 1−O(n−2) and due
to Lemma 5.2 the same holds for σ̂ n,m,Pβ . Further, since ψβ(τ )� 1 for all ψ ∈� , we have the
deterministic upper bound

ln Z(G∗(n,m, β , σ̂ n,m,β))� n ln q.

Therefore, it suffices to prove that

E[ln Z(G∗(n,m, Pβ , σ ))]�E[ln Z(G∗(n,m, Pβ , σ̂ n,m,Pβ )) | σ̂ n,m,Pβ is nearly balanced]+ εn/2.
(6.28)

Hence, suppose that σ̂ n,m,Pβ is nearly balanced. Since σ is nearly balanced as well, there is a per-
mutation π of [n] such that the symmetric difference satisfies |(σ ◦ π)�σ̂ n,m,Pβ |� 2qn3/5. Indeed,
because the value of the partition function is invariant under permutations of the variables, we
may assume without loss that π = id.

Letting U = σ�σ̂ n,m,Pβ , we couple G∗(n,m, Pβ , σ ) and G∗(n,m, Pβ , σ̂ n,m,Pβ ) as follows.
Keeping in mind that the constraints are chosen independently according to (5.3), we first reveal
for each i= 1, . . . ,m whether the corresponding constraint is adjacent to a variable in U in either
G∗(n,m, Pβ , σ ) or G∗(n,m, Pβ , σ̂ n,m,Pβ ). If not, then the definition of the models ensures that the
distribution of the constraint is identical in the twomodels and couple such that the ith constraints
in the two factor graphs are identical. If, on the other hand, the ith constraint is adjacent to U in
either instance, then we insert independently chosen constraints.

Let X be the number of constraints on which the two CSP instances differ under this coupling.
Since the addition or removal of a single constraint can alter the partition function by at most a
factor of exp (± β), we obtain

E[ln Z(G∗(n,m, Pβ , σ ))− ln Z(G∗(n,m, Pβ , σ̂ n,m,Pβ )) | X, σ̂ n,m,Pβ ]� 2βX. (6.29)

Hence, we are left to bound X. Due to the independence of the constraints X is a binomial random
variable. Moreover, since σ is nearly balanced and |U|� 2qn3/5 assumption SYM yields∑

h1,...,hk∈[n]
E[ψβ(σ (xh1 , . . . , xhk))]= (ξβ + o(1))nk,

n−k
∑

h1,...,hk∈[n]
E[ψβ(σ̂ n,m,Pβ (xh1 , . . . , xhk))]= (ξβ + o(1))nk.
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Thus, the bound |U|� 2qn3/5 implies together with the construction (5.3) of the planted model
that

E[X | σ̂ n,m,Pβ ]�
k|U|m

(ξβ + o(1))n
=O(m/n2/5).

Therefore, the Chernoff bound yields P[X> n0.9 | σ̂ n,m,Pβ ]�O(n−2). Thus, (6.28) follows from
(6.29) and the deterministic upper bound ln Z(G∗(n,m, Pβ , σ ))� n ln q.

Lemma 6.17 (SYM,BAL). For any d> 0 and any ε > 0 there exists β0 > 0 and n0 > 0 such that for
all m ∈M(d), β > β0 and n> n0 for any nearly balanced σ we have

E[ln Z(G∗(n,m, P, σ ))]�E[ln Z(G∗(n,m, Pβ , σ ))]+ εn.

Proof. We use a coupling argument once more. We begin by calculating the total variation dis-
tance of the distributions from (5.3) according to which the constraints of G∗(n,m, P, σ ) and
G∗(n,m, Pβ , σ ) are drawn. First, because σ is nearly balanced, SYM shows that

∑
j1,...,jk∈[n]

E[ψ(σ (xj1 ), . . . , σ (xjk))]∼ ξnk,
∑

j1,...,jk∈[n]
E[ψβ(σ (xj1 ), . . . , σ (xjk))]∼ ξβnk.

Hence, plugging in the definition (5.7) of the softened constraints, we obtain for any ψ ∈� and
any i1, . . . , ik ∈ [n]∣∣∣∣ ψ(σ (xi1 ), . . . , σ (xik))P(ψ)∑

j1,...,jk∈[n] E[ψ(σ (xj1 ), . . . , σ (xjk))]
− ψβ(σ (xi1 ), . . . , σ (xik))Pβ(ψβ)∑

j1,...,jk∈[n] E[ψβ(σ (xj1 ), . . . , σ (xjk))]

∣∣∣∣

= o(n−k)+
∣∣∣∣ψ(σ (xi1 ), . . . , σ (xik))P(ψ)ξnk

− ψβ(σ (xi1 ), . . . , σ (xik))Pβ(ψβ)
ξβnk

∣∣∣∣
� o(nk)+ P(ψ)

nk
· 1
ξ (1+ (eβ − 1)ξ )

.

Summing onψ , i1, . . . , ik, we conclude that the total variation distance of the distributions defined
by (5.3) for P and Pβ , respectively, is bounded by O(exp (− β)) for large β . Hence, we can couple
these distributions such that they coincide with probability 1−O(exp (− β)). We then extend
this coupling of the distribution of individual constraints to a coupling of G∗(n,m, P, σ ) and
G∗(n,m, Pβ , σ ) by drawingm times independently.

Letting X be the number of constraints in which G∗(n,m, Pβ , σ ), G∗(n,m, P, σ ) differ, we thus
obtain the estimateE[X]�O(exp (− β))m for large β . Further, because the constraints are chosen
independently, X is a binomial random variable. Thus, for large enough β the Chernoff bound
shows that

P[X> n/β2]=O(n−2). (6.30)

Additionally, since ψβ(σ ) ∈ [exp (− β), 1] for all ψ ∈� , σ ∈	k, we obtain the estimate

E[ln Z(G∗(n,m, P, σ ))− ln Z(G∗(n,m, Pβ , σ )) | X]� Xβ . (6.31)

Finally, the assertion follows from (6.30), (6.31) and the deterministic bound

ln Z(G∗(n,m, Pβ , σ ))� n ln q,

provided that β = β(ε) is sufficiently large.

Finally, Proposition 6.15 is immediate from Lemmas 6.16 and 6.17.
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Proof of Theorem 5.3. To show the first part of the theorem assume that conditions SYM and
BAL hold. Proposition 6.15 and [27, Proposition 3.6] readily imply that there exists β0 such that
for all d> 0 and β > β0

lim sup
n→∞

1
n
E[ln Z(Ĝ)]� sup

π∈P2∗ (	)
B(d, Pβ , π).

Now, as � is bounded and continuous on [0, 1] the convergence of the Bethe functional follows
from the dominated convergence theorem.

Moving on to the second part, assume that additionally condition POS holds. In order to make
use of Proposition 6.1, we need to show that every π ∈P2∗(	) can be approximated arbitrarily
well by distributions in P2∗(	) that have finite support. To this end, let Sq denote the standard
simplex in R

	, let π ∈P2∗(	) be a probability distribution that does not have finite support and
let B :N0 × ([0, 1]k)∞ × (Sq)∞ →R,

(γ , (ψi)i�1, (ρi)i�1) �→ q−1ξ−γ�
(∑
σ∈	

γ∏
i=1

∑
τ∈	k

1{τk = σ }ψi(τ )
k−1∏
j=1
ρki+j(τj)

)

− d(k− 1)
kξ

�

( ∑
τ∈	k

ψ1(τ )
k∏

j=1
ρj(τj)

)
,

be as in the definition of B(d, P, π). We wish to approximate B(d, P, π) by B(d, P, πN), where
πN ∈P2∗(	) has finite support and |supp(πN)| =N. To this end, we proceed along the following
lines.

(1) For everyN ∈N, we find a discrete probability measure πN on Sq, whose support consists of
exactlyN elements such that

∫
P(	) μ(ω)dπ(μ)= 1/q for all ω ∈	 and (πN)N�1 converges

weakly to π as N → ∞.
(2) This implies thatB(γ , (ψ i)i�1, (ρπNi )i�1) converges weakly to B(γ , (ψ i)i�1, (ρπi )i�1). Here,

all occurring random variables are independent.
(3) We then apply a variant of the dominated convergence theorem to show convergence of

B(d, P, πN) to B(d, P, π).

Step (1) is a quantization problem: fix N ∈N and let FN be the set of all Borel measurable maps
f :R	 →R

	 with |f (R	)|�N. The standard theory on quantization for probability distributions,
[51, Theorem 4.1 and Theorem 4.12], guarantees the existence of a function f ∗N :R	 →R

	 with
|f ∗N(R	)| =N and

E[‖ρπ1 − f ∗N(ρπ1 )‖2]= inf
f∈FN

E[‖ρπ1 − f (ρπ1 )‖2].

Here, ‖ · ‖ denotes the 2-norm on R
	. Moreover, the use of this norm implies [51, Remark 4.6]

that for any such function f ∗N , E[f ∗N(ρπ1 )]=E[ρπ1 ]. In order to see why E[‖ρπ1 − f ∗N(ρπ1 )‖2]= o(1),
we evoke the following almost sure approximation of ρπ1 which does not fix the mean value, but
provides an upper bound for E[‖ρπ1 − f ∗N(ρπ1 )‖2]. For any L ∈N, choose a cover of Sq by open
balls of radius 1/L. As Sq is compact, this cover has a finite sub-cover. By taking intersections of the
balls in a finite sub-cover, we may assume that Sq is covered by a finite number of pairwise disjoint
sets B1, . . . , Bj(L), which have diameter at most 2/L. In each such set Bi, we distinguish a point
ci. Setting g∗

L(ρ
π
1 )=

∑j(L)
i=1 ci1{ρπ1 ∈ Bi}, we have that almost surely, ‖ρπ1 − g∗

L(ρ
π
1 )‖� 2/L and the

distribution of g∗
L(ρπ ) has finite support. We may thus find a sequence (g∗

L)L of functions which
take only finitely many values each such that g∗

L(ρ
π
1 ) converges to ρ

π
1 almost surely. Because both
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ρπ1 and g∗
L(ρ

π
1 ) are bounded, E[‖ρπ1 − g∗

L(ρ
π
1 )‖2]= o(1) and thus also E[‖ρπ1 − f ∗N(ρπ1 )‖2]= o(1).

