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Investigation of the backflow phenomenon in
falling liquid films
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(Received 13 May 2007 and in revised form 27 September 2007)

The phenomenon of backflow in the capillary wave region of laminar falling liquid
films is studied in detail. For the first time, the mechanism leading to the origination
of the phenomenon is identified and explained. It is shown that backflow forms
as the result of a separation eddy developing at the bounding wall similar to the
case of classical flow separation. Results show that the adverse pressure distribution
causing the separation of the flow in the capillary wave region is induced by the
strong third-order deformation (i.e. change in curvature) of the liquid–gas free surface
there. This deformation acts on the interfacial pressure jump, and thereby the wall
pressure distribution, as a result of surface tension forces. It is shown that only
the capillary waves, owing to their short wavelength and large curvature, impose a
pressure distribution satisfying the conditions for flow separation. The effect of this
capillary separation eddy on momentum and heat transfer is investigated from the
perspective of modelling approaches for falling liquid films. The study is centred on a
single case of inclined liquid film flow in the visco-capillary regime with surface waves
externally excited at a single forcing frequency. Investigations are based on temporally
and spatially highly resolved numerical data obtained by solving the Navier–Stokes
equations for both phases. Computation of phase distribution is performed with
the volume of fluid method and the effect of surface tension is modelled using the
continuum surface force approach. Numerical data are compared with experimental
data measured in the developed region of the flow. Laser-Doppler velocimetry is used
to measure the temporal distribution of the local streamwise velocity component,
and confocal chromatic imaging is employed to measure the temporal distribution
of film thickness. Excellent agreement is obtained with respect to film thickness and
reasonable agreement with respect to velocity.

1. Introduction
The mechanisms of momentum, heat and mass transfer in laminar falling liquid

films have been the subject of numerous experimental, numerical and analytical
investigations since the pioneering works of Nusselt (1916), Kapitza (1948), Brauer
(1956), Benjamin (1957) and Wilke (1962). Their prevalence as a research topic is due
to continuing technical relevance in nuclear (see e.g. Takase et al. 2003) and chemical
engineering and the fact that much remains to be resolved concerning the transport
mechanisms. On the one hand there is a need to develop a proper understanding of
all relevant physical phenomena taking place in the liquid film; on the other hand,
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adequate model structures need to be formulated, such that the relevant phenomena
can be captured in an appropriate manner. The present work seeks to contribute to
the former of these tasks by way of an experimental and numerical investigation into
the backflow phenomenon occurring under certain conditions in the capillary-wave
region of laminar falling liquid films. For the sake of clarity, it is noted here that
backflow is to be understood as existing in a wall fixed coordinate system. The very
existence of this phenomenon has been debated in the literature since Kapitza (1948)
and Portalski (1964) proved, in principle, the possibility of flow reversal in falling
liquid films. In these studies, the location of the backflow region is predicted to be
at the wave trough which is a conclusion principally validated by the present work.
However, in the present work, the presence of capillary waves there, which are not
considered by Kapitza and Portalski, is found to be essential as only these provide
the extreme conditions necessary to induce flow reversal.

Experimental proof of the backflow phenomenon was provided by Adomeit,
Leefken & Renz (2000) in the form of particle path lines visualized with a laser
at high pulse frequency. Results show particles following ‘loop-shaped’ trajectories
in the capillary-wave region. Adomeit et al. also present numerical data revealing
backflow in the capillary-wave region. Since then, the backflow phenomenon has
been demonstrated in a number of purely numerical studies (e.g. Leefken & Renz
2001; Kunugi & Kino 2005; Kunugi, Kino & Serizawa 2005). These results, however,
are limited by an insufficient spatial resolution of the liquid film in the capillary-
wave region, where its thickness is of the order of 500 µm. In all these publications,
the backflow phenomenon is considered exclusively in its developed state. Further,
no explanation has ever been proposed for the origination and development of this
phenomenon. These two shortcomings, which are relevant to each other, are addressed
in the present work.

