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The distribution of kinetic helicity in a dipolar planetary dynamo is central to the
success of that dynamo. Motivated by the helicity distributions observed in numerical
simulations of the Earth’s dynamo, we consider the relationship between the kinetic
helicity, h= u · ∇× u, and the buoyancy field that acts as a source of helicity, where
u is velocity. We show that, in the absence of a magnetic field, helicity evolves in
accordance with the equation ∂h/∂t=−∇ · F+ Sh, where the flux, F, represents the
transport of helicity by inertial waves, and the helicity source, Sh, involves the product
of the buoyancy and the velocity fields. In the numerical simulations it is observed
that the helicity outside the tangent cylinder is predominantly negative in the north
and positive in the south, a feature which the authors had previously attributed to the
transport of helicity by waves (Davidson & Ranjan, Geophys. J. Intl, vol. 202, 2015,
pp. 1646–1662). It is also observed that there is a strong spatial correlation between
the distribution of h and of Sh, with Sh also predominantly negative in the north
and positive in the south. This correlation tentatively suggests that it is the in situ
generation of helicity by buoyancy that establishes the distribution of h outside the
tangent cylinder, rather than the dispersal of helicity by waves, as had been previously
argued by the authors. However, although h and Sh are strongly correlated, there is
no such correlation between ∂h/∂t and Sh, as might be expected if the distribution
of h were established by an in situ generation mechanism. We explain these various
observations by showing that inertial waves interact with the buoyancy field in such
a way as to induce a source Sh which has the same sign as the helicity in the local
wave flux, and that the sign of h is simply determined by the direction of that flux.
We conclude that the observed distributions of h and Sh outside the tangent cylinder
are consistent with the transport of helicity by waves.

Key words: geodynamo, geophysical and geological flows, waves in rotating fluids

1. Introduction
One of the major advances in convection-driven dynamos over the last decade has

been the ability of the numerical simulations to reproduce some of the observed
features of the Earth’s magnetic field, such as a strongly dipolar magnetic field

† Email address for correspondence: pad3@cam.ac.uk
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aligned with the rotation axis, occasional reversals in polarity and a slow westward
drift of the surface magnetic field (Christensen 2010). This is all the more astonishing
as the parameter regime in the numerical experiments is very far from that in the
core of the Earth. For example, the simulations are much too viscous, typically by
a factor of 109 as measured by the Ekman number, and substantially underpowered,
as measured by the ratio of the Rayleigh number to the critical Rayleigh number at
which convection first sets in (Christensen & Wicht 2007; Christensen 2011). There
is, therefore, a growing need to understand exactly what dynamical mechanisms these
numerical experiments embrace which allows them to capture planet-like behaviour,
despite the fact that many aspects of the simulations are distinctly not planet-like.

It was recognised early in dynamo theory that an important ingredient of a dipolar
planetary dynamo is the breaking of reflectional symmetry (Moffatt 1978), and in the
numerical simulations of such dynamos this usually takes the form of an abundance
of kinetic helicity, h=u ·∇×u=u ·ω, in the convective flow (Roberts & King 2013).
Moreover, an efficient dynamo requires that the mean helicity is spatially segregated,
being of one sign in the northern hemisphere and another sign in the south. Precisely
such an asymmetric distribution in the azimuthally averaged helicity was observed
quite early in the numerical simulations (Olson, Christensen & Glatzmaier 1999), and
indeed it occurs even in the absence of a magnetic field (Glatzmaier & Olson 1993;
Kitauchi, Araki & Kida 1997). In particular, outside the tangent cylinder (an imaginary
cylinder that circumscribes the solid inner core and is parallel with the rotation vector,
Ω), the helicity is observed to be negative in the north and positive in the south.
This is important because nearly all of the current numerical dynamos operate outside
the tangent cylinder (Christensen 2011). So, two important questions are: what basic
mechanism is responsible for the generation and subsequent spatial segregation of
helicity in the numerical simulations, and why is it predominantly negative in the
north and positive in the south (outside the tangent cylinder)? To date, these questions
remain unanswered.

The production and segregation of helicity was attributed to Ekman pumping in
some of the early simulations (Kono, Sakuraba & Ishida 2000; Roberts & King
2013), but these simulations were particularly viscous and weakly forced, and this
has now been largely abandoned as a realistic mechanism. For example, it is not the
primary source of helicity in slightly less viscous simulations (Olson et al. 1999), it
plays almost no role whatsoever in the most recent low Ekman number numerical
simulations (Schaeffer et al. 2017), and numerical simulations involving slip boundary
conditions, in which there can be no Ekman pumping, also produce dipolar dynamos
(Kageyama, Watanabe & Sato 1993; Yadav, Gastine & Christensen 2013). Moreover,
Ekman pumping is unlikely to play any role at all in planetary cores, where the
Ekman number is tiny, ∼10−15 in the case of the Earth.