This in turn implies that, if we denote the distribution of f ∗N(ρπ1 ) by πN , (πN)N∈N converges weakly
to π .

We now turn to (2). Step (1) implies that
⊗∞

i=1 πN converges weakly to
⊗∞

i=1 π as N → ∞, as⊗∞
i=1 π is determined by its finite-dimensional distributions. Due to independence, it is true that

also

(γ , (ψ i)i�1, (ρπNi )i�1)N�1
N→∞−→ (γ , (ψ i)i�1, (ρπi )i�1)

in distribution. Finally, B is a continuous function, and thus the continuous mapping theorem
implies step (2).

Finally, B(γ , (ψ i)i�1, (ρπNi )i�1) is integrable for any N ∈N as well as dominated by the inte-
grable random variable q−1ξ−γ + d(k− 1)k−1ξ−1. Hence, the dominated convergence theorem
(say, in the version [54, Theorem A39]) yields (3).

Finally, Proposition 6.1 yields the second part of the theorem.

7. Small subgraph conditioning
Having established Theorem 5.3 in the previous section, we move on to prove the remain-
ing propositions required for the small subgraph conditioning argument outlined in Section 5.
Subsequently we derive Theorems 2.5, 2.8 and 2.11 as well as Corollary 2.12. Most of the proofs
in this section are based either on standard arguments (e.g. the Laplace method or the method of
moments for convergence in distribution) or the arguments developed in [25, 27]. We continue
to let x1, . . . , xk ∈Vn denote variables drawn uniformly and independently.

7.1 Proof of Proposition 5.7
Proposition 6.7 provides a formula for the expected change of the logarithm of the partition func-
tion upon addition of a further constraint. We can use this formula to estimate the derivative of
E[ln Z(Ĝ)] with respect to d because

∂

∂d
E[ln Z(Ĝ)]=

∑
m�0

E[ln Z(Ĝ(n,m))]
∂

∂d
P[Po(dn/k)=m]

= 1
k
(E[ln Z(Ĝ(n,m+ 1))]−E[ln Z(Ĝ(n,m))]). (7.1)

The corresponding formula in the case of soft constraints was obtained in [25], and thanks to
Proposition 6.7 the same argument extends to hard constraints with a little bit of care.

Lemma 7.1 (SYM, BAL,MIN). Fix any D> 0.

(1) Uniformly for all 0< d<D we have

1
n
∂

∂d
E[ln Z(Ĝ)]� ln ξ

k
+ o(1). (7.2)

(2) For any ε > 0 there is δ = δ(ε, P)> 0, independent of n or d, such that uniformly for all
0< d<D,

E〈‖ρσ ,τ − ρ̄‖TV〉Ĝ > ε ⇒ 1
n
∂

∂d
E[ln Z(Ĝ)]� ln ξ

k
+ δ + o(1). (7.3)
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(3) Conversely, we have

E〈‖ρσ ,τ − ρ̄‖TV〉Ĝ = o(1) ⇒ 1
n
∂

∂d
E[ln Z(Ĝ)]= ln ξ

k
+ o(1). (7.4)

Proof. The first two assertions and their proofs are nearly identical to the soft constraint version
[25, Corollary 6.3]; we still include the brief argument for completeness and because it leads up to
the proof of the third assertion. Due to (7.1) we obtain from Proposition 6.7 that uniformly for all
d<D,

k
n
∂

∂d
E[ ln Z(Ĝ)]= o(1)+ ξ−1

E[�(〈ψ(σ (y1), . . . , σ (yk))〉Ĝ)]. (7.5)

Further, (5.6), Corollary 6.5 and SYM yield

E〈ψ(σ (y1), . . . , σ (yk))〉Ĝ =E[ψ(σ̂ (y1), . . . , σ̂ (yk))]= ξ + o(1). (7.6)

Since 〈ψ(σ (x1), . . . , σ (xk))〉Ĝ ∈ (0, 1] and�′′(x)� 1/2 for all x ∈ (0, 1], Taylor’s formula gives

E[�(〈ψ(σ (x1), . . . , σ (xk))〉Ĝ)]
��(ξ )+�′(ξ )[E〈ψ(σ (x1), . . . , σ (xk))〉Ĝ − ξ ]+ 1

4
E[(〈ψ(σ (x1), . . . , σ (xk))〉Ĝ − ξ )2]

=�(ξ )+ 1
4
E[〈ψ(σ (x1), . . . , σ (xk))〉2Ĝ]−

ξ 2

4
+ o(1) (by (7.6)). (7.7)

Thus, (7.2) is immediate from (7.6), (7.7) and Jensen’s inequality.
Now assume that E〈‖ρσ ,τ − ρ̄‖TV〉Ĝ > ε. Since Corollary 6.5 and (5.6) yield

E〈‖ρσ − ρ̄‖TV + ‖ρτ − ρ̄‖TV〉Ĝ = o(1),

assumptionsMIN and SYM imply that there is δ = δ(ε)> 0 such that

∑
σ ,τ∈	k

E〈ψ(σ )ψ(τ )
k∏

i=1
ρσ ,τ (σi, τi)〉Ĝ > δ + o(1)+ q−2k

∑
σ ,τ∈	k

E[ψ(σ )ψ(τ )]= ξ 2 + δ + o(1).

(7.8)
Moreover,

E[〈ψ(σ (x1), . . . , σ (xk))〉2Ĝ]=E〈ψ(σ (x1), . . . , σ (xk))ψ(τ (x1), . . . , τ (xk))〉Ĝ

=
∑
σ ,τ∈	k

E〈ψ(σ )ψ(τ )
k∏

i=1
ρσ ,τ (σi, τi)〉Ĝ.

Thus, (7.3) follows from (7.7) and (7.8).
With respect to the last assertion, we apply the full Taylor expansion

�(1− x)= −x+
∑
��2

x�/(�(�− 1))

to obtain, due to (7.6), that

E[�(〈ψ(σ (x1), . . . , σ (xk))〉Ĝ)]= ξ − 1+ o(1)+E

[∑
��2

1
�(�− 1)

〈1−ψ(σ (x1), . . . , σ (xk))〉�Ĝ
]
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Since 0�ψ � 1, all terms of the last sum are in [0, 1]. Hence, invoking Fubini’s theorem and
writing σ 1, σ 2, . . . for independent samples from μĜ, we obtain

E[�(〈ψ(σ (x1), . . . , σ (xk))〉Ĝ)]

= ξ − 1+ o(1)+
∑
��2

1
�(�− 1)

E

〈 �∏
h=1

1−ψ(σ h(x1), . . . , σ h(xk))
〉
Ĝ
. (7.9)

Moreover, since ψ is drawn independently of Ĝ, we obtain

E

〈 �∏
h=1

1−ψ(σ h(x1), . . . , σ h(xk))
〉
Ĝ

=
∑

χ∈	�×k

E

[ �∏
h=1

(1−ψ(χh,1, . . . , χh,k))
]

×E

〈 k∏
i=1

1{(σ 1(xi)= χ1,i, . . . , σ �(xi)= χ�,i)}
〉
Ĝ
. (7.10)

We now claim that for any �� 2 and for any χ ∈	�×k,

E

〈 k∏
i=1

1{(σ 1(xi)= χ1,i, . . . , σ �(xi)= χ�,i)}
〉
Ĝ

= q−k� + o(1). (7.11)

Indeed, by Lemma 4.4 the assumption E〈‖ρσ ,τ − ρ̄‖TV〉Ĝ = o(1) implies that μĜ is o(1)-sym-
metric w.h.p. and that its marginals satisfy

∑n
i=1 ‖μĜ,xi − ρ̄‖TV = o(n). Hence, Lemma 4.3 shows

that the �-fold product measure μ⊗�
Ĝ

is o(1)-symmetric with asymptotically uniform marginals as
well w.h.p. Thus, we obtain (7.11). Finally, plugging (7.11) into (7.10) and (7.10) into (7.9) and
applying SYM, we obtain the assertion.

Lemma 7.2 (SYM, BAL). For any ε > 0, d> 0 there is 0< δ = δ(ε, d, P)< ε such that the following
holds. Assume that m ∈M(d) is a sequence such that

lim sup
n→∞

E〈‖ρσ 1,σ 2 − ρ̄‖TV〉Ĝ(n,m) > ε. (7.12)

Then

lim sup
n→∞

min{E〈‖ρσ 1,σ 2 − ρ̄‖TV〉Ĝ(n,m) : δn<m− dn/k< 2δn}> δ.

Lemma 7.2 and its proof are syntactically identical to the soft constraint version [25, Lemma
6.1]. The proof is included in Appendix C for the sake of completeness.

Proof of Proposition 5.7. The proof of the first assertion is nearly identical to the soft constraint
version [25, proof of Proposition 3.3]; we include the argument for completeness. Assume that
there exist D0 < dcond, ε > 0 such that

lim sup
n→∞

E〈‖ρσ ,τ − ρ̄‖TV〉Ĝ(n,m(D0,n)) > ε.

Then Lemma 7.2 shows that there is δ > 0 such that with D1 =D0 + 3δ/2< dcond for infinitely
many n we have

E〈‖ρσ ,τ − ρ̄‖TV〉Ĝ(n,m) > δ + o(1) for all D0 + 4δ/3< d<D1.
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Hence, Lemma 7.1 implies that for infinitely many n,
1
n
E[ln Z(Ĝ(n,m(D1, n)))]= 1

n
E[ln Z(Ĝ(n,m(D0, n)))]+ 1

n

∫ D1

D0

∂

∂d
E[ln Z(Ĝ)]dd

� ln q+ D1
k

ln ξ +	(1).
But then the second part of Theorem 5.3 yields

sup
π∈P2∗ (	)

B(D1, P, π)> ln q+ D1
k

ln ξ ,

in contradiction to D1 < dcond.
Analogously, the second assertion follows from the third part of Lemma 7.1 by integrating on

d. Specifically, assume that D> 0 is such that (5.16) is true for all d<D. Pick some  <D. Then
by the third part of Lemma 7.1 and dominated convergence,

E[ln Z(Ĝ(n,m( , n))]= ln q+
∫  

0

∂

∂d
E[ln Z(Ĝ)]dd = ln q+  

k
ln ξ + o(1).

Hence, Theorem 5.3 yields supπ∈P2∗ (	) B( , P, π)� ln q+ k−1 ln ξ . As this holds for all �D,
we conclude that dcond �D.