The backflow phenomenon is not only of academic interest as the resulting local flow
conditions cause a significant intensification of heat transfer between the liquid and
its bounding wall. Wave-induced intensification of heat transfer in falling liquid films
as such has been demonstrated in numerous investigations and is widely accepted.
For example, Frisk & Davis (1972) reported a 100 % increase of the temporally
averaged Nusselt number in heated shear-driven wavy film flow compared to the
corresponding smooth case. However, the identification of backflow in the capillary-
wave region as a significant contributor to the intensification occurred only recently.
Adomeit et al. (2000) show the concomitance of the backflow phenomenon and heat
transfer intensification based on numerical data. They do not explicitly establish a
link of causality between the two phenomena. This was later provided by Kunugi &
Kino (2005) and Kunugi et al. (2005). The effect of the backflow phenomenon on
the convective transfer processes in the capillary-wave region has not been analysed
in detail owing to the lack of spatial resolution. Such an analysis is provided in the
present paper.

Accurate models of wave dynamics based on long-wave theory have been published
by Nguyen & Balakotaiah (2000), Ruyer-Quil & Manneville (2000), Scheid, Ruyer-
Quil & Manneville (2006) and Mudunuri & Balakotaiah (2006). An essential
assumption in their approach concerns the degree of freedom of polynomials assumed
to represent the crosswise distribution of the streamwise velocity. Highly resolved
numerical data in the capillary-wave region are required in order to provide a basis
for the physical justification of such modelling assumptions.

Both the numerical and experimental methods employed in this study are
established in the literature with respect to the investigation of falling liquid films.
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Gao, Morley & Dhir (2003) first published numerical results concerning the fluid and
wave dynamics of falling liquid films using the volume of fluid method developed by
Hirt & Nichols (1981) for the computation of phase distribution and the interface
reconstruction scheme published by Youngs (1982). The effect of surface tension
forces is modelled with the continuum surface force method established by Brackbill,
Kothe & Zemach (1992). The authors principally demonstrate the plausibility of
numerical results by comparing these with experimental data produced by Kapitza
& Kapitza (1965) and Alekseenko, Nakoryakov & Pokusaev (1994). In the present
work the same methods are employed and subjected to a more detailed experimental
validation.

Experimentally, in the current study, laser-Doppler velocimetry (LDV) and a
confocal chromatic imaging method are employed to measure simultaneously
the instantaneous local streamwise velocity and film thickness. The first LDV
investigations of falling liquid films were published by Mudawar & Houpt (1993)
whereby the film thickness was measured simultaneously using an invasive method.
Characteristically, a sampling channel was employed to enable optical accessibility
of the cross-section of the film flow for the front-scattering LDV configuration they
employed. Leefken, Al-Sibai & Renz (2004) employed a back-scattering LDV set-
up to measure the streamwise velocity component in a falling liquid film through
a glass plate. Their results compare well with numerical data produced using the
spectral element method for interface tracking and periodic boundary conditions.
The confocal chromatic imaging method employed in this study was first used for
film-thickness measurements in falling liquid films by Lel, Al-Sibai & Leefken (2005)
although in a different configuration. In that study, film-thickness data from laser
induced fluorescence measurements and from the confocal chromatic imaging method
were cross-validated.

In the present study, the backflow phenomenon is investigated in detail on
the basis of numerical data for one set of operating conditions in unprecedented
spatial resolution validated by experimental results. For the first time, a mechanistic
explanation of the origination and development of the backflow phenomenon is
provided. Further, its effect on heat transfer from the bounding wall to the fluid
is investigated. Results enable a general understanding of published experimental
findings and could serve as a stepping stone for the development of adequate modelling
approaches.

The paper is structured as follows. In § 2, the experimental approach is presented.
The case considered in this study is defined in detail and the employed experimental
techniques are introduced. The numerical approach is treated in § 3. The system of
governing equations underlying the numerical analysis is introduced and the methods
of numerical solution are described. Section 4 presenting the results of the study is
partitioned into three subsections. First, data resulting from numerical simulation are
compared to experimental data in § 4.1. In § 4.2.1, the origination and development of
the backflow phenomenon is demonstrated and explained whereas § 4.2.2 treats the
influence of the backflow phenomenon on heat transfer. Conclusions are drawn in
§ 5.