Given that the Earth rotates rapidly with a low convective Rossby number,
Ro= u/Ωl� 1, it has long been recognised that an alternative source of helicity may
be the propagation of helical waves supported by the Coriolis force (Moffatt 1970;
Olson 1981). The point is that, while a low value of Ro demands that u · ∇u is much
weaker than the Coriolis force, we have no right to similarly neglect ∂u/∂t, as there is
no a priori reason why the time derivative should scale on the convective time, and as
soon as we allow for a non-negligible ∂u/∂t, waves are inevitable. This idea was taken
up again in Davidson (2014) and Davidson & Ranjan (2015), who focused particularly
on the simplest type of helical wave – inertial waves. The hypothesis put forward
in Davidson (2014) and Davidson & Ranjan (2015) is that most planets are rapid
rotators and so are natural wave-bearing systems which are almost certainly awash
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FIGURE 1. (a) The computed radial velocity in one of the simulations of Sakuraba &
Roberts (2009). (b) The r.m.s. azimuthal temperature gradient, averaged in the azimuth,
in the simulation of Ranjan et al. (2018). (c) The helicity distribution in a simulation by
Schaeffer et al. (2017).

with helical waves, such as inertial waves and magnetostrophic waves. In particular, it
is argued that fast inertial waves are required to maintain the approximate geostrophy
observed in the simulations, a quasi-geostrophy that is maintained despite the chaotic
evolution of the thermal forcing and the turbulent nature of the resulting velocity field.
Moreover, outside the tangent cylinder the temperature perturbations and buoyancy
flux, which act as triggers for helical waves, are observed to be concentrated in and
around the equatorial plane. This was noticed as early as Gilman (1977) and then
later by Glatzmaier & Olson (1993). This is illustrated in figure 1(a), which is taken
from Sakuraba & Roberts (2009) and shows the computed radial velocity in one of
their simulations. It is also evident in figure 1(b), which is from Ranjan et al. (2018)
and shows the computed root-mean-square (r.m.s.) azimuthal temperature gradient,
averaged in the azimuth. In both of these cases the primary source of excitation for
waves lies in the equatorial regions. This is significant because upward propagating
helical waves, either inertial or magnetostrophic waves, are known to carry negative
helicity, while downward propagating helical waves carry positive helicity (Moffatt
1978). So waves triggered in and around the equatorial plane will tend to support
negative helicity in the north and positive helicity in the south, exactly as seen in the
numerical simulations (figure 1c), and exactly as required for dynamo action.

There is a second, intriguing feature of the numerical simulations that requires some
explanation. As noted in Davidson & Ranjan (2015), it is possible to write a low Ro
evolution equation for the helicity of the form

∂

∂t
(u ·ω)=−∇ ·F+ Sh. (1.1)

The origins and interpretation of this equation are spelt out in § 2, where it is shown
that F is a wave flux involving the Coriolis force, and hence Ω , while the source term,
Sh, is a function of u(x, t) and of those buoyancy fluctuations which act as triggers
for helical waves. A comparison of the azimuthally averaged distributions of h and
Sh in a numerical dynamo is shown in figure 2(a,b), where (a) is taken from Ranjan
et al. (2018) and (b) has been calculated from the same data set. It is extraordinary
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FIGURE 2. A comparison of the azimuthally averaged values of h, Sh and ∂h/∂t in (1.1).
Panel (a) is taken from Ranjan et al. (2018) and (b,c) have been calculated from the same
data set.

how close the azimuthally averaged spatial distributions of h and Sh are. At first sight
this argues for an in situ generation of helicity, such as the quasi-static mechanism
suggested by Hide (1976), rather than the dispersal of helicity by waves. Curiously,
though, no such correlation is observed between ∂h/∂t and Sh in the same numerical
simulation (figure 2c). This suggests that there may be an alternative explanation for
the observed correlation between h and Sh, and we shall argue here that this is indeed
the case. Specifically, we shall show the source term in (1.1) automatically adjusts
to take the same sign as the prevailing helical wave flux. That is to say, Sh is not
independently prescribed, but is itself shaped by the wave dynamics.

Because of the presence of both an ambient magnetic field and a background
rotation, there are several classes of helical waves which might exist in the core of a
planet. However, these share many common features and differ mostly in their time
scales (Moffatt 1978). Consequently, we shall follow Davidson & Ranjan (2015) and
focus on the simplest case – that of inertial waves. In the parlance of dynamo theory,
we consider the weak-field regime. Our primary task is to test the hypothesis that
the antisymmetric distribution in h observed in the numerical simulations, as well as
the spatial correlation between h and Sh in (1.1), could arise from the spontaneous
emission of inertial waves from buoyant anomalies. Because the numerical simulations
exhibit highly complex dynamics, with many distinct physical processes occurring
simultaneously on multiple time scales, we restrict ourselves to a sequence of idealised
model problems, designed to expose the underlying dynamics.

2. The equations governing the dispersal of helicity from a localised source of
buoyancy

2.1. Inertial waves at low Rossby number
We consider a rapidly rotating, Boussinesq fluid at low Rossby number, Ro =
u/2Ω`� 1, in which motion is driven by density anomalies. The governing equations
of motion in the rotating frame of reference are

∂u
∂t
= 2u×Ω −∇(p/ρ)+ ϑg+ ν∇2u, (2.1)

∇ · u= 0, (2.2)
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272 P. A. Davidson and A. Ranjan

where Ω = Ω êz is the background rotation, p is pressure, ν the viscosity, ρ the
background density, g is gravity, ϑ = ρ ′/ρ and ρ ′ is the perturbation in density. We
have in mind cases where g is perpendicular to Ω , reminiscent of a buoyant anomaly
sitting near the equatorial plane of the Earth’s core, and we take ρ ′ to be negative,
in line with the notion of buoyant anomalies floating out towards the mantle in the
core.