7.2 Proof of Proposition 5.11
The distribution of the random variables CY (G(n,m)) of the ‘plain’ random CSP can be calcu-
lated via a totally standard method of moments argument as set out in [21]. Our assumption that
P(ψ)> 0 for all ψ ∈� ensures that κY > 0 for all signatures Y .

Lemma 7.3 [21]. Let d> 0. For any Y ∈Y we have E[CY (G(n,m))]∼ κY , uniformly for all m ∈
M(d). Moreover, if Y1, . . . , Yl ∈Y are pairwise disjoint and y1, . . . , yl � 0, then, uniformly for all
m ∈M(d),

P[∀i� l : CYi(G(n,m))= yi]∼
l∏

t=1
P[Po(κYt )= yt]. (7.13)

In order to determine the joint distribution of the random variables CY (Ĝ(n,m)) we use the
method of moments as well. More specifically, the argument is nearly identical to the one from
[25], except that here it may be possible that κ̂Y = 0 for some signatures Y .

Lemma 7.4 (SYM, BAL). Let d> 0. For any Y ∈Y we have E[CY (Ĝ(n,m))]= κ̂Y + o(1), uni-
formly for all m ∈M(d). Moreover, if Y1, . . . , YL ∈Y are pairwise distinct and y1, . . . , yL � 0, then,
uniformly for all m ∈M(d),

P[∀i� � : CYi(Ĝ(n,m))= yi]= o(1)+
L∏
l=1

P[Po(κ̂Yl)= yl].

The proof of Lemma 7.4 can be found in Appendix D.

Proof of Proposition 5.11. The fact that P(ψ)> 0 for all ψ ∈� implies immediately that κY > 0
for all signatures Y . Moreover, conditionUNI implies that κ̂Y = 0 can hold only if Y has order one.
Further, if indeed κ̂Y = 0, then the corresponding cycle is unsatisfiable deterministically and thus
any factor graph G that contains such a cycle satisfies Z(G)= 0. Consequently, (5.5) ensures that
P[CY (Ĝ(n,m))> 0]= 0 for all n,m. The asymptotic identity (5.24) is immediate from Lemma 7.3.
Moreover, Lemma 7.4 directly implies (5.25).
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7.3 Proof of Theorem 2.5
The first part of Theorem 2.5 readily follows from Theorem 2.7.

Lemma 7.5 (SYM, BAL,MIN, UNI). If d< dcond, then limn→∞ E
n√Z(G)= qξd/k.

Proof. Since K> 0 almost surely and because Eig(�)⊂ (− ∞, 0]∪ \{1} by Lemma 5.4, the
assertion is immediate from Theorem 2.7.

To prove the second part of Theorem 2.5 concerning d> dcond we generalize an argument for
the random graph colouring problem from [27, Section 4] to the present broad class of random
CSPs. We begin with the following general fact that essentially goes back to [3]. LetMε(d) be the
set of all sequencesm=m(n) such that |m(n)− dn/k|� εn for all n.

Lemma 7.6 (SYM, BAL). Let d> 0. For any δ, η > 0 there is ε > 0 such that the following is true.
Suppose that (En)n is a sequence of events such that uniformly for all m ∈Mη(d),

lim sup
n→∞

P[G(n,m) �∈ En]1/n < 1− δ while lim sup
n→∞

P[Ĝ(n,m) ∈ En]1/n < 1− δ.
Then, uniformly for all m ∈Mη(d),

lim sup
n→∞

P[ n
√
Z(G(n,m))� qξd/k − ε]1/n < 1− ε. (7.14)

Proof. Pick ε= ε(δ)> 0 sufficiently small, Un = { n√Z� qξd/k − ε} and assume that

lim sup P[G(n,m) ∈ Un]1/n = 1.
Then the assumption lim sup P[G(n,m) �∈ En]1/n < 1− δ implies that for infinitely many n,

P[G(n,m) �∈ En |G(n,m) ∈ Un]1/n �
(
P[G(n,m) �∈ En]
P[G(n,m) ∈ Un]

)1/n
< 1− δ + o(1).

Hence, Proposition 5.9 shows that for infinitely many n,

P[Ĝ(n,m) ∈ En]�
E[Z(G(n,m))1{Z(G(n,m)) ∈ Un ∩ En}]

E[Z(G(n,m))]

�
(
qξd/k − ε
qξd/k

)n+o(n)
P[G(n,m) ∈ En |G(n,m) ∈ Un]P[G(n,m) ∈ Un]

= exp(o(n)),
in contradiction to the assumption that

lim sup P[Ĝ(n,m) ∈ En]1/n < 1− δ.
Thus,

lim sup P[G(n,m) ∈ Un]1/n < 1.
Choosing ε > 0 small enough we obtain (7.14).

Lemma 7.7 (SYM, BAL, POS). For any d> dcond there exists β , δ, η > 0 such that uniformly for
all m ∈Mη(d),

P

[
1
n
ln Zβ(Ĝ(n,m))< ln q+ d

k
ln ξβ + δ

]
< exp(−	(n)), while (7.15)

P

[
1
n
ln Zβ(G(n,m))� ln q+ d

k
ln ξβ + δ

]
< exp(−	(n)). (7.16)

https://doi.org/10.1017/S0963548319000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000440


404 A. Coja-Oghlan, T. Kapetanopoulos and N. Müller

Proof. Lemma 5.2 shows that Proposition 5.9 applies to G(n,m, Pβ). Thus,

E[Z(G(n,m, Pβ))]=O(qnξmβ )

and (7.16) is immediate fromMarkov’s inequality.
We move on to the proof of (7.15). The definition of dcond implies that for any d> dcond there

exist d′ < d and π ∈P2∗(	) such that B(d′, P, π)> ln q+ (d′ ln ξ )/k. Hence, Theorem 5.3 shows
that there is δ > 0 and n0 > 0 such that E[ln Z(Ĝ)]> n(ln q+ (d ln ξ )/k+ 8δ) for all n> n0.
Moreover, by construction we have Zβ(Ĝ)� Z(Ĝ) and limβ→∞ ξβ = ξ . Therefore, there exists
β0 > 0 such that

E[ln Zβ(Ĝ)]> n(ln q+ (d ln ξβ)/k+ 7δ) for all n> n0, β > β0. (7.17)

Due to the Nishimori identity Lemma 5.1 we can write (7.17) as

E[ln Zβ(G∗(n,m, σ̂ n,m)]> n(ln q+ (d ln ξβ)/k+ 7δ) for all n> n0, β > β0. (7.18)

Now, fix β > β0, pick a small enough η= η(β , δ)> 0 and let A be the set of all assignments
σ :Vn →	 such that ‖ρσ − ρ̄‖TV <η. Fix any σ0 ∈A. Given σ̂ n,m ∈A we can couple G′ =
G∗(n,m, σ̂ n,m) and G′′ =G∗(n,m, σ0) such that

P[|ln Zβ(G′)− ln Zβ(G′′)|> δn | σ̂ n,m ∈A]� exp(−	(n)). (7.19)

Indeed, relabelling the variables if necessary, given σ̂ n,m ∈A we may assume that |σ0�σ̂ n,m|�
2qηn. Further, the planted model can alternatively be described as the result of adding constraints
independently according to (5.3). Let X and Y be the number of constraints of G′ and G′′ respec-
tively that are adjacent to a variable in σ0�σ̂ n,m. Then X, Y are binomial random variables and
(5.3) shows that E[X + Y]< δn/(4β) if η > 0 is chosen small enough. Now, we couple the con-
straints that are non-adjacent to σ0�σ̂ n,m in either random CSP instance identically, and the at
most X + Y constraints that are adjacent to σ0�σ̂ n,m independently. Hence, G′,G′′ differ in no
more than X + Y constraints. Since the construction of the softened constraints ψβ ensures that
the addition or removal of a single constraint can change the partition function by at most a factor
of exp (± β), we conclude that |ln Zβ(G′)− ln Zβ(G′′)|� β(X + Y). Since E[X + Y]< δn/(4β),
(7.19) follows from the Chernoff bound. Furthermore, (7.19) implies together with Corollary 6.5
that

P[|ln Zβ(G′)− ln Zβ(G′′)|> δn]� exp(−	(n)). (7.20)

Let m ∈Mη(d). We can couple G′′ =G∗(n,m, σ0) and G′′′ =G∗(n,m, σ0) such that both CSP
instances coincide on m∧m constraints. Since m is a Poisson variable, it is therefore exponen-
tially unlikely that G′′,G′′′ differ on more than δn/(2β) constraints, providing η is small enough.
Consequently,

P[|ln Zβ(G′′)− ln Zβ(G′′′)|> δn]� exp(−	(n)) (7.21)

uniformly for allm ∈Mη(d). Combining (7.18), (7.20) and (7.21), we obtain

E[ln Zβ(G′′′)]> n(ln q+ (d ln ξβ)/k+ 4δ) (7.22)

uniformly for all m ∈Mη(d). Furthermore, since G′′′ consists of independent constraints drawn
from the distribution (5.3) and because each of these constraints can shift ln Zβ(G′′′) by no more
than ±β , Azuma’s inequality and (7.22) yield

P[ln Zβ(G′′′)� n(ln q+ (d ln ξβ)/k+ 3δ)]� exp(−	(n)) (7.23)
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uniformly for all m ∈Mη(d). Finally, we couple G′′′ and G′′′′ =G(n,m, σ̂ n,m) just as in the proof
of (7.18) to see that uniformly for allm ∈Mη(d),

P[|ln Zβ(G′′′)− ln Zβ(G′′′′)|> δn | σ̂ n,m ∈A]� exp(−	(n)). (7.24)

Combining Corollary 6.5 with (7.23) and (7.24), we obtain (7.15).

Proof of Theorem 2.5. The first part of the theorem is immediate from Lemma 7.5. With respect
to the second assertion suppose that d> dcond and fix β , δ, η as provided by Lemma 7.7. Then the
events

En =
{
1
n
ln Zβ(G(n,m))< ln q+ d

k
ln ξβ + δ

}
. (7.25)

satisfy the assumptions of Lemma 7.6. Since for any η > 0 we have P[|m− dn/k|>η]� exp(−
	(n)), Lemma 7.6 thus shows that P[Z(G)> qξd/k − ε]� exp(− εn+ o(n)) for some ε > 0.
BecauseG is distributed as G givenS and P[S]=	(1) by Proposition 5.11, the second assertion
follows.