2. Experimental investigations
2.1. Experimental conditions

Figure 1 shows the experimental set-up defining the case of falling liquid film flow
under consideration here. It consists of an acrylic glass plate, inclined at an angle φ to
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Figure 1. Experimental set-up.

δ0 (µm) W (mm) φ(deg .) ρ (kg m−3) σ (N m−1) µ (kg m−1s
−1

) λ (W m−1K
−1

) c (J kg−1 K
−1

) f (s−1) Q (m3 s−1)

635 265 35 909.3 0.022 5.18 × 10−3 0.12 1540 15 2.36 × 10−5

Table 1. Dimensional parameters of the considered inclined liquid film flow (fluid properties
measured at T = 25◦ for particle-laden liquid).

the gravitational acceleration vector, on which the liquid develops into a falling film
at the exit of a rectangular inlet channel with width W and variable channel height.
The liquid is fed into the reservoir upstream of the inlet channel by a gear pump. A
fluctuation Q′ of frequency f and small amplitude is imposed on the mean feeding
flow rate Q by way of a pressure fluctuation generated with a loud speaker (not
pictured) upstream of the reservoir. To avoid direct perturbations at the inlet channel
by the impinging liquid jet entering the reservoir, an obstructing weir is inserted.
As working fluid, a liquid belonging to the group of dimethylsiloxanes (DMS) with
the designation DMS-T05 is employed. The liquid is seeded with titanium dioxide
particles acting as tracers for the LDV. The average diameter of the seeding particles
is of the order of 10 µm and the density of the material of the order of 4500 kg m−3.
The properties of the particle-laden liquid were measured at the working temperature
T = 25 ◦C and are given in table 1.

The wave dynamics of the considered regime are characterized by two-dimensional
solitary waves developing from the forced inlet disturbance with frequency f preceded
by capillary waves and attaining a constant amplitude before secondary instability
leads to their break up into three-dimensional structures. Alekseenko et al. (1994)
introduce the term stationary two-dimensional waves to designate the regime in
question. The term capillary wave is to be understood in the sense that the effect
of surface tension dominates the effect of gravity, as stated by Whitham (1974). In the
context of this study only the region of development of the two-dimensional waves
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y

x

δ0 = 635 µm

L0 = 2 mm

H = 2.4 mmGas

Liquid

L = 220 mm

Figure 2. Computational domain.

is considered. In the experiments as well as in the numerical simulation, the height
δ0 of the inlet channel (the channel height is illustrated in figure 2) was set to the
value of the film thickness δNu for the corresponding smooth developed film flow (the
subscript refers to the work of Nusselt 1916):

δNu =

[
3 q νl

gx

]1/3

, q =
Q

W
, (2.1)

whereby q designates the mean volume flow rate per unit width. This choice is
motivated by the focus of the investigation. As will be shown subsequently, the
backflow phenomenon is governed by the dynamics of the capillary waves and forms
before these attain their developed state. Thus, the region of wave development of the
flow is of primary interest. Alekseenko et al. (1994) show, for smooth film flow, that
for a given inlet height, the film thickness tends to δNu in the streamwise direction,
which also applies to the wavy flow as far as the mean film thickness is concerned
(see e.g. Lel et al. 2005) for laminar regimes dominated by viscous and capillary
forces. Thus, by setting δ0 = δNu an unnecessary streamwise change in the mean film
thickness is avoided, thereby isolating the wave-development process relevant to the
backflow phenomenon. However, it should be noted that owing to the discontinuous
change in boundary conditions at the inlet (not considered by Alekseenko et al. 1994)
a certain streamwise development of the mean flow still takes place.