If we introduce a solenoidal vector potential, a, for the velocity, u = ∇ × a, then
we may rewrite (2.1), and its curl, in the alternative form

∂u
∂t
= 2Ω · ∇a−∇(p∗/ρ)+ ϑg+ ν∇2u, (2.3)

∂ω

∂t
= 2Ω · ∇u+∇ϑ × g+ ν∇2ω, (2.4)

where
∇

2(p∗/ρ)=∇ · (ϑg). (2.5)

The buoyancy field, ϑ , is assumed to be advected by a simple advection diffusion
equation, with a diffusivity κ equal to that of the kinematic viscosity. From (2.1)
we see that u ∼ ϑg/Ω , and so a characteristic Rossby number is Ro = ϑ0g/2Ω2δ,
where ϑ0 is a characteristic density fluctuation and δ is a typical length scale for the
buoyancy field.

We are interested in how energy and helicity disperse from localised buoyancy
sources at low Ekman numbers. In the absence of viscosity, and away from buoyancy
sources, (2.3) supports inertial waves governed by the wave-like equation

∂2

∂t2
(∇2u)+ 4(Ω · ∇)2u= 0, (2.6)

which allows for plane waves of the form u = û exp[ j(k · x −$ t)]. These have the
dispersion relationship

$ =±2(k ·Ω)/k, k= |k|, (2.7)

with 06$ 6 2Ω and the lowest frequency corresponding to horizontal wave vectors,
k ·Ω = 0. The group velocity of inertial waves is then

cg =
∂$

∂ki
=±2

k× (Ω × k)
|k|3

=±2
k2Ω − (k ·Ω)k

|k|3
. (2.8)

Note, in particular, that

cg ·Ω =±2k−3
[k2Ω2

− (k ·Ω)2], (2.9)

which tells us that the positive sign in (2.7) corresponds to wave energy travelling
upward, while the negative sign corresponds to energy propagating downward.

Note also that low-frequency waves have a group velocity of cg = ±2Ω/k, and
so u/cg ∼ Ro. It follows that, at low Ro, the buoyancy field, and hence p∗, may be
regarded as quasi-static on the time scale of the wave dispersion. Inverting (2.5) tells
us that this quasi-static pressure field falls off with distance as ∇p∗ ∼ |x|−3 from a
localised source of buoyancy. This is faster than the radiation field, which falls as
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|u|∼ |x|−1 for on-axis radiation (radiation parallel to ±Ω) and |u|∼ |x|−3/2 for off-axis
radiation (see Davidson, Staplehurst & Dalziel 2006; Davidson 2013).

Inertial waves have a non-zero helicity, h= u ·ω. This follows from (2.4) combined
with the dispersion relationship (2.7), which yields ω̂ = ∓|k|û, where ω̂ is the
amplitude of the vorticity in the wave. Evidently the vorticity and velocity fields are
parallel and in phase, and so monochromatic inertial waves have maximum possible
helicity, with the positive sign in (2.9) corresponding to negative helicity, and the
negative sign to positive helicity (Moffatt 1978). Although this argument applies only
to a single Fourier mode, wave packets containing a range of wavenumbers also
have a high relative helicity, and of the sign expected for a monochromatic wave
(Davidson & Ranjan 2015; Ranjan 2017). Thus, when wave packets disperse from
a localised disturbance, waves with negative helicity propagate upward, cg · Ω > 0,
while those with positive helicity travel downward, cg ·Ω < 0.

2.2. An inviscid evolution equation for helicity
We are interested in how helicity disperses from localised sources of buoyancy. As
noted in Davidson & Ranjan (2015), we can obtain an evolution equation for h by
taking the dot product of ω with (2.3), the product of u with (2.4) and then adding
the two equations. Ignoring viscosity, this yields

∂

∂t
(u ·ω)= {Ω · ∇(u2)+ (2Ω · ∇a) ·ω} −∇ · (p∗ω/ρ)+ u · (∇ϑ × g)+ω · (ϑg).

(2.10)
The two terms arising from the Coriolis force may be rewritten as a divergence,

Ω · ∇(u2)+ (2Ω · ∇a) ·ω=∇ · ((2u2)Ω + u× (2Ω · ∇a)), (2.11)

while it will be convenient to rewrite the source terms involving buoyancy as

u · (∇ϑ × g)+ω · (ϑg)=∇ · (u× (ϑg))+ 2g · (u×∇ϑ). (2.12)

Our evolution equation for helicity can therefore be written symbolically as

∂

∂t
(u ·ω)=−∇ ·F+ Sh, (2.13)

where the flux, F, and helicity source, Sh, are

F=−(2u2)Ω − 2u× (Ω · ∇a)+ p∗ω/ρ, (2.14)

and
Sh = S1 + S2 =∇ · (u× (ϑg))+ 2g · (u×∇ϑ). (2.15)

Note that S1 integrates to zero over a spherical domain, although S2 need not. We
shall now examine the flux, F, and source, Sh, individually.