7.4 Proof of Theorem 2.11
To prove the contiguity statement we first show that Ĝ(n,m) and G∗(n,m, σ ∗) are mutually
contiguous. More specifically, we have the following.

Lemma 7.8 (SYM, BAL). For any D, ε > 0 let there exist δ > 0 and n0 > 0 such that, for all n> n0
and all m�Dn/k, the following two statements are true.

(1) If E is an event such that P[(G∗(n,m, σ ∗), σ ∗) ∈ E]< δ, then
P[(G∗(n,m, σ̂ n,m), σ̂ n,m) ∈ E]< ε.

(2) If E is an event such that P[(G∗(n,m, σ̂ n,m), σ̂ n,m) ∈ E]< δ, then
P[(G∗(n,m, σ ∗), σ ∗) ∈ E]< ε.

The proof of Lemma 7.8 is identical to that of the soft constraint version [25, Corollary 4.8].
The details can be found in Appendix E.

Proof of Theorem 2.11. We use a similar argument as in [25], except that here we explicitly deal
with the conditioning onS. With respect to the first assertion, suppose that d< dcond and let (En)n
be a sequence of events. Let us first assume that P[G∗ ∈ En]= o(1). Then Proposition 5.11 implies
that P[G∗ ∈ En ∩S]= o(1). Thus, Lemmas 5.1 and 7.8 yield P[Ĝ ∈ En ∩S]= o(1). Furthermore,
Theorem 2.7 shows that for any ε > 0 there is δ > 0 such that P[Z(G)< δqnξm]< ε for large
enough n, because K> 0 almost surely. Consequently,

P[G ∈ En]� ε+ P[G ∈ En, Z(G)� δqnξm]

= ε+ P[G ∈ En, Z(G)� δqnξm |S]

= ε+ P[G ∈ En ∩S, Z(G)� δqnξm]
P[G ∈S]

� ε+ 1
δP[G ∈S]

·E
[
E[Z(G)1{G ∈ E ∩S} |m]

qnξm

]
.
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Hence, combining (5.5), Propositions 5.9 and 5.11, we obtain a number c= c(P, d)> 0 such that
for large n

P[G ∈ En]� ε+ c · P[Ĝ ∈ En ∩S].

Since this bound holds for any ε > 0 and because P[Ĝ ∈ En ∩S]= o(1), we conclude that
P[G ∈ En]= o(1).

Conversely, assume that P[G ∈ En]= o(1). Then P[G ∈ En ∩S]= o(1). Hence, as P[Z(Ĝ)=
Z(Ĝ)]= 1− o(1) by Proposition 5.7, we obtain

P[Ĝ ∈ En ∩S]= o(1)+ P[Ĝ ∈ En ∩S, Z(Ĝ)= Z(Ĝ)]

� o(1)+E

[
E[Z(G)1{G ∈ En ∩S} |m]

E[Z(G) |m]
· 1{|m− dn/k|�√

n ln n}
]
. (7.26)

Further, the second moment bound from Proposition 5.10 shows together with the formula for
the first moment from Proposition 5.9 that on the event {|m− dn/k|�√

n ln n} the quotient
E[Z(G)2|m]/E[Z(G)|m]2 is bounded. Hence, for any ε > 0 there is C = C(ε, P, d)> 0 such that
E[1{Z(G)> CE[Z(G)]}]< ε. Therefore, (7.26) yields

P[Ĝ ∈ En ∩S]� o(1)+ ε+ C · P[G ∈ En ∩S].

Since this bound holds for every fixed ε > 0 and P[G ∈ En ∩S]= o(1), we obtain

P[Ĝ ∈ En ∩S]= o(1).

Finally, since G∗ and Ĝ are mutually contiguous by Lemma 7.8 and since P[Ĝ ∈S]=	(1) by
Proposition 5.11, we obtain

P[G∗ ∈ En ∩S]= P[G∗ ∈ En ∩S |S]= o(1),

as desired.
Now assume that d> dcond. The events En from (7.25) satisfy the assumptions of Lemma 7.6.

Thus

P[G ∈ En]= 1− exp(−	(n)),
while P[Ĝ ∈ En]= exp(−	(n)). Indeed, since P[G ∈S], P[Ĝ ∈S]=	(1) by Proposition 5.11,
we conclude that

P[G ∈ En]= 1− exp(−	(n))= 1− o(1),

while P[G∗ ∈ En]= o(1) by Lemma 7.8. Thus,G andG
∗ are mutually orthogonal.

7.5 Proof of Corollary 2.12
Assume that (En)n is a sequence of events such that P[(G, σ ) ∈ En]= o(1). Then there exists a
sequence εn = o(1) such that the events E ′

n = {〈1{(G, σ ) ∈ En}〉G � εn} satisfy P[G ∈ E ′
n]= o(1).

Hence, Theorem 2.11 yields

P[G∗ ∈ E ′
n]= P[G∗ ∈ E ′

n |S]= o(1)

and thus

P[G∗ ∈ E ′
n ∩S]= o(1).

Therefore, applying Lemma 7.8, we obtain

P[Ĝ ∈ E ′
n ∩S]= o(1),

https://doi.org/10.1017/S0963548319000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000440


Combinatorics, Probability and Computing 407

whence Lemma 5.1 yields

P[(Ĝ, σ̂ ) ∈ En ∩S]= o(1).

Thus, applying Lemma 7.8 a second time, we obtain

P[(G∗, σ ∗) ∈ En ∩S]= o(1).

Since the probability ofS is bounded away from 0 by Proposition 5.11, we finally obtain

P[(G∗, σ ∗) ∈ En]= P[(G∗, σ ∗) ∈ En |S]= o(1).

Conversely, assume that P[(G∗, σ ∗) ∈ En]= o(1). Then

P[(G∗, σ ∗) ∈ En ∩S]= o(1)

and thus Lemma 7.8 yields

P[(Ĝ, σ̂ ) ∈ En ∩S]= o(1).

Hence, Lemma 5.1 shows that there exists a sequence εn = o(1) such that for the event

E ′
n = {〈1{(Ĝ, σ ) ∈ En}〉Ĝ � εn}

we have

P[Ĝ ∈ E ′
n ∩S]= o(1).

Thus, Lemma 7.8 yields

P[G∗ ∈ E ′
n ∩S]= o(1)

and therefore

P[G∗ ∈ E ′
n]= o(1)

by Proposition 5.11. Consequently, Theorem 2.11 yields

P[G ∈ E ′
n]= o(1).

Finally, unravelling the definition of E ′
n, we obtain

P[(G, σ ) ∈ En]= o(1).

7.6 Proof of Theorem 2.8
Suppose that d< dcond. Then Proposition 5.7, Proposition 5.11 and Lemma 7.8 yield

E〈‖ρσ 1,σ 2 − ρ̄‖TV〉G∗ = o(1).

Hence, Theorem 2.11 implies

E〈‖ρσ 1,σ 2 − ρ̄‖TV〉G = o(1),

as desired.

8. Reconstruction and local weak convergence
In this section we prove Theorems 2.9 and 2.10. Recall that for a variable x of a CSP instance G we
let ∇2�(G, x) denote the depth-2� neighbourhood of x, rooted at x. Moreover, let ∂2�(G, x) be the
set of variables at distance precisely 2� from x. We drop G from the notation where the reference
is apparent.
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8.1 Proof of Theorem 2.9
We remember the randomCSPT=T(d, P) generated by a Galton–Watson process that describes
the local neighbourhood structure and we continue to denote its root by r. Moreover, we write
T
2� =T

2�(d, P) for the CSP instance obtained from T by deleting all constraints and variables at
a distance greater than 2� from r. Due to condition SYM the partition function Z(T2�) is strictly
positive. Hence, throughout this section we let χ2� denote a sample from the Boltzmann distribu-
tion μT2� . The following lemma shows that the Galton–Watson process T also describes the local
structure of the planted random CSP G∗.

Lemma 8.1 (SYM). Let �� 1. For any possible outcome T of T
2� and for any assignment

χ :V(T)→	, the following is true. Let X be the number of variables of G∗ for which there exists an
isomorphism ϑ :T → ∇2�(G∗, x) such that χ = σ ∗ ◦ ϑ . Then X/n converges to

P[T2� ∼= T, χ2� = χ]
in probability.

Proof. Consider the following enhanced multi-type Galton–Watson process (T̂, χ̂) whose types
are variables x endowed with values χ(x) and constraints endowed with weight functions ψ ∈�
and indices h ∈ [k]. The process starts from the tree T̂0 consisting of the root r only, for which
a value χ̂0(r) ∈	 is chosen uniformly at random. Then T̂

2�+2, χ̂2�+2 is obtained by appending
two more layers to T̂

2�, χ̂2� as follows. Each variable x of T̂2� at distance exactly 2� from r inde-
pendently generates D= Po(d) constraints ax,1, . . . , ax,D as offspring. The associated constraint
functions ψax,i are drawn independently from P, and the position hx,i where x appears in the
constraint ax,i is drawn uniformly from [k], independently for every i. Further, each constraint
ax,i spawns k− 1 variables (yx,i,j)j∈[k]\{hx,i}. Their values χ̂

2�+2(yx,i,j) are jointly drawn from the
distribution

P[∀j �= hx,i : χ̂2�+2(yx,i,j)= σj | χ̂2�(x)]

= q1−kξ−1ψax,i(σ1, . . . , σhx,i−1, χ̂2�(x), σhx,i+1, . . . , σk) (σj ∈	). (8.1)

In other words, the χ̂2�+2(yx,i,j) are chosen with probability proportional to the weight induced
by ψa,i given that x has value χ̂2�(x).

Crucially, SYM guarantees that the distributions of (T̂2�, χ̂�) and (T2�, χ2�) coincide. Indeed,
it is immediate from the construction that T̂2� is distributed precisely as T2�. Furthermore, SYM
ensures that the marginal distribution μT2�,r is uniform on 	. Hence, induction on � shows that
χ2� satisfies the recurrence (8.1) that gives rise to χ̂2�. (One could say that the trees T, T̂ satisfy a
Nishimori identity.)