2.2. Measurement of instantaneous streamwise velocity

For the measurement of the streamwise velocity component a standard two-
component LDV system in back-scattering configuration was employed. The system
allows for the simultaneous measurement of the streamwise and spanwise velocity
components comprising a two-component fibre optic probe with back-scatter
collection optics and two burst spectrum analysers. The spanwise component was
measured only for preliminary alignment purposes as non-zero values point to
misalignment in the considered two-dimensional flow. Only the measurement of the
streamwise component is addressed here. A description of laser-Doppler velocimetry
is given by Albrecht et al. (2003) and our explanation concentrates on the aspects
specific to measurements in falling liquid films. The seeded flow is accessed optically
through the bounding acrylic glass plate without disturbing the falling film (figure 1) as
opposed to the set-up used by Mudawar & Houpt (1993). The principal disadvantage
of the configuration results from the shape of the measurement ellipsoid constituting
the intersection volume of the laser beams. The major axis of the ellipsoid is oriented
in the y-direction in which the principal velocity variation takes place, leading to
resolution problems. The two parallel laser beams creating the measurement ellipsoid
are of wavelength 514.5 nm and diameter 2.2 mm and are focused by an achromatic
lens of focal length 80 mm. The resulting intersection angle in the liquid is 19.02◦,
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Figure 3. Computed spatial evolution of surface waves for a given time.

taking into account the double refraction of the LDV beams. The dimensions of
the measurement ellipsoid in the x and y directions then are 24 µm and 144 µm,
respectively. As will be shown in subsequent sections (see figure 3) the minimal film
thickness of the considered flow is of the order of 300 µm leading to a minimal film
thickness to ellipsoid height ratio of 2. Elsässer (1998) used separate receiving optics
equipped with a 25 µm slit aperture reducing the size of the imaged measurement
volume to perform measurements in very thin shear-driven films. The mentioned
ratio thereby was of the same order as in the present study. Mudawar & Houpt
(1993), owing to the use of an invasive sampling channel and the investigation of
flow regimes characterized by large film thickness, were able to achieve significantly
higher resolution. As the purpose of the experimental investigation is principally
the validation of numerical data, the encountered variance of experimental data due
to intermediate spatial resolution is not prohibitive. The lagging behaviour of the
titanium dioxide seeding particles was quantified based on the solution of the Basset–
Boussinesq–Oseen equation in Hjemfelt & Mockros (1966). Results show that at flow
oscillation frequencies of up to 10,000 Hz, the deviation of particle kinematics from
flow kinematics is negligible.

2.3. Measurement of instantaneous film thickness

For the measurement of local film thickness, the confocal chromatic imaging technique
developed by Cohen-Sabban, Gaillard-Groleas & Crepin (2001) for surface sensing
was employed. The system comprises a fibre optic probe focusing white light onto an
interval of foci with a chromatic front lens. The technique enables the measurement
of the distance along the optical axis between a given reflecting surface and a fixed
reference point. The spectral distribution of light reflected by the surface is analysed
with a spectrometer yielding the distance information. A more detailed description
can be found in Cohen-Sabban et al. (2001). The distance measurement error is
of the order of 1 µm. Film thickness was determined as the difference between the
instantaneously measured distance to the liquid–gas free surface (subsequently simply
referred to as the interface) and the distance to the acrylic glass plate measured prior to
film development. The resulting upper bound for the film thickness measurement error
then is 2 µm. The fibre optic probe is positioned such that its optical axis is parallel
to that of the LDV probe (figure 1). Both optical axes thereby lie in the same plane
parallel to the (y, z)-plane. However, the probes are 5 mm apart in the z-direction to
avoid damage to the CCI device by the laser beams. Measurements were performed
with a sampling frequency of 800 Hz temporally resolving each surface wave with
50 data points. The spatial resolution of the film-thickness measurement in the x-
direction is defined by the coupling of transmitting optics and the spectrometer and
is of the order of 10 µm. Velocity and film-thickness measurements were performed
simultaneously.
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Figure 4. Streamwise spatial evolution of wave amplitude. �, experiment; —, simulation.