2.3. The flux term in the helicity equation
Well removed from a localised source of buoyancy the quasi-static modified pressure
is weak, p∗∼ |x|−2, and so, to leading order in |x|−1, equations (2.13) and (2.14) can
be approximated by

∂

∂t
(u ·ω)=−∇ ·F, F≈−(2u2)Ω − u×

∂u
∂t
. (2.16a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

49
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.497


274 P. A. Davidson and A. Ranjan

Moreover, we shall see in § 3 that dispersion from a localised buoyancy source is
usually dominated by low-frequency wave packets, k · Ω ≈ 0, and in such cases
$ � Ω , so that the helicity flux is simply F ≈ −(2u2)Ω . This is consistent with
upward propagating wave packets carrying with them negative helicity and downward
propagating wave packets transporting positive helicity. To see why this is so, suppose
the buoyancy source is localised near the plane z = 0, say confined to the region
−δ < z< δ. If we integrate (2.13) over all space that lies above the horizontal plane
z= `� δ, then we obtain

d
dt

∫
u ·ω dV =−

∮
S

F · dS≈−2Ω
∫

z=`
u2 dA. (2.17a)

Similarly, integrating (2.13) over all space that lies below the horizontal plane z=−`
yields

d
dt

∫
u ·ω dV =−

∮
S

F · dS≈ 2Ω
∫

z=−`
u2 dA. (2.17b)

So we obtain negative helicity above the source and positive helicity below, as
expected from an analysis of monochromatic waves.

More generally, if we are remote from all sources of buoyancy, and we consider
only the helicity transported by the fast, low-frequency waves, we may integrate (2.16)
over a cylindrical control volume VR to give

d
dt

∫
VR

u ·ω dV = 2Ω
{∫

ST

u2 dA−
∫

SB

u2 dA
}
, (2.18)

where ST is the top of the cylindrical control volume and SB the bottom. Evidently, the
growth of helicity in VR due to the flux of low-frequency inertial waves depends on
only the difference in kinetic energy between the top and bottom of VR. In particular,
inertial waves carry helicity from regions of high kinetic energy to regions of low
kinetic energy.

2.4. The source term in the helicity equation
Since the buoyancy field can be considered as quasi-static at low Ro, the source
term ϑg in the linear equation (2.3) is effectively prescribed and independent of the
wave dynamics. We therefore have a source of waves of unambiguous magnitude and
distribution. However, this is not the case with the helicity equation (2.13) because
of the appearance of u in the source term Sh, and so some caution must be exercised
when discussing this source term. In fact, we shall see that, during the dispersion
of waves from a localised distribution of buoyancy, the velocity field automatically
adjusts the local sign of Sh so that, on average, the upper regions of a buoyant cloud
develop a negative sign in Sh, while the lower regions develop a positive sign. In
short, the local value of Sh automatically adjusts to be of the same sign as the helicity
emanating from the buoyant cloud in the form of inertial waves.

We can gain some insight into this process by supposing that, once again, the
buoyancy source is localised near the plane z = 0, say confined to the region
−δ < z<δ. Consider, for example, the first contribution to (2.15), S1=∇ · (u× (ϑg)).
If we integrate this over the top half of the buoyancy field, z> 0, we obtain

Ω

∫
z>0

S1 dV =Ω
∫

z=0
u× (ϑg) · dS=

∫
z=0
(ϑg) · (u×Ω) dA. (2.19)
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However, from (2.1) we expect the approximate force balance 2u×Ω ≈∇(p/ρ)−ϑg
in low-frequency waves, and so we find

2Ω
∫

z>0
S1 dV ≈−

∫
z=0
(ϑg)2 dA+

∫
z=0
ϑg · ∇(p/ρ) dA. (2.20)

Similarly

2Ω
∫

z<0
S1 dV ≈

∫
z=0
(ϑg)2 dA−

∫
z=0
ϑg · ∇(p/ρ) dA, (2.21)

and so, pressure terms apart, S1 integrates over the top or bottom half of the cloud to
have the same sign as the helicity locally emanating from the cloud in the form of
inertial waves. Of course, we must add to this the contribution from S2, which turns
out to be more complicated. Nevertheless, we shall see that, on average, Sh near the
edges of a buoyant cloud does indeed take the same sign as the helicity associated
with local inertial waves leaving the cloud.

We shall now illustrate this by considering first a simple Gaussian distribution of ϑ
located at the origin, reminiscent of the studies detailed in Shimizu & Loper (2000)
and Loper (2001). We then consider a random field of buoyancy confined to the layer
−` < z< `.

3. The dispersal of helicity from a single buoyant blob at low Ro

Consider the case where g=−gêy and

ϑ =−ϑ0 exp(−(x2
+ y2)/δ2) exp(−z2/(αδ)2). (3.1)

The wave dispersion pattern associated with such a Gaussian blob is discussed in
Davidson (2014). The first point to notice is that the dispersion pattern is dominated
by low-frequency waves propagating along the rotation axis above and below the
blob, in the sense that the radiation density is highest within an imaginary cylinder
which is aligned with Ω and circumscribes the buoyant anomaly. To understand why
the radiation density is highest in this cylindrical region we must recall that the
group velocity of inertial waves is perpendicular to k. Thus the energy associated
with all horizontal wave vectors radiates along the rotation axis, and so all the energy
contained within a thin horizontal disc in k-space propagates along a narrow cylinder
in real space. On the other hand, only one orientation of k will transport energy to a
particular location remote from the cylinder that circumscribes the buoyant anomaly.
The process of channelling energy from a two-dimensional object in k-space (a disk)
to a one-dimensional object in real space (the tangent cylinder which circumscribes
the blob) amplifies the radiation density on the rotation axis (Davidson 2013). In
short, the dispersion pattern is dominated by columnar vortices (transient Taylor
columns) composed of low-frequency waves which propagate along the rotation axis.