To complete the proof we set up a coupling of T̂2�, χ̂2� and the depth-2� neighbourhood of
variable x1 of G∗. Because σ ∗ is chosen uniformly at random, σ ∗(x1) is uniformly distributed, just
as χ̂0(r). Furthermore, a standard random hypergraph argument shows that the degree of each
variable xi in G∗ is asymptotically Poisson with mean d. Therefore, SYM and (5.3) show that the
constraints ψr,1, . . . ,ψr,D pending on r are distributed just like the constraints pending on r in
the construction of T1, up to an error of o(1) in total variation distance. This error stems from
the fact that the degree D of r is asymptotically but not precisely a Poisson variable, and that some
constraint may contain r twice; the latter occurs with probabilityO(1/n). Further, (5.3) also shows
that the values under σ ∗ of the variables at distance two from r are asymptotically distributed
according to (8.1) because σ ∗ is nearly balanced w.h.p. The coupling extends to the higher levels
�� 1 of the tree by induction.
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Consider the planted model Ĝ and a sample σ from its Boltzmann distribution. For any finite
value of � there will likely be substantial dependences between the values (σ (y))y∈∂2�x1 of the vari-
ables at distance precisely 2� from some reference variable, say x1. Indeed, these variables are
‘close’ to x1 and therefore their values are going to be correlated with the value σ (x1), and thus
with each other. In other words, the sub-CSP ∇2�(Ĝ, x1) induces dependences between the vari-
ables ∂2�x1. But are there additional correlations between these variables? To answer this question
we introduce the following notation. For a setU of variable/constraints of a CSP instance G we let
μG→U be the Gibbs measure of the CSP from G by deleting all constraints in U. Thus, in partic-
ular, Ĝ→ ∇2�x1 is the sub-CSP obtained by deleting all constraints within a radius 2� of x1. The
following proposition, which constitutes the main step toward the proof of Theorem 2.8, shows
that once we delete these constraints, the correlations between the variables ∂2�x1 disappear.

Proposition 8.2 (SYM, BAL,MIN). If 0< d< dcond, then for every �� 1 we have

lim
n→∞ E

[ ∑
σ : ∂2�x1→	

|μĜ→∇2�x1 (σ )− q−|∂2�x1||
]

= 0. (8.2)

To prove Proposition 8.2 we need a few preparations.

Lemma 8.3 (SYM, BAL, MIN). Suppose that 0< d< dcond and let m ∈M(d). There exists a
sequence ω=ω(n)→ ∞ such that with probability at least 1− 1/ω the random factor graph
G∗(n,m, σ ∗) has the following two properties:

(i) μG∗(n,m,σ ∗) is (1/ω,ω)-symmetric,
(ii) the marginals of μG∗(n,m,σ ∗) satisfy

n∑
i=1

‖μG∗,xi − ρ̄‖TV < n/ω.

Proof. This is immediate from Lemma 4.4, Lemma 5.1 and Proposition 5.7.

Corollary 8.4 (SYM, BAL, MIN). Suppose that 0< d< dcond, let C> 0 and let m ∈M(d). There
exists a sequence ω=ω(n)→ ∞ such that with probability at least 1− 1/ω for all σ ∈	Vn with
‖ρσ − ρ̄‖TV � Cn−1/2 the following two statements hold:

(i) μG∗(n,m,σ ) is (1/ω,ω)-symmetric,
(ii) the Gibbs marginals satisfy

n∑
i=1

‖μG∗(n,m,σ ),xi − ρ̄‖TV < n/ω.

Proof. Suppose that σ , τ ∈	Vn both satisfy ‖ρσ − ρ̄‖TV � Cn−1/2 and let mψ (σ ),mψ (τ ) be
the number of constraints endowed with the constraint function ψ ∈� in G∗(n,m, σ ) and
G∗(n,m, τ ), respectively. Then the vectors (mψ (σ ))ψ∈� , (mψ (τ ))ψ∈� are multinomially dis-
tributed. Furthermore, because ‖ρσ − ρτ‖TV � 2Cn−1/2, condition SYM and the characterization
(5.3) of the planted model imply that |E[mψ (σ )]−E[mψ (τ )]| =O(1). Therefore, the local limit
theorem for the multinomial distribution shows that (mψ (σ ))ψ∈� , (mψ (τ ))ψ∈� have total vari-
ation distance o(1). Consequently, there is a coupling such that these vectors coincide with
probability 1− o(1).
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Now, since mψ (σ )=mψ (τ ) for all ψ , we claim that the isomorphism classes of G∗(n,m, σ ),
G∗(n,m, τ ) are mutually contiguous. Specifically, permuting the assignment τ suitably, we may
assume that the symmetric difference σ�τ contains no more than 2C

√
n variables. Let I be the

event that all the variables in σ�τ are isolated. Given mψ (σ )=mψ (τ ) for all ψ and I , the factor
graphsG∗(n,m, σ ),G∗(n,m, τ ) are identically distributed (due to (5.3)). Hence, it suffices to prove
that the isomorphism classes of G∗(n,m, σ ) and of the conditional CSP G∗(n,m, σ ) given I are
mutually contiguous; of course the same construction will apply to G∗(n,m, τ ).

To derive this contiguity result let J be the event that G∗(n,m, σ ) has at least n2/3 isolated
variables in each of the sets σ−1(χ), χ ∈	. Because the constraints of G∗(n,m, σ ) are chosen
independently and σ is nearly balanced, standard arguments show that J occurs with (very)
high probability. Hence, let G′ denote the random CSP G∗(n,m, σ ) given J . Then we construct
a random factor graph G′′ ∈ I ∩J as follows: choose a one-to-one map ι from the set σ�τ to
the set of isolated variables of G′ such that σ (ι(x))= σ (x) for all x uniformly at random. Then
obtain G′′ from G′ by swapping the variables x and ι(x) for all x ∈ σ�τ . Clearly, G′ and G′′ are
isomorphic. Moreover, with I the number of isolated variables, we see that for every possible
outcome G,

P[G′′ =G | I(G′′)= I(G)]= P[G∗(n,m, σ )=G | I(G∗(n,m, σ ))= I(G), I].
Finally, I(G′′) and I(G∗(n,m, σ )) given I are mutually contiguous; for both satisfy a local limit
theorem with standard deviation �(

√
n), and their means differ by no more than O(

√
n). Since

J occurs with high probability, we obtain the desired contiguity of the isomorphism classes of
G∗(n,m, σ ) and G∗(n,m, σ ) given I .

In summary, for any σ , τ with ‖ρσ − ρ̄‖TV, ‖ρτ − ρ̄‖TV � Cn−1/2, we can couple the mψ (σ ),
mψ (τ ) such that the isomorphism classes of G∗(n,m, σ ), G∗(n,m, τ ) are mutually contiguous
w.h.p. To complete the proof, we simply observe that the event ‖ρσ ∗ − ρ̄‖TV � Cn−1/2 occurs
with a probability that is bounded away from zero by the central limit theorem. Therefore, the
assertion follows from Lemma 8.3.

Proof of Proposition 8.2. By Lemma 5.1 and Proposition 7.8 it suffices to prove (8.2) with Ĝ
replaced by G∗ =G∗(n,m, σ ∗). Indeed, fix a large number C> 0 and let A be the event that
‖ρσ ∗ − ρ̄‖TV � Cn−1/2. Then the probability of the eventA is bounded away from 0 and, in fact,
approaches 1 in the limit of large C. Further, let G′ be the factor graph obtained from G∗ by delet-
ing all variables and constraints at a distance less than 2� from x1. Let n′,m′ be the number of
variables and constraints of G′ and let σ ′ be the assignment induced by σ ∗ on the set of variables
of G′. Since � is a fixed number, Lemma 8.1 implies that

P[n+m− n′ −m′ � ln n |A]= 1− o(1). (8.3)

In particular, if n− n′ � ln n and if A occurs, then ‖ρσ ′ − ρ̄‖TV � Cn−1/2 Moreover, since m is a
Poisson variable with mean dn/k, (8.3) implies that

P[m′ − dn′/k� n3/5 |A]= 1− o(1).

Hence, recalling the definition of the setM(d), we see that onA we can apply Corollary 8.4 to G′
with high probability. Consequently, with high probability onA the Gibbs measure

μG′ is (1/ω,ω)-symmetric and
n∑
i=1

‖μG′,xi − ρ̄‖TV < n/ω (8.4)

for some ω→ ∞.
To complete the proof let ι : ∂2�G∗x1 →Vn be a uniformly random map such that σ ∗(ι(x))=

σ ∗(x) for all x. Moreover, let G′′ be the random factor graph obtained from G∗ by connecting the
constraints at distance 2�− 1 from x1 with the images ι(x) instead of their original neighbours
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x ∈ ∂2�G∗x1. Then the distribution of G′′ is identical to the distribution of G∗. Furthermore, since
Lemma 8.1 implies that |∂2�G∗x1|�ω1/2 with high probability, (8.4) yields

E[‖μG′,∂2�G′′x1 − ρ̄‖TV |A]= o(1).

Thus, on A with high probability the boundary condition μG′,∂2�G′′x1 of the depth-2� neighbour-
hood of x1 is close in total variation distance to the free boundary condition, and therefore

E[‖μG∗,∂2�x1 −μ∂2�x1‖TV |A]= o(1). (8.5)
Finally, since the probability ofA converges to 1 as C → ∞, the assertion follows from (8.5).

Proof of Theorem 2.9. The theorem is immediate from Lemma 8.1 and Proposition 8.2.

8.2 Proof of Theorem 2.10
Theorem 2.10 is almost an immediate consequence of Theorem 2.9, except that a bit of care is
required to prove that d�rec � dcond. To this end, we first show that μĜ is ε-symmetric with mostly
uniform marginals for d< d�rec.

Lemma 8.5 (SYM, BAL). Assume that d< d�rec and let ε > 0. Then with probability at least
1− ε+ o(1) the Boltzmann distribution μĜ is ε-symmetric and its marginals satisfy

n∑
i=1

‖μĜ,xi − ρ̄‖TV < εn.