3. Numerical investigations
Two numerical investigations were performed in the present study. The main

investigation is purely fluid-dynamical and seeks to reproduce as accurately as possible
the experimental conditions described in § 2. The second investigation focuses on the
effect of the backflow phenomenon on heat transfer for identical fluid-dynamical
conditions. For all numerical investigations, the film flow is considered as two-
dimensional, laminar and incompressible with constant fluid properties evaluated at
T = 25 ◦C (the influence of heat transfer on momentum transfer is neglected). Liquid
properties are given in table 1. Properties of air constituting the atmosphere of the
liquid film were evaluated at the reference static pressure pr = 101 325 Pa and are not
listed here. The computational domain considered for the numerical investigations
(figure 2) includes a portion of the inlet channel. The length of the retained portion
of the inlet channel is chosen, such that the mean velocity field at the inlet of the
computational domain can be considered as developed. Length and height of the two-
phase region of the computational domain were defined on the basis of experimental
film-thickness data. The length is chosen to include the entire developing region of
surface waves (see e.g. figure 4), and the height as roughly twice the maximal thickness
of the developed surface waves. That these conditions are met can be deduced from
figure 3, depicting the instantaneous spatial distribution of film thickness for a given
time as obtained by numerical simulation.

3.1. Governing equations

The flow in both the gaseous and the liquid phase is governed by the Navier–Stokes
equations and the continuity equation written here in non-dimensional form:

∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ = −γ
∂p∗

∂x∗ +
χ

Re

(
ε

∂2u∗

∂x∗2
+

1

ε

∂2u∗

∂y∗2

)
+

3 χ

ε Re
, (3.1a)

∂v∗

∂t∗ + u∗ ∂v∗

∂x∗ + v∗ ∂v∗

∂y∗ = − γ

ε2

∂p∗

∂y∗ +
χ

Re

(
ε

∂2v∗

∂x∗2
+

1

ε

∂2v∗

∂y∗2

)
+

1

ε Fr2
, (3.1b)

∂u∗

∂x∗ +
∂v∗

∂y∗ = 0, (3.1c)

where χ and γ have been introduced to distinguish the formulations for the respective
phases. In the gaseous phase χ =Πµ/Πρ, γ = 1/Πρ and in the liquid phase χ= γ =1
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with the density ratio Πρ = ρg/ρl and the dynamic viscosity ratio Πµ = µg/µl .
The subscripts g and l refer to the gaseous and liquid phase, respectively. As the
atmosphere of the falling liquid film is quiescent gas, the scales in both the liquid and
the gaseous phase are imposed by the flow in the liquid phase:

x∗ =
x

L
, y∗ =

y

δNu

, t∗ =
tuNu

L
, p∗ =

p

ρl u
2
Nu

, u∗ =
u

uNu

, v∗ =
v

uNu

L

δNu

, (3.2)

with the mean velocity uNu = (gxδ
2
Nu)/(3νl) for smooth developed film flow. The

dimensionless Navier–Stokes and continuity equations yield the Reynolds number
Re, the Froude number Fr and the ratio of length scales ε:

Re =
uNu δNu

νl

, Fr =
uNu

(gy δNu)1/2
, ε =

δNu

L
. (3.3)

Assuming constant surface tension, the normal and tangential coupling conditions at
the interface y = δ between gaseous and liquid phase are:

p∗
l − p∗

g +
We ε2

β3/2

∂2δ∗

∂x∗2

=
2 ε

β Rel

[
ε2 ∂u∗

l

∂x∗

(
∂δ∗

∂x∗

)2

+
∂v∗

l

∂y∗ +
∂δ∗

∂x∗

(
∂u∗

l

∂y∗ + ε2 ∂v∗
l

∂x∗

)]

− 2 ε Πµ

β Rel

[
ε2

∂u∗
g

∂x∗

(
∂δ∗

∂x∗

)2

+
∂v∗

g

∂y∗ +
∂δ∗

∂x∗

(
∂u∗

g

∂y∗ + ε2
∂v∗

g

∂x∗

)]
, (3.4)