To obtain the dispersion pattern within this tangent cylinder, we invoked the idea
of vertical jump conditions across the buoyant blob after the initial passage of inertial
waves. This rests on the fact that the waves within the tangent cylinder are of low
frequency, and so time dependence is significant only near the advancing front of the
columnar wave packets. Near the blob, on the other hand, equation (2.4) and its curl
gives us

2Ω · ∇u+∇ϑ × g≈ 0, (3.2)
2Ω · ∇ω≈ g∇2ϑ − (g · ∇)∇ϑ. (3.3)
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FIGURE 3. The dispersion pattern from a Gaussian blob for the case of Ro= 0.01,
α= 2 and time Ωt= 8. Contours of energy coloured by (a) uz, (b) uy, (c) ωz and (d) h.

Integrating vertically through the blob yields the jump conditions (Davidson 2014)
1ux ≈1uy ≈ 0,

1uz ≈
g

2Ω

∫
(∂ϑ/∂x) dz, (3.4)

and
1ωz ≈ 0. (3.5)

From (3.5) we see that a cyclonic (or anticyclonic) columnar vortex which forms
above the blob must correspond to a cyclonic (or anticyclonic) vortex below the blob.
Moreover, for the Gaussian profile (3.1) we have 1uz > 0 for x > 0 and 1uz < 0
for x < 0. Given that uz is antisymmetric about the plane z = 0, we conclude that
uz diverges from the blob for x > 0 and converges onto the buoyant anomaly for
x < 0. Finally, noting that upward propagating inertial waves carry negative helicity
and downward propagating waves positive helicity, we conclude that the dispersion
pattern within the tangent cylinder consists of a cyclone–anticyclone pair of columnar
vortices above the blob matched to a cyclone–anticyclone pair below. Moreover, the
cyclonic wave packets above and below the blob are confined to x < 0 and the
anticyclones to x> 0.

This is illustrated in figures 3 and 4 using the results of direct numerical simulations
of the full Navier–Stokes equation, including the nonlinear and viscous forces. The
Courant condition is based on the group velocity of inertial waves and the buoyancy
field, ϑ , is advected by an advection–diffusion equation, with a diffusivity κ equal to
that of the viscosity. The simulations were performed in a 5123 periodic domain using
the pseudo-spectral code described in Yeung & Zhou (1998) and Ranjan & Davidson
(2014). Because the boundary conditions are periodic, the simulations were halted
before waves reached the upper and lower boundaries. Figure 3 shows the results for
the case of Ro= ϑ0g/2Ω2δ= 0.01, an Ekman number of Ek= ν/Ωδ2

= 0.029, α= 2
and time Ωt= 8, while figure 4 gives the results for the same values of Ro, Ek and
Ωt, but for α= 1/2. Note that the vertical jump conditions are indeed satisfied in both
cases and that the dispersion pattern is as expected.

The distribution of h on the z axis is shown for different times in figure 5. It is clear
that, after a time of Ωt ≈ 6, the magnitude of h just above and below the buoyant
anomaly saturates. This can be understood from the fact that the source Sh is linear
in u whereas the flux is quadratic in the velocity. As the magnitude of u, and hence h,
increases there comes a point at which the flux of helicity equals the rate of generation
of helicity within the buoyant blob, which occurs when u ∼ ϑg/Ω . After this, the
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FIGURE 4. The dispersion pattern from a Gaussian blob for the case of Ro=0.01, α=1/2
and Ωt= 8. Contours of energy coloured by (a) uz, (b) uy, (c) ωz and (d) h.
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FIGURE 5. The distribution of h on the z axis is shown for different times corresponding
to the cases shown in figures 3 and 4. (a) α = 1/2, (b) α = 2.

peak in h is fixed and helicity simply spreads out along the rotation axis at the group
velocity of low-frequency inertial waves, cg =±2Ω/k.

Of particular interest is the distribution of the source term Sh = S1 + S2 within the
buoyant anomaly, which is shown in figures 6 and 7. In both cases the contribution
from S1=∇ · (u× (ϑg)) is predominantly negative for z> 0 and positive for z< 0, as
suggested by (2.20) and (2.21), whereas S2 = 2g · (u×∇ϑ) is often of the opposite
sign. In particular, while the contribution to S2 associated with −guz∂ϑ/∂x has the
same sign as Sh, that associated with gux∂ϑ/∂z does not. However, when all the terms
are added to give Sh, we see that in both cases the source term is uniformly negative
in the top half of the blob and positive in the lower half. Moreover, in figure 8 we
show the horizontal averages of Sh, h and ∂h/∂t as a function of z for the case of
α= 2 at Ωt= 8. While Sh and h are well correlated, at least within the buoyant blob,
there is no such strong spatial correlation between Sh and ∂h/∂t. This is consistent
with what is observed in the numerical dynamos, as discussed in § 1.