Proof. Fix a small enough δ > 0. If d< d�rec, then there exists a bounded �= �(δ)> 0 such that

P[∃ω ∈	 : |〈1{σ (r)=ω} | ∀x ∈ ∂2�(T(d, P), r) : σ (x)= χ2�(x)〉 − 1/q|T2�(d,P) > δ]� δ.
Hence, Lemmas 7.8 and 8.1 show that for large enough n,

P[∃ω ∈	 : |〈1{σ (x1)=ω} | ∀y ∈ ∂2�(G∗(n,m, σ̂ ), x1) : σ (y)= σ̂ (y)〉 − 1/q|G∗(n,m,σ̂ ) > δ]
< ε/2.

Therefore, the Nishimori identity (5.6) yields

P
[∃ω ∈	 :

〈∣∣〈1{σ (x1)=ω} | ∇2�(Ĝ, x1)
〉
Ĝ − 1/q

∣∣〉
Ĝ > δ

]
< ε/2. (8.6)

Now let E be the event that x1, x2 have distance at least 2�+ 2 in Ĝ and that

∀ω ∈	 :
〈∣∣〈1{σ (x1)=ω} | ∇2�(Ĝ, x1)

〉
Ĝ − 1/q

∣∣〉
Ĝ � δ. (8.7)

Since the average degree of Ĝ is bounded w.h.p., (8.6) shows immediately that P[E]� 1− 2ε/3+
o(1).

But given E it is immediate that ‖μĜ,x1,x2 − ρ̄‖TV < ε/4, provided that δ is small enough, an
observation that goes back to [66]. Indeed, since x1, x2 have distance greater than 2�, conditioning
on the values of all variables at distance 2� from x1 is stronger than just conditioning on the value
of x2. Thus, we conclude that

P[‖μĜ,x1,x2 − ρ̄‖TV < ε/4]� 1− 2ε/3+ o(1). (8.8)

Finally, because the distribution of Ĝ is invariant under permutations of the variables, (8.8) yields
the assertion.

Corollary 8.6 (SYM, BAL,MIN, POS).We have d�rec � dcond.

https://doi.org/10.1017/S0963548319000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548319000440


412 A. Coja-Oghlan, T. Kapetanopoulos and N. Müller

Proof. Let 0<D< d�rec and let x1, . . . , xk denote uniformly and independently chosen variables.
Due to (7.1) and Proposition 6.7 we have, uniformly for all d�D,

kξ
n
∂

∂d
E[ ln Z(Ĝ)]= fn(d)+ o(1) with fn(d)=E[�(〈ψ(σ (x1), . . . , σ (xk))〉Ĝ)]. (8.9)

We claim that, for every d�D,

lim
n→∞ fn(d)=�(ξ ). (8.10)

Indeed, plugging in the expansion�(1− x)= −x+ ∑
��2 x�/(�(�− 1)), valid for all x ∈ [− 1, 1],

we obtain

fn(d)= 1−E[〈ψ(σ (x1), . . . , σ (xk))〉Ĝ]+
∑
��2

1
�(�− 1)

E[〈1−ψ(σ (x1), . . . , σ (xk))〉�Ĝ]

= 1− ξ + o(1)+
∑
��2

E〈∏�
j=1 1−ψ(σ j(x1), . . . , σ j(xk))〉Ĝ

�(�− 1)
(8.11)

(by Lemma 5.1, Corollary 6.5 and SYM).

Further, by Lemma 8.5 there is a function εn(d)= o(1) such that μĜ is εn(d)-symmetric with
probability at least 1− εn(d). Therefore, Lemma 4.3 implies that the �-fold product measure μ⊗�

Ĝ
is o(1)-symmetric w.h.p. for any fixed � > 0. Hence, every �� 2 we have w.h.p.

〈 �∏
j=1

1−ψ(σ j(x1), . . . , σ j(xk))
〉
Ĝ

= o(1)+ 1
nk

∑
ψ∈�

n∑
i1,...,ik=1

∑
σ1,...,σ�∈	k

P(ψ)
( �∏
j=1

1−ψ(σj)
) k∏

h=1

�∏
j=1
μĜ,xh(σj,h).

Thus, invoking the asymptotic uniformity of the Boltzmann marginals supplied by Lemma 8.5
and applying SYM, we see that w.h.p.

〈 �∏
j=1

1−ψ(σ j(x1), . . . , σ j(xk))
〉
Ĝ

= (1− ξ )� + o(1). (8.12)

Combining (8.11) and (8.12), we obtain (8.10).
Finally, (8.9), (8.10) and dominated convergence yield

lim
n→∞

1
n
E[ ln Z(Ĝ(n,mD)]= ln q+ lim

n→∞
1
n

∫ d

0

∂

∂D
E[ ln Z(Ĝ)]dd

= ln q+ 1
kξ

lim
n→∞

∫ D

0
fn(d)dd = ln q+D ln (ξ )/k.

Hence, Theorem 5.3 shows that dcond �D. Since this holds for any D< drec, the assertion
follows.

Proof of Theorem 2.10. Corollary 8.6 shows that d�rec � dcond. Thus, we are left to show that
d�rec = drec. To prove that d�rec � drec suppose that d< d�rec. Then (2.17) ensures that for any ε > 0
there is � such that w.h.p. we have

E
〈∣∣〈1{σ (r)=ω} | ∇2�(T2�(d, P), r)

〉
T2�(d,P) − 1/q

∣∣〉
T2�(d,P) < ε. (8.13)
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Further, Theorem 2.9 shows that ‖μG,∇2�(G,x1),μG,∇2�(G,x1)‖TV = o(1) w.h.p. Moreover, by
Theorem 2.11 and Lemma 8.1 the distribution of the neighbourhood ∇2�(G, x1) is at total vari-
ation distance o(1) of the distribution of the random tree T�(d, P). Therefore, (8.13) shows that
corr(d)� ε. Since this is true for any ε > 0, we conclude that d� drec.

Conversely, assume that d< drec � dcond. Then we can just put the argument from the previ-
ous paragraph in reverse. Indeed, Theorem 2.11 and Lemma 8.1 show that the neighbourhood
∇2�(G, x1) is the distribution as T2�(d, P), up to o(1) in total variation. Further, for any ε > 0 there
exists � such that ∑

ω∈	
E

〈∣∣〈1{σ (x1)=ω} | ∇2�(G, x1)
〉
G

− 1/q
∣∣〉
G
< ε+ o(1).

because corr(d)= 0. Hence, Theorem 2.9 yields corr�(d)� ε. Finally, because this bound holds
for any ε > 0 we obtain corr�(d)= 0.

Appendix A: Proof of Lemma 4.4
To establish Lemma 4.4 we will utilize regularity results for discrete probability measures from [17].
For ε > 0 choose η= η(ε)> 0 and n> 1/η sufficiently large. By [17, Corollary 2.2], for any μ ∈
P(	n), there exist L ∈N,μ(0), . . . ,μ(L) ∈P(	n) andw0,w1, . . . ,wL such that we can decomposeμ=∑L

i=0 wiμ
(i) and

(i) μ(1), . . . ,μ(L) are η-symmetric,
(ii) w0, . . . ,wL � 0,

∑L
i=0 wi = 1,

∑L
i=1 wi � 1− η and

(iii) wi � η/L for all i ∈ [L].

Let us use the shorthand notation 〈 · 〉i = 〈 · 〉μ(i) and note that ‖ · ‖TV and ‖ · ‖2 are equivalent norms
in R

q2 . For i ∈ [L], we have

〈‖ρσ ,τ − ρ̄‖2
2〉i =

∑
s,t∈	

1
n2

∑
v,w∈[n]

μ(i)
v,w(s, s)μ

(i)
v,w(t, t)− q−2

=
∑
s,t∈	

1
n2

[ ∑
v,w∈[n]

μ(i)
v,w(s, s)μ

(i)
v,w(t, t)−

(∑
v∈[n]
μ(i)

v (s)μ
(i)
v (t)

)2]

+
[∑
s,t∈	

(
1
n

∑
v∈[n]
μ(i)

v (s)μ
(i)
v (t)

)2

− q−2
]
. (A.1)

Combining (i) and Lemma 4.3 yields thatμ(i) ⊗μ(i) is ζ -symmetric for a suitable ζ = ζ (η)> 0. Thus,
the first summand of (A.1) is O(ζ ). Now assume that 〈‖ρσ ,τ − ρ̄‖TV〉μ < δ for δ(η, ζ )> 0 sufficiently
small. Due to (iii) and Jensen’s inequality, 〈‖ρσ ,τ − ρ̄‖2

2〉i <
√
δ/η and consequently, (A.1) implies

that for all s, t ∈	 we have ∣∣∣∣ 1n
∑
v∈[n]
μ(i)

v (s)μ
(i)
v (t)− q−2

∣∣∣∣�O(ζ 1/2).

Hence for all s ∈	 we have∣∣∣∣ 1n
∑
v∈[n]

(μ(i)
v (s))

2 − q−2

∣∣∣∣�O(ζ 1/2),
∣∣∣∣ 1n

∑
v∈[n]
μ(i)

v (s)− q−1

∣∣∣∣�O(ζ 1/2). (A.2)

As the sum of squares is minimized by a uniform distribution, Taylor-expanding the function

f ((μ(i)(s))s∈	)= 1
n

(∑
v∈[n]

(μ(i)(s))2
)

s∈	
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around q−11q×n together with (A.2) yields∣∣∣∣ 1nO(‖μ(i) − q−11q×n‖2
2)

∣∣∣∣�O(ζ 1/2).

Thus, for all i ∈ [L] we have
1
n

∑
v∈[n]

‖μ(i)
v ( · )− q−11‖TV < ζ

1/5. (A.3)

The ε-symmetry of μ now follows from (A.3) and [17, Lemma 2.8]. Moreover, equation (A.3) and
(ii) imply

1
n

∑
v∈[n]

‖μv( · )− q−11‖TV < ε.

We now turn to the converse implication. First, a calculation as in (A.1) yields that

〈‖ρσ ,τ − ρ̄‖2〉2μ � 〈‖ρσ ,τ − ρ̄‖2
2〉μ �

(
1+ 1

q

)
2
n2

∑
v,w∈[n]

‖μv,w − ρ̄‖TV. (A.4)

Secondly, we bound
1
n2

∑
v,w∈[n]

‖μv ⊗μw − ρ̄‖TV

� 1
2n2

∑
v,w∈[n]

∑
s,t∈	

(∣∣∣∣μv(s)− 1
q

∣∣∣∣
∣∣∣∣μw(t)− 1

q

∣∣∣∣ + 1
q

(∣∣∣∣μv(s)− 1
q

∣∣∣∣ +
∣∣∣∣μw(t)− 1

q

∣∣∣∣
))

= 2
(
1
n

∑
v∈[n]

‖μv − ρ̄‖TV

)2

+ 2
n

∑
v∈[n]

‖μv − ρ̄‖TV. (A.5)

Now, inequalities (A.4), (A.5) and the triangle inequality imply that by choosing δ > 0 small enough,
we have that any δ-symmetric μ with 1/n

∑
v∈[n] ‖μv − ρ̄‖TV < δ satisfies

〈‖ρσ ,τ − ρ̄‖TV〉μ < ε.

