
TLP 2 (4 & 5): 549–610, July & September 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S1471068402001473 Printed in the United Kingdom

549

Using parametric set constraints for locating
errors in CLP programs

W LODZIMIERZ DRABENTã, JAN MA LUSZYŃSKI

PAWE L PIETRZAK

Department of Computer and Information Science, Linköping University,

S – 581 83 Linköping, Sweden

(e-mail: {wdr,jmz,pawpi}@ida.liu.se)

Abstract

This paper introduces a framework of parametric descriptive directional types for Constraint

Logic Programming (CLP). It proposes a method for locating type errors in CLP programs,

and presents a prototype debugging tool. The main technique used is checking correctness

of programs w.r.t. type specifications. The approach is based on a generalization of known

methods for proving the correctness of logic programs to the case of parametric specifications.

Set constraint techniques are used for formulating and checking verification conditions for

(parametric) polymorphic type specifications. The specifications are expressed in a parametric

extension of the formalism of term grammars. The soundness of the method is proved, and

the prototype debugging tool supporting the proposed approach is illustrated on examples.

The paper is a substantial extension of the previous work by the same authors concerning

monomorphic directional types.

KEYWORDS: constraint logic programming, parametric types, descriptive types, program

correctness, debugging, set constraints, term grammars

1 Introduction

The objective of this work is to support development of CLP programs by a tool

that checks correctness of a (partially developed) program wrt an approximate

specification. Failures of such checks are used to locate fragments of the program

which are potential program errors.

The specifications we work with extend the traditional concept of directional type

for logic programs (e.g. see Bronsard et al., 1992). Such a specification associates

with every predicate a pair of sets that characterize, respectively, expected calls and

successes of the predicate. Checking correctness of a logic program wrt directional

types has been discussed by several authors (e.g. see Aiken & Lakshman (1994),

Boye (1996), Boye & Ma luszyński (1997) and Charatonik & Podelski (1998), and

the references therein). Their proposals can be seen as special cases of general

verification methods of Drabent & Ma luszyński (1988), Bossi & Cocco (1989) and

ã Also at the Institute of Computer Science, Polish Academy of Sciences, ul. Ordona 21, Pl – 01-237
Warszawa, Poland

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

550 W. Drabent et al.

Deransart (1993). Technically, directional type checking consists in proving that the

sets specified by given directional types of a program satisfy certain verification

conditions constructed for this program. For directional types expressed as set

constraints the verification conditions can also be expressed as set constraints and

the check can be performed by set constraint techniques (e.g. see Aiken & Lakshman,

1994).

In this paper, we propose an extension of directional types which addresses two

issues:

• CLP programs operate on constraint domains while (pure) logic programs are

restricted to one specific constraint domain which is the Herbrand universe.

Directional types of a logic program characterize calls and successes of each

predicate as sets of terms. This is not sufficient for CLP where manipulated

data include constraints over non-Herbrand domains. To account for that we

use a notion of constrained term where a constraint from a specific domain is

attached to a non-ground term. We define the concept of directional type for

CLP programs using sets of constrained terms.

• In logic programming, as well as in CLP, some procedures may be associated

with families of directional types, rather than with single types. For example,

typical list manipulation procedures may be used for lists with elements

of any type and return lists with the elements of the same type. This is

known as parametric polymorphism and can be described by a parametric

specification, in our case by a parametric directional type. We extend the

concept of partial correctness of CLP program to the case of parametric

specifications and we give a sufficient condition for a program to be correct

wrt a parametric specification. We apply this condition to correctness checking

of CLP programs w.r.t. parametric directional types, and for locating program

errors. As shown by examples in section 6, use of parametric specifications

improves the possibility of locating errors.

The problem of checking of polymorphic directional types has been recently

formulated in a framework of a formal calculus (Rychlikowski & Truderung, 2000,

2001). As explained in section 7.1, that approach is substantially different from ours.

A parametric specification can be seen as a family of (parameter-free) specifica-

tions. As mentioned above, our specifications refer to sets of constrained terms. The

sufficient conditions for correctness can be formulated as set constraints, involving

operations on the specified sets, such as projection, intersection and inclusion.

For constructing an automatic tool for checking correctness of specifications two

questions have to be addressed:

• How to represent sets so that the necessary operations can be effectively

performed.

• How to deal with parametric specifications.

The first problem has already been discussed by Drabent et al. (2000a,b), which

extends our earlier work (Comini et al., 1998, 1999). We have chosen to represent sets

of constrained terms by a simple extension of the formalism of discriminative term

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 551

grammars, where sets of constrained terms are constructed from a finite collection

of base sets. Term grammars (or equivalent formalisms) and set constraints have

been used by many authors for specifying and inferring types for logic programs

(see, among others, Mishra (1984), Frühwirth et al. (1991), Dart & Zobel (1992),

Gallagher & de Waal (1994), Aiken & Lakshman (1994), Boye (1996), Devienne et

al. (1997a) and Charatonik & Podelski (1998)). We show how the operations on

discriminative term grammars can be extended to handle sets of constrained terms

introduced by the extended discriminative term grammars.

A solution to the second problem is a main contribution of this paper. We derive it

by showing how the approach of Drabent et al. (2000a) can be extended to the case

of parametric specifications. (In our former work parametric grammars were used

only in the user interface, to represent families of grammars.) First we have to give

a new, more precise, presentation of that approach. We present a natural extension

of the notion of partial correctness to the case of parametric specifications, so that

the special case of parameterless specifications reduces to the notion used in our

previous work. We introduce a concept of PED grammar (parametric discriminative

extended term grammar) as a formalism for specifying families of sets of constrained

terms. We define operations on PED grammars that make it possible to approximate

results of the respective operations on members of the so defined families. We use

them for checking correctness of programs wrt parametric directional types, and for

locating potential errors.

If the verification conditions of a logic program are expressed as set constraints,

it is possible to infer directional types that satisfy them. For example, the techniques

of Heintze & Jaffar (1990a, 1991) make it possible to construct a term grammar1

describing the least model of the set constraints. The use of these techniques for

program analysis in general was discussed in Heintze (1992).

On the other hand, it is possible to use abstract interpretation techniques to infer

directional types of a program. Soundness of an abstract interpretation method

can be justified by deriving it systematically from the verification conditions. An

example of an abstract interpretation approach is that of Janssens & Bruynooghe

(1992) and Van Hentenryck et al. (1995). A technique of Gallagher & de Waal (1994),

similar to abstract interpretation, derives types in a form equivalent to discriminative

term grammars. In Drabent et al. (2000a) we modified the latter technique to infer

directional types for CLP programs. In this paper we present its further extension

for inferring parametric directional types. We prove that this extension is sound in

the sense that the program is correct wrt the inferred parametric types.

We use our technique of parametric type checking for locating errors in CLP

programs. More precisely, we check correctness of a program wrt a parametric spec-

ification of directional types and we indicate fragments of clauses where the check

of the verification conditions fails. However, CLP languages are often not typed so

that programs do not include type specifications. Therefore our methodology does

1 In general this grammar is non-discriminative.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

552 W. Drabent et al.

Warning
Localized

Checker

OK

Specification
 editor

User

Inferencer

Entry

Types

Program

Types

Fig. 1. The structure of the error locating tool.

not require that the type specification is given a priori. The user decides a posteriori

whether or not to type check a program, or its fragment.

The type specification is usually provided in a step-wise interactive way. At each

stage of this process the program is checked against the fragment of the specification

at hand. So incremental building of the specification is coupled together with

locating errors. Even small fragments of the specification are often sufficient to

locate (some) errors in the program. On the other hand, if no program errors have

been located when the specification is completed then the program is correct (wrt

the specification). Notice, however, that not every error message corresponds to the

actual error in the program. That is why we call the error messages “warnings”.

This is due to using approximated specifications and to approximations made in the

process of checking.

In the proposed methodology the process of type specification is preceded by

static analysis which infers directional types of the program. The inferred types may

provide indication that the program is erroneous. In this case the user may decide to

start the process of specification and error location. The results of the type inference

may facilitate it, as discussed below and in section 6. Thus, in our methodology type

inference plays only an auxiliary, though useful, role.

The methodology is supported by a prototype error locating tool. The present

version of the tool works for a subset of the constraint programming language

CHIP (Cosytec, 1998). However, it can be easily adapted for other CLP languages.

The structure of the tool is illustrated in figure 1. The tool includes a type

checker, a type inferencer and a specification editor. The tool has also a library of

PED grammars. Among others, the library provides descriptions of often occurring

types and specifications for built-in predicates. The specification of a program is

introduced through the editor. It may refer to library grammars and/or to grammars

provided by the user together with the checked program.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 553

The input consists of a (possibly incomplete) CLP program and of an entry

declaration. The latter is a parametric specification of intended (atomic) initial calls

in terms of some PED grammar. In this way a family of sets is specified. Each

member of the family is a different set of intended calls, corresponding to a different

use of the program. The type inferencer constructs parametric directional types for

all predicates of the program, thus providing a specification such that the input

program is correct wrt to it. However, these types may not correspond to user

intentions. This is due to program errors or to inaccuracy of type inference.

The intended types have to be provided by the user. They are introduced in a

step-wise interactive manner. When providing the type of a predicate the user may

first inspect the inferred type and accept it, or specify instead a different type. The

tool monitors the process and immediately reports as an error any violation of the

verification conditions for the so far introduced types.

While our approach makes it possible to locate some errors in CLP programs it

should be clear that it is limited:

• It locates only type errors.

• Our types are based on discriminative regular grammars; the expressive power

of this formalism is limited.

• To deal with constraints we extend this formalism from terms to constrained

terms. However our treatment of constraints is rather crude. Roughly speaking,

our formalism is able to define only a finite collection of sets of constraints (for

any given variable). This limited approach lets us however find typical type

bugs related to constraints. In our former work (Drabent & Pietrzak, 1998),

we studied a more sophisticated (non parametric) type system for constrained

terms. It seems however too complicated. Charatonik (1998) showed that a

certain approach to approximating the semantics of CLP programs is bound

to fail, as the resulting set constraints are undecidable.

• Correctness wrt parametric type specifications requires type correctness for all

values of the type parameters. Thus only quite general sufficient conditions for

correctness are possible. They however seem to work well on typical examples.

A usual question discussed in the literature is the theoretical worst case complexity

of the proposed type checking and type inference algorithms. We show that our type

checking algorithm for a clause is exponential wrt the number of variable repetitions.

In our approach to locating errors type inference plays an auxiliary role and is

implemented by an adaptation of the algorithm of Gallagher & de Waal (1994)

with some ideas of Mildner (1999). While we prove soundness of this adaptation,

we do not elaborate on the theoretical complexity issues, which by the way were not

discussed by the authors of the algorithm. As concerns practical efficiency of our

implementation, it turns out to be satisfactory on all examples we tried so far.

The main original contributions of the paper are:

• the formulation of the concept of partial correctness of CLP programs wrt

parametric specifications;

• a method for proving such correctness;

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

554 W. Drabent et al.

• a technique for checking of parametric directional types for CLP programs,

based on this method, and

• a prototype tool for locating program errors based on this technique.

The paper is organized as follows. Section 2 surveys some basic concepts on

set constraints and constraint logic programs. Section 3 discusses the notion of

correctness of a CLP program with respect to a specification, a sufficient condition

for partial correctness and a technique for constructing approximations of program

semantics. The main contributions of the paper are presented in the next sections.

Section 4 introduces PED grammars to be used as a parametric specification for-

malism for CLP programs. Section 5 introduces the notion of correctness wrt to

a parametric specification, and presents a method for proving such correctness. It

shows how correctness can be effectively checked in case of parametric specifications

provided as PED grammars. It also discusses how to construct a parametric speci-

fication of a given program. Finally, it explains how program errors can be located

by failures of the parametric correctness check. Section 6 discusses the prototype

tool and illustrates its use on simple examples. Section 7 discusses relation to other

work and presents conclusions.

This paper is an extended version of a less formal presentation of this work in

Drabent et al. (2001).

2 Preliminaries

In this section we present some underlying concepts and techniques used in our

approach. We introduce set constraints and term grammars. They are a tool to

define sets of terms. Then we generalize them to define sets of constrained terms.

The section is concluded with an overview of basic notions of Constraint Logic

Programming (CLP).

2.1 Set constraints

This section surveys some basic notions and results on set constraints. We will

extend them later to describe approximations of the semantics of CLP programs

and to specify user expectations about behaviour of the developed programs.

We build set expressions from the alphabet consisting of: variables, function

symbols (including constants), the intersection symbol ∩ and, for every variable X,

the generalized projection symbol −X .

A set expression is a variable, a constant, or it has a form f(e1, . . . , en), e1 ∩ e2, or

t−X(e), where f is an n-ary function symbol, e, e1, . . . , en are set expressions, t is a

term and X a variable. Set expressions built out of variables and function symbols

(so including neither an intersection symbol nor a generalized projection symbol)

are called atomic.

Set expressions are interpreted over the powerset of the Herbrand universe defined

by a given alphabet. A valuation that associates sets of terms to variables extends

to set expressions in a natural way: ∩ is interpreted as the intersection operation,

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 555

each n-ary function symbol (n > 0) denotes the set construction operation

f(S1, . . . , Sn) = { f(t1, . . . , tn) | ti ∈ Si, i = 1, . . . , n }
(for any sets S1, . . . , Sn of ground terms) and symbol t−X denotes the generalized

projection operation

t−X(S) = {Xθ | tθ ∈ S, θ is a substitution, Xθ is ground }.
(for any term t, variable X and set S of ground terms).

Notice that we do not need special symbols for the projection operation and for

the set of all terms. The latter is the value of t−X(S), where X does not occur in t

and some instance of t is in S . Projection, defined as f−1
(i) (S) = { ti | f(t1, . . . , tn) ∈ S },

can be expressed as f−1
(i) (S) = f(X1, . . . , Xn)

−Xi (S).

Set expressions defined above are a proper subset of some classes of set expressions

discussed in literature. In particular t−X(S) (where X occurs in t) is a special case

of the generalized membership expression of Talbot et al. (2000), in the notation of

that paper it is {X | ∃−X t ∈ S }. An (unnamed) operation more general than t−X
has also been used in Heintze & Jaffar (1990b).

Our choice of the class of set expressions is guided by our application, which

is parametric descriptive types for CLP programs. Later on we generalize set ex-

pressions to deal with sets of constrained terms (instead of terms) and to include

parametric set expressions.

The set constraints we consider are of the form

Variable > Set expression

An interpretation of set constraints is defined by a valuation of variables as sets

of ground terms. A model of a constraint is an interpretation that satisfies it when

> is interpreted as set inclusion ⊇. Ordering on interpretations is defined by set

inclusion: I 6 I ′ iff I(X) ⊆ I ′(X) for every variable X. In such a case we will say

that I ′ approximates I . It can be proved (see, for instance, Talbot et al. (2000) and

Proposition 2.9) that a collection G of such constraints is satisfiable and has the

least model to be denotedMG. The value of a set expression e in the least model of

G will be denoted by [[e]]G; the subscript may be omitted when it is clear from the

context.

2.1.1 Term grammars

A finite set of constraints of the form

Variable > Atomic set expression

will be called term grammar. The least model of such a set of constraints can be

obtained by assigning to each variable X the set of all ground terms derivable from

X in this grammar. The derivability relation ⇒∗G of a grammar G is defined in a

natural way: some occurrence of a variable X in a given atomic set expression is

replaced by a set expression e such that X > e is a constraint in G. Then [[X]]G is

the set of all ground terms derivable from X in G.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

556 W. Drabent et al.

A set S is said to be defined by a grammar G if there is a variable X of G such

that S = [[X]]G. A grammar rule X > t will be sometimes called a rule for X.

Example 2.1

For the following grammar the elements of [[List]] can be viewed as lists of bits.

List > nil

List > cons(B, List)

B > 0

B > 1

A pair 〈X,G〉 of a variable X and a grammar G uniquely determines the set

[[X]]G defined by the grammar; such a pair will be called a set descriptor (or a type

descriptor). Sometimes we will say that 〈X,G〉 defines the set [[X]]G. By 〈X〉G we

denote the collection of all rules of G applicable in derivations starting from X.

We mostly use a special kind of term grammars.

Definition 2.2

A term grammar is called discriminative iff

• each right hand side of a constraint is of the form f(X1, . . . , Xn), where

X1, . . . , Xn are variables, and

• for a given variable X and given n-ary function symbol f there is at most one

constraint of the form X > f(. . .)

It should be mentioned that discriminative term grammars are just another view of

deterministic top-down tree automata (Comon et al., 1997). Variables of a grammar

are states of an automaton, grammar derivations can be seen as computations of

automata. Abandoning the second condition from Definition 2.2 leads to a strictly

stronger formalism of non discriminative grammars equivalent to nondeterministic

top-down tree automata.

We should explain our choice of the less powerful formalism of discriminative

grammars. They seem to be sufficient to describe those sets which are usually

considered to be types (Aiken & Lakshman, 1994) and also easier to understand

for the user, which is important in our application. One of the goals of this work

is enhancing term grammars with parameters. It seems reasonable to begin with a

simpler formalism. We also want to find out to which extent a simpler formalism is

sufficient in practice.

2.1.2 Operations on term grammars

The role of discriminative grammars is to define sets of terms. One needs to

construct grammars describing the results of set operations on such sets. In this

section we survey some operations on discriminative grammars, corresponding to

set operations. A more formal presentation is given in section 4 where we introduce

a generalization of term grammars.

Emptiness check. A variable X in a grammar G will be called nullable if no ground

term can be derived from X in G. In other words, [[X]]G = ∅ iff X is nullable in G.

To check whether [[X]]G = ∅, one can apply algorithms for finding nullable symbols

in context-free grammars. This can be done in linear time (Hopcroft et al., 2001).

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 557

Let G′ be the grammar G without the rules containing nullable symbols. Both

grammars define the same sets, [[X]]G = [[X]]G′ for any variable X.

Construction. If S1, . . . , Sn are defined by 〈X1, G1〉, . . . , 〈Xn, Gn〉, where G1, . . . , Gn are

discriminative grammars with disjoint sets of variables then the set f(S1, . . . , Sn) is

defined by 〈X,G〉 where G is the discriminative grammar {X > f(X1, . . . , Xn)}∪G1∪
. . . ∪ Gn and X is a new variable, not occurring in G1, . . . , Gn.

Intersection. Given sets S and T defined by discriminative grammars G1 and G2 we

construct a discriminative grammar G such that S ∩ T is defined by G. Without

loss of generality we assume that G1 and G2 have no common variables. The

variables of G correspond to pairs (X,Y) where X is a variable of G1 and Y is a

variable of G2. They will be denoted X∩̇Y . The notation reflects the intention that

[[(X,Y)]]G = [[X]]G1
∩ [[Y]]G2

.

Now G is defined as the set of all rules

X∩̇Y > f(X1∩̇Y1, . . . , Xn∩̇Yn)
such that there exist a rule X > f(X1, . . . , Xn) in G1 and a rule Y > f(Y1, . . . , Yn)

in G2. Notice that for given f at most one rule of this form may exist in each of

the grammars. Thus G is discriminative. It is not difficult to prove that [[(X,Y)]]G is

indeed the intersection of [[X]]G1
and [[Y]]G2

.

We have S = [[X]]G1
for some X of G1 and T = [[Y]]G2

for some Y of G2, hence

S ∩ T is defined by G. Notice that G may contain nullable symbols even if G1, G2

do not.

Example 2.3

Consider two grammars

G1 : X > a

X > f(Z,Z)

Z > f(X,X)

Z > b

Z > g(Z)

G2 : Y > a

Y > f(E, Y)

E > a

E > b

E > h(E)

The grammar defining the intersections of the sets defined by G1, G2 is

G : X∩̇Y > a

X∩̇Y > f(Z∩̇E,Z∩̇Y)

Z∩̇Y > f(X∩̇E,X∩̇Y)

X∩̇E > a

Z∩̇E > b

Union. It is well known that the union of sets defined by discriminative grammars

may not be definable by a discriminative grammar; take, for example, the sets

{f(a, b)} and {f(c, d)}. Given sets S and T defined by discriminative grammars G1

and G2 we construct now a discriminative grammar G defining a superset of S ∪T .

Without loss of generality we assume that G1 and G2 have no common variables.

The variables of G correspond to pairs (X,Y) where X is a variable of G1 and Y

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

558 W. Drabent et al.

is a variable of G2. They will be denoted X∪̇Y . The notation reflects the intention

that [[X]]G1
∪ [[Y]]G2

⊆ [[(X,Y)]]G.