We can understand this behaviour using (2.13). To focus thoughts, consider the half-
space z > 0. Let us divide the dispersion pattern into three regions, a lower region,
Vsource, in the vicinity of the buoyant blob, an upper region, Vfront, which includes the
advancing wave front, and the region in between, Vflux. Recalling that we are dealing
with low-frequency waves, time dependence is significant only in Vfront. So the helicity
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FIGURE 6. The distribution of the helicity source terms S1, S2 and Sh = S1 + S2 for a
Gaussian blob for the case of Ro= 0.01, α = 2 and time Ωt= 8.
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FIGURE 7. The distribution of the helicity source terms S1, S2 and Sh = S1 + S2 for a
Gaussian blob for the case of Ro= 0.01, α = 1/2 and time Ωt= 8.

equation in these three regions takes the form

Vfront :
∂

∂t
(u ·ω)≈−∇ ·F, (3.6)

Vflux :∇ ·F≈ 0, (3.7)
Vsource :∇ ·F≈ Sh. (3.8)

Expression (3.6) then tells us that the advancing front, which has h< 0, must be fed
by an upward flux of negative helicity, while (3.7) tells us that this same negative
flux must emerge from the source region lower down. Finally, (3.8) tells us that this
upward flux of negative helicity must be generated by the integral of Sh over the upper
half of the buoyant blob. In short, the integral of Sh over z> 0 must be negative in
order to feed the negative helicity in the advancing front higher up. Clearly, a similar
argument applied to z < 0 tells us that the integral of Sh over the lower half of the
blob must be positive.

Finally, before leaving the Gaussian blob, we note that a simple analysis of the
advancing front explains why upward (downward) propagating wave packets carry
negative (positive) helicity. Consider the region Vfront above the blob where, viscous
forces apart, (2.4) gives

∂ω

∂t
= 2Ω · ∇u. (3.9)
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FIGURE 8. (Colour online) The horizontal averages of Sh, h and ∂h/∂t as a function of
z for the case of Ro= 0.01, α= 2 and Ωt= 8. The horizontal lines indicate the extent of
the blob.

We now move into a frame of reference moving with the dominant group velocity of
the upward propagating wave packet. In such a frame of reference the front will look
approximately steady, and so (3.9) becomes

cg
∂ω

∂z
= (2Ω/kd)

∂ω

∂z
≈−2Ω · ∇u, (3.10)

where kd is the dominant wavenumber. It follows that, near the front, we have
ω≈−kdu and hence h≈−kdu2. Clearly, a similar argument applied to the downward
propagating front yields h ≈ kdu2. We believe that this is the first time a simple
physical explanation has been given for the asymmetry in the sign of h associated
with inertial waves dispersing from a localised source.

4. The dispersal of helicity from a random layer of buoyancy
4.1. Low Rossby number

Let us now consider the dispersion of helicity from a random layer of buoyancy.
Once again, we show the results of direct numerical simulations of the full
Navier–Stokes equation corresponding to Ω = Ω êz and g = −gêy. As before, ϑ
is advected by an advection–diffusion equation, with a diffusivity κ equal to that of
the kinematic viscosity. This time, however, we use an elongated periodic domain of
512 × 512 × 1536 modes. Our initial condition consists of 2000 randomly located
density perturbations which are restricted to a horizontal slab located at the mid-height
of the triply periodic domain. Each of the density perturbations is of the form
ϑi = −ϑ0 exp[−(x − xi)

2/δ2
i ], where xi locates the centre of the blob and the length

scales δi are chosen uniformly from the range δ/2 6 δi 6 2δ. The centres xi are
restricted to a horizontal layer −2.8δ < z< 2.8δ which fills the computational domain
in the x and y directions. The size of the computational domain is 50δ× 50δ× 150δ.
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FIGURE 9. A horizontal layer of buoyant blobs provides the initial condition for a
simulation with Ro= 0.01 and Ek= 0.0023. (a) The buoyancy field, −ϑ , (b) uz and (c) h,
all in the x–z plane at time Ωt= 12.
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FIGURE 10. Helicity sources in a horizontal layer of buoyant blobs: (a) S1, (b) S2 and
(c) Sh= S1+ S2, all averaged in y and all shown in the x–z plane. Ro= 0.01, Ek= 0.0023
and Ωt= 12.

In figures 9–12, the Rossby number is set to Ro = ϑ0g/2Ω2δ = 0.01, the Ekman
number is Ek = ν/Ωδ2

= 0.0023 and time is Ωt = 12. Figure 9 shows snapshots of
−ϑ , uz and h in the x–z plane, and as expected we see wave packets in the form of
cyclone–anticyclone pairs emerging from the buoyant cloud, carrying negative helicity
upward and positive helicity downward. The corresponding helicity source terms, S1,
S2 and Sh= S1+ S2, averaged in y, are shown in figure 10, again in the x–z plane. As
with a single buoyant blob, the spatially averaged values of Sh take the same sign as
the local value of h, being predominantly negative in the upper half of the buoyancy
field and positive in the lower half. This distribution of Sh is an inevitable consequence
of (3.6)–(3.8).