Appendix B: Moment calculations
The proofs of Propositions 5.9 and 5.10 are straightforward applications of the Laplace method; the
calculations are identical to those performed in [25, Section 7].

Proof of Proposition 5.9. Let Rn be the set of all distributions ρ ∈P(	) such that the vector nρ ∈
R
	 has integer entries. For ρ ∈ Rn let Zρ(G(n,m))= Z(G(n,m))〈1{ρσ = ρ}〉G(n,m) be the number of

satisfying assignments σ ∈ S(G(n,m)) with empirical distribution ρσ = ρ, so that
E[Z(G(n,m))]=

∑
ρ∈Rn

E[Zρ(G(n,m))]. (B.1)

Since the total number of assignments σ ∈	Vn with empirical distribution ρ is given by the multi-
nomial coefficient

( n
nρ

)
and because the m constraints of G(n,m) are chosen independently, we can

express the mean E[Zρ(G(n,m))] easily in terms of the function φ from condition BAL. Namely,

E[Zρ(G(n,m))]=
(
n
ρn

)
φ(ρ)m. (B.2)

Further, because by BAL both the multinomial coefficient and the function φ(ρ) take their maxi-
mum at the uniform distribution ρ̄, the contribution of the summands from the set R′

n = {ρ ∈ Rn : ‖
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ρ − ρ̄‖2 < n−1/2 ln n} dominates. Thus, approximating the multinomial coefficient in (B.2) via
Stirling’s formula, we obtain from (B.1)

E[Z(G(n,m))]∼
∑
ρ∈R′n

E[Zρ(G(n,m))]∼
∑
ρ∈R′n

exp(nfn(ρ))√
(2πn)q−1

∏
ω∈	 ρ(ω)

, (B.3)

where

fn(ρ)=H(ρ)+ m
n
ln φ(ρ).

The gradient and the Hessian of the function fn(ρ) at ρ = ρ̄ are computed easily. Indeed, using SYM
and Lemma 4.1 we obtain

Dfn(ρ̄)= (ln (q)− 1+ km/n)1, D2fn(ρ̄)= −q(id− (k(k− 1)m/n)�)+ (k2m/n)1, (B.4)

and all third partial derivatives of fn are uniformly bounded on R′
n. Furthermore, for all ρ ∈ R′

n we
have 1⊥ ρ − ρ̄ because ρ̄, ρ ′ are probability distributions on	. Hence,

fn(ρ)= fn(ρ̄)− q〈(id− (k(k− 1)m/n)�)(ρ − ρ̄), (ρ − ρ̄)〉 +O(n−3/2 ln3 n)
uniformly for all ρ ∈ R′

n. Thus, (B.3) boils down to

E[Z(G(n,m))]

∼ qq/2 exp (nf (ρ̄))
(2πn)(q−1)/2

∑
ρ∈R′n

exp[−qn〈(id− (k(k− 1)m/n)�)(ρ − ρ̄), (ρ − ρ̄)〉]

= qn+1/2ξm

(2πn/q)(q−1)/2

∑
ρ∈R′n

exp[−qn〈(id− (k(k− 1)m/n)�)(ρ − ρ̄), (ρ − ρ̄)〉] (by SYM). (B.5)

By Lemma 5.4 the matrix � has precisely one positive eigenvalue, namely 1, with corresponding
eigenvector 1. Since in (B.5) we sum only over ρ such that ρ − ρ̄ ⊥ 1, we can approximate the sum
by a Gaussian integral over the (q− 1)-dimensional orthogonal complement of 1 in R

q to obtain∑
ρ∈R′n

exp[−qn〈(id− (k(k− 1)m/n)�)(ρ − ρ̄), (ρ − ρ̄)〉]

∼
∫
Rq−1

exp
(

−qn
∑

λ∈Eig[�]\{1}
(1− (k(k− 1)m/n)λ)z2i

)
dz

∼ (2πn/q)(q−1)/2∏
λ∈Eig[�]\{1}

√
1− d(k− 1)λ

. (B.6)

Combining (B.5) and (B.6) completes the proof.

Proof of Proposition 5.10. Let Rn be the set of all distributions ρ ∈P(	×	) such that nρ ∈
R
	×	 is integral and such that ‖ρ − ρ̄‖TV � ζ . Let Zρ(G(n,m)) be the number of pairs (σ1, σ2) ∈

S(G(n,m)) with overlap ρσ1,σ2 = ρ. Recalling the definition of Z from (5.18), we get

E[Z(G(n,m))2]=E[Z(G(n,m))21{〈‖ρσ 1,σ 2 − ρ̄‖TV〉G(n,m) � ζ }]
=

∑
ρ∈Rn

E[Zρ(G(n,m))]. (B.7)

Clearly, the total number of pairs (σ1, σ2) ∈	Vn with overlap ρ equals
( n
ρn

)
. Hence, recalling the

function ϕ from conditionMIN, using the independence of the constraints of G(n,m) and applying
Stirling’s formula, we obtain

E[Zρ(G(n,m))]=
(
n
ρn

)
ϕ(ρ)m ∼

∑
ρ∈Rn

exp(nfn(ρ))√
(2πn)q2−1

∏
ω,ω′∈	 ρ(ω,ω′)

, (B.8)
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where
fn(ρ)=H(ρ)+ m

n
ln ϕ(ρ).

Once more it is straightforward to calculate the gradient and the Hessian of fn at the point ρ̄:
condition SYM yields

Dfn(ρ̄)= (2 ln (q)− 1+ km/n)1, D2fn(ρ̄)= −q2(id− (k(k− 1)m/n)�)+ (k2m/n)1, (B.9)
and all third partial derivatives are uniformly bounded. Consequently, since 1⊥ ρ − ρ̄ for all ρ ∈ Rn,
we obtain

fn(ρ)= fn(ρ̄)− q2〈(id− (k(k− 1)m/n)�)(ρ − ρ̄), (ρ − ρ̄)〉 +O(‖ρ − ρ̄‖3
TV)

uniformly for all ρ ∈ Rn. Hence, (B.8) becomes
E[Z(G(n,m))2]

∼ q2n+1ξm

(2πn/q2)(q2−1)/2

∑
ρ∈R′n

exp [−q2n〈(id− (k(k− 1)m/n)�)(ρ − ρ̄), (ρ − ρ̄)〉]. (B.10)

Since d< dcond, Lemma 5.4 and Proposition 5.5 show that 1 is the only eigenvector of id− (k(k−
1)m/n)� with a non-negative eigenvalue. Consequently, because the sum only ranges over ρ such
that 1⊥ ρ − ρ̄, we can approximate the sum by a Gaussian integral:∑

ρ∈R′n

exp [−q2n〈(id− (k(k− 1)m/n)�)(ρ − ρ̄), (ρ − ρ̄)〉]

∼
∫
Rq2−1

exp
(

−q2n
∑

λ∈Eig′[�]
(1− (k(k− 1)m/n)λ)z2i

)
dz

∼ (2πn/q2)(q2−1)/2∏
λ∈Eig′[�]

√
1− d(k− 1)λ

. (B.11)

Thus, the assertion follows from (B.10) and (B.11).

Appendix C: Proof of Lemma 7.2
In order to prove Lemma 7.2, we first establish a uniform upper bound on the total variation distance
of σ̂ n,m and σ̂ n,m′ form andm′ that are not too far from dn/k.

Lemma C.1 (SYM, BAL). For any η > 0, d> 0 there is δ > 0 such that
lim sup

n→∞
max{dTV{σ̂ n,m, σ̂ n,m′ } : |m− dn/k| + |m′ − dn/k|< δn}<η. (C.1)

Proof. Fix η > 0, d> 0 and recall the function φ from condition BAL. Lemma E.1 shows that there
exists c> 0 such that, for all 0< δ < 1 and allm,m′ � (d/k+ δ)n, the bounds

c
(
φ(ρσ )
ξ

)m−m′

� P[σ̂ n,m = σ ]
P[σ̂ n,m′ = σ ] �

1
c

(
φ(ρσ )
ξ

)m−m′

(C.2)

are valid. Moreover, Corollary 6.5 yields C> 0 such that for allm,m′ � (d/k+ δ)n we have
P[‖ρσ̂n,m − ρ̄‖TV > C/

√
n]+ P[‖ρσ̂n,m′ − ρ̄‖TV > C/

√
n]� η/4. (C.3)

Further, suppose that σ ∈	Vn satisfies ‖ρσ − ρ̄‖TV � C/
√
n. Because BAL ensures that the first

derivative of φ vanishes at ρ̄, we have
φ(ρσ )= φ(ρ̄)+O(‖ρσ − ρ̄‖2

TV)= ξ +O(n−1). (C.4)
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Combining (C.2) and (C.4), we obtain c1, c2 > 0 such that for all σ satisfying ‖ρσ − ρ̄‖TV � C/
√
n,

for all 0< δ < 1 and for allm,m′ satisfying |m− dn/k| + |m′ − dn/k|< δn the estimates

c1 exp(−δc2)� P[σ̂ n,m = σ ]
P[σ̂ n,m′ = σ ] � exp(δc2)/c1 (C.5)

hold. Finally, the assertion follows from (C.3) and (C.5) by choosing δ > 0 sufficiently small.

Proof of Lemma 7.2. Assume that d, ε > 0 andm ∈M(d) are such that

lim sup
n→∞

E〈‖ρσ 1,σ 2 − ρ̄‖TV〉Ĝ(n,m) > ε.