Now G consists of the rules of G1, the rules of G2 and of the least set of rules

which can be constructed as follows:

• If X > f(X1, . . . , Xn) is in G1 and Y > f(Y1, . . . , Yn) is in G2 then X∪̇Y >

f(X1∪̇Y1, . . . , Xn∪̇Yn) is in G,

• If X > f(X1, . . . , Xn) is in G1 and no rule Y > f(Y1, . . . , Yn) is in G2 then

X∪̇Y > f(X1, . . . , Xn) is in G,

• If no rule X > f(X1, . . . , Xn) is in G1 and Y > f(Y1, . . . , Yn) is in G2 then

X∪̇Y > f(Y1, . . . , Yn) is in G

It is not difficult to see that the obtained grammar G is discriminative, and that

[[X∪̇Y]]G is indeed a superset of the union of [[X]]G1
and [[Y]]G2

. If the first case

is not involved in the construction the result is the union of these sets. If G1, G2

do not contain nullable symbols then [[X∪̇Y]]G is the tuple-distributive closure of

[[X]]G1
∪ [[Y]]G2

, i.e. the least set definable by a discriminative grammar and including

[[X]]G1
∪ [[Y]]G2

. (We skip a proof of this fact, we do not use it later). So we are able

to obtain the best possible approximation of the union by a discriminative grammar.

Example 2.4

The singleton sets {f(a, b)} and {f(c, d)} can be defined by the grammars:

G1 : X > f(A,B), A > a, B > b G2 : Y > f(C,D), C > c, D > d.

Applying the construction we obtain additional rules:

X∪̇Y > f(A∪̇C,B∪̇D) A∪̇C > a

A∪̇C > c

B∪̇D > b

B∪̇D > d

Set inclusion. Given sets S and T defined by discriminative grammars it is possible

to check S ⊆ T by examination of the defining grammars.

By the assumption S = [[X]]G1
, T = [[Y]]G2

for some discriminative grammars

G1, G2 and some variables X,Y . We assume without loss of generality that G1, G2

do not contain nullable symbols. (Otherwise the nullable symbols may be removed

as justified previously.)

It follows from the definition of the set defined by term grammar that [[X]]G1
⊆

[[Y]]G2
iff for every rule of the form X > f(X1, . . . , Xn) in G1 there exists a rule

Y > f(Y1, . . . , Yn) in G2 and [[Xi]]G1
⊆ [[Yi]]G2

for i = 1, . . . , n. This corresponds to a

recursive procedure where a check for X,Y corresponds to comparison of function

symbols in the defining rules for X and Y , which may cause a failure, and a recursive

call of a finite number of such checks. The check performed once for a given pair

of variables need not be repeated. As the grammar is finite there is a finite number

of pairs of variables so that the check will terminate.

For a formal description of the algorithm and a correctness proof see section 4.4.5

where a more general inclusion check algorithm is presented.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 559

Example 2.5

The following example illustrates inclusion checking. It shows that the set of non-

empty bit lists with even length is a subset of the set of unrestricted lists which

allow a more general kind of elements. Both sets are described by discriminative

grammars.

S > cons(B,Odd)

Odd > cons(B, Even)

Even > nil

Even > cons(B,Odd)

B > 0

B > 1

List > nil

List > cons(E, List)

E > 0

E > 1

E > s(E)

We check inclusion [[S]] ⊆ [[List]]. We show steps of this process. Each step will be

characterized by three items: the checked pair of variables, the function symbols in

their defining rules, the set of pairs to be checked after this step.

(S, List) ({cons}, {nil, cons}) { (B, E), (Odd, List) }
(B, E) ({0, 1}, {0, 1, s}) { (Odd, List) }
(Odd, List) ({cons}, {nil, cons}) { (Even, List) }
(Even, List) ({nil, cons}, {nil, cons}) ∅

Generalized projection. Assume that S = [[Y]]G is defined by a discriminative gram-

mar G. We show that t−X(S) is defined by a discriminative grammar.

Consider a term t and a mapping ξ(t, G, Y) assigning a variable Vu of G to each

subterm occurrence u of t, such that Vt is Y and if u = f(u1, . . . , un) (n > 0) then

there exists a rule Vu > f(Vu1
, . . . , Vun) in G. So for instance in Example 2.5, taking

t = cons(s(X), Z) and Y = List results in Vt = List, Vs(X) = E, VZ = List, VX = E.

If such a mapping exists then it is unique, as the grammar contains at most one rule

V > f(. . .) for given V , f.

The mapping can be found by an obvious algorithm. It traverses t top-down

and for each occurrence u of a non-variable subterm it finds the unique rule

Vu > f(Vu1
, . . . , Vun). The rule determines the variables Vu1

, . . . , Vun corresponding to

the greatest proper subterms of u. If such a rule does not exist, mapping ξ(t, G, Y)

does not exist. The starting point is u = t and Vu = Y .

Notice that if tθ ∈ S then ξ(t, G, Y) exists and uθ ∈ [[Vu]]G for each subterm

occurrence u in t. Hence Xθ ∈ [[VXi]]G for each occurrence Xi of X in t. Thus

t−X(S) ⊆ ⋂i [[VXi]]G. (If X does not occur in t then
⋂
i [[VXi]]G denotes the Herbrand

universe.) On the other hand, assume that ξ(t, G, Y) exists and for each variable

Z of t there exists a term uZ such that uZ ∈ [[VZi]]G for each occurrence Zi of Z

in t. Then tθ ∈ S , where θ = {Z/uZ | Z occurs in t }. Thus if ξ(t, G, Y) exists and⋂
i [[VZi]]G is nonempty for each Z then

t−X(S) =
⋂
i

[[VXi]]G .

Otherwise, t−X(S) = ∅.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

560 W. Drabent et al.

Applying algorithms described previously, we can construct for each Z a distribu-

tive grammar GZ defining [[Z ′]]GZ =
⋂
i [[VZi]]G and check this set for emptiness.

This provides an algorithm which, given G, Y , t, produces for each X occurring in t

a discriminative grammar GX and a variable X ′ such that t−X(S) = [[X ′]]GX .

An algorithm similar to the presented above is used in the implementation of

Gallagher & de Waal (1994); however, it is only superficially described in that

paper.

2.2 Specifying sets of constrained terms

Set constraints and term grammars are formalisms for defining subsets of the

Herbrand universe. This is not sufficient for the purposes of CLP. We use a CLP

semantics based on the notion of a constrained expression. The goal of this section

is generalizing discriminative term grammars to a mechanism of defining sets of

constrained terms.

2.2.1 Constrained expressions

CLP programs operate on constraint domains. A constraint domain is defined by

providing a finite signature (of predicate and function symbols) and a structure D
over this signature.2 Predicate symbols of the signature are divided into constraint

predicates and non-constraint predicates. The former have a fixed interpretation in

D, the interpretation of the latter is defined by programs. All the function symbols

have a fixed interpretation, they are interpreted as constructors. So the elements of

D can be seen as (finite) terms built from some elementary values and the constant

symbols by means of constructors. That is why we will often call them D-terms. In

CLP some function symbols have also other meaning (like + denoting addition in

CLP over integers). This meaning is employed only in the semantics of constraint

predicates.

We treat function symbols as constructors, because this happens in the semantics

of most CLP languages, like CHIP or SICStus Prolog (Cosytec, 1998; SICS, 1998).

They use syntactic unification. For instance, in CLP over integers, terms like 1 + 3,

2 + 2, 1 ∗ 4, 4 are (pairwise) not unifiable. Only the constraint predicates recognize

their numerical values. So 2+2 #= 1∗4 succeeds and 2+2 #> 3∗4 fails (where #=,

#> are constraint predicates of, respectively, arithmetical equality and comparison).

By a constraint we mean an atomic formula with a constraint predicate, c1 ∧ c2,

c1 ∨ c2, or ∃Xc1, where c1 and c2 are constraints and X is a variable. We will often

write c1, c2 for c1 ∧ c2. The fact that a constraint c is true for every variable valuation

will be denoted by D |= c.

The Herbrand domain of logic programming is generalized to the constraint

domain D of CLP. Analogical generalization of non ground atoms and terms are

constrained expressions.

2 Sometimes we slightly abuse the notation and use D to denote the carrier of D.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 561

Definition 2.6

A constrained expression (atom, term) is a pair c []E of a constraint c and an

expression E such that each free variable of c occurs (freely) in E.

A c []E with some free variable of c not occurring in E will be treated as

an abbreviation for (∃ . . . c) []E, where all variables of c not occurring in E are

existentially quantified.

Definition 2.7

A constrained expression c′ []E ′ is an instance of a constrained expression c []E

if c′ is satisfiable in D and there exists a substitution θ such that E′ = Eθ and

D |= c′ → cθ (cθ means here applying θ to the free variables of c, with a standard

renaming of the non-free variables of c if a conflict arises).

If c []E is an instance of c′ []E ′ and vice versa then c []E is a variant of c′ []E ′.
By the instance-closure cl(E) of a constrained expression E we mean the set of all

instances of E. For a set S of constrained expressions, its instance-closure cl(S) is

defined as
⋃
E∈S cl(E).

Note that, in particular, cθ []Eθ is an instance of c []E and that c′ []E is an instance

of c []E whenever D |= c′ → c, provided that cθ and, respectively, c′ are satisfiable.

The relation of being an instance is transitive. (Take an instance c′ []Eθ of c []E

and an instance c′′ []Eθσ of c′ []Eθ. As D |= c′′ → c′σ and D |= c′ → cθ, we have

D |= c′′ → cθσ.) Notice also that if c is not satisfiable then c []E does not have any

instance (it is not an instance of itself).

We will often not distinguish E from true []E and from c []E where D |= ∀c.
Similarly, we will also not distinguish c []E from c′ []E when c and c′ are equivalent

constraints (D |= c↔ c′).

Example 2.8

a+ 7, Z + 7, 1+7 are instances of X + Y , but 8 is not.

f(X)>3 [] f(X)+7 is an instance of Z>3 []Z+7, which is an instance of Z + 7,

provided that constraints f(X)>3 and Z>3, respectively, are satisfiable.

Assume a numerical domain with the standard interpretation of symbols. Then

4 + 7 is an instance of X=2+2 []X+7 (but not vice versa), the latter is an instance

of Z>3 []Z+7.

Consider CLP(FD) (CLP over finite domains (Van Hentenryck, 1989)). A domain

variable with the domain S , where S is a finite set of natural numbers, can be

represented by a constrained variable X∈S [] X (with the expected meaning of the

constraint X∈S).

2.2.2 Extended set constraints

We use a semantics for CLP which is based on constrained atoms/terms. To

approximate such semantics we generalize term grammars to describe instance-

closed sets of constrained terms. In discussing grammars and the generated sets, we

will not distinguish between predicate and function symbols, and between atoms

and terms.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

562 W. Drabent et al.

For a given constraint domain D, we introduce some base sets of constrained

terms. We require that base sets are instance-closed. Following Dart & Zobel (1992),

we extend the alphabet of set constraints by base symbols interpreted as base sets.

Each base symbol b has a fixed corresponding set [[b]] of constrained terms, [[b]] 6= ∅.
We require that the alphabet of base symbols is finite. We assume that there is a

base symbol > for which [[>]] is the set of all constrained terms over given D.

Usually no other base sets contain (constrained) terms with (non constant) function

symbols.

For instance in CLP over finite domains (Van Hentenryck, 1989), D contains

terms built of symbols and integer numbers. The base sets we use for this domain

are, apart from [[>]], denoted by base symbols nat , neg , anyfd . They correspond to,

respectively, the natural numbers, the negative integers and finite domain variables.

The latter are represented as constrained variables of the form X ∈ S []X, where S is

a finite set of natural numbers. Due to the closedness requirement, [[anyfd]] contains

also the natural numbers.

An extended set expression is an expression built out of variables, base symbols,

function symbols (including constants), ∩ and the generalized projection symbols.

Extended set expressions are interpreted as instance-closed sets of constrained terms.

In the context of extended set expressions, a valuation is a mapping assigning

instance-closed sets of constrained terms to variables.3

The construction and generalized projection operation for (instance closed) sets

of constrained terms are defined as

f(S1, . . . , Sn) = cl
({ c1, . . . , cn [] f(t1, . . . , tn) | ci [] ti ∈ Si, i = 1, . . . , n }) ,

t−X(S) = { c []Xθ | c [] tθ ∈ S, for some substitution θ },
for instance-closed sets S, S1, . . . , Sn, a function (or predicate) symbol f, a term (or

an atom) t and a variable X. Notice that f(S1, . . . , Sn), t
−X(S) are instance-closed. A

valuation, together with a fixed valuation of base symbols, extends in a natural way

to extended set expressions. So if sets S1, . . . , Sn are values of expressions e1, . . . , en
then the value of f(e1, . . . , en) is f(S1, . . . , Sn). For a ground extended set expression t

its value will be denoted by [[t]].

Extended set expressions can be used to construct set constraints and grammars.

We consider extended set constraints of the form X > t, where X is a variable and t

an extended set expression. An extended term grammar is a set of constraints (often

called rules) of the form X > t, where t is an atomic set expression (i.e. one built

out of variables, the base symbols and the function symbols, including constants).

A model of a set C of extended set constraints is a valuation I , under which

I(X) ⊇ I(t) for each constraint X > t of C.

3 Notice that we have two different languages using variables: the language of set expressions (and of
set constraints and grammars), with variables ranging over sets of constrained terms, and the language
of constrained terms with variables ranging over a specific constraint domain. In this paper we use the
same notation for both kinds of variables. This should cause no confusion, the kind of a variable is
determined by the context.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 563

Proposition 2.9

Any set C of extended set constraints has the least model.

Proof

We show that the set of models of C is nonempty and that their greatest lower

bound is a model of C.

I assigning to each variable the set [[>]] of all constrained terms is a model of

any extended set constraint.

The greatest lower bound of a set I of valuations is a valuation
⋂I such that

(
⋂I)(X) =

⋂{ I(X) | I ∈ I}, for any variable X.

Let ◦ be a construction operation, a generalized projection operation or ∩. Let k

be its arity. For i = 1, . . . , k, let Si be a set of instance closed sets of constrained

terms. We have

◦
(⋂S1, . . . ,

⋂Sk

)
⊆ ⋂{ ◦(S1, . . . , Sk) | S1 ∈ S1, . . . , Sk ∈ Sk }.

(We do not need here to show equality). Hence for any extended set expression t

and any set I of valuations(⋂I) (t) ⊆ ⋂{ I(t) | I ∈ I},
by induction on the structure of t. Hence if each element of I is a model of an

extended set constraint X > t then
⋂I is a model of X > t, as (

⋂I)(X) =
⋂{I(X) |

I ∈ I} ⊇ ⋂{I(t) | I ∈ I} ⊇ (
⋂I)(t). Thus if I is the set of models of C then

⋂I
is a model of C, hence the least model. q

Definition 2.10

The set defined by a variable X in an extended term grammar G is

[[X]]G = { c [] u | c [] u ∈ [[t]], X ⇒∗G t and no variable occurs in t }
where the derivability relation ⇒∗G is defined as for term grammars.

Notice that we avoid confusion between the variables of grammars and the

variables of constrained terms. The former occur in derivations, which end with

ground terms built of function symbols (including constants) and of base symbols.

The latter appear later on as a result of evaluation of base symbols in these ground

terms.

The notation [[X]]G is justified here by the following property.

Proposition 2.11

Let G be an extended term grammar and I the interpretation such that I(X) = [[X]]G
for each variable X. Then I is the least model of G.

Proof

Consider a variable X and a constrained term c [] s ∈ [[X]]G. So there exists a

derivation X ⇒∗G t such that c [] s ∈ [[t]]. By induction on the length of the derivation,

for any model J of G, [[t]] ⊆ J(X). Thus I(X) ⊆ J(X). Hence I 6 J . q

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

564 W. Drabent et al.

Definition 2.12

An extended discriminative term grammar G is a finite set of rules of the form

X > f(X1, . . . , Xn) or X > b

where f is an n-ary function symbol (n > 0), X,X1, . . . , Xn are variables and b is a

base symbol. Additionally, for each pair of rules X > t1 and X > t2 in G the sets

[[t>1]] and [[t>2]] are disjoint (where u> stands for u with each occurrence of a variable

replaced by >).

So no two rules X > f(~X), X > f(~Y) may occur in such a grammar. The same for

X > b, X > b′ where b, b′ are base symbols and [[b]] ∩ [[b′]] 6= ∅. If a discriminative

grammar contains X > f(~X) and X > b then no (constrained term) with the main

symbol f occurs in [[b]]. If the grammar contains X > > then it is the only rule for

X.

The question is how to represent/approximate by such grammars the results of

set operations for sets represented by such grammars, and how to check inclusion

for such sets. We address these questions under some additional restrictions on base

sets, which seem to be observed in base domains of CLP languages. We require that:

Requirement 2.13

• For any base symbol b different from >, f−1
(i) ([[b]]) = ∅ for every f, i. (So [[b]]

does not contain elements of the form c [] f(~t), for any non constant f.)

• For each pair b1, b2 of distinct base symbols the base sets [[b1]], [[b2]] are either

disjoint or one is a subset of the other. Moreover [[b1]] 6= [[b2]].

The number of base symbols is finite. Their interpretation is fixed. We can

construct a table showing, for each pair b1, b2 of base symbols, whether [[b1]]∩[[b2]] =

∅, [[b1]] ⊆ [[b2]] or [[b2]] ⊆ [[b1]].

Now, the operations on grammars of section 2.1.1 can be easily extended. Each

of them traverses the rules in the argument grammars. Eventually we may reach

a point when a base symbol is encountered instead of a constant. These cases are

handled in a rather obvious way, using the table described above. Similarly as for

discriminative term grammars, one obtains approximation of the union and exact

intersection, generalized projection and construction.

We postpone a formal presentation to section 4.4, where we deal with a general-

ization of grammars discussed here.

Example 2.14

Consider CLP(FD) (Van Hentenryck, 1989). The following discriminative extended

grammars describe, respectively, integer lists and lists of finite domain variables

(possibly instantiated to natural numbers):

Li > nil

Li > cons(Int, Li)

Int > nat

Int > neg

Lfd > nil

Lfd > cons(A,Lfd)

A > anyfd

Knowing that [[nat]] ⊆ [[anyfd]] we can apply the intersection operation to obtain a

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 565

grammar defining [[Li]] ∩ [[Lfd]]:

Li ∩̇Lfd > nil

Li ∩̇Lfd > cons(Int ∩̇A,Li ∩̇Lfd)

Int ∩̇A > nat

The treatment of constraints by the formalism of extended term grammars is

rather rough. It stems from a small number of fixed base sets of constrained terms.

They are subject to a rather restrictive Requirement 2.13, which is necessary to

simplify operations on grammars. In our former work (Drabent & Pietrzak, 1998),

we discussed a richer system of regular sets of constrained terms. It can be seen

as also allowing base sets of the form cl({c [] x}), where the set of ground terms

satisfying constraint c is regular. This results in substantially more complicated

algorithms for grammar operations. According to our experience the simple type

system presented in this paper seems sufficient.

2.3 Constraint Logic Programming

We consider CLP programs executed with the Prolog selection rule (LD-resolution)

and using syntactic unification in the resolution steps. In CLP with syntactic unifica-

tion, function symbols occurring outside of constraints are treated as constructors.

So, for instance in CLP over integers, the goal p(4) fails with the program {p(2+2)←}
(but the goal p(X+Y) succeeds). Terms 4 and 2+2 are treated as not unifiable despite

having the same numerical value. Also, a constraint may distinguish such terms.

For example, in many constraints of CHIP, an argument may be a natural number

(or a “domain variable”) but not an arithmetical expression. Resolution based on

syntactic unification is used in many CLP implementations, for instance in CHIP

and in SICStus (SICS, 1998).

We are interested in calls and successes of program predicates in computations of

the program. Both calls and successes are constrained atoms. A precise definition

is given below taking a natural generalization of LD-derivation as a model of

computation.

An LD-derivation is a sequence G0, C1, θ1, G1, . . . of goals, input clauses and mgu’s

(similarly to Lloyd (1987)). A goal is of the form c []A1, . . . , An, where c is a constraint

and A1, . . . , An are atomic formulae (including atomic constraints). For a goal Gi−1 =

c []A1, . . . , An, where A1 is not a constraint, and a clause Ci = H ← B1, . . . , Bm, the

next goal in the derivation is Gi = (c []B1, . . . , Bm, A2, . . . , An)θi provided that θi is an

mgu of A1 and H , cθi is satisfiable and Gi−1 and Ci do not have common variables.

If A1 is a constraint then Gi = c, A1 []A2, . . . , An (θi = ε and Ci is empty) provided

that c, A1 is satisfiable.