The corresponding horizontally averaged values of h, ∂h/∂t and Sh are shown in
figure 11 as a function of z, with −40< z/δ < 40 and ∂h/∂t estimated as 1h/1t. This
shows the evolution of h, ∂h/∂t and Sh over a range of times, Ωt = 4–20. As with
the Gaussian blob, the magnitude of the helicity at the top and bottom of the cloud
eventually saturates. Also, as the helicity propagates away from the cloud at the group
velocity of low-frequency inertial waves, the spatial extent of the source remains more
or less constant, which is a consequence of the low value of Ro. (At low Ro there is
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FIGURE 11. The evolution of the horizontally averaged values of h, ∂h/∂t and Sh for
Ro= 0.01, Ek= 0.0023 and Ωt= 4–20.
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FIGURE 12. The buoyancy field, −ϑ (a), helicity (b) and helicity source, Sh (c), for a
layer of buoyant blobs, each viewed in the horizontal planes, z/δ=−2.8, 0, 2.8. Ro= 0.01,
Ek= 0.0023 and Ωt= 12.

very little advection of the buoyancy field.) Finally note that, while h is well correlated
with Sh within the buoyant slab, there is no corresponding correlation between ∂h/∂t
and Sh at large times, consistent with what we observed for a single buoyant blob.

We note in passing that it would be interesting to compare these helicity
distributions with those predicted by the reduced (quasi-geostrophic) model of Calkins,
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FIGURE 13. A horizontal layer of buoyant blobs provides the initial condition for a
simulation with Ro= 1 and Ek= 0.0023. (a) The buoyancy field −ϑ , (b) uz and (c) h, all
in the x–z plane and at time Ωt= 12.

Julien & Marti (2013), which offers the possibility of a more efficient computation
of low Ro dynamics.

Finally, figure 12 shows the corresponding spatial distributions of −ϑ (a), helicity
(b), and helicity source, Sh (c), in the three horizontal planes z/δ = −2.8, 0, 2.8.
While the detailed distributions of h and Sh are highly intermittent, the statistically
asymmetric distribution about z= 0 is clear.

4.2. Rossby number of order unity
In some planetary dynamo simulations the value of Ro corresponding to the
small-scale structures is not that much less than unity, perhaps Ro∼ 0.1. In order to
determine the sensitivity of our results to Ro, we now consider a case in which Ro
is of order unity. Figures 13–16 show the results where the initial Rossby number is
set to Ro= ϑ0g/2Ω2δ = 1. All other parameters remain unchanged. Figure 13 shows
snapshots of (a) −ϑ , (b) uz and (c) h, all at Ωt= 12 and all in the x–z plane. Rather
remarkably, despite the much higher value of Ro, the wave field looks very similar to
the low Ro case. The main difference between figures 9 and 13 is that there is now
significant advection of the buoyancy by the wave field, which causes some mixing
of ϑ . This, in turn, causes the characteristic transverse length scale to increase as a
result of cross-diffusion of the buoyancy field, growing by a factor of ∼3 by Ωt= 12.
The growth in this length scale results in the effective value of Ro falling from unity
at t= 0 to ∼0.3 at Ωt= 12.

The horizontal movement of the ϑ-field leads to the observed inclination of the
columnar eddies which, in principle, is similar to the trailing Taylor columns observed
by Hide, Ibbetson & Lighthill (1968). The corresponding distributions of the helicity
source terms, S1, S2 and Sh= S1+ S2, averaged in y, are shown in figure 14, again in
the x–z plane and for Ωt= 12. In this case all three source terms are predominantly
negative at the top of the buoyant cloud and positive at the bottom. There is also
a marked oscillation in S2, although not in Sh, which is less evident (though still
detectable) in the low Ro case.
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FIGURE 14. The helicity sources in a horizontal layer of buoyant blobs: (a) S1, (b) S2
and (c) Sh = S1 + S2, all averaged in y and shown in the x–z plane. Ro= 1, Ek= 0.0023
and Ωt= 12.
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FIGURE 15. The evolution of the horizontally averaged values of h, ∂h/∂t and Sh for
Ro= 1, Ek= 0.0023, Ωt= 4–20.

The horizontally averaged values of h, ∂h/∂t and Sh are shown in figure 15 as
a function of z, with −40 < z/δ < 40. This shows the evolution of h, ∂h/∂t and
Sh over a range of times, Ωt = 4–20. Unlike the low Ro case, the magnitude of
the helicity at the top and bottom of the cloud does not saturate, almost certainly
because the r.m.s. buoyancy field declines throughout the simulation as a result of the
mixing-induced cross-diffusion of ϑ . Nevertheless, we see the usual spatial correlation
in the signs of the horizontally averaged values of h and Sh.

Finally, figure 16 shows the distribution of −ϑ (a), helicity (b) and helicity
source, Sh (c), in the three horizontal planes z/δ =−2.8, 0, 2.8. As in figure 12, the
distributions of h and Sh are complicated, but the statistically asymmetric distribution
about z= 0 is clear. The main effect of increasing Ro is that the ϑ field is smoother
(less spotty) and has a larger transverse length scale, almost certainly as a result of
the mixing of the buoyancy by the wave-induced velocity field, and by the enhanced
diffusion that ensues. It is also notable that there is now significant anisotropy in the
x–y plane, with Sh adopting a streaky structure with the streaks aligned with g.