Choose η= η(ε)> 0 small enough and then pick δ = δ(η)> 0 as in Lemma C.1. By assumption,
there exist infinitely many n such that |m− dn/k|< δn/2 and

E〈‖ρσ 1,σ 2 − ρ̄‖TV〉Ĝ(n,m) > ε/2. (C.6)

Fix a large enough n along withm′ such thatm<m′ < dn/k+ 2δn. We are going to argue that

E〈‖ρσ 1,σ 2 − ρ̄‖TV〉Ĝ(n,m′) > δ.

By Lemma C.1, there is a coupling of σ̂ n,m, σ̂ n,m′ such that

P[σ̂ n,m = σ̂ n,m′]> 1− η. (C.7)

We extend this coupling to a coupling of G′ d=G∗(n,m, σ̂ n,m) and G′′ d=G∗(n,m′, σ̂ n,m′) in the natural
way. Specifically, given σ̂ n,m = σ̂ n,m′ we draw G′′ with constraints a1, . . . , am′ from the distribu-
tion G∗(n,m′, σ̂ n,m′) and we let G′ simply be the factor graph comprising the first m constraints
a1, . . . , am. Moreover, if σ̂ n,m �= σ̂ n,m′ , then we draw G′,G′′ independently from their respective
marginal distributions.

Due to (C.6) and the Nishimori identity (5.4) we have P[〈‖ρσ ,τ − ρ̄‖TV〉G′ > ε/2]� ε/2. Recalling
the notion of nearly balanced below Lemma 4.5, we observe that because a random sample τ
from μG′ and σ̂ n,m are identically distributed, τ is nearly balanced with probability 1− o(1) by
Corollary 6.5. Hence, provided that n is large enough, with probability at least ε/3 the random factor
graph G′ possesses a nearly balanced satisfying assignment τG such that 〈‖ρσ ,τG′ − ρ̄‖TV〉G′′ > ε/2. In
the event that there is no such event we just let τG′ be an arbitrary nearly balanced assignment (not
necessarily a satisfying one). This construction ensures that

E[〈‖ρσ ,τG′ − ρ̄‖TV〉G′]� ε2/6.

Hence, provided that η was chosen small enough, (C.7) and the Nishimori identity (5.4) yield

E[‖ρσ̂n,m ,τG′ − ρ̄‖TV | σ̂ n,m = σ̂ n,m′]� ε2/7. (C.8)

Finally, we also designate a nearly balanced assignment τ̃G′′ for the factor graph G′′ by simply
letting τ̃G′′ be the assignment τG′′′ of the factor graphG′′′ obtained fromG′′ by deleting the lastm′ −m
constraints am+1, . . . , am′ . Since given σ̂ n,m = σ̂ n,m′ we have G′′′ =G′, (C.8) yields

E[‖ρσ̂n,m′ ,τ̃G′′ − ρ̄‖TV | σ̂ n,m = σ̂ n,m′]=E[‖ρσ̂n,m ,τG′ − ρ̄‖TV | σ̂ n,m = σ̂ n,m′]� ε2/7.

Therefore, the Nishimori identity (5.4) and (C.7) imply

E[〈‖ρσ ,τ̃G′′ − ρ̄‖TV〉G′′]=E[‖ρσ̂n,m′ − τ̃G′′ ‖TV]� ε2/8. (C.9)

Since τG′′ is nearly balanced, the assertion follows from (C.9) and Lemma 4.5.
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Appendix D: Proof of Lemma 7.4
The Nishimori identity (5.6) shows that Ĝ d=G∗(n,m, σ̂ n,m). Moreover, Corollary 6.5 shows that σ̂ n,m

is nearly balanced with probability at least 1−O(n−1). Hence, it suffices to prove that for any nearly
balanced σ ,

E[CY(G∗(n,m, σ ))]= κ̂Y + o(1),

P[∀l� L : CYl (G
∗(n,m, σ )= yl]= o(1)+

L∏
l=1

P[Po(κ̂Yl )= yl].
(D.1)

We begin by calculating E[CY(G∗(n,m, σ ))]. Suppose that i= (i1, . . . , i�) ∈ [n] is a family of dis-
tinct indices such that i1 <min{i2, . . . , i�} and let h= (h1, . . . , h�) ∈ [m] be pairwise distinct such
that h1 < h� if � > 1. Set i�+1 = i1. Let CY(i, h) be the event that xi1 , ah1 , . . . , xi� , ah� constitute a cycle
with signature Y = (ψ1, s1, t1, . . . ,ψ�, s�, t�). Then for any nearly balanced σ ∈	Vn we have

P[G∗(n,m, σ ) ∈ CY(i, h)]

=
�∏

j=1

∑
u1,...,uk∈[n] 1{usj = ij, utj = ij+1}ψj(σ (xu1 ), . . . , σ (xuk))P(ψj)∑

u1,...,uk∈[n] E[ψ(σ (xu1 ), . . . , σ (xuk))]

= o(n−2�)+
�∏

j=1

P(ψj)
nkξ

∑
u1,...,uk∈[n]

1{usj = ij, utj = ij+1}ψj(σ (xu1 ), . . . , σ (xuk)) (by SYM)

= o(n−2�)+ n−2�q�
�∏

j=1

P(ψj)�ψj ,sj ,tj(σ (xih), σ (xih+1 )). (D.2)

Because σ is nearly balanced, summing (D.2) over i, h yields

E[CY(G∗(n,m, σ ))]=
∑
i,h

P[G∗(n,m, σ ) ∈ CY(i, h)]

= o(1)+ 1
2�

(
m
n

)�
tr

�∏
j=1

P(ψj)�ψj ,sj ,tj

= o(1)+ κ̂Y ,
which is the first part of (D.1).

The second part of (D.1) follows from the first part and a standard method of moments argu-
ment. More specifically, since m=O(n) the random factor graph G∗(n,m, σ ) does not contain two
overlapping cycles of bounded length w.h.p. Therefore, a straightforward extension of the above
calculation shows that for any j1, . . . , jL � 2 the joint factorial moment of the random variables
CY1 (G∗(n,m, σ )), . . . , CYL(G∗(n,m, σ )) comes to

E

[ L∏
l=1

( jl−1∏
u=0

CYl (G
∗(n,m, σ ))− u

)]
= o(1)+

L∏
l=1

E[CYl (G
∗(n,m, σ ))]jl = o(1)+

L∏
l=1

κ̂
jl
Yl .

In effect, the number of cycles with signature Y is asymptotically Poisson with mean κ̂Y by standard
results on the joint convergence to asymptotic Poisson variables [21].

Appendix E: Proof of Lemma 7.8
To prove Lemma 7.8 we need the following rough but uniform estimate of the first moment.
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Claim E.1 (SYM, BAL). For any D> 0 there exists c> 0 such that
cqnξm �E[Z(G(n,m))]� qnξm for all m�Dn/k.

Proof. Since constraints are chosen independently we have

E[Z(G(n,m))]=
∑
σ∈	Vn

φ(ρσ )m.

Because SYM andBAL yield φ(ρσ )� ξ for every σ , the upper boundE[Z(G(n,m))]� qnξm is imme-
diate.With respect to the lower bound, we observe that there are	(qn) assignments σ :Vn →	with
‖ρσ − ρ̄‖TV � n−1/2. Lemma 4.1 shows that for any such σ

φ(ρσ )= φ(ρ̄)+ kξ 〈1, ρσ − ρ̄〉 +O(‖ρσ − ρ̄‖2
TV)= φ(ρ̄)+O(1/n).

Thus,
E[Z(G(n,m))]�	(qn)(φ(ρ̄)+O(1/n))m =	(qnξm)

uniformly for allm�Dn/k.

Claim E.2 (SYM, BAL). Let D> 0. Uniformly for all m�Dn/k and for all nearly balanced σ ∈	Vn

we have
P[σ̂ n,m = σ ]= P[σ ∗ = σ ] exp(nO(‖ρσ − ρ̄‖2

TV)+O(1)). (E.1)
Furthermore, for any ε > 0 there is C> 0 such that

P[‖ρσ̂n,m − ρ̄‖TV > Cn−1/2]< ε.

Proof. Recall φ from Lemma 4.1. Since constraints are chosen independently, we obtain
E[ψG(n,m)(σ )]= φ(ρσ )m

for every σ . Due to Lemma 4.1, φ(ρ)= ξ +O(‖ρ − ρ̄‖2
TV). Hence, Claim E.1 reveals that for a nearly

balanced σ ,

P[σ̂ = σ ]= E[ψG(n,m)(σ )]
E[Z(G(n,m))]

=�(q−nξ−m)φ(ρσ )m

=�(q−n)(1+O(‖ρ − ρ̄‖2
TV))

m

= q−n exp (nO(‖ρσ − ρ̄‖2
TV)+O(1)),

which yields the first assertion. The second assertion follows from the estimate P[σ̂ = σ ]=
�(q−nξ−m)φ(ρσ )m and assumption BAL, which provides that ρ̄ is the maximizer of φ.

Proof of Lemma 7.8. Let D, ε > 0, pick δ > 0 small enough and n0 > 0 big enough. As a first step
we observe that for any eventA the following two implications are true:

P[σ ∗ ∈A]< δ⇒ P[σ̂ n,m ∈A]< ε, P[σ̂ n,m ∈A]< δ⇒ P[σ ∗ ∈A]< ε. (E.2)
These implications are immediate from Claim E.2. Indeed, assume that P[σ ∗ ∈A]< δ. Then for a
large C> 0,

P[σ̂ n,m ∈A]� P[σ̂ n,m ∈A | ‖ρσ̂n,m − ρ̄‖TV � Cn−1/2]+ ε/2� exp (C3)P[σ ∗ ∈A]+ ε/2< ε,
provided δ > 0 was chosen small enough. The proof of the second implication is analogous.

To derive the assertion from (E.2), let E be an event and assume that
P[(G∗(n,m, σ ∗), σ ∗) ∈ E]< δ.
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Further, for an assignment σ let Eσ be the set of all pairs (G, σ ) contained in E . Assuming δ > 0 is
sufficiently small, we obtain

P[(G∗(n,m, σ̂ n,m), σ̂ n,m) ∈ E]=
∑
σ∈	Vn

P[(G∗(n,m, σ ), σ ) ∈ E]P[σ̂ n,m = σ ]

� ε+
∑
σ∈	Vn

P[(G∗(n,m, σ ), σ ) ∈ E]P[σ ∗ = σ ]

< 2ε.

The proof of the reverse direction is analogous.
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