For a goal Gi−1 as above we say that c []A1 is a call (of the derivation). The

call succeeds in the first goal of the form Gk = c′ [](A2, . . . , An)ρ (where k > i,

ρ = θi · · · θk) of the derivation. The success corresponding (in the derivation) to the

call above is c′ []A1ρ. For example, X∈{1, 2, 3, 4} [] p(X,Y) and X∈{1, 2, 4} [] p(X, 7)

is a possible pair of a call and a success for p defined by p(X, 7)← X 6= 3.

Notice that in this terminology constraints succeed immediately. If A is a constraint

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

566 W. Drabent et al.

then the success of call c []A is c, A []A, provided c, A is satisfiable. So we do not

treat constraints as delayed; we abstract from internal actions of the constraint

solver.

The call-success semantics of a program P , for a set of initial goals G, is a pair

CS (P ,G) = (C , S) of sets of constrained atoms: the set of calls and the set of

successes that occur in the LD-derivations starting from goals in G. We assume

without loss of generality that the initial goals are atomic.

So the call-success semantics describes precisely the calls and the successes in

the considered class of computations of a given program. The question is whether

this set includes “wrong” elements, unexpected by the user. To require a precise

description of user expectations is usually not realistic. On the other hand, it may

not be difficult to provide an approximate description Spec = (C ′, S ′) where C ′ and

S ′ are sets of constrained atoms such that every expected call is in C ′ and every

expected success is in S ′.

Definition 2.15

A program P with the set of initial goals G is partially correct w.r.t. Spec = (C ′, S ′)
iff C ⊆ C ′ and S ⊆ S ′, where (C, S) = CS (P ,G) is the call-success semantics of P

and G.

P is partially correct w.r.t. Spec = (C ′, S ′) iff P with C ′ as the set of initial goals

is partially correct w.r.t. Spec.

We will usually omit the word “partially”.

To avoid substantial technical difficulties, we will consider only specifications that

are closed under instantiation. This means that whenever set C ′ (or S ′) contains a

constrained atom c []A then it contains all its instances.

A specification describes calls and successes of all the predicates of a program,

including the constraint predicates. As the semantics of constraints is fixed for a

given programming language, their specification is fixed too. In our system, it is

kept in a system library and is not intended to be modified by the user. (The

same happens for other built-in predicates of the language.) This fixed part of the

specification may not permit some constrained atoms as procedure calls; such calls

are not allowed in the language and result in run-time errors.4

Example 2.16

To illustrate the treatment of constraint predicates by specifications, assume that

a CLP(FD) language has a constraint ∈, which describes membership in a finite

domain. Assume that invoking ∈(X, S) with S not being a list of natural numbers

is an error. This should be reflected by the specifications of all programs using ∈.

In any such specification Spec = (Pre, Post), a call of the form c []∈(X, S) is in Pre

iff S is such a list. If such a call succeeds, X must be a finite domain variable or

a natural number. We may thus require that c []∈(X, S) is in Post iff S is a list of

natural numbers and c []X is in [[anyfd]].

4 An exact description of the set of allowed calls of constraints is sometimes impossible in our framework,
as the set may be not instance closed. For example, many constraints of CHIP have to be called with
certain arguments being variables.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 567

The following definition provides a condition assuring that a specification correctly

approximates successes of constraint predicates.

Definition 2.17

We say that a specification (Pre, Post) respects constraints if c, A []A ∈ Post whenever

c []A ∈ Pre and c, A is satisfiable (for any constraint c and atomic constraint A).

This is equivalent to

{ c, A []A | c, A is satisfiable } ∩ Pre ⊆ Post
as Pre is closed under instantiation.

3 Partial correctness of programs

In this section we present a verification condition for partial correctness of CLP

programs. Then we express it by means of set constraints and show how to perform

correctness checking and how to compute a specification approximating the call-

success semantics of a program.

3.1 Verification condition

A sufficient condition for such correctness of logic programs was given in Drabent

& Ma luszyński (1988). For specifications which are closed under substitution the

condition is simpler (Bossi & Cocco, 1989; Apt, 1997). Generalizing the latter for

constraint logic programs we obtain:

Proposition 3.1

Let P be a CLP program, G a set of initial goals and Spec = (Pre, Post) be

a specification respecting constraints and such that Pre, Post are closed under

instantiation.

A sufficient condition for P with G being correct w.r.t. Spec is:

1. For each clause H ← B1, . . . , Bn of P , j = 0, . . . , n, any substitution θ and any

constraint c

if c []Hθ ∈ Pre, c []B1θ ∈ Post, . . . , c []Bjθ ∈ Post
then c []Bj+1θ ∈ Pre for j < n

c []Hθ ∈ Post for j = n

2. G ⊆ Pre
Proof

Follows from more general Theorem 5.2 applied to a specification set {(Pre, P re ∩
Post)}. q

For simplicity we consider here only atomic initial goals. Generalization for non-

atomic ones is not difficult. For instance one may replace a goal c []~A by goal

p and an additional clause p ← c,~A in the program, where p is a new predicate

symbol. Alternatively, one can provide a condition for goals similar to that for

clauses (Drabent & Ma luszyński, 1988; Apt, 1997).

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

568 W. Drabent et al.

Notice that the constraints in the clause are treated in the same way as other

atomic formulae. As constraint predicates are not defined by program clauses, the

requirement that the specification respects constraints is needed in the proposition.

The part of the specification concerning constraint predicates is fixed for a

given CLP language. As already mentioned, in our system it is kept in a system

library. It is the responsibility of the librarian to assure that the library specification

respects constraints. This property depends on the constraint domain in question,

and therefore no universal tool can be provided. The number of constraint predicates

in any CLP language is finite, so is the library specification, which has only once to

be proved to respect constraints.

We want to represent Proposition 3.1 as a system of set constraints. Each implica-

tion for a clause C = H←B1, . . . , Bn from condition 1 of the proposition can now be

expressed by a system Fj(C) = Fj,1(C)∪Fj,2(C) of constraints, where Fj,1(C) consists

of

X > H−X(Call) ∩
j⋂
i=1

Bi
−X(Success) (1)

for each variable X occurring in the program clause and Fj,2(C) contains one

constraint

Call > Bj+1 if j < n

Success > H if j = n
(2)

(The program variables occurring in the clause become variables of set constraints.

As explained in section 2.2.2, the predicate symbols are treated as function symbols.)

This constraint system has the following property.

Lemma 3.2

Let C = H←B1, . . . , Bn be a clause and Spec = (Pre, Post) a specification. If

constraint set Fj(C) has a model assigning to Call the set Pre and to Success the

set Post then implication of Proposition 3.1 holds, for any θ and c.

Proof

Assume that I is such a model. From (1) it follows that c []Xθ ∈ I(X) for each c, θ

satisfying the premise of the implication and for each variable X in the clause. Now

from (2) it follows that c []Bj+1θ ∈ I(Bj+1) ⊆ Pre, respectively c []Hθ ∈ I(H) ⊆ Post
when j = n. q

Set constraints Fj(C) express a sufficient condition for program correctness. If

a specification is given, to check the correctness it suffices to check whether the

specification extends to a model of Fj(C) (for all C ∈ P and j). In the sequel, we

show how to do this effectively for the case when Pre and Post are defined by

discriminative extended term grammars.

If a specification is not given, Lemma 3.2 tells us that the program is correct with

respect to the specification obtained from any model of Fj(C) (for all C and j). An

algorithm for constructing a discriminative term grammar describing a model of the

constraints could thus be seen as a type inference algorithm for this program.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 569

3.2 Correctness checking

In this section we present an algorithm for checking program correctness. We

will consider specifications given by means of extended term grammars. Such a

grammar G has distinguished variables Call , Success and the specification is Spec =

([[Call]]G, [[Success]]G) (so Pre = [[Call]]G, Post = [[Success]]G). We require that the

variables of G are distinct from those occurring in the program. We also require that

Spec respects constraints. So such grammar can be seen as consisting of two parts:

a fixed part describing the constraints and built-in predicates, and a part provided

by the user.

Example 3.3

The specification of constraint predicate ∈ from Example 2.16 can be given by the

following grammar rules.

Call > ∈(Any ,Nlist)

Nlist > []

Nlist > cons(Nat ,Nlist)

Success > ∈(Anyfd ,Nlist)

Anyfd > anyfd

Nat > nat

Consider an atom B = ∈(X, [I, J]). Applying the generalized projection operation

one can compute that B−X ([[Success]]) = [[anyfd]] and B−J ([[Success]]) = [[nat]].

Notice that within the formalism of extended term grammars we cannot provide a

more precise specification. For instance we cannot express the fact that if c []∈(t1, t2)

is a success then c constraints the value of t1 to the numbers that occur in the list

t2 (formally: any ground element of cl({c [] t1}) is a member of t2).

Our algorithm employs the inclusion check, intersection and generalized pro-

jection operations for extended term grammars. As already mentioned, they are

rather natural generalizations of the operations for term grammars described in

section 2.1.1. The details can be found in section 4.4, describing operations for

parametric extended term grammars.

The algorithm resembles a single iteration of the iterative algorithm of Gallagher

& de Waal (1994) for approximating logic program semantics, in its version with

“magic transformation”. However it works on extended term grammars. We provide

its detailed description combined with a proof of its correctness, in order to facilitate

a further generalization to parametric case.

As explained in the previous section, a sufficient condition for a program P to

be correct w.r.t. Spec is that for each n-ary clause C of P and for each j = 0, . . . , n,

constraints Fj(C) have a model that coincides on Call and Success with the least

model of G.

To find such a model we construct (a grammar describing) the least model of

Fj,1(C) ∪ G. Then we check if it is a model of Fj,2(C). If yes then it is the required

model of Fj(C). Otherwise we show that the required model does not exist.

The first step is to compute the projections and intersections of (1). To each

expression of the form A−X(Y) occurring in (1) we apply the generalized projection

operation to construct a grammar GA defining A−X([[Y]]G). Then we apply the

intersection algorithm to grammars GH,GB1
, . . . , GBj . As a result (after appropriate

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

570 W. Drabent et al.

renaming of the variables of the resulted grammar) we obtain a grammar GX such

that

[[X]]GX = H−X([[Call]]G) ∩
j⋂
i=1

Bi
−X([[Success]]G).

and all the variables of GX , except of X, are distinct from those of Fj(C) ∪ G.

Obviously, [[X]]GX is the same as [[X]] in the least model of {(1)} ∪ G.

The first step is to be applied to each constraint (1) of Fj(C) (with a requirement

that the variables of the constructed grammars GX are distinct). Let G′ =
⋃
X GX

be the union of the grammars constructed in the first step. We combine G′ and G,

where the roles of G′, G are to define values for, respectively, the variables of C and

variables Call , Success . The least model of G ∪ G′ is a model of Fj,1(C) ∪ G (and

it coincides with the least model of Fj,1(C) ∪ G on Vars(C) ∪ {Call , Success}, where

Vars(C) is the set of the variables occurring in C).

The second step is transforming (2) to a discriminative grammar G′′, by applying

repetitively the construction operation. Let us represent constraint (2) as Y > A (so

Y is Call or Success and A is Bj+1 or H). For each subterm s of A, G′′ employs

a variable Xs. XA is Y and if the given subterm s is a variable V then XV is V .

Otherwise Xs is a new variable, not occurring in C,G,G′. Grammar G′′ contains the

rule Xs > f(Xs1 , . . . , Xsn) for each non variable subterm s = f(s1, . . . , sn) of A. We have

[[Xs]]G′∪G′′ = [[s]]G′ , for each subterm s. In particular [[Y]]G′∪G′′ = [[A]]G′ = [[A]]G∪G′ .
This completes the construction. We may say that Fj(C) was transformed into a

discriminative grammar FC,j = G′ ∪ G′′.
It remains to check whether [[Y]]G′∪G′′ ⊆ [[Y]]G. If yes then [[A]]G∪G′ ⊆ [[Y]]G∪G′ ,

i.e. the least model of G∪G′ is a model of A < Y . Thus, it is the model of Fj(C)∪G
required in Lemma 3.4.

Otherwise, notice first that if F1 ⊆ F2 then [[X]]F1
⊆ [[X]]F2

, for constraint sets

F1, F2. So we have [[Y]]G′∪G′′ = [[A]]G∪G′ = [[A]]Fj,1(C)∪G ⊆ [[A]]Fj (C)∪G ⊆ [[Y]]Fj (C)∪G.

Thus [[Y]]G′∪G′′ 6⊆ [[Y]]G implies [[Y]]Fj (C)∪G 6⊆ [[Y]]G. Hence I(Y) 6⊆ [[Y]]G for any

model I of Fj(C) ∪ G and the required model of Fj(C) ∪ G does not exist. Thus we

obtained:

Lemma 3.4

The implication from Proposition 3.1 holds for a clause C and a number j if

[[Y]]G′∪G′′ ⊆ [[Y]]G, for grammars G′, G′′ constructed as above.

The inclusion can be checked by applying the inclusion algorithm (preceded by

removing nullable symbols).

We now estimate the complexity of the algorithm. The cost of the intersection

operation applied to two grammars with respectively v1, v2 variables is O(v1v2). The

cost of removing nullable symbols is linear (Hopcroft et al., 2001).

Let us now consider the inclusion check. We may assume that grammars are

stored so that the productions for each variable are kept together and ordered.

Let v1, v2 be the numbers of variables in the grammars. For each encountered

pair X,Y of variables, it has to be checked whether the pair has not occurred

previously (O(log(v1v2))) and the productions for X and for Y are to be found

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 571

(O(log(v1) + log(v2))). The pairs of productions with the same function symbol can

be found in time proportional to the number of function symbols occurring in the

productions found. For each pair of productions X > f(. . .), Y > f(. . .) new variable

pairs are generated, their number is the arity of f. Taking as constants the maximal

arity and the maximal number of function symbols in the productions for a given

variable, we obtain O(log(v1v2)) per pair. So the total cost of inclusion check is

O(v1v2 log(v1v2)). This cost is not changed when the costs of initial sorting of the

grammars are taken into account.

Notice that in our algorithm the results of all the generalized projections and

intersections computed in the step for j can be reused in the next steps. Taking

into account the intersections needed to compute the projections, there are k − 1

intersections to be computed for each variable occurring k times in the clause C .

The cost of computing such a k-fold intersection and the size of resulting grammar

is O(vk−1), where v is the number of variables in the specification grammar G.

Computing mappings ξ in the projections and constructing all the G′′ is linear in

the size of the clause. Inclusion checking for a pair of grammars with respectively

O(vk−1) and v variables can be done in time O(vk log(vk)) = O(ck), where constant c

depends on the number of variables in the grammar.

Thus, the correctness checking algorithm described in this section works in time

O(ck), where k is the maximal number of occurrences of a variable in a clause.

Example 3.5

Consider the program

app([],V,V).

app([A|X],Y,[A|Z]) :- app(X,Y,Z).

The verification conditions can be expressed as three constraint systems (we abbre-

viate H = app([A|X], Y , [A|Z]), B = app(X,Y , Z)):

V > app([], V , V)−V (Call)

Success > app([], V , V)

A > H−A(Call)

X > H−X(Call)

Y > H−Y (Call)

Z > H−Z (Call)

Call > app(X,Y , Z)

A > H−A(Call) ∩ B−A(Success)

X > H−X(Call) ∩ B−X(Success)

Y > H−Y (Call) ∩ B−Y (Success)

Z > H−Z (Call) ∩ B−Z (Success)

Success > H

(3)

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

572 W. Drabent et al.

Let the following extended term grammar G provide a specification:

Call > app(L, L, Any)

Success > app(L, L, L)

L > []

L > [M|L]

Any > >
where M is further specified by grammar rules not presented here. We assume that

M is not nullable in G.

Using the described techniques one can check that the specification defines a model

for all above stated set constraint systems. For example, we check the constraints

(3). To compute the projections related to atom H = app([A|X], Y , [A|Z]) and Call

we first obtain the following mapping between the subterm occurrences in H and

the variables of G.

V[A|X] = L

V[A|Z] = Any

VA1 = M

VA2 = Any

VX = VY = L

VZ = Any

Similarly, for the projections related to atom B = app(X,Y , Z) and Success , we have

VX = VY = VZ = L

The grammar describing H−A(Call) is G ∩̇G with a distinguished variable M ∩̇Any.

The clauses of G ∩̇G for M ∩̇Any are {M ∩̇Any > t |M > t ∈ G }. (Also G ⊆ G ∩̇G.)

M ∩̇Any is not nullable in G ∩̇G, as M is not nullable in G.

Notice that B−A(Call) = [[>]] (as A does not occur in B). All the other projections

from (3) are given by variable L or Any and grammar G.

Now we construct grammar G′ for which

[[A]]G′ = [[M ∩̇Any]]G ∩̇G ∩ [[>]]

[[X]]G′ = [[L]]G ∩ [[L]]G
[[Y]]G′ = [[L]]G ∩ [[L]]G
[[Z]]G′ = [[Any]]G ∩ [[L]]G

Computing intersections (and renaming variables where necessary) results in a

grammar G′ consisting of the rules

{A > t |M > t ∈ G } ∪ { X > [], Y > [], Z > [],

X > [M|X], Y > [M|Y], Z > [M|L] }
and the rules of G except for those for Call , Success . (Before constructing the

grammar we simplified [[M ∩̇Any]]G ∩̇G ∩ [[>]] to [[M ∩̇Any]]G ∩̇G and [[L]]G ∩ [[L]]G
to [[L]]G. Formally, G′ has variables distinct from those of G.) Variables A,X, Y , Z

are not nullable in G′.
The least model of G′ provides a valuation for variables A,X, Y , Z . It remains to

check that for this valuation, together with the valuation for Success given by the

specification G, the constraint Success > app([A|X], Y , [A|Z]) holds. To do this we

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 573

transform this constraint into a discriminative grammar G′′:

Success > app(X1, Y , X2)

X1 > [A|X]

X2 > [A|Z]

and apply the set inclusion algorithm to check whether the set defined by Success in

the specification grammar G is a superset of that defined by Success in the obtained

grammar G′ ∪G′′. The check succeeds. Hence there exists a model for the considered

five constraints which agrees on variables Call and Success with the model given by

the specification. Notice that this holds independently of the missing fragment of G

defining M.

The same procedure can be performed for all the constraint systems generated for

the given program, hence confirming that the program is correct w.r.t. the parametric

specification. Also in these cases the correctness check is independent from 〈M〉G
(the part of G defining M).

In our example the correctness check was independent from a subset 〈M〉G
of the specification grammar G. This is not uncommon, for some programs and

specification grammars a correctness check refers only to some rules of the grammar.

Thus a single check is valid for a whole family of grammars. This phenomenon will

be exploited in our approach to parametric specifications.

3.3 Approximating program semantics

In this work we are mainly interested in checking program correctness. However the

representation of the verification condition (Proposition 3.1) as constraints (Lemma

3.2) can be used to obtain an approximation of the semantics of a given program

P . In the previous section we showed how a single implication from Proposition

3.1 can be expressed by a constraint system Fj(C). We begin with constructing a

constraint system representing all the implications from the proposition.

Let us consider the constraints Fj(C) (j = 1, . . . , nC) for each clause C of P

with nC body atoms. Let F ′j(C) be Fj(C) with the variables renamed in such a

way that the only common variables of (distinct) F ′j1 (C1), F ′j2 (C2) are Call and

Success. Let grammar G0 specify the initial goals and the constraint predicates.

So [[Call]]G0
is the set of initial goals and of the allowed calls of constraints.

[[Success]]G0
is (a superset of) the set of possible successes of constraint predicates.5

Thus ([[Call]]G0
, [[Success]]G0

) respects constraints.

Now any model I of the constraint system

C(P) =
⋃
C∈P

⋃
j

F ′j(C) ∪ G0

5 This approach can also be used when P is a fragment of a program, i.e. the clauses defining some
predicates are missing in P . Then the semantics of such predicates has to be specified by G0. The
algorithm treats them as the constraint predicates. Examples of such program fragments are programs
using built-in predicates, unfinished programs or modules of some bigger programs.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

574 W. Drabent et al.

gives a specification Spec = (I(Call), I(Success)) with respect to which P is correct,

provided that Spec respects constraints. This follows immediately from Lemma 3.2.

In the special case of logic programs a model of C(P) can be found by using

the techniques for set constraint solving. For example the technique of Heintze

& Jaffar (1990a; 1991) produces a (non-discriminative) term grammar specifying

the least model of set constraints. This technique has been used for generating

approximations of logic program semantics (Heintze & Jaffar, 1990b; Heintze, 1992;

Heintze & Jaffar, 1994; Charatonik & Podelski, 1998). Another constraint solving

approach that uses tree automata techniques, has been presented in Devienne

et al. (1997a) and Talbot et al. (2000). We expect that these techniques can be

generalized to the case of CLP programs, but we did not investigate this issue yet.