5. Discussion: implications for numerical dynamos and planetary cores
So far we have ignored the presence of boundaries, which are of course important

for the dynamics in a planetary core. The first point to note is that low-frequency
inertial wave packets travelling along the rotation axis will reflect at the mantle,
reversing their group velocity and helicity in the process (Greenspan 1968). In the
absence of dissipation, this produces standing waves, which are of course Taylor
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FIGURE 16. The buoyancy field, −ϑ (a), helicity (b) and helicity source, Sh (c), for a
layer of buoyant blobs, each viewed in the horizontal planes z/δ =−2.8, 0, 2.8. Ro= 1,
Ek= 0.0023 and Ωt= 12.

columns. The helicity in a Taylor column is zero, and so the mechanism of helicity
segregation described here will be effective in a planetary core only if there is
significant dissipation. That is to say, in order to avoid the perfect cancellation of
helicity in the reflected and incident waves, we require that waves launched in the
interior be somewhat dissipated before they reach the mantle. Since the Ekman
number is tiny in the core of the Earth, this dissipation can only be ohmic in
nature. In principle, the magnitude of the ohmic dissipation can be estimated, but the
calculation is very sensitive to the assumed magnitude of the magnetic field, which
is a poorly constrained parameter, and to the size of the smallest scales in the core,
which is unknown. So the question of dissipation remains an open one.

A second difficulty arises from the fact that, although the simulations exhibit
a statistical bias in the concentration of buoyant anomalies towards the equatorial
regions, in practice the fluctuations in density are everywhere. So buoyant anomalies
which are closer to the mantle than the equator will emit waves whose helicity in
the interior is opposite in sign to that of the waves which were launched close to
the equator. Once again, there will be a tendency for cancellation in helicity, and
so the segregation mechanism proposed here will be effective only if the statistical
inhomogeneity in buoyancy sources is strong enough.

A third weakness of the inertial wave model for establishing planetary helicity
distributions is that the magnetic field within a planet will modify the inertial waves,
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forming hybrid magnetic–Coriolis waves. This process is discussed in, for example,
Bardsley & Davidson (2016, 2017), where it is noted that the main effect of the
magnetic field is to reduce the magnitude of the group velocity. However, such
hybrid waves still carry negative helicity northward and positive helicity to the south,
just like inertial waves.

Given the three caveats above, perhaps the strongest argument in favour of helicity
segregation by inertial waves is the simplicity of (2.18). Perhaps it is worth taking a
closer look at this equation. Rearranging the terms in the inviscid helicity equation
(2.10), we find that, without approximation,

∂

∂t
(u ·ω)=−∇ ·F+ S2, F=−(2u2)Ω − u×

∂u
∂t
. (5.1a,b)

Now
u×

∂u
∂t
< 2Ωu2, (5.2)

since the highest frequency for inertial waves is 2Ω . It follows that F=−(2u2)Ω is
always the larger of the two contributions to the wave flux. Moreover

∇ ·

(
u×

∂u
∂t

)
=ω ·

∂u
∂t
− u ·

∂ω

∂t
, (5.3)

and so we may drop the term u× ∂u/∂t altogether in one of two situations:

(i) the helicity is being carried by low-frequency wave packets, $ � |Ω|, as in
equation (2.18);

(ii) we have maximal helicity in the waves, with the velocity and vorticity fields
proportional, ω=∓ku, as in a monochromatic inertial wave and as observed in
inertial wave packets by Davidson & Ranjan (2015).

In either of these situations we have the approximation

∂

∂t
(u ·ω)≈∇ · [(2u2)Ω] + 2g · (u×∇ϑ). (5.4)

Let us integrate this over a cylindrical annulus, VN , lying outside the tangent cylinder,
of radial extent 1s, and bounded above by the mantle and below by the equator

d
dt

∫
VN

u ·ω dV =−2Ω
{∫

equator
u2 dA−

∫
mantle

u2 dA
}
+

∫
VN

S2 dV. (5.5)

Similarly, for the corresponding annulus in the south, VS, which is bounded below by
the mantle and above by the equator, we have

d
dt

∫
VS

u ·ω dV = 2Ω
{∫

equator
u2 dA−

∫
mantle

u2 dA
}
+

∫
VS

S2 dV, (5.6)

where u in (5.5) and (5.6) is the fluctuating velocity. Now it is difficult to predict
what the integral of S2 will be, as can be seen by comparing figures 10(b) and 14(b).
Moreover, we have omitted all dissipative and magnetic effects in these equations.
Nevertheless, it seems that a relatively large fluctuating kinetic energy in the equatorial
regions will favour the north–south asymmetry in the azimuthally averaged helicity
shown in figures 1(c) and 2(a), and this applies to inertial waves of all frequencies.
Of course, physically this reflects the fact that, if we have more wave activity near
the equator than the mantle, then waves will tend to disperse away from the equatorial
regions, carrying with them helicity of the observed signs.
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6. Conclusions
The strong spatial correlation between the distribution of h and of Sh in the dynamo

simulations tends to suggest an in situ generation of helicity in dynamo simulations,
rather than the dispersal of helicity by waves, as previously argued by the authors.
However, the observation that there is no such correlation between ∂h/∂t and Sh
argues against such an in situ generation mechanism. Either way, the correlation, or
lack of correlation, between h, ∂h/∂t and Sh needs to be explained.

We have offered an explanation for the paradoxical observation that h and Sh are
strongly correlated, yet there is no such correlation between ∂h/∂t and Sh, by showing
that inertial waves interact with the buoyancy field in such a way as to induce a source
Sh which adopts the same sign as the helicity in the local wave flux. Moreover, we
have confirmed that, in simple model problems, the sign of h is simply determined by
the direction of the wave flux. We conclude that the observed distributions of h and
Sh in the numerical dynamos are consistent with the transport of helicity by waves.
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