ε
∂δ∗

∂x∗

(
∂u∗

l

∂x∗ − ∂v∗
l

∂y∗

)
+

(
β

2
− 1

)
∂δ∗

∂x∗

(
∂u∗

l

∂y∗ + ε2 ∂v∗
l

∂x∗

)

= Πµ ε
∂δ∗

∂x∗

(
∂u∗

g

∂x∗ −
∂v∗

g

∂y∗

)
+ Πµ

(
β

2
− 1

)
∂δ∗

∂x∗

(
∂u∗

g

∂y∗ + ε2
∂v∗

g

∂x∗

)
, (3.5)

whereby the following definitions are introduced:

We =

[
3 σ 3 νl

ρ3
l gx q5

]1/3

, β = 1 + ε2

(
∂δ∗

∂x∗

)2

, δ∗ =
δ

δNu

, (3.6)

and We designates the Weber number. It should be repeated here that δNu is related
to the main control parameter q by (2.1). The local instantaneous film thickness δ is
related to the velocity field through the kinematic condition:

v∗|y∗=1 =
dδ∗

dt∗ , (3.7)

which states that the crosswise displacement velocity of the interface corresponds to
the crosswise liquid velocity at the interface. The numerical problem is closed with
the following boundary conditions:

u∗|x∗=−ξL
= 6(y∗ − y∗2)(1 + ε sin(2π Πf t∗))∀y∗ ∈]0, ξδ], (3.8a)

v∗|x∗=−ξL
= 0 ∀y∗ ∈]0, ξδ], u∗|y∗=0 = v∗|y∗=0 = 0 ∀x∗ ∈]−ξL, 1], (3.8b)

u∗|y∗=ξδ
= v∗|y∗=ξδ

= 0 ∀x∗ ∈]−ξL, 0], p∗|x∗=1 = p∗
r ∀y∗ ∈]0, ξH ], (3.8c)

u∗|y∗=ξH
= 0 ∀x∗ ∈]0, 1], v∗|y∗=ξH

= Π−1
ρ (p∗

r − p∗|y∗=ξH
)0.5 ∀x∗ ∈]0, 1], (3.8d)

v∗|x∗=0 = 0 ∀y∗ ∈]ξδ, ξH ], u∗|x∗=0 = Π−1
ρ (p∗

r − p∗|x∗=0)
0.5 ∀y∗ ∈]ξδ, ξH ] (3.8e)
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Re We Fr Πf δNu/L δ0/δNu Pr

15.6 2.1 1.8 24.0 0.0029 0.98 66.5

Table 2. Non-dimensional parameters of the considered inclined liquid film flow.

where the dimensionless frequency Πf and the geometric parameters ξδ , ξL and ξH

are introduced:

Πf =
f L

uNu

, ξδ =
δ0

δNu

, ξL =
L0

L
, ξH =

H

δNu

. (3.9)

Owing to the small height to length ratio of the inlet channel in the experimental
set-up, a developed velocity profile at the inlet of the calculation domain is assumed.
The value of the relative amplitude of the inlet disturbance ε was chosen such that
the spatial evolution of the surface-wave amplitude obtained from the numerical
simulation corresponds to experimental data.

For the heat transfer investigation, the governing system described in (3.1) is
extended by the energy equation:

∂Θ∗

∂t∗ + u∗ ∂Θ∗

∂x∗ + v∗ ∂Θ∗

∂y∗ =
χ ε

P r Re

(
∂2Θ∗

∂x∗2
+

1

ε2

∂2Θ∗

∂y∗2

)
, (3.10)

where in the gaseous phase χ = Πα and in the liquid phase χ = 1, with the
thermal diffusivity ratio Πα = αg/αl , the Prandtl number Pr and the dimensionless
temperature difference Θ∗:

Pr =
νl ρl cl

λ
, Θ∗ =

T − T0

Tw − T0

, (3.11)

whereby the ambient temperature T0 = 300 K and the wall temperature Tw = 350 K.
The coupling condition for the temperature field results from an interfacial heat
balance:

−∂Θ∗
l

∂x∗
∂δ∗

∂x∗ +
1

ε

∂Θ∗
l

∂y∗ = −Πλ

∂Θ∗
g

∂x∗
∂δ∗

∂x∗ +
Πλ

ε

∂Θ∗
l

∂y∗ , (3.12)

introducing the thermal conductivity ratio Πλ = λg/λl . Further, the following
boundary conditions for the temperature field were considered:

Θ∗|y∗=0 = 1 ∀x∗ ∈]−ξL, 1],
∂Θ∗

∂y∗

∣∣∣∣
y∗=1

= 0 ∀x∗ ∈]−ξL, 0], (3.13a)

Θ∗|x∗=−ξL
= 0 ∀y∗ ∈]0, 1],

∂Θ∗

∂x∗

∣∣∣∣
x∗=1

= 0 ∀y∗ ∈]0, ξH ], (3.13b)

Θ∗|x∗=0 = 0 ∀y∗ ∈]1, ξH ], Θ∗|y∗=ξH
= 0 ∀x∗ ∈]0, 1]. (3.13c)

Table 2 gives values for the relevant characteristic dimensionless groups introduced
in this section. As evidenced by the value of the Weber number, which relates viscous
and capillary forces to gravitational and inertial forces, the considered regime is
dominated by viscous and capillary forces.

3.2. Numerical method

The computational domain is spatially discretized with a structured Cartesian grid in
the x- and y-directions. Dimensionless height (�y) and length (�x) of the resulting
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rectangular control faces (non-dimensionalized with the respective length scales
introduced in § 3) are defined as follows:

�x = 2.273 × 10−4, (3.14a)

�y =

{
0.031 ∀y � 1.855,

0.062 ∀y > 1.855.
(3.14b)

The chosen control-face dimensions result from a grid-dependence analysis of the
numerical solution. They were identified as adequate for the resolution of all relevant
scales of the flow and proved to yield adequate numerical accuracy. Results are
included in the next section (see figure 9). The discretization in time was realized in
the fully implicit formulation with a dimensionless time step of �t = 3.130 × 10−6

(non-dimensionalized with the time scale introduced in § 3).
The governing equations of the film flow were solved on the computational domain

(figure 2) using the volume of fluid (VOF) method based on the one-fluid approach
to multiphase systems. The governing equations are thereby written for a single fluid
defined on the entire computational domain. The multi-phase character of the real
system is accounted for by formulating the properties of this single fluid as a function
of phase distribution, quantified with the local volume fraction ϕ = V l/(V l + V g) of
the liquid, and properties of the different phases (for details see e.g. Hirt & Nichols
1981). Thereby, the volume fraction ϕ is governed by the continuity equation for the
liquid phase for the considered case of non-interpenetrating incompressible fluids:

∂ϕ

∂t
+ u

∂ϕ

∂x
+ v

∂ϕ

∂y
= 0. (3.15)

This equation is solved numerically in addition to the momentum and integral
continuity equations. The employed discretization method and solution procedure are
presented in detail in Youngs (1982). To simulate the effect of surface tension in the
context of the VOF method, the continuum surface force (CSF) approach (for details
see Brackbill et al. 1992) is employed. With respect to the numerical solution of the
energy equation, no special treatment is necessary at the interface as the normal
heat flux is continuous over the interface (see (3.12)). The governing equations are
discretized using the finite-volume approach and solved with the pressure implicit split
operator (PISO) method with fully implicit time stepping. The transport equation
(3.15) is solved between solution iterations of the governing equations, using the
velocity distribution from the current iteration step.