Yet another approach to finding a model of the constraint system C(P) stems

from abstract interpretation techniques (among others Janssens & Bruynooghe

(1992), VanHentenryck et al. (1995), Gallagher & de Waal (1994), we generalize

the latter work in Drabent & Pietrzak (1999) and Drabent et al. (2000a,b), and

here). C(P) is seen as a valuation transformer, its fixed points are models of C(P).

Valuations are represented as discriminative grammars. A fixed point is computed

iteratively.

To augment our system with a tool for computing approximations of program

semantics, we provide a solution based on the latter idea. This choice was guided

mainly by possibility of reusing our correctness checking algorithm and the imple-

mentation of Gallagher & de Waal (1994).

The correctness checking algorithm of the previous section can be easily modified

to compute the valuation transformer related to C(P). This gives an implementation

of a single step of the iteration. It remains to combine it with some technique of

assuring termination.

Iteration step. Take Gi (initially G0). To each F ′j(C) ∪ Gi apply the construction as

in the correctness checking, obtaining a discriminative grammar FC,j . (It is required

that all the obtained grammars have distinct variables, except Call and Success).

For each FC,j , the variables occurring in FC,j are distinct from those in Gi except for

Call or Success .

The constraints of F ′j(C) are satisfied if the occurrences of Call , Success in the

right hand side of each constraint of the form (1) (section 3.1) are valuated as in the

least model of Gi, and the remaining variable occurrences as in the least model of

FC,j . This follows from the discussion in the previous section.

The obtained grammar G′i = Gi ∪⋃C∈P
⋃
j FC,j is not discriminative, due to the

rules for Call and for Success . Construct a discriminative approximation of G′i, more

precisely a discriminative grammar Gi+1 such that [[Call]]G′i ⊆ [[Call]]Gi+1
and the

same for Success . This is done by applying the union operation of section 2.1.1 to Gi
and all grammars FC,j . (So Gi+1 is Gi ∪̇ ⋃̇C∈P

⋃̇
jFC,j with the variable Call ∪̇ . . . ∪̇Call

renamed into Call and Success∪̇ . . . ∪̇Success renamed into Success .)

The obtained grammar Gi+1 has the following property. C(P) − G0 is true when

Call and Success in all the constraints of the form (1) (Section 3.1) are valuated as

in the least model of Gi, Call and Success in the constraints of the form (2) (Section

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 575

3.1) as in the least model of Gi+1, and the (renamed) variables of P as in the least

model of G′i.
It remains to check whether the specification given by Gi+1 does not contain

incorrect calls of constraint predicates. This boils down to checking whether all the

calls of constraint predicates from the set [[Call]]Gi+1
are also members of [[Call]]G0

.

The latter is equivalent to [[Call]]F ⊆ [[Call]]G0
, where F = Gi+1 − {Call>A |

A is not a constraint }. Failure of the check means that we are unable to construct

a specification which respects constraints. This suggests a program error and an

appropriate warning is issued.

This completes an iteration step. Notice that the calls and successes of constraint

predicates specified by Gi+1 are the same as those specified by Gi and thus by

G0 (induction on i). For calls it follows from succeeding of the checks above. For

successes we have that any clause Success >p(~X) from Gi+1, where p is a constraint

predicate, occurs also in Gi.

The iteration is terminated if a fixpoint is reached, this means when [[Call]]Gi+1
⊆

[[Call]]Gi and [[Success]]Gi+1
⊆ [[Success]]Gi . (The inclusion in the other direction holds

for each i). The required model of C(P) is a valuation in which the values of the

variables from G0, except for Call and Success , are as in the least model of G0, the

values of Call , Success are as in the least model of Gi, and the variables of P are

valuated by the least model of G′i.
As a result we obtain that whenever the iteration terminates, program P is correct

w.r.t. the specification given by the obtained grammar Gi.

Notice that this is justified in a different way than usually done in abstract

interpretation. Instead of relating a single iteration step to the concrete semantics

of the program, we showed that the obtained fixpoint satisfies a sufficient condition

for program correctness.

Termination. Usually the iterative process described above does not terminate. It

should be augmented with means of assuring termination. The idea is to apply

a restriction operator R that maps an infinite domain of grammars to its finite

subset. Moreover, the operator R computes an approximation of a grammar G (i.e.

[[Call]]G ⊆ [[Call]]R(G) and [[Success]]G ⊆ [[Success]]R(G)). The operator is applied in

every iteration step: the newly obtained grammar Gi+1 is replaced by a grammar

Hi+1 = R(Gi+1). In this way we obtain a sequence of grammars G0, H1, H2, . . ., the

sequence has the properties described in the previous paragraphs. Since the co-

domain of R is finite, the set of grammars {G0, H1, H2, . . . } is finite and the iteration

terminates. This technique can be seen as an instance of widening (Cousot & Cousot,

1992).

An attempt at such approach was made by Gallagher & de Waal (1994). Unfortu-

nately, the termination proof given by the authors is erroneous, and Mildner (1999)

showed an artificial example which results in an infinite loop.

We adapt a technique presented in Mildner (1999, Section 6.5), and inspired by

Janssens & Bruynooghe (1992). We describe it briefly. Let the principal label of a

variable X be the set of function symbols occurring in the right hand sides of the

rules defining X in a given grammar G. Let a term grammar graph be a directed graph

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

576 W. Drabent et al.

with grammar variables as vertices. An edge (X,Y) belongs to the graph iff there is a

rule X > f(. . . , Y , . . .) in the grammar. The operator R computes an approximation

of a grammar G ([[Call]]G ⊆ [[Call]]R(G) and [[Success]]G ⊆ [[Success]]R(G)) assuring

at the same time that there is a spanning tree of the graph of R(G) such that each

branch of the tree contains no more than k variables with the same principal label.

Since the grammar is discriminative, and since there is a finite number of function

symbols in a program, the set of such spanning trees (modulo variable renaming),

is finite and consequently the co-domain of R (modulo variable renaming) is finite.

We usually apply k = 1.

The reasoning above does not provide any useful estimation of the complexity

of the algorithm. Our experience shows that it is sufficiently efficient to compute

directional types of medium size programs.

There exist variants of this method, taking into account a number of occurrences

of a single function symbol along a path or just simply binding a depth of the

spanning tree with a constant.

Another possibility to cope with the termination problem is to restrict the class

of grammars so that the class of defined sets is a partial order of finite heights6.

4 Parametric set constraints

4.1 Motivation

In Example 3.5, the correctness checking of the program was done without referring

to a missing fragment 〈M〉G of the grammar that provided the specification. This

was due to the fact that the constraints did not include generalized projections of

〈M,G〉 and all intersections involving M were of the form M∩M or M∩Any , where

Any is defined by clause Any > >. The meaning of such expressions is preserved if

we simplify them to M. As a result we obtained a term grammar referring to M.

The obtained solution is parametric in the sense that it will hold for any specific

choice of the missing fragment of the grammar. Thus the example demonstrates

parametric polymorphism of append, where calls and successes are approximated

by sets determined by the same specific M. This kind of parametric polymorphism

is useful in locating program errors (cf. the examples in section 6). In the rest of

this section we extend previously introduced basic concepts to be able to handle

parameters.

4.2 Syntax and semantics

To define a notion of a parametric set constraint we extend the alphabet. In addition

to the symbols discussed in section 2.1 we assume that the alphabet also includes

6 For example, Boye (1996) suggested that the inference is always done with a finite lattice of types. In
practice this means that for a class of applications we may have a finite library of types, represented by
grammars, which may be extended by need. This will also facilitate communication with the user who
will easier understand standard application-specific types than the types represented by automatically
generated grammars.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 577

parameters disjoint with the other categories of symbols. Parameters will be denoted

by Greek letters α, β, A parametric set expression is a parameter, a variable, a

constant, or it has a form f(e1, ..., en), t
−X(e) or e1 ∩ e2, where f is an n-ary function

symbol, t is a term, X a variable and e, e1, ..., en are parametric set expressions.

Notice, that this definition extends the usual definition of set expressions, so that a

usual set expression without parameters becomes a special case of a parametric set

expression. A parametric term expression is atomic if it does not include projection

and intersection symbols.

For a given valuation of the variables, a parametric set expression denotes a func-

tion from valuations of parameters to subsets of the Herbrand universe. The value

of the function for a specific valuation of parameters is determined by considering

parameters to be additional variables of the set expression.

We will consider parametric set constraints of the form

Variable > Parametric set expression.

As discussed above, a collection of non-parametric set constraints has the least

model which can be defined by a term grammar. A similar property holds in the

parametric case. Take a collection C of parametric set constraints and treat the

parameters as variables. For any given fixed valuation I of the parameters there

exists the least model out of the models of C coinciding with I on the parameters.

(This can be proved similarly as Proposition 2.9).

To deal with sets of constrained terms parametric set expressions can be gen-

eralized to parametric extended set expressions. This is done by permitting base

symbols to appear in the expressions. Parametric extended set expressions give rise

to parametric extended set constraints. For any fixed valuation of parameters, a

collection of such constraints has the least model. (Proof as in Proposition 2.9.)

4.3 Parametric term grammars

Our parametric specifications will be expressed by parametric grammars. We first

introduce parametric term grammars and a notion of an instance of such a grammar.

Such instances define sets of terms. Then we extend this approach to define sets of

constrained terms.

Definition 4.1
A parametric term grammar G is a finite collection of parametric set constraints of

the form X > t where X is a variable and t is an atomic parametric set expression.

For instance we can consider the grammar G of Example 3.5 as a parametric

grammar with one parameter M.

In the context of parametric grammars, a (parametric) set descriptor is a pair

〈X,G〉 where G is a parametric grammar and X a variable or a parameter. The

derivability relation is defined in the same way as for non-parametric term grammars.

Notice, however, that the normal forms may include parameters.

Parameterless grammars are used to define sets, the role of parametric grammars

is to define mappings on sets. This is done by assigning sets to the parameters of a

grammar. The sets are given by some other grammars.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

578 W. Drabent et al.

Let G be a parametric grammar such that α1, . . . , αk are all parameters occurring in

G. Sometimes we will denote it G(~α) where ~α = (α1, . . . , αk). A function Φ that maps

each parameter αi of G into a set descriptor 〈Xi, Gi〉 is called, abusing the standard

terminology, a parameter valuation for G. For a given~α we will sometimes represent

a Φ = { α1 7→ 〈X1, G1〉, . . . , αk 7→ 〈Xk, Gk〉 } as the vector (〈X1, G1〉, . . . , 〈Xk, Gk〉).
Definition 4.2

Let G be a parametric term grammar and let Φ = {α1 7→ 〈X1, G1〉, . . . , αk 7→ 〈Xk, Gk〉)}
be a parameter valuation.

An instance of G under Φ is the parametric grammar G(Φ) = G′ ∪ G′1 ∪ . . . ∪ G′k ,
where

• 〈X ′i , G′i〉 are obtained by renaming apart all variables in each 〈Xi, Gi〉 so that

the grammar G and descriptors 〈X ′1, G′1〉, . . . , 〈X ′k, G′k〉 have pairwise disjoint

sets of variables.

• G′ is obtained by replacing each parameter αi in G by X ′i .

If G(Φ) contains no parameters then the usual notion of the sets defined by a

grammar applies to G(Φ).7 For each its variableX it defines a set, which is [[X]]G(Φ). So

a parametric grammar G(α1, . . . , αk) defines a mapping from the sets corresponding to

descriptors 〈X1, G1〉, . . . , 〈Xk, Gk〉 to the sets defined by the grammar G(Φ). Moreover,

G(Φ) defines the value for each parameter αi of G: [[αi]]G(Φ) = [[X ′i]]G(Φ).

The definition of an instance generalizes in an obvious way from parametric

grammars to sets of (extended) parametric set constraints.

Definition 4.3

A parametric term grammar is discriminative if

• each right-hand side of a rule is of the form f(X1, . . . , Xn) where each Xi is a

variable or a parameter.

• for a given variable X and given n-ary (n > 0) function symbol f there is at

most one rule of the form X > f(. . .).

Notice that the instance of a discriminative grammar under a parameter valuation

over discriminative grammars is discriminative.

Example 4.4

Let grammar G(α) be

List > nil List > cons(α, List)

This grammar is discriminative. Consider Φ = { α 7→ 〈List, G〉 }. Since Φ shares

variables with G we rename it apart to obtain 〈List1, G′〉, where G′ is:

List1 > nil List1 > cons(α, List1)

(The parameters are not renamed, since they are not variables). G(Φ) is

List > nil

List > cons(List1, List)

List1 > nil

List1 > cons(α, List1)

7 It applies also to any parametric grammar H and to each variable X such that 〈X〉H is parameterless.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 579

We will use the following notation, when it does not lead to ambiguity. Let G be a

discriminative parametric grammar, X a variable and~α = (α1, . . . , αk) the parameters

occurring in G. By the (parametric) type X(~α) we mean the family of sets defined

by X in G (more precisely the mapping from parameter valuations to sets, assigning

[[X]]G(Φ) to Φ). In the special case of a parameterless grammar G, type X is the set

[[X]]G. Let Φ = { α1 7→〈X1, G1〉, . . . , αk 7→〈Xk, Gk〉} be a parameter valuation, where

the grammars are discriminative and the parameters occurring in Gi are ~αi, for

i = 1, . . . , k. Then by type X(X1(~α1), . . . , Xk(~αk)) we mean the family of sets defined

by X in grammar G(Φ).

For instance, the mapping corresponding to variable List in grammar G(α) of the

last example can be called List(α). The mapping corresponding to List in G(Φ) can

be called List(List(α)).

Instances of parametric discriminative term grammars define sets of terms. Sim-

ilarly as in the non parametric case, we generalize this formalism to specify sets of

constrained terms. Assume a fixed constraint domain D.

Definition 4.5

A discriminative parametric extended term grammar (PED grammar) G is a finite set

of rules of the form

X > f(X1, . . . , Xn) or X > b

where f is an n-ary function symbol (n > 0), X is a variable, X1, . . . , Xn are variables

or parameters and b is a base symbol. Additionally, for each pair of rules X > t1
and X > t2 in G the sets [[t>1]] and [[t>2]] are disjoint (where u> stands for u with

each occurrence of a variable or a parameter replaced by >).

The definition of an instance of a grammar applies to parametric extended

grammars too. A parameterless instance of such grammar defines a set of constrained

atoms for each variable, as described in section 2.2.2.

Example 4.6

Take the grammar G(α) from the previous example. Using Φ = { α 7→
〈Any, {Any>>}〉} we obtain G(Φ) defining lists of arbitrary constrained terms. For-

mally, 〈List, G(Φ)〉 defines the set { c [][t1, . . . , tn] | n> 0, ti are terms } (as any term

of the form [>, . . . ,>] can be generated from List in grammar G(Φ).

4.4 Operations on extended parametric term grammars

We now extend the operations of section 2.1.2 to extended parametric discriminative

term grammars. For each of them we show how the resulting grammar approximates

a relevant set operation for each parameterless instance of the arguments.

4.4.1 Emptiness check and construction

A variable X in a PED grammar G will be called nullable if no variable-free term

(i.e. a term consisting entirely of function symbols, base symbols and parameters)

can be derived from X in G. So for a nullable X, [[X]]G(Φ) = ∅ independently

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

580 W. Drabent et al.

from Φ. Similarly as in non parametric case, algorithms for finding nullable symbols

in context-free grammars can be applied here. Notice that for a non nullable X

there exists a Φ such that [[X]]G(Φ) 6= ∅ (provided that the grammar does not contain

a base symbol b, for which [[b]] = ∅).
The construction operation extends naturally to parametric grammars. Let

〈X1, G1〉, . . . , 〈Xn, Gn〉 be set descriptors with pairwise disjoint variables and let f

be an n-ary function symbol. By f(〈X1, G1〉, . . . , 〈Xn, Gn〉) we denote set descriptor

〈Y ,G〉, where Y is a new variable and

G = {Y >f(X1, . . . , Xn) } ∪ G1 ∪ . . . ∪ Gn
(When the set descriptors have some common variables then f(〈X1, G1〉, . . . , 〈Xn, Gn〉)
can be defined by renaming apart the variables in the descriptors.) Clearly:

Proposition 4.7

For any parameter valuation Φ the set descriptors f(〈X1, G1〉, . . . , 〈Xn, Gn〉)(Φ) and

f(〈X1, G1(Φ)〉, . . . , 〈Xn, Gn(Φ)〉) are identical (up to renaming of the variables intro-

duced while building the grammar instances and of the variable introduced by the

construction operation).

If G1(Φ), . . . , Gn(Φ) do not contain parameters then

f([[X1]]G1(Φ), . . . , [[Xn]]Gn(Φ)) = [[Y]]f(〈X1 ,G1〉 ,...,〈Xn,Gn〉)(Φ)

4.4.2 Intersection

Let G1 and G2 be PED grammars. We assume without loss of generality that they

have no common variables, but they may have common parameters. We define an

operation ∩̇ on such grammars; the result is a PED grammar G1∩̇G2. The variables

of G1∩̇G2 include the variables of G1, the variables of G2 and new variables

corresponding to pairs (X,Y) where X is a variable of G1 and Y is a variable of

G2. The latter will be denoted X∩̇Y .

We define G1∩̇G2 to consist of the rules of G1, those of G2 and for each X >s ∈ G1

and Y > t ∈ G2 at most one rule as described below.

• X∩̇Y > f(s1 ◦ t1, . . . , sn ◦ tn) (n > 0), provided that s = f(s1, . . . , sn), t =

f(t1, . . . , tn) and si ◦ ti is the following symbol:

1. it is the variable si∩̇ti, if si and ti are variables,

2. it is si, if si and ti are parameters,

3. it is the variable Y , if one of the terms si, ti is Y and the other is a

parameter.

• X∩̇Y > u, provided that at least one of s, t is a base symbol and the following

holds. Let us denote {s1, s2} = {s, t} where s1 is a base symbol. Now

— s1 = > and u = s2, or s2 = > and u = s1, or

— s2 is a constant c ∈ [[s1]] and u is c, or

— s2 is a base symbol, [[s1]] ⊆ [[s2]] and u = s1, or [[s2]] ⊆ [[s1]] and u = s2.8

8 According to our assumptions on base sets, [[s1]] ∩ [[f(>, . . . ,>)]] = ∅. If s2 = f(. . .) then no rule
corresponding to X > s, Y > t should appear in G1∩̇G2.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 581

Some decisions in this construction are arbitrary. Instead of choosing si ◦ ti to be

si when both si, ti are parameters, one may choose ti. For the case of si, ti being a

parameter and a variable one may choose si ◦ ti to be the parameter. In the latter

case we expect that our choice gives more useful results when further operations

are applied to G1∩̇G2, as a variable corresponds to a known set of rules while a

parameter does not.

We notice that by construction G1∩̇G2 is a PED grammar and all its parameters (if

any) appear in G1 or in G2. The construction guarantees also the following property.

Proposition 4.8

For every parameter valuation Φ such that G1(Φ) and G2(Φ) are parameterless

grammars we have

[[X]]G1(Φ) ∩ [[Y]]G2(Φ) ⊆ [[X∩̇Y]](G1∩̇G2)(Φ)

for all variables X in G1 and Y in G2.

Proof

Denote G1∩̇G2 by G. It is sufficient to show that if X ⇒∗G1(Φ) t, Y ⇒∗G2(Φ) u and

[[t]]∩[[u]] 6= ∅ then there exists a term w such that X∩̇Y ⇒∗G(Φ) w and [[t]]∩[[u]] ⊆ [[w]].

The proof is by induction on max(|t|, |u|) (where |s| is the size of a term s).

If t = > then X > > ∈ G1, X∩̇Y ⇒∗G(Φ) u and u is the required w. Similarly, w is

t in the symmetric case of u = >.

If none of t, u is > and one of them is a base symbol then the other is a base

symbol or a constant. Two cases are possible: [[t]] ⊆ [[u]], rule X∩̇Y > t is in G and

w = t, or [[t]] ⊇ [[u]], X∩̇Y >u ∈ G and w = u.

Otherwise, t = f(t1, . . . , tn), u = f(u1, . . . , un) (for some function symbol f of arity

n > 0) and the considered derivations are X ⇒ f(. . .) ⇒∗ t and Y ⇒ f(. . .) ⇒∗
u. Grammar G contains a rule X∩̇Y >f(X1 ◦ Y1, . . . , Xn ◦ Yn) and G(Φ) contains

X∩̇Y >f(Z1, . . . , Zn), where Xi ◦ Yi = Zi unless Xi ◦ Yi is a parameter. For each

i = 1, . . . , n we have three cases:

1. Xi ◦ Yi is the variable Xi∩̇Yi. Xi ⇒∗G1(Φ) ti and Yi ⇒∗G2(Φ) ui. Clearly,

max(|ti|, |ui|) < max(|t|, |u|). By the inductive assumption there exists a term wi
such that Zi = Xi∩̇Yi ⇒∗G(Φ) wi and [[ti]] ∩ [[ui]] ⊆ [[wi]].

2. Xi ◦ Yi is a parameter from G1. Then Zi ⇒∗ ti both in G1(Φ) and G(Φ).

3. Xi ◦ Yi is a variable from G1 or G2. Thus Zi ⇒∗ ti both in G1(Φ) and G(Φ), or

Zi ⇒∗ ui both in G2(Φ) and G(Φ).

This shows that for i = 1, . . . , n there exists a wi such that Zi ⇒∗G(Φ) wi and

[[ti]] ∩ [[ui]] ⊆ [[wi]]. Hence X∩̇Y ⇒∗G(Φ) f(w1, . . . , wn) and [[t]] ∩ [[u]] ⊆ [[f(w1, . . . , wn)]].

q

Example 4.9

Grammar G1 describes parametric non-empty lists and grammar G2 specifies lists

of natural numbers:

G1 : NEList > cons(α,List)

List > nil

List > cons(α,List)

G2 : ListN > nil

ListN > cons(Nat,ListN)

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

582 W. Drabent et al.

Computing NEList ∩̇ListN gives a rule:

NEList ∩̇ListN > cons(Nat,List ∩̇ListN)

The new variable List ∩̇ListN is defined by the following rules:

List ∩̇ListN > nil

List ∩̇ListN > cons(Nat,List ∩̇ListN)

Thus, we obtained a non-empty list of natural numbers as a result.

4.4.3 Union

Let G1 and G2 be PED grammars. We assume without loss of generality that they

have no common variables, but they may have common parameters. We define an

operation ∪̇ on such grammars; the result is a PED grammar G, denoted G1∪̇G2.

The variables of G include the variables of G1, the variables of G2 and new variables

corresponding to pairs (X,Y) where X is a variable of G1 and Y is a variable of

G2. The latter will be denoted X∪̇Y .

Now G consists of the rules of G1∪G2 and, for each X∪̇Y , of the rules constructed

as follows. Let R = { t | X > t ∈ G1 or Y > t ∈ G2 }. If > ∈ R then G contains

X∪̇Y > >, otherwise:

1. If f(s1, . . . , sn) ∈ R (n > 0) and no other f(t1, . . . , tn) is in R then G contains

X∪̇Y > f(s1, . . . , sn).

2. For each pair f(s1, . . . , sn), f(t1, . . . , tn) of distinct elements of R (n > 0),9

G contains X∪̇Y > f(s1 ◦ t1, . . . , sn ◦ tn), where each si ◦ ti is

• si∪̇ti, if si, ti are variables,

• si, if si = ti and is a parameter,

• a new variable V otherwise. In this case also rule V > > is in G.

3. X∪̇Y > s is in G for each s ∈ R such that s is a constant or a base symbol

and [[s]] 6⊆ [[t]] for any base symbol t ∈ R, t 6= s.

The result of the construction is a PED grammar. Its parameters (if any) may

only originate from G1 and G2. The construction is similar to that for discriminative

term grammars. The union involving parameters is approximated by > unless both

arguments are the same parameter. This is because we want the construction to

approximate the union for all parameter valuations.

Proposition 4.10

For every parameter valuation Φ such that G1(Φ) and G2(Φ) are parameterless

grammars we have

[[X]]G1(Φ) ∪ [[Y]]G2(Φ) ⊆ [[X∪̇Y]]G1∪̇G2(Φ)

for all variables X in G1 and Y in G2.

9 Notice that for a given f at most two such elements exist.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 583

Proof

Denote [[X∪̇Y]]G1∪̇G2(Φ) by R. It is sufficient to show that if X ⇒∗G1(Φ) s or Y ⇒∗G2(Φ) s,

where s is ground, then [[s]] ⊆ R. We show this by induction on the derivation

length. We can assume that the same renaming of the variables of Φ has been used

in constructing G1(Φ), G2(Φ) and (G1∪̇G2)(Φ).

Assume that V ⇒H s0 ⇒∗H s, where V = X, H = G1(Φ) or V = Y , H = G2(Φ).

We have two cases.

• s0 is a constant or base symbol (so s0 = s). There is a rule X∪̇Y > s′ in G1∪̇G2

such that [[s0]] ⊆ [[s′]]. We have [[s]] ⊆ [[s′]] ⊆ R.

• s0 = f(X1, . . . , Xn) (where n > 0), s = f(u1, . . . , un) and Xi ⇒∗H ui for each i =

1, . . . , n. Grammar G1∪̇G2 contains a rule X∪̇Y > > or X∪̇Y > f(Y1, . . . , Yn).

In the first case the result is immediate. In the second case the rule have been

introduced by clause 1 or clause 2 of the definition of G1∪̇G2.

In the case of clause 1, (G1∪̇G2)(Φ) contains X∪̇Y > f(X1, . . . , Xn) and Yi = Xi

whenever Yi is a variable. X∪̇Y ⇒ f(X1, . . . , Xn) ⇒∗ s is a derivation of

(G1∪̇G2)(Φ), as H ⊆ (G1∪̇G2)(Φ), Hence [[s]] ⊆ R.

In the case of clause 2, each Yi is si ◦ ti. If si ◦ ti is si∪̇ti then si, ti are variables,

one of them is Xi and by the inductive assumption [[ui]] ⊆ [[si∪̇ti]](G1∪̇G2)(Φ),

as Xi ⇒∗H ui. If si ◦ ti is a parameter then si∪̇ti = si = ti. In (G1∪̇G2)(Φ) this

parameter is replaced by Xi. Notice that in this grammar Xi ⇒∗ ui. The last

possibility is that si◦ti is a variable W and W > > is in G1∪̇G2. So (G1∪̇G2)(Φ)

contains a rule X∪̇Y > f(r1, . . . , rn) where ri = si ◦ ti and [[ui]] ⊆ [[ri]](G1∪̇G2)(Φ),

for i = 1, . . . , n. Hence, [[s]] = [[f(u1, . . . , un)]] ⊆ [[f(r1, . . . , rn)]](G1∪̇G2)(Φ) ⊆
[[X∪̇Y]](G1∪̇G2)(Φ). q

The requirement that G1, G2 have no common variables is inessential when G1 =

G2. This holds both for ∩̇ and ∪̇ and follows from the proofs of the last two

propositions.

Example 4.11

Consider the grammars from Example 4.9, G1 specifying parametric non-empty lists

and G2 describing lists of natural numbers.

G1 : NEList > cons(α,List)

List > nil

List > cons(α,List)

G2 : ListN > nil

ListN > cons(Nat,ListN)

The rules defining NEList ∪̇ListN are

NEList ∪̇ListN > nil

NEList ∪̇ListN > cons(V ,List ∪̇ListN)

V > >
where V is a new variable. There are similar rules for List ∪̇ListN:

List ∪̇ListN > nil

List ∪̇ListN > cons(W,List ∪̇ListN)

W > >

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

584 W. Drabent et al.

4.4.4 Generalized projection for parametric sets

Let 〈Y ,G〉 be a set descriptor, where G is a PED grammar, and t be a term. We are

going to construct a PED grammar defining (a superset of) t−X([[Y]]G(Φ)).

We first construct a mapping ξ(t, G, Y) assigning to each subterm occurrence u in

t a variable or a parameter Vu. Vu occurs in G or is a new variable Any. Mapping

ξ(t, G, Y) has the following properties:

1. Vt is Y .

2. If u = f(u1, . . . , un) (n > 0) and Vu is a parameter or Any then Vu1
= . . . =

Vun = Any.

3. If u = f(u1, . . . , un) (n > 0) and Vu is a variable of G then

• Vu > f(Vu1
, . . . , Vun) ∈ G, or

• Vu > b ∈ G, where b is a base symbol, u ∈ [[b]] and Vu1
= . . . = Vun = Any.

(Notice that if n 6= 0 then b = >.)

If ξ(t, G, Y) exists then it is unique, because the grammar is discriminative. ξ(t, G, Y)

can be constructed by an obvious algorithm similar to that described in section

2.1.2.

Proposition 4.12

Let G be a PED grammar and G′ = G∪ {Any > >}. Let t be a term and X1, . . . , Xk

(k > 0) be the occurrences of a variable X in t. If ξ(t, G, Y) exists then

t−X([[Y]]G(Φ)) ⊆
⋂
i

[[VXi]]G′(Φ)

for any parameter valuation Φ such that G(Φ) is parameterless.

If ξ(t, G, Y) does not exist or
⋂
i [[VZi]]G′(Φ) = ∅ for some variable Z of t then

t−X([[Y]]G(Φ)) = ∅.

Proof

Consider a Φ as above. Let H = G(Φ) and H ′ = G′(Φ).

We begin by showing the following property. Let c [] u be a constrained term and

Vu be some variable or parameter of G′. If c [] uθ ∈ [[Vu]]H ′ then Vu satisfies the

conditions for ξ(t, G, Y) above (for some n, Vu1
, . . . , Vun).

Assume that u is not a variable (otherwise the conditions hold vacuously) and that

c [] uθ ∈ [[Vu]]H ′ . For Vu being a parameter or Any the conditions trivially hold. Let

Vu be a variable of G. We have Vu ⇒∗H ′ s and c [] uθ ∈ [[s]], where s = f(s1, . . . , sn),

u = f(u1, . . . , un) and Vu ⇒H ′ f(X1, . . . , Xn), or s is a base symbol and Vu ⇒H ′ s. Then

a rule Vu > f(X1, . . . , Xn), respectively Vu > s, exists in G; the rule has the required

properties.

Now we show that if c [] tθ ∈ [[Y]]H then mapping ξ(t, G, Y) exists and for any

subterm u of t, c [] uθ ∈ [[Vu]]H ′ . The latter is equivalent to existence of a ground

term s such that Vu ⇒∗H ′ s and c [] uθ ∈ [[s]].

The proof is by induction. Let u be a subterm of t and

U = { u′ | u is a proper subterm of u′, u′ is a subterm of t }.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 585

Assume that the required mapping exists on U. (So c [] u′θ ∈ [[Vu′]]H ′ for each u′ ∈ U
and the conditions for ξ(t, G, Y) are satisfied.) We show that such a mapping exists

for U ∪ {u}. It is sufficient to show that c [] uθ ∈ [[Vu]]H ′ , then it follows that Vu
satisfies the conditions for ξ(t, G, Y) from the property discussed above.

If u = t then c [] uθ ∈ [[Vu]]H ′ obviously holds. Otherwise there exists a subterm

u′ = f(u1, . . . , un) of t such that u = ui for some i, and a ground term s′ such that

Vu′ ⇒∗H ′ s′ and c [] u′θ ∈ [[s′]].
If Vu′ is a parameter or Any then Vu is Any and c [] uθ ∈ [[Any]]H ′ . The same

reasoning is applicable when Vu′ is a variable of G and Vu′ > b ∈ G, as then b = >
and Vu = Any.

It remains to consider the case of Vu′ being a variable of G such that Vu′ ⇒H ′

f(Vu1
, . . . , Vun) ⇒∗H ′ s′ = f(s1, . . . , sn). So Vu′ > f(Vu1

, . . . , Vun) ∈ G and Vui ⇒∗H ′ si.
From c [] f(u1, . . . , un)θ ∈ [[s′]] it follows that c [] uθ ∈ [[si]] ⊆ [[Vu]]H ′ . This completes

the inductive proof.

Thus, if c [] tθ ∈ [[Y]]H then c []Xiθ ∈ [[VXi]]H ′ for any occurrence Xi of X in t.

Hence

c []Xiθ ∈⋂
i

[[VXi]]G′(Φ) and thus t−X([[Y]]G(Φ)) ⊆
⋂
i

[[VXi]]G′(Φ).

Notice that if ξ(t, G, Y) does not exist or the intersection above is empty, then

c [] tθ 6∈ [[Y]]H for any c, θ, and t−Z [[Y]]H = ∅ for any variable Z . q

The proposition suggests the following algorithm to compute a set descriptor

t−X(〈Y ,G〉) giving an approximation of the set t−X([[Y]]G(Φ)).

1. Compute ξ(t, G, Y).

2. For each variable Z with the occurrences Z1, . . . , Zk in t, apply the intersection

algorithm for PED grammars (section 4.4.2) to compute (an approximation

of)
⋂
i [[VZi]]G′(Φ). This results in a grammar GZ = G′ ∩̇ . . . ∩̇G′ and a variable

Z ′ = Z1 ∩̇ . . . ∩̇Zk such that
⋂
i [[VZi]]G′(Φ) ⊆ [[Z ′]]GZ (Φ).

3. If ξ(t, G, Y) does not exist or some Z ′ is nullable in GZ then return

t−X(〈Y ,G〉) = 〈V , ∅〉 as the result (because t−Z (〈Y ,G〉) = ∅, for any Z).

4. Otherwise, return t−X(〈Y ,G〉) = 〈X ′, GX〉.
From the last proposition and the appropriate property of the grammar intersection

operation it follows that if the algorithm produces t−X(〈Y ,G〉) = 〈V ,H〉 then

t−X([[Y]]G(Φ)) ⊆ [[V]]H(Φ).

4.4.5 Inclusion checking for parametric sets

The algorithms for checking inclusion of the sets defined by discriminative term

grammars can be generalized to extended parametric grammars.

The problem is stated as follows. Let G1 and G2 be PED grammars. Let X

be a variable in G1 and let Y be a variable in G2. We want to check whether

[[X]]G1(Φ) ⊆ [[Y]]G2(Φ) for any valuation Φ such that G1(Φ), G2(Φ) are parameterless.

We will denote this fact by 〈X,G1〉 v 〈Y ,G2〉 (often abbreviated to X v Y).

We begin by introducing some notions. By C(X,Y) we mean the least set of pairs

(of variables or parameters) such that

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

586 W. Drabent et al.

• (X,Y) ∈ C(X,Y) and

• if (X ′, Y ′) ∈ C(X,Y), X ′>f(X1, . . . , Xn) ∈ G1 and Y ′>f(Y1, . . . , Yn) ∈ G2 then

(X1, Y1), . . . , (Xn, Yn) ∈ C(X,Y).

An algorithm checking whether X v Y follows immediately from the following

property and from finiteness of C(X,Y).

Proposition 4.13

Let G1, G2 be PED grammars and X,Y be variables of, respectively, G1, G2. Assume

that for each pair (V ,W) ∈ C(X,Y)

• if V is a parameter then V = W or rule W > > is in G2,

• if V is a variable then

— for each rule V > f(V1, . . . , Vn) ∈ G1 (n > 1) there exists a rule W >

f(. . .) ∈ G2 or W > > ∈ G2, and

— for each rule V > c ∈ G1, where c is a constant or base symbol, there exists

a W > c′ ∈ G2 such that [[c]] ⊆ [[c′]].

Then X v Y .

The reverse implication holds provided G1 does not have nullable symbols, [[c]] 6= ∅
for each base symbol c, and if [[c]] ⊆ [[W]]G2(Φ) for some Φ, base symbol or constant

c and variable W of G2 then G2 contains a rule W > c′ where [[c]] ⊆ [[c]]′. Intuitively,

the last condition means that no set [[c]] is described by G2 by more than one rule.

Proof

Assume that the conditions are satisfied. For any (V ,W) ∈ C(X,Y) and any

derivation V ⇒∗G1
t, where t is a variable-free term, there exists a derivation W ⇒∗G2

u

such that [[t]]G1(Φ) ⊆ [[u]]G2(Φ) for any Φ. This can be shown by induction on the

structure of t. If a constrained term w is in [[V]]G1(Φ) then w ∈ [[t]]G1(Φ) for some t as

above. Hence w ∈ [[W]]G2(Φ), which completes the “if” part of the proof.

Assume that the conditions are not satisfied, for some pair (V ,W) ∈ C(X,Y). We

show that for some parameter valuation Φ there exists a constrained term t such

that t ∈ [[V]]G1(Φ) and t 6∈ [[W]]G2(Φ). We enumerate the possible cases, in each of

them such Φ and t obviously exist.

If V is a parameter then W is a different parameter or a variable such that

[[W]]G2(Φ) 6= [[>]]. For V being a variable we have two cases. V > f(. . .) ∈ G1 and

no W > f(. . .) is in G2, or V > c ∈ G1 and for each W > c′ ∈ G2 [[c]] 6⊆ [[c]]′, hence

[[c]] ∩ [[c]]′ = ∅ (by our restrictions on base sets).

Now it is easy to construct a u ∈ [[X]]G1(Φ) such that u 6∈ [[Y]]G2(Φ) by induction on

the definition of C(X,Y) (on the number of applications of the second rule of the

definition of C(X,Y) needed to show that (V ,W) ∈ C(X,Y)). q

We illustrate the check by a simple example.

Example 4.14

G1 : Y > cons(α, Z)

Z > nil

Z > cons(α, Y)

G2 : X > nil

X > cons(α,X)

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 587

We want to check the inclusion

[[Y]]G1(Φ) ⊆ [[X]]G2(Φ)

for arbitrary parameter valuation Φ such that G1(Φ) and G2(Φ) are parameterless.

For each pair of C(Y ,X) the conditions from the proposition are to be checked.

C(Y ,X) contains (Y ,X), (α, α), (Z,X).

Consider (Y ,X). For the rule Y > cons(α, Z) ∈ G1 there exists X > cons(α,X) ∈
G2. For (α, α) the check is immediate. For (Z,X), the following pairs of rules are

found to satisfy the conditions.

Z > nil ∈ G1, X > nil ∈ G2

Z > cons(α, Y) ∈ G1, X > cons(α,X) ∈ G2

So the check is successfully completed.

4.4.6 Set matching

In our approach, a set of allowed calls of a polymorphic procedure will be specified

by a set descriptor 〈Y ,G〉 where G is a PED grammar. A particular call t is allowed

if there exists a valuation of parameters Φ such that t ∈ [[Y]]G(Φ).

A set of actual calls may be described by another set descriptor 〈X,H〉, where H

is a PED grammar which has no parameter common with G.

We want to be sure that all actual calls are allowed. As the specifications are

parametric we have to refer to their instances. The question is then, whether for any

valuation Ψ of the parameters of H there exists a parameter valuation Φ for G such

that [[X]]H(Ψ) ⊆ [[Y]]G(Φ). Additionally we are interested in obtaining a possibly

small set [[Y]]G(Φ). We will call this a set matching problem.

A solution can be obtained by a modification of the set inclusion algorithm

discussed above. In this extension the parameters of H are handled as constants

while searching for such bindings of the parameters of G that the inclusion holds.

For a given X,H and Y ,G the matching algorithm constructs a parameter

valuation Φ (possibly containing parameters from H) such that for any Ψ for

which H(Ψ) is parameterless

[[X]]H(Ψ) ⊆ [[Y]]G(Φ)(Ψ).

(This is expressed as 〈X,H〉 v 〈Y ,G(Φ)〉 in the notation of the previous section.)

To describe matching we recall how the inclusion algorithm works. Applied to

X in H and Y in G, it checks the conditions of Proposition 4.13 for each pair

(s, t) ∈ C(X,Y). The difference with the matching algorithm is in the treatment of

a (s, t) where t is a parameter (of G). In such case the inclusion algorithm answers

“no”. In matching we want to instantiate the parameters of G so that inclusion

holds.

So in this case the matching algorithm binds the parameter t to s (which is a

variable or a parameter). Notice that several different bindings for t may be produced

since t may appear in several pairs in C .

As C(X,Y) is finite, the checking terminates with failure or success. In the latter

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

588 W. Drabent et al.

case a set of bindings is produced. From these bindings we now construct a parameter

valuation Φ. This is done separately for each parameter α. Let {α 7→ s1, . . . , α 7→ sk}
(k > 1) be the set of bindings for α produced by the algorithm. The valuation Φ(α)

is constructed by considering the following cases:

• If k = 1 then Φ(α) = 〈s1, H〉.
• If k > 1 and all si are variables of H , then Φ(α) = 〈s1∪̇ . . . ∪̇sk, H∪̇ . . . ∪̇H〉.
• Otherwise k > 1 and some si is a parameter. Then Φ(α) = 〈X, {X >>}〉 where

X is a new variable.

Let α1, . . . , αn be all the parameters of G that appear in C(X,Y). Applying the

above stated rules to each of them we obtain Φ = { α1 7→Φ(α1), . . . , αn 7→Φ(αn) }.
This completes the description of the matching algorithm. It remains to show that

if it succeeds then [[X]]H(Ψ) ⊆ [[Y]]G(Φ)(Ψ), for any parameter valuation Ψ. Assume

that Φ(αi) = 〈Xi, Gi〉 (for i = 1, . . . , n) and that Xi was renamed into X ′i while

constructing G(Φ). We apply the inclusion checking algorithm to X,H and Y ,G(Φ)

and compare its actions with those of the matching algorithm for X,H and Y ,G.