4. Results and discussion
Figure 3 shows surface waves developing on the smooth film leaving the inlet

channel. The waves grow in size attaining constant shape and spacing as they
travel downstream. Surface waves are characterized by large wave crests preceded by
capillary waves of small amplitude and wavelength. In the following, these numerical
results are compared to different experimental data in order to show their accuracy
before the backflow phenomenon is investigated numerically. Unless otherwise stated
all quantities employed subsequently are written in non-dimensional form whereby
the star superscript employed previously is omitted.

4.1. Comparison of numerical and experimental data

Figure 4 compares the spatial evolution of wave amplitude in the streamwise direction
obtained from experiment and numerical simulation, respectively. The wave amplitude
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Figure 5. Film thickness time traces of developed surface waves. �, experiment;
—, simulation.

� is thereby defined as follows:

� = max{δ|x} − min{δ|x}. (4.1)

At a given point, � was determined from experimental data as the difference between
the 95th and 5th percentile of the probability density function of local film thickness
data. Numerical and experimental data are in good agreement so that it can be
concluded that the region of development of surface waves is captured accurately
in the simulation. It can be discerned in figure 4 that the surface waves attain their
maximal amplitude at approximatively x = 0.82, thereby inside the computational
domain (as mentioned in § 3). In figure 5, experimental and numerical data are
compared with respect to the temporal evolution of the film thickness of developed
waves yielding good agreement. Given the accuracy and simplicity of the film thickness
measurement, this can be understood as a validation of the numerical method in the
sense of adequacy of the chosen temporal and spatial discretization. In particular, the
number, period length and amplitude of the capillary waves are predicted accurately
by the numerical simulation. This will be of relevance when the backflow phenomenon
is addressed.

Figure 6 depicts time traces of the streamwise velocity component obtained from
experiment and numerical simulation, respectively. Data are evaluated in the region
of developed surface waves for three different positions in the y-direction. One in
the residual layer, one in the top of the wave crest and one intermediate position.
The corresponding time trace of the simultaneously measured film thickness is also
included in order to facilitate the interpretation of the velocity data. Agreement
between experimental and numerical velocity data is good. Next to quantitative
agreement, the shape of the time traces is predicted accurately by the simulation. In
particular, the minimal peak of the velocity time trace in the residual layer is predicted.
Figure 6(a) shows the streamwise velocity component decreasing there to values close
to zero. This peak coincides with the capillary waves and is associated with the
existence of the capillary separation eddy which strongly influences the flow at the
considered crosswise position, as will be shown later (see figure 8a). In figures 6(b) and
6(c), the velocity time traces are truncated because the LDV measurement volume lies
outside of the residual layer thereby only intermittently intersecting the liquid phase.
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Figure 6. Streamwise velocity time traces for developed surface waves. (a) Residual layer:
y = 0.309; (b) intermediate position: y = 0.921; (c) top of the wave crest: y = 1.227.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

93
78

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007009378


Backflow phenomenon in falling liquid films 447

In summary, it can be stated that the simulation is sufficiently accurate in its spatial
and temporal resolution, to base the ensuing analysis of the backflow phenomenon on
numerical data. It has been shown for the case considered that wave dynamics in the
developing region and in the region of developed film flow are accurately predicted
by the simulation as well as momentum transfer in the developed film flow.

4.2. Capillary separation eddy

4.2.1. Explanation of the development mechanism

After the agreement between numerical and experimental data has been
demonstrated, attention here is directed towards understanding the phenomenon
of backflow in the capillary wave region. This is done on the basis of numerical
data, exploiting their superior spatial resolution. In order to obtain a topological
understanding of the phenomenon, streamlines of the flow in the capillary wave
region along with the gas–liquid interface are shown in figures 7(a), 7(c) and 8(a)
for different points in time. Figures 7(b), 7(d) and 8(b) depict the corresponding
profiles of the streamwise velocity component at different streamwise positions in
the vicinity of the wave trough. The streamline patterns show that backflow is the
effect of an eddy developing at the wall in the capillary wave region. This eddy is the
result of detachment and subsequent reattachment of the wall-bounded flow similar
to classical flow separation. Thus it is designated as capillary separation eddy (CSE).
The observed structure of