Whenever the matching algorithm produces a pair (s, t) of two variables, the same

pair is produced by the inclusion checking algorithm. Whenever the former produces

an (s, αi) then the second produces (s, X ′i). Grammar Gi has been constructed in such

a way that [[s]]H(Ψ) ⊆ [[Xi]]Gi(Ψ). As [[Xi]]Gi(Ψ) = [[X ′i]]G(Φ)(Ψ) we have [[s]]H(Ψ) ⊆
[[X ′i]]G(Φ)(Ψ). Hence for each pair (s, t) produced by the inclusion checking algorithm,

[[s]]H(Ψ) ⊆ [[t]]G(Φ)(Ψ). This completes the proof.

Example 4.15

This example illustrates set matching. The parametric grammars H and G specify

different variants of lists with elements being triples.

H : L > nil

L > cons(T ,L)

T > t(B,N, γ)

B > tt

B > ff

N > nat

G : S > nil

S > cons(E, S)

E > t(α, α, β)

We want to match 〈L,H〉 and 〈S, G〉. We obtain C(L, S) =

{(L, S), (T ,E), (B, α), (N, α), (γ, β)}. The checks succeed with parameter bindings

{ α 7→ B, α 7→ N, β 7→ γ }.
The result is the parameter valuation

Φ = { α 7→ 〈B∪̇N,H∪̇H〉, β 7→ 〈γ, H〉 }

5 Locating program errors with parametric specifications

The call-success semantics discussed in Section 3 describes a program (together with

its set of initial goals) by the set of calls and the set of successes. So the information

about which successes correspond to which calls is lost. A more precise semantics

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 589

can be given by replacing the set of successes by the set of pairs of a call and a

corresponding success.

The formalism of discriminative grammars does not provide useful approximations

of such semantics. If pairs (call1 , success1), (call2 , success2) are in such approximation

then (call1 , success2), (call2 , success1) are there too. Useful approximations can be

however provided by parametric discriminative grammars. With such a grammar

one can specify a family of specifications. Correctness w.r.t. such a family means the

following. Whenever a call is correct w.r.t. some specification from the family then

any its success is correct w.r.t. this specification. Additionally, each call is correct

w.r.t. some of the specifications.

In this section we address the question of partial correctness of programs w.r.t.

parametric specifications. First we state formally the problem and show that it can

be re-formulated in terms of parametric set constraints. We show how to employ

the constraints to check whether a program is correct w.r.t. a given specification

and how to compute a specification for which the program is correct. Then we

formalize the notion of error and discuss how the correctness checking procedure

locates errors.

5.1 Parametric specifications and program correctness

By a parametric specification we mean a set of specifications.10 We are interested

in specifications given by parametric grammars, this is however insignificant for

the purposes of this section. Here we define the notion of correctness for such

specifications and prove a sufficient condition for such correctness.

Definition 5.1

Let Spec be a parametric specification. A call c []A in an LD-derivation is correct

w.r.t. Spec if there exists some (Pre, Post) ∈ Spec such that c []A ∈ Pre. A success

c′ []Aθ corresponding to a call c []A is correct w.r.t. Spec if c′ []Aθ ∈ Post, for any

(Pre, Post) ∈ Spec such that c []A ∈ Pre.
A program P with a set of initial goals G is correct w.r.t. Spec iff in any LD-

derivation of P starting from a goal from G all the calls and successes are correct

w.r.t. Spec. A program P is correct w.r.t. Spec iff P with the set of initial goals⋃{Pre | (Pre, Post) ∈ Spec } is correct w.r.t. Spec.

We impose following restrictions on parametric specifications. If (Pre, Post) is a

member of such a specification then Pre, Post are closed under instantiation and

Pre ⊇ Post.11 The correctness criterion from Proposition 3.1 can now be generalized.

Theorem 5.2

Let P be a CLP program, G a set of atomic initial goals and Spec be a parametric

specification. Let each (Pre, Post) ∈ Spec respect constraints. A sufficient condition

for P with G being correct w.r.t. Spec is:

10 Remember that a (non-parametric) specification is a pair of sets of (constrained) atoms.
11 The latter condition is not essential. To abandon it, it is sufficient to replace each Postl in Theorem

5.2 by Prel ∩ Postl .

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

590 W. Drabent et al.

1. For each clause H ← B1, . . . , Bn and any (Pre0, Post0) ∈ Spec there exist

(Pre1, Post1), . . . , (Pren, Postn) ∈ Spec such that for j = 0, . . . , n, any substitu-

tion θ and constraint c

if c []Hθ ∈ Pre0, c []B1θ ∈ Post1, . . . , c []Bjθ ∈ Postj
then

c []Bj+1θ ∈ Prej+1, if j < n

c []Hθ ∈ Post0, if j = n

2. Each element of G is in some Pre, such that (Pre, Post) ∈ Spec.
(As explained in section 3.1, the restriction to atomic initial goals is not substantial).

Proof

Consider the ith goal Qi of an LD-derivation starting from a goal Q0 ∈ G. We show

that the call and the successes occurring in Qi are correct. The proof is by induction

on i. If i = 0 then Qi contains no successes and the call in Qi is obviously correct.

Let i > 0. Consider the call in Qi. (The case of the goal containing no call is

considered later on). Qi is of the form c [](Bj+1, . . . , Bn,~A)τ, where j < n, for some

clause H ← B1, . . . , Bn of P , and the derivation is

· · ·
Qi0 = c0 []A,~A

Qi1 = c0 [](B1, . . . , Bn,~A)θ0

· · ·
Qi2 = c1 [](B2, . . . , Bn,~A)θ0θ1

· · ·
· · ·

Qij+1
= cj [](Bj+1, . . . , Bn,~A)θ0 · · · θj
· · ·

where ij+1 = i, θ0 · · · θj = τ and the call cl−1 []Blθ0 · · · θl−1 from a goal Qil succeeds

in the goal Qil+1
(for l = 1, . . . , j). The calls from Qi0 , . . . , Qij are correct, by the

inductive assumption. So there exist (Pre0, Post0), . . . , (Prej , Postj) ∈ Spec such that

c0 []A ∈ Pre0 and cl−1 []Blθ0 · · · θl−1 ∈ Prel for l = 1, . . . , j.

Now we show that the successes of these calls are correct. This means

cl []Blθ0 · · · θl ∈ Postl for l = 1, . . . , j and for any (Pre0, Post0), . . . , (Prej , Postj)

as above. Notice that this includes the (Pre1, Post1), . . . , (Prej , Postj) from Condition

1 of the Theorem.

The successes from Qi2 , . . . , Qij are correct by the inductive assumption. Also

the success from Qij+1
of cj−1 []Bjθ0 · · · θj−1 is correct. To show this remove (the

instances of) Bj+1, . . . , Bn,~A from the goals of the derivation Qij , . . . , Qij+1
, obtaining

a derivation to which the inductive assumption applies. (The derivation is shorter

than i and starts from an atomic goal.) Other procedure calls (from goals between

Qij and Qij+1
) may succeed in Qij+1

. These successes are correct by the same reasoning.

As all Prel , Postl are instance closed, we have cj []Aτ ∈ Pre0 and cj []Blτ ∈ Postl
for l = 1, . . . , j. Moreover, Aτ = Hτ, as Aθ0 = Hθ0. From condition 1 of the Theorem

it follows that the call cj []Bj+1τ is correct.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 591

It remains to consider the case when Qi does not contain a call. So Qi is of the

form c [] and the initial goal Q0 succeeds in Qi. Let Q0 = c0 []A. If A is a constraint

then i = 1 and Q1 = c0, A []. As the specification respects constraints, the success in

Q1 is in Post whenever Q0 ∈ Pre and (Pre, Post) ∈ Spec. If A is not a constraint then

we have a derivation as above, with j = n > 0 (so Qi = Qin+1
), Qi0 being the initial

goal (so i0 = 0) and ~A being empty. Reasoning as previously we obtain that the

premises of the implication in the theorem hold. Hence cn []Aτ = cn []Hτ ∈ Post0.

As the choice of Pre0 was arbitrary, this holds for any (Pre0, Post0) ∈ Spec such

that c0 []A ∈ Pre0. So the success of c0 []A is correct. q

In our approach parametric specifications are given by parametric grammars. We

assume that such a grammar G has two distinguished variables Call , Success . The

specification is then

Spec = { ([[Call]]G(Φ), [[Success]]G(Φ)) | G(Φ) is parameterless }.
We require that each specification (Pre, Post) ∈ Spec respects constraints. Addi-

tionally we require that for each p such that Success >p(~Y) ∈ G, each parameter

occurring in 〈p(~Y)〉G occurs also in 〈p(~X)〉G, where Call >p(~X) ∈ G. Informally,

this means that procedure successes may only depend upon those parameters on

which the corresponding procedure calls depend. This assures that to each Pre there

corresponds exactly one Post such that (Pre, Post) ∈ Spec.

Each grammar providing a specification can be seen as consisting of two parts.

One is fixed for a given programming language and specifies the semantics of

constraint predicates. The second is given by the user and describes the predicates

defined by her program. Real CLP languages have built-in predicates, they can be

treated by our method like constraint predicates.

5.2 Correctness checking

In this section we discuss checking the verification conditions of Theorem 5.2 with

respect to a parametric specification given by a PED grammar. We generalize to

such specifications the ideas of section 3.2.

Similar to the parameterless case, each implication from Theorem 5.2 can be

expressed by a system Fj(C) of constraints consisting of

X > H−X(Call0) ∩
j⋂
i=1

Bi
−X(Success i) (4)

(where C = H ← B1, . . . , Bn is the considered clause, 0 6 j 6 n and k ranges over

the occurrences of X in the considered atom) for each variable X occurring in C ,

and of the

Call j+1 > Bj+1 if j < n,

Success0 > H if j = n.
(5)

So for the condition 1, from the theorem to hold it is sufficient that for each choice

of (Pre0, Post0) ∈ Spec there exist (Pre1, Post1), . . . , (Pren, Postn) ∈ Spec such that

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

592 W. Drabent et al.

each constraint system Fj(C) (j = 0, . . . , n) has a model I in which I(Call i) = Prei,

I(Success i) = Posti, for i = 0, . . . , n.

Now assume that the specification is given by a parametric grammar G. A

particular (Pre0, Post0) is given by a parameterless instance G(Φ) of G for some

parameter valuation Φ: Pre0 = [[Call]]G(Φ), Post0 = [[Success]]G(Φ). For any such Φ

we are looking for Φ1, . . . ,Φn describing, respectively, (Pre1, Post1), . . . , (Pren, Postn).

As the latter depend upon Φ, the grammars of Φ1, . . . ,Φn may be parametric, with

the parameters originating from grammar 〈Call〉G. Φ1, . . . ,Φn should be chosen in

such a way that for any Φ, each Fj(C) has a model I in which

I(Call0) = [[Call]]G(Φ), I(Success0) = [[Success]]G(Φ),

I(Call i) = [[Call]]G(Φi)(Φ), I(Success i) = [[Success]]G(Φi)(Φ),
(6)

for i = 1, . . . , n. This can be done in the following way.

Assume that Φ1, . . . ,Φj (0 6 j 6 n) have already been found. We show how to

check the jth implication of Theorem 5.2 and, if j < n, how to construct Φj+1. Let

G0, . . . , Gj be the grammars G,G(Φ1), . . . , G(Φj) with the variables renamed apart

such that

1. Call , Success in G(Φi) are renamed into, respectively, Call i, Success i, for i =

1, . . . , j, and Call , Success in G into Call0, Success0;

2. no variable occurs in more than one grammar G0, . . . , Gj and no variable from

clause C occurs in G0, . . . , Gj .

Now Fj(C) ∪ G0 ∪ . . . ∪ Gj is to be converted into a discriminative grammar. For

each variable X in the clause, constraint (4) is transformed as described in section

3.2, by applying generalized projection and intersection operations from section 4.4.

First, for each A−X(Y) occurring in (4), by generalized projection we obtain

〈XA,GA〉 such that A−X([[Y]](G0∪...∪Gj)(Φ)) ⊆ [[XA]]GA(Φ). (Notice that Y is Call i or

Success i, thus [[Y]](G0∪...∪Gj)(Φ) = [[Y]]Gi(Φ).) Then the intersection operation (followed

by appropriate variable renaming) is applied to 〈XH,GH〉, 〈XB1
, GB1
〉, . . . , 〈XBj , GBj 〉,

resulting in 〈X,GX〉 such that

[[X]]GX (Φ) ⊇ H−X([[Call0]](G0∪...∪Gj)(Φ)) ∩
j⋂
i=1

Bi
−X([[Success i]](G0∪...∪Gj)(Φ))

In this way, we construct GX for each variable X of C . A renaming is ap-

plied so that the variables of the constructed grammars GX are distinct and

Call1, . . . ,Calln, Success1, . . . , Successn do not occur in any GX . Let G′ =
⋃
X GX .

Notice that G′ is discriminative and that, for any Φ, the least model of

(G′ ∪ G0 ∪ . . . ∪ Gj)(Φ) is a model of C = Fj(C)− {(5)} ∪ (G0 ∪ . . . ∪ Gj)(Φ).

Also, the constraint (5) is converted into a discriminative grammar G′′ in an

obvious way, as described in section 3.2. Each model of G′′ is a model of (5), each

model of (5) coincides with some model of G′′ on the variables of (5).

Take an arbitrary Φ (such that (G0 ∪ . . . ∪ Gj)(Φ) is parameterless). Let IΦ be the

least model of C = Fj(C)− {(5)} ∪ (G0 ∪ . . . ∪Gj)(Φ). We have IΦ(X) ⊆ [[X]]G′(Φ) for

any variable X occurring in C , and IΦ(Y) = [[Y]]Gi(Φ) for Y being Call i or Success i,

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 593

i = 1, . . . , j. Let us represent (5) as Y > A, where Y is Call j+1 or Success0 and A is,

respectively, Bj+1 or H . It holds that [[Y]]G′(Φ)∪G′′ = [[Y]]G′(Φ)∪{(5)} = [[A]]G′(Φ) ⊇ IΦ(A).

If j = n then Y is Success0, A is Bj+1 and it remains to apply the inclusion

algorithm to check whether

[[Success0]]G′(Φ)∪G′′ ⊆ [[Success]]G(Φ),

for any Φ. If yes then IΦ is a model of (5) (as [[Success]]G(Φ) = IΦ(Success0)), hence

a model of Fj(C). It has the required properties, as (6) holds for i = 1, . . . , n.

If j < n then Y is Call j+1, A is Bj+1 and Φj+1 has to be constructed. We have

IΦ(Bj+1) ⊆ [[Call j+1]]G′(Φ)∪G′′ , for any Φ. Now we apply the set matching operation

of section 4.4 to obtain Φj+1 such that for any Φ

[[Call j+1]]G′(Φ)∪G′′ ⊆ [[Call]]G(Φj+1)(Φ).

Take an interpretation I ′Φ such that I ′Φ(Call j+1) = [[Call]]G(Φj+1)(Φ), I
′
Φ(Success j+1) =

[[Success]]G(Φj+1)(Φ) and I ′Φ(V) = IΦ(V) for any other variable V . For any Φ, I ′Φ is a

model of (5) (as IΦ(Bj+1) ⊆ I ′Φ(Call j+1)) and hence of Fj(C) ∪ (G0 ∪ . . . ∪ Gj)(Φ). It

also fulfills the requirements (6) for i = 1, . . . , j. If the set matching fails, then the

program is not found to be correct.

Computing Φj+1 (or, in the case of j = n, performing the inclusion check)

completes the iteration step for j. The reasoning above provides a proof for:

Lemma 5.3

If the process described above succeeds producing Φ1, . . . ,Φn then the condition 1.

from Theorem 5.2 is satisfied, for clause C and the parametric specification given

by the parametric grammar G.

If the clause does not satisfy the condition of the Theorem 5.2 then the process

of checking is bound to fail. The reverse is not true. The correctness checking of

a correct program may fail, due to the fact that the employed intersection and

projection operations for parametric grammars are approximate.

Due to similarity of this correctness checking algorithm to that described in

section 3.2, we expect that its complexity is the same.

Example 5.4

Consider the following clause, a part of the “Slowsort” program:

slowsort(L,S) :- perm(L,S), sorted(S).

For this clause we have the following three systems of constraints (we abbreviate

slowsort as s, perm as p and sorted as sd):

F0 : L > s(L, S)−L(Call0)

S > s(L, S)−S (Call0)

Call1 > p(L, S)

F1 : L > s(L, S)−L(Call0) ∩ p(L, S)−L(Success1)

S > s(L, S)−S (Call0) ∩ p(L, S)−S (Success1)

Call2 > sd(S)

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

594 W. Drabent et al.

F2 : L > s(L, S)−L(Call0) ∩ p(L, S)−L(Success1) ∩ sd(S)−L(Success2)

S > s(L, S)−S (Call0) ∩ p(L, S)−S (Success1) ∩ sd(S)−S (Success2)

Success0 > s(L, S)

A specification is provided by the following parametric grammar G:

Call > s(ListN, Any)

Call > p(List, Any)

Call > sd(ListN)

ListN > []

ListN > [Nat|ListN]

Nat > nat

Success > s(ListN, ListN)

Success > p(List, List)

Success > sd(ListN)

List > []

List > [α|List]
Any > >

The first step of checking the correctness of the clause w.r.t. the specification

deals with F0. First one uses generalized projection operation to compute

s(L, S)−L(〈Call0, G〉) = 〈ListN,G〉 and s(L, S)−S (〈Call0, G〉) = 〈Any, G〉. We may

informally say that the first two rules of F0 have been transformed into L>ListN ,

S >Any.

Then GL and GS are respectively 〈ListN〉G and 〈Any〉G (the subsets of G defining

ListN and Any), with the variables appropriately renamed. Their union is G′:

L > []

L > [Nat′|L]

Nat′ > nat

S > >

The grammar G′′ is just the last rule of F0. Matching 〈Call1, G
′ ∪G′′〉 v 〈Call , G〉

succeeds after checking the pairs (Call1,Call), (L, List), (S, Any), (Nat ′, α). The result

is Φ1 = { α 7→ 〈Nat ′,G ′ ∪G ′′〉 }. So the first implication of the verification condition

is satisfied, provided that (Call1, Success1) is defined by G(Φ1) (after an appropriate

variable renaming).

We briefly outline the remaining two steps. Notice that the results of generalized

projections from one step are also used in later steps.

Dealing with F1 begins with computing two new generalized projections:

p(L, S)−L(〈Success1, G1〉) = 〈List1, G1〉
and

p(L, S)−S (〈Success1, G1〉) = 〈List1, G1〉,
where G1 is a renamed G(Φ1) and List1 is the renamed List. (We may informally say

that the first two rules of F1 have been transformed into L > ListN ∩ List1 , S >

Any ∩ List1 .)

Then intersection operation is applied to approximate sets [[ListN]]G(Φ) ∩
[[List1]]G1(Φ) and [[Any]]G(Φ) ∩ [[List1]]G1(Φ), by grammars 〈ListN〉G ∩̇G1 and

〈Any〉G ∩̇G1. The grammars are renamed, so that ListN ∩̇List1 becomes L and

Any ∩̇List1 becomes S , resulting in G′. Matching 〈Call2, G
′ ∪ {Call2 >sd(S)}〉 v

〈Call , G〉 does not involve any parameter and succeeds, so Φ2 = ∅ and G2 is G with

variables renamed.

Similarly, in the third step the projections related to atom sd(S) result in 〈Any2, G2〉
and 〈ListN2, G2〉. (We may informally say that the first two rules of F2 have been

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 595

transformed into L > ListN ∩ List1 ∩ Any2 , S > Any ∩ List1 ∩ ListN2 .) Notice

that [[List1]]G1
= [[ListN2]]G2

. G′ obtained in this step is essentially the same as that

in the previous one – the sets [[L]] and [[S]] that G′ defines are the same as in

the previous step. The inclusion check succeeds, which completes checking that the

clause is correct.

5.3 Computing parametric specifications

Now we show how to compute a parametric specification approximating the seman-

tics of a given program.

Consider a parametric specification Spec. Notice that if the verification conditions

of Proposition 3.1 hold for each (non parametric) specification from Spec then

the conditions of Theorem 5.2 hold, with (Pre0, Post0) = . . . = (Pren, Postn). Thus

the program is correct w.r.t. Spec. We will use this fact in constructing parametric

specifications for a given program. The initial goals are described by a parametric

grammar G0. G0 also describes the constraint predicates, similarly as in section 3.3.

We are going to construct a parametric grammar G (with the parameters from G0)

such that whenever the initial call is from [[Call]]G0(Φ), all the calls and successes are

from [[Call]]G(Φ), [[Success]]G(Φ), respectively.

To compute G we proceed as in the parameterless case (Section 3.3). The only

difference is that the algorithm is now applied to parametric grammars. We require

that the description of constraint predicates is parameterless. So whenever a rule

Call > p(Y1, . . . , Yn) or Success > p(Y1, . . . , Yn), where p is a constraint predicate,

appears in G0 then 〈Yi〉G0
does not contain any parameters (for i = 1, . . . , n).

Obviously, we require that the specification given by G0(Φ) respects constraints.

We employ the verification conditions of Proposition 3.1 expressed as the con-

straint system C(P) (see section 3.3). For the grammar G0 as above, C(P) is para-

metric. C(P) = C′ ∪ G0, where C′ is a set of parameterless constraints

C′ =
⋃
C∈P

⋃
j

F ′j(C).

Consider a parameterless instance G0(Φ) of G0. If I is a model of C(P)(Φ) such that

Spec = (I(Call), I(Success)) respects constraints then the verification conditions of

Proposition 3.1 are satisfied, as shown in section 3.3.

Our goal is to construct a grammar G such that for any Φ (for which G(Φ) is

parameterless) there exists a model I of C(P)(Φ) in which I(Call) = [[Call]]G(Φ) and

I(Success) = [[Success]]G(Φ). This implies that the verification conditions of Propo-

sition 3.1 are satisfied for each specification ([[Call]]G(Φ), [[Success]]G(Φ)). Hence the

verification conditions of Theorem 5.2 are satisfied for the parametric specification

{ ([[Call]]G(Φ), [[Success]]G(Φ)) | G(Φ) is parameterless }
given by grammar G, and the program is correct w.r.t. this specification.

To obtain such a grammar we use the iterative procedure of section 3.3. It starts

with G0 and produces a sequence of grammars Gi. Any parameter appearing in Gi
occurs in G0. The description of the constraint predicates in any Gi is the same as in

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

596 W. Drabent et al.

G0. The constructed grammars Gi have the following property, for any Φ (such that

G0(Φ) is parameterless): The constraints C′ are satisfied if the occurrences of Call

and Success in constraints (1) (see section 3.1) are valuated as in the least model

of Gi(Φ) and the occurrences of Call and Success in constraints (2) as in the least

model of Gi+1(Φ). This follows from the discussion in sections 3.2 and 3.3, which

can be repeated for the case of parametric grammars. The difference is that in the

parameter free case the operations of intersection and projection are exact while in

the parametric case they are approximate. However the conclusions hold in both

cases. In particular, if G′, G′′ are constructed as in section 3.2 then the least model of

(G∪G′)(Φ) is a model of Fj,1(C)∪G(Φ) and the least model of (G′ ∪G′′)(Φ) is a model

of Fj,1(C) (for any Φ assigning parameterless grammars to the parameters of G).

As discussed in section 3.3 it is necessary to apply some technique for enforcing

termination while computing fixpoints. As discussed there our prototype implemen-

tation uses for that purpose an adaptation of a technique of Mildner (1999), which

also extends to the parametric case.

Now Gi is the required grammar. For any Φ as above there exists a model J of C′
which coincides with the least model of Gi(Φ) on Call and Success . An interpretation

I in which the variables of C′ are valuated as in J and the variables of G0, except

of Call , Success , as in the least model of G0(Φ), is the required model of C(P)(Φ).

As explained above, if such model exists then the program is correct w.r.t. the

parametric specification given by Gi.

We derive a somehow restricted kind of parametric specifications. Whenever the

initial goal is in [[Call]]G(Φ), all the calls and successes of the computation are,

respectively, in [[Call]]G(Φ), [[Success]]G(Φ). Thus, our approach is unable to construct

such parametric specifications that various usages of a predicate in a program are

described by different instances of the parametric specification.

5.4 Error detection

The purpose of error diagnosis is to locate the errors in the program. By errors we

mean those program fragments that are the reasons that the program is incorrect

w.r.t. a given specification. For the semantics chosen in this work, the incorrectness

means that some call or success in some computation of the program violates the

specification. Such calls or successes will be called error symptoms. A pragmatic

requirement is that the errors found are as small program fragments as possible.

In traditional approaches, debugging begins with symptoms, obtained from exe-

cuting the program on some test data. Obviously, only a finite subset of (usually)

infinite set of test data can be used. In our approach symptoms are not needed. At

the expense of restricting the class of specifications to types defined by parametric

discriminative grammars, program correctness can be checked automatically. A suc-

cessful check is a proof that the program is correct. Equivalently, if the program is

incorrect then the check fails; moreover from the correctness checking algorithm we

can obtain information locating the errors.

Our correctness checking algorithm uses the sufficient condition of Theorem 5.2.

The condition consists of n + 1 implications for each n-ary clause of the program

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 597

(and an obvious condition on the initial atomic goals). Each implication concerns

a prefix H ← B1, . . . , Bi of a clause H ← B1, . . . , Bn (1 6 i 6 n).12 Two implications

concern the whole clause (i = n). If the program is incorrect then some of the

implications do not hold. The clause prefixes corresponding to these implications

will be considered the errors of the program.

Definition 5.5

Let P be a program and Spec a parametric specification. An error in P (w.r.t. Spec)

is a prefix H ← B1, . . . , Bk+1 (0 6 k 6 n− 1) of a clause H ← B1, . . . , Bn of P , or the

whole clause H ← B1, . . . , Bn (then k = n) such that for some (Pre0, Post0) ∈ Spec
and for each (Pre1, Post1), . . . , (Prek, Postk) ∈ Spec such that the implication of

Theorem 5.2 holds13 for j = 0, . . . , k − 1, there exists a substitution θ and constraint

c such that c []Hθ ∈ Pre0, c []B1θ ∈ Post1, . . . , c []Bkθ ∈ Postk and

c []Bk+1θ 6∈ Prek+1 for any (Prek+1, Postk+1) ∈ Spec, if k < n,

c []Hθ 6∈ Post0, if k = n.

We say that the representative of the error is Bk+1 when 0 6 k 6 n− 1, or H when

k = n. (So it is the atom whose instance is found incompatible with the specification.)

This definition formalizes the intuition of a program fragment being the reason

of incorrectness. Such fragments have to be changed in order to obtain a correct

program. On the other hand, in a general case there are no semantic criteria to state

what in such a fragment has to be changed. In this sense the errors defined above

are minimal. What is “the error” from the pragmatic point of view, depends on the

programmer’s intentions about the exact intended semantics of the program.

Example 5.6

Consider a type specification

Call > m(Any, L)

Success > m(α, L)

L > []

L > [α|L]

Any > >

and a clause m(X, [Y,Z]) :- m(X, Z). The (prefix being the) whole clause

is incorrect w.r.t. the specification, as for j = 0 the second argument of the call

m(X,Z)θ is, speaking informally, of type α instead of L. We cannot state which

atom of the clause is erroneous. To obtain a correct clause one may for instance

replace m(X, [Y ,Z]) by m(X, [Y |Z]), or m(X,Z) by m(X, [Z]). Only knowing that m

is intended to define a list membership relation, makes it possible to decide what is

the actual error (w.r.t. the (exact) intended semantics of the program).

Notice that there is at most one error in a given clause, as Definition 5.5 requires

that the implications for j = 0, . . . , k− 1 hold. Thus according to our definition each

proper prefix of an error is not an error. The reason is that if H ← B1, . . . , Bj+1,

12 In the notation of Theorem 5.2, i = j + 1 if j < n and i = n if j = n.
13 This means that for any substitution θ and constraint c

if c []Hθ ∈ Pre0, c []B1θ ∈ Post1, . . . , c []Bjθ ∈ Postj
then c []Bj+1θ ∈ Prej+1

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

598 W. Drabent et al.

0 6 j < k, were an error then we would not have a criterion which (Prej+1, Postj+1)

to consider in determining that H ← B1, . . . , Bk+1 is an error.14

We will use the correctness checking procedure from the previous section to locate

errors in programs. If a clause contains an error then the procedure will fail. The

reverse is not true, correctness checking of a clause not containing an error may fail,

due to approximation inaccuracies of the intersection and projection operations.

The correctness checking procedure finds each clause containing an error. More-

over, to a certain extent a clause prefix containing the error is located. If Φ1, . . . ,Φj

are successfully constructed then each prefix H ← B1, . . . , Bi, for i = 1, . . . , j is not

an error. If then constructing of Φj+1 fails, it is possible that some of prefixes

H ← B1, . . . , Bi, where i > j, is an error. If no approximation inaccuracies had

appeared then H ← B1, . . . , Bj+1 would have been an error. The inaccuracies make it

possible that some larger prefix is an error or the clause does not contain an error.

6 The prototype diagnosis tool

6.1 The structure of the tool

We implemented a prototype tool that locates errors by checking correctness of a

program wrt types specified by PED grammars. Notice that such a grammar may or

may not include parameters. As already mentioned, the tool consists of three main

components:

• The type inferencer – for a given program and parametric entry declaration

constructs parametric directional types of the program using the technique of

section 5.3. The types approximate the program semantics.

• The type checker – checks correctness of a program wrt to given parametric

directional types using the technique of section 5.2.

• The specification editor – a GUI which makes it possible to specify intended

directional types and also to inspect and to re-use in this specification the

inferred types.

A diagnosis session starts with type inference. The inferencer may issue some

warnings about illegal calls to built in predicates. It happens if the inferred call

type for a built-in is not a subtype of the expected one. The expected call types for

built-ins are stored in the system library and may be viewed as a part of specification

given a priori.

The main part of the session consists in providing/editing by the user a specifi-

cation of the intended types. The type checker works interactively with the editor.

Each verification condition is checked as soon as a sufficient fragment of a spec-

ification is provided. The diagnosis relies entirely on the provided types. It does

not involve execution of the program and it does not use the inferred types. The

role of type inference is auxiliary. As mentioned above, the inferencer may discover

14 Such a criterion may be obtained by setting Postj+1 =
⋃{Post | (Pre, Post) ∈ Spec }. We expect

however that the definition modified in such way would define errors which do not correspond to an
intuitive notion of an error.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 599

certain irregularities in the program and its warnings suggest starting points for the

diagnosis. On the other hand, the inferred types may be used as a draft for the

specification; this simplifies the task of constructing the specification by the user.

The current version of the tool supports a substantial subset of the CHIP language.

It can be easily modified to be used with any Prolog-like language. The prototype

has been implemented in SICStus Prolog. A more detailed description of our tool, in

its version for parameterless specifications, together with an example error diagnosis

session is given in Drabent et al. (2000a).

6.2 Types

The parametric specifications used by the tool are PED-grammars defined in sec-

tion 4.3. For every parameter valuation such a grammar defines a set of constrained

terms. A parametric type defined by such a grammar can be seen as a family of sets

(of constrained terms).

In the implementation we use the notation as shown in the example below. We

write

:-typedef tree --> nil; t(elem,tree,tree).

to denote the grammar

Tree > nil

T ree > t(Elem, Tree, T ree)

Such a grammar may be a part of a program.

The present version of the tool uses four base types:

• any denotes [[>]],

• nat denotes the set of natural numbers,

• anyfd denotes the set of constrained atoms of the form x ∈ FD [] x where FD

is a finite domain, i.e. a finite set of natural numbers15,

• int denotes the set of integers.

The approach to base types in the implementation does not satisfy Requirement

2.13. Namely, sets denoted by anyfd and int are neither disjoint nor one of them

includes the other. This design choice remained from the previous versions of our

approach. It is dealt with by some ad hoc modifications of the grammar operations.

It will be changed, by adding a base type neg of negative numbers and defining the

set of integers as the union of [[nat]] and [[neg]].

The type of a top call for a program is provided with entry declaration, for

instance:

:- entry delete(list(A),A,any).

Parameters are identifiers written with capital letter (like variables in Prolog). Thus

the above declaration says that we intend to delete an element of an arbitrary type A

15 We do not distinguish between c and x ∈ {c} [] x.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

600 W. Drabent et al.

(the second argument) from the list of elements of that type (the first argument). The

third argument is supposed to be a variable on call, which can be only expressed as

any.

To make the system interface more user-friendly we introduced a library of

type definitions which may be augmented by the user. It contains for instance, a

parametric grammar defining type list(A), i.e. lists of elements of type A.

Whenever possible, the types computed by the system are presented to the user

in terms of those defined in the library or declared by the user. In this way the user

faces familiar and meaningful type names instead of artificial ones. For instance,

assume that the system has to display a type t77 together with the grammar rule

t77 --> [];[t78|t77]. Then it finds that they are an instance of the rules defining

list(A) and displays list(t78) instead.

When providing the specification the user gives intended call and success types

for a given program. Formally this means providing grammar rules for Call and

Success . So the grammar providing the specification consists of the rules kept in the

library, the grammar rules given in :-typedef declarations of the program and the

rules for Call and Success provided by the user during the diagnosis section.

6.3 Inferring and checking types

The type inference algorithm is based on the description of sections 3.3 and 5.3. It

computes an approximation of call-success semantics of a given program. This is

done by means of fixed point iteration. The algorithm is implemented in Prolog.

For all programs used in our experiments (up to 230 clauses and 52 predicates)

the prototype implementation computes approximations in reasonable time16.

As already mentioned in section 3.3, in the parameterless case the algorithm can

be seen a method of solving set constraints. However, the solution obtained is in

general not the least one because of widening and of the approximate nature of

the union operation which is used by the algorithm. Extension to the parametric

case introduces additional loss of information caused by the operations on PED

grammars discussed in section 4.4.

The type inferencer is not able to find polymorphic dependencies between variables

by itself. The only parameters that may appear during the analysis are those provided

by the user in the entry declaration.

As discussed in section 4.4, the definitions of operations on PED grammars include

some arbitrary decisions. The union and the intersection of a type parameter with

another type are, respectively, [[>]] and the other type. The implementation produces

a warning whenever these situations appear during type inference.

The rationale behind the warnings is as follows. The type parameter in call

specification reflects the intuition that any instance of the parametric type is allowed

at call. Normally it means that the analyzed procedure is polymorphic and it is

supposed to work for any instance of the parameter. Thus the result of the analysis

16 21.88 s in the worst case, running SICStus Prolog, ver.3.8.4 on Sun-Ultra 10/440, with 440 MHz CPU
speed and 265 MB RAM.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 601

should be independent on potential instantiations of the parameter. In other words,

none of the operation on types should touch parameters. If it happens then the

procedure may not work as a polymorphic one.

The type inference algorithm constructs call and success types of the predicates

defined by program clauses, thus computing an approximation of their call-success

semantics. To be able to deal with real programs, it uses a library of type specifica-

tions of built-in predicates. Similarly it is able to deal with fragments of programs

(for instance with programs under development). In the latter case the user is

required to provide type descriptions for the undefined predicates.

As already mentioned, the diagnosis relies on the type specification provided

incrementally by the user. The specification process is supported by the possibility

to accept some types constructed in the analysis phase as specified ones. This

possibility is restricted to the types of the predicates relevant for the diagnosed

predicate. Moreover, a heuristics is used to suggest to the user the order of specifying

types. Following this order often results in fewer type specifications needed to locate

an error. The user may stop the diagnosis with the first error message, which is

often obtained without specifying all requested types. The diagnosis process may

be continued by specifying all requested types. In this case, the tool will locate all

incorrect clause prefixes in the fragment of the program relevant for the diagnosed

predicate.

An error message contains an incorrect clause. The incorrect prefix is indicated

by referring to its representative (cf. Definition 5.5). The specification provided by

the user is stored by the diagnoser and may be re-used during further diagnosis

sessions.

6.4 Examples

Below we show some examples illustrating the use of the diagnosis tool. The examples

exhibit an advantage of parametric analysis over the non-parametric one.

Consider the following erroneous program:

append([],Ys,Ys).

append([H|Xs],Ys,[H,Zs]) :-

append(Xs,Ys,Zs).

The head of the second clause should be append([H|Xs],Ys,[H|Zs]). Assume that

the append/3 predicate is supposed to concatenate two lists of any arbitrary type.

In the non-parametric framework the best way to express such a type is list(any).

After analyzing the program with the following entry point declaration:

:-entry append(list(any),list(any),any).

the inferred success type is

append(list(any),list(any),list(any))

The reason for inferring such a (success) type for the third argument of append/3

is that the type of two-element list originating from the head of the second clause

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

602 W. Drabent et al.

([H,Zs]) has been joined, by means of the upper bound operation, with the type

list(any) coming from the recursive call of append/3. It results in the type

list(any). Thus nothing suspicious can be concluded.

On the other hand, if we provide a parametric declaration:

:-entry append(list(A),list(A),any).

then the inferred success type does not meet our expectations:

append(list(A),list(A),list(any))

as we would rather wish to have list(A) as a result. Moreover, the analyzer warns

us that the parameter A (originating from the success of the first clause and type

list(A) of Ys) will be approximated by any while computing an upper bound with

the type list(A) (originating from the second clause and the term [H,Zs], in which

Zs is of type list(A).

After the user has specified the success type, the diagnoser locates the error and

reports it by indicating its representative append([H|Xs],Ys,[H,Zs]).

The next example is a fragment of a job scheduling program. The fragment sets

up precedence constraints among the jobs. A job is described by a term job(T,P),

where T is a starting time of processing the job and P is its duration. As T has to be

found by the program it is a domain variable; P is fixed. The jobs are kept in a list

and are identified by the position in it.

The precedence between two jobs is represented as a term prec(J1,J2), with a

meaning: J2 cannot start before J1 has been completed. All such pairs are kept

in the list. The precedence constraints are set up by the procedure precedences/2

defined below.

:-typedef tprec --> prec(nat,nat).

:-typedef tjob --> job(anyfd,nat).

:-entry precedences(list(tprec),list(tjob)).

precedences([],_).

precedences([prec(A,B)|Ps],Jobs) :-

get_nth(Jobs,A,job(TA,PA)),

get_nth(Jobs,B,job(TB,_)),

TB #>= TA + PA,

precedences(Ps,Jobs).

get_nth([_|X],1,X) :-!. % bug here

get_nth([_|Xs],N,X) :-

N1 is N - 1,

get_nth(Xs,N1,X).

The :-typedef declaration defines new types used in the entry declaration. The

first clause defining get nth/3 contains a bug, as the first argument of its head

should be [X|].

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 603

The inferred success type for precedences/2 is:

precedences(t52,list(tjob))

together with a definition of t52:

t52-->[]

This means that the procedure may succeed only when the precedence list is empty.

If a diagnosis session is started with this predicate the user is asked to provide

expected call and success types for get nth/3. Assume they are respectively:

get nth(list(A),int,any)

and

get nth(list(A),int,A)

After this step the diagnoser presents as an error the clause prefix pointed by the

representative

get nth([|X],1,X).

The reason for the error message is that inclusion check of list(A) and A fails.

Notice however, that in non-parametric framework the specification for get nth/3

could be get nth(list(any),int,any), both for calls and successes. In this case

the inclusion check of list(any) and any would succeed, and the bug would not

be discovered by the diagnosis.

7 Discussion and conclusions

7.1 Related work

This work is directly related to:

• the research on proving partial correctness of logic programs wrt call-success

specifications, and

• the research on approximating semantics of logic programs by descriptive

types based on set constraints and on abstract interpretation.

It extends some of the techniques proposed in these fields to handle parametric

polymorphism and constraint domains.

Partial correctness. From Bronsard et al. (1992), Apt (1993), Bossi & Cocco (1989)

and our own previous work (Drabent & Ma luszyński, 1988; Boye & Ma luszyński,

1997), we extend to CLP a directional view of logic programs in the sense that each

predicate is considered a procedure which, when applied to a suitable tuple of call

arguments returns upon a success a tuple of computed values. This is formalized by

the notion of call-success semantics.

We rely on the proof methods of Drabent & Ma luszyński (1988) and Bossi &

Cocco (1989) for proving partial correctness of logic programs wrt call-success speci-

fication. We use their modification for CLP described in Drabent et al. (2000a,b), and

we extend them to deal with parametric specifications. For specifications formulated

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

604 W. Drabent et al.

as definite set constraints (Heintze & Jaffar, 1990a)17 correctness can be effectively

checked by reformulation of the verification conditions of the above mentioned

methods, also as definite set constraints. As discussed in section 3.1 such a refor-

mulation requires specific operation called generalized projection, which is a special

case of the “quantified set expression” of Heintze & Jaffar (1994) and “membership

expression” of Devienne et al. (1997b) and Talbot et al. (2000). For the reasons dis-

cussed in section 2.1.1 we choose as our specification language a parametric variant

of well-known formalism of discriminative regular term grammars18 (e.g. see Dart &

Zobel, 1992), additionally equipped with basic types for handling constrained terms

and atoms of CLP. The same language is used for describing approximations of

call-success semantics. Traditionally such approximations are called descriptive types

of logic programs.

Soundness of our method of type checking is stated by Lemma 3.2, which gives a

sufficient condition for correctness of CLP programs for specifications given as term

grammars. This result extends then for PED grammars. A recent paper (Comini

et al., 2000) argues that such sufficient conditions for verification of logic programs

can be systematically derived if the considered class of specifications is defined as an

abstract interpretation domain with Galois connection relating them to a concrete

semantics of logic programs. Unfortunately, as shown in Drabent & Pietrzak (1998),

for our non-parametric specifications such a Galois connection does not exist,19 so

that it is not clear whether the method is applicable.

Types in logic programming. We follow the descriptive typing approach where types

approximate a posteriori the semantics of untyped programs. The early work on

descriptive types (Mishra, 1984; Janssens & Bruynooghe, 1992; Frühwirth et al.,

1991; Yardeni & Shapiro, 1991) was based on the least model semantics. The

problems considered were how to check that the least model semantics is included

in a regular set of terms (the type checking problem) and how to approximate it by

regular sets (the type inference problem). The regular sets were defined by regular

grammars or equivalently by regular unary logic programs (Frühwirth et al., 1991).

This approach does not take into account the intended use of the predicates and

gives therefore a few possibilities for finding typing errors. The focus is mostly on

detecting that for some predicates the inferred types are empty sets in which case

the predicates never succeed.

Checking of directional types based on set constraints was discussed in Aiken &

Lakshman (1994). The types used are sets of non-ground terms. They are specified

by set constraints together with a lifting function Sat that maps a set of ground

terms to a set of nonground terms. Type checking is based on the same verification

condition we use, which in general form originates from Drabent & Ma luszyński

17 Later studied also by Charatonik & Podelski (1997) and Talbot et al. (2000).
18 Such grammars define sets acceptable by deterministic root-to-frontier tree automata. Alternatively,

the sets are called tuple-distributive or path-closed.
19 The abstraction function does not exist, as there does not exist the best approximation of a given

set of terms by a regular set of terms. This holds for both kinds of regular sets, those defined by
discriminative and by arbitrary term grammars.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 605

(1988) and Bossi & Cocco (1989), and was specifically formulated for directional

type checking in Apt (1993). We also allow nonground types but in contrast to this

work we achieve non-groundness not by lifting ground sets but by extending set

constraints with constants interpreted as basic nonground types.

Inference of directional types in the framework of set constraints was illustrated

by an example in Heintze (1992). (The main topic of the paper are implementation

techniques for solving set constraints.) In the example the types are inferred by

constructing set constraints analogous to our encoding of verification conditions,

and solving them. A more recent work on inference of directional types for logic

programs is by Charatonik & Podelski (1998). It rephrases (as Theorem 1) the

verification conditions of Apt (1993) in a model-theoretic setting20. Thus, a starting

point for type inference are again the verification conditions used both in Aiken &

Lakshman (1994) and in our work. In Charatonik & Podelski (1998), the directional

types are regular, but in general not discriminative. They are characterized by the

least model of a uniform program constructed from the original program. The authors

are not specific about the algorithms to be used for constructing a representation of

the resulting directional types. In contrast to this work we do not construct uniform

programs. We encode the verification conditions as set expressions. Directional

types are models of these expressions. We restricted our attention to discriminative

directional types. This made it possible to extend the type checking and type inference

algorithms of Gallagher & de Waal (1994) and Mildner (1999), based on abstract

interpretation, to the case of parametric directional types.

Our work follows the idea of using semantic approximations for program verifica-

tion and for locating errors presented in Bueno et al. (1997). This idea was also used

for designing a generic preprocessor for validation and debugging of CLP programs

(Puebla et al., 2000). The preprocessor verifies various assertions, provided by the

user or inferred, in particular also non-parametric discriminative directional types

similar to ours.

While most of the papers on types in logic programming claim error detection

as their objective, a little attention is usually devoted to locating errors. In this

paper, we extend our previous approach to locating errors (Drabent et al. 2000a,b)

to the case of polymorphic types. As discussed in section 6 this gives some more

opportunities to locate the reasons of discrepancy between actual program and user

expectations.

Parametric polymorphism in logic programming. Use of parametric polymorphic

types in logic programming was first suggested in Mycroft & O’Keefe (1984). In this

approach the function symbols and the predicates of a logic program are supposed

to have a priori declared types. The types are used to restrict the syntax of the

language to well-typed formulae. A compile-time test is then formulated which gives

a sufficient condition that well-typedness is an invariant of goals in all computations.

This approach to using types, called prescriptive typing has been followed in many

papers and in several logic programming languages, most notably Gödel (Hill &

20 These conditions are stated as magic transformation of the original program.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

606 W. Drabent et al.

Lloyd, 1994) and Mercury (Somogyi et al., 1996). Semantically, prescriptive typing

corresponds to taking many sorted typed logic as a foundation of logic programming,

instead of untyped logic. Our approach is based on untyped logic and our parametric

types approximate actual or intended semantics of the program. Thus, our work is

in the framework of descriptive types, and the vast literature on prescriptive types is

not further discussed here. Let us only mention some recent research on this topic

(Fages & Coquery, 2001; Smaus et al., 2000; Deransart & Smaus, 2001).

In the context of descriptive typing some preliminary ideas on the issue of

parametric polymorphism are discussed already in Mishra (1984) as a possible

extension of the presented type checking method for non-directional types. Zobel

(1987) presents a method for deriving “syntactic” polymorphic types. These types

are not directional. They are clearly related to term grammars but the paper does

not explain the relationship. Our techniques focus on directional types and are based

on semantic considerations.

Polymorphic directional types for logic programs discussed in Boye (1996) are

based on the annotation method of Deransart (1993) for proving correctness of logic

programs. This method is different from that used in our work and refers to a

different semantics. In spite of that the verification conditions have a similar nature

to ours and give rise to similar parametric set constraints. Our work goes further in

that we use such parametric constraints in a sufficient correctness test, and also for

type inference, while the simplification techniques of Boye (1996) are rather limited

in handling parameters.

The problem of polymorphic directional type checking is also addressed in Rych-

likowski & Truderung (2000, 2001). This work presents a formal system, where

directional well-typing of a logic program for given type specification is defined in

terms of proofs constructed from given axioms and typing rules. This is different

from our approach where the well typing algorithms are derived from the semantic

concept of program correctness and types are understood as families of sets, spec-

ified by means of PED-grammars. Thus it seems impossible to compare our type

checking algorithms with those discussed in Rychlikowski & Truderung (2000).

Nevertheless, the semantics of types as sets is also provided in Rychlikowski &

Truderung (2000). It is done by a fixpoint construction, which for a given alphabet

of typed function symbols associates each used type with a subset of the Herbrand

universe. In this, rather indirect, way a similar effect is obtained as by our direct

specification of types by means of PED-grammars. However, the class of the sets

which can be constructed in that way is not precisely characterized. Syntactic re-

strictions on the way of defining signatures seem to make it somewhat restricted.

For example, it is impossible to have nonempty intersection of instances of different

polymorphic types, e.g. [] cannot be used for representing both the empty list and

the empty tree. This is a substantial restriction, e.g. one cannot define a type of even

length lists.

The soundness theorem of Rychlikowski & Truderung (2000) relates the direc-

tional types of well-typed programs to their declarative semantics, while the types

discussed here are related to the call-success semantics. Failure of our type checking

algorithm locates potential errors in a fragment of a clause, while a proof failure of

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 607

Rychlikowski & Truderung (2000) seems to indicate a whole clause. (At least, this

issue is not discussed in that paper.) Handling of constraints is not discussed in their

work, its main objective is representing different directional types of a predicate by

one main type.

7.2 Conclusions

We extended the concept of partial correctness for a logic program wrt to a

directional type to a concept of partial correctness of a CLP program wrt to

a parametric directional specification. We formulated sufficient conditions for the

correctness and we encoded them as set constraints. In this way we gave a semantic-

based view of parametric polymorphism in constraint logic programs.

We extended the notion of discriminative term grammar to the notion of Para-

metric Extended Discriminative term grammar (PED grammar). We argued that

directional types specified by such grammars are quite useful. On the one hand, they

make it possible to describe simple approximations of program semantics, easy to

provide and to understand by the user. On the other hand, they allow automatic

check of the sufficient conditions mentioned above. Using these conditions one

can also automatically infer parametric directional types from a parametric entry

declaration.

Our type inference techniques extend to CLP and to the parametric types the

techniques of Gallagher & de Waal (1994), corrected by Mildner (1999); they are

based on abstract interpretation of logic programs. It seems possible to extend

instead some of the set constraint solving techniques. This may be a topic of future

work including also a comparison of both extensions.

We developed a prototype tool implementing the proposed algorithms, which

can be obtained from the third author. The theoretical result of Charatonik &

Podelski (1998) shows that the problem of checking discriminative directional types

is not tractable, even in the parameterless case. The complexity of our type checking

algorithm is exponential w.r.t. the maximal number of occurrences of a variable in a

clause. However our tool turns out to be sufficiently efficient for practical purposes.

Our tool supports a compile-time technique for error location based on checking

directional parametric types. Clearly, the class of errors that can be located is

restricted to type errors. The check locates those clause prefixes, which cause the

type errors. Our approach does not impose any type discipline on the program. It

does not require providing all type declarations in advance and often only a few

declarations are sufficient to locate an error. The process of specifying declarations

is supported by the possibility of inspecting and adopting the inferred types.

Acknowledgements

We want to thank the anonymous referees for insightful comments and suggestions

which resulted in substantial improvements of this paper. We acknowledge the

contribution of Marco Comini who was largely involved in the development of an

early version of the diagnosis tool. We also thank our colleagues from the DiSCiPl

Project in which this research has been initiated. In particular we are grateful to

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

608 W. Drabent et al.

Pierre Deransart and Manuel Hermenegildo for fruitful discussions. This work was

partly funded by The Swedish Research Council grant 1999-109.

References

Aiken, A. and Lakshman, T. K. (1994) Directional type checking of logic programs. In:

LeCharlier, B. (ed.), Proc. 1st Int. Symposium on Static Analysis. LNCS 864, pp. 43–60.

Springer-Verlag.

Apt, K. R. (1993) Declarative programming in Prolog. In: Miller, D. (ed.), Proccedings

International Symposium on Logic Programming, pp. 12–35. MIT Press.

Apt, K. R. (1997) From Logic Programming to Prolog. Prentice Hall.

Bossi, A. and Cocco, N. (1989) Verifying correctness of logic programs. In: Dı́az, J. and Orejas,

F. (eds.), Proceedings International Joint Conference on Theory and Practice of Software

Development TAPSOFT ’89. LNCS 352, pp. 96–110. Springer-Verlag.

Boye, J. (1996) Directional Types in Logic Programming. Linköping studies in science and

technology, Dissertation no. 437, Linköping University.

Boye, J. and Ma luszyński, J. (1997) Directional types and the annotation method. J. Logic

Program. 33(3), 179–220.

Bronsard, F., Lakshman, T. K. and Reddy, U. (1992) A framework of directionality for

proving termination of logic programs. In: Apt, K. R. (ed.), Proceedings Joint International

Symposium and Conference on Logic Programming, pp. 321–335. MIT Press.

Bueno, F., Deransart, P., Drabent, W., Ferrand, G., Hermenegildo, M., Ma luszyński, J. and

Puebla, G. (1997) On the role of semantic approximations in validation and diagnosis of

constraint logic programs. In: Kamkar, M. (ed.), Proceedings AADEBUG’97 (3rd Interna-

tional Workshop on Automated Debugging), pp. 155–169. Linköping University.

Charatonik, W. (1998) Set constraints in some equational theories. Infor. & Computation,

142(1), 40–75.

Charatonik, W. and Podelski, A. (1997) Set constraints with intersection. In: Winskel, G. (ed.),

Twelfth Annual IEEE Symposium on Logic in Computer Science, pp. 362–372.

Charatonik, W. and Podelski, A. (1998) Directional type inference for logic programs. In: Levi,

G. (ed.), Proceedings 5th Static Analysis Symposium (SAS’98). LNCS 1503. Springer-Verlag.

Comini, M., Drabent, W., Ma luszyński, J. and Pietrzak, P. (1998) A type-

based diagnoser for CHIP. ESPRIT DiSCiPl deliverable. (Available at URL:

http://discipl.inria.fr/deliverables2.html.)

Comini, M., Drabent, W. and Pietrzak, P. (1999) Diagnosis of CHIP programs Using type

information. In: Meo, M. C. and Vilares Ferro, M. (eds.), APPIA-GULP-PRODE’99, Joint

Conference on Declarative Programming, pp. 337–349.

Comini, M., Gori, R., Levi, G. and Volpe, P. (2000) Abstract interpretation based verification

of logic programs. In: Etalle, S., & Smaus, J.-G. (eds), Proceedings Workshop on Verification

of Logic Programs. Electronic Notes in Theoretical Computer Science, vol. 30. Elsevier.

(Available at URL: http://www.elsevier.nl/locate/entcs/volume30.html.)

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.

and Tommasi, M. (1997) Tree automata techniques and applications. (Available on:

http://www.grappa.univ-lille3.fr/tata.)

Cosytec (1998) CHIP system documentation.

Cousot, P. and Cousot, R. (1992) Abstract interpretation and application to logic pro-

grams. J. Logic Program., 13(2–3), 103–179. (For a correct version of this paper, see

http://www.di.ens.fr/~cousot.)

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

Using parametric set constraints for locating errors in CLP programs 609

Dart, P. and Zobel, J. (1992) A regular type language for logic programs. In: Pfenning, F.

(ed.), Types in Logic Programming, pp. 157–187. MIT Press.

Deransart, P. (1993) Proof methods of declarative properties of definite programs. Theor.

Comput. Sci. 118, 99–166.

Deransart, P. and Smaus, J.-G. (2001) Well-typed logic programs are not wrong. In: H. Kuchen

and K. Ueda (eds.), Functional and logic programming (FLOPS’2001). LNCS 2024, pp. 280–

295. Springer-Verlag.

Devienne, P., Talbot, J.-M. and Tison, S. (1997a) Set-based analysis for logic programming

and tree automata. In: Van Hentenryck, P. (ed.), Proceedings Static Analysis Symposium,

SAS’97. LNCS 1302, pp. 127–140. Springer-Verlag.

Devienne, P., Talbot, J.-M. and Tison, S. (1997b) Solving classes of set constraints with tree

automata. In: Smolka, G. (ed.), Proceedings 3rd International Conference on Principles and

Practice of Constraint Programming - CP97. LNCS 1330, pp. 62–76. Springer-Verlag.

Drabent, W. and Ma luszyński, J. (1988) Inductive assertion method for logic programs. Theor.

Comput. Sci. 59(1), 133–155.

Drabent, W. and Pietrzak, P. (1998) Inferring call and success types

for CLP programs. ESPRIT DiSCiPl deliverable. (Available at URL:

http://discipl.inria.fr/deliverables2.html.)

Drabent, W. and Pietrzak, P. (1999) Type Analysis for CHIP. In: Haeberer, A. M. (ed.),

Proceedings 7th International Conference on Algebraic Methotology and Software Technology

(AMAST’98). LNCS 1548, pp. 389–405. Springer-Verlag.

Drabent, W., Ma luszyński, J. and Pietrzak, P. (2000a) Locating type errors in untyped CLP

programs. In: Hermenegildo, M., Deransart, P. and Ma luszyński, J. (eds.), Analysis and

Visualization Tools for Constraint Programming. LNCS 1870, pp. 121–150. Springer-Verlag.

Drabent, W., Ma luszyński, J. and Pietrzak, P. (2000b) Type-based Diagnosis of CLP Pro-

grams. Electronic Notes in Theoretical Computer Science, vol. 30. (Available at URL:

http://www.elsevier.nl/locate/entcs/volume30.html.)

Drabent, W., Ma luszyński, J. and Pietrzak, P. (2001) Parametric descriptive types for (C)LP. In:

Codognet, P. (ed.), Tenth International French Speaking Conference on Logic and Constraint

Programming, pp. 239–254. Hermes-Science.

Fages, F. and Coquery, E. (2001) Typing constraint logic programs. Theory & Practice of

Logic Program. 1(6), 751–777.

Frühwirth, T., Shapiro, E., Vardi, M. and Yardeni, E. (1991) Logic programs

as types for logic programs. In: Kahn, G. (ed.), Annual IEEE Symposium

on Logic in Computer Science, pp. 300–309. (Corrected version available from

http://WWW.pst.informatik.uni-muenchen.de/~fruehwir.)

Gallagher, J. and de Waal, D. A. (1994) Fast and precise regular approximations of logic

programs. In: Van Hentenryck, P. (ed.), Proceedings 11th International Conference on Logic

Programming, pp. 599–613. MIT Press.

Heintze, N. (1992) Practical aspects of set based analysis. In: Apt, M. (ed.), Proceedings Joint

International Conference and Symposium on Logic Programming, pp. 765–779. MIT Press.

Heintze, N. and Jaffar, J. (1990a) A decision procedure for a class of set constraints (extended

abstract). Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 42–51.

Heintze, N. and Jaffar, J. (1990b) A finite presentation theorem for approximating logic

programs. Seventeenth Annual ACM Symposium on Principles of Programming Languages,

pp. 197–209.

Heintze, N. and Jaffar, J. (1991) A Decision Procedure for a Class of Set Constraints. Technical

report CMU-CS-91-110, Carnegie Mellon University.

Heintze, N. and Jaffar, J. (1994) Set constraints and set-based analysis. Proceedings Workshop

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

610 W. Drabent et al.

on Principles and Practice of Constraint Programming. LNCS 874, pp. 281–298. Springer-

Verlag.

Hill, P. M. and Lloyd, J.W. (1994) The Gödel Programming Language. MIT Press.

Hopcroft, J. E., Motwani, R. and Ullman, J. D. (2001) Introduction to Automata Theory,

Languages and Computation, 2nd edn. Addison-Wesley.

Janssens, G. and Bruynooghe, M. (1992) Deriving descriptions of possible values of program

variables by means of abstract interpretation. J. Logic Program. 13(2 & 3), 205–258.

Lloyd, J. W. (1987) Foundations of Logic Programming. 2nd edn. Springer-Verlag.

Mildner, P. (1999) Type domains for abstract interpretation, a critical study. PhD thesis, Uppsala

University.

Mishra, P. (1984) Towards a theory of types in Prolog. Proceedings IEEE International

Symposium on Logic Programming, pp. 289–298.

Mycroft, A. and O’Keefe, R. A. (1984) A polymorphic type system for Prolog. Artif. Intell.

23, 295–307.

Puebla, G., Bueno, F. and Hermenegildo, M. (2000) A generic preprocessor for program

validation and debugging. In: Hermenegildo, M., Deransart, P. and Ma luszyński, J. (eds.),

Analysis and Visualization Tools for Constraint Programming. LNCS 1870, pp. 63–107.

Springer-Verlag.

Rychlikowski, P. and Truderung, T. (2000) Polymorphic directional types for logic pro-

gramming. PhD thesis, Wroc law University. (http://www.tcs.uni.wroc.pl/~tt/

dirtypes/index.html.)

Rychlikowski, P. and Truderung, T. (2001) Polymorphic directional types for logic program-

ming. Proceedings 3rd international ACM SIGPLAN Conference on Principles and Practice

of Declarative Programming, pp. 61–72. ACM Press.

SICS (1998) SICStus Prolog user’s manual. Intelligent Systems Laboratory.

Smaus, J.-G., Fages, F. and Deransart, P. (2000) Using modes to ensure subject reduction

for typed logic programs with subtyping. In: Kapoor, S. and Prasad, S. (eds.), Foundations

of Software Technology and Theoretical Computer Science (FST TCS’2000). LNCS 1974,

pp. 214–226. Springer-Verlag.

Somogyi, Z., Henderson, F. and Conway, T. (1996) The execution algorithm of Mercury: an

efficient purely declarative logic programming language. J. Logic Program., 29(1–3), 14–64.

Talbot, J.-M., Devienne, P. and Tison, S. (2000) Generalized definite set constraints. Con-

straints: An Int. J. 5(1-2), 161–202.

Van Hentenryck, P. (1989) Constraint Satisfaction in Logic Programming. MIT Press.

Van Hentenryck, P., Cortesi, A. and Charlier, B. Le. (1995) Type analysis of Prolog using type

graphs. J. Logic Program. 22(3), 179–209.

Yardeni, E. and Shapiro, E. Y. (1991) A type system for logic programs. J. Logic Program.

10(2), 125–153.

Zobel, J. (1987) Derivation of polymorphic types for Prolog programs. In: Lassez, J.-L. (ed.),

Proceedings Fourth International Conference on Logic Programming, pp. 817–838. MIT Press.

https://doi.org/10.1017/S1471068402001473 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068402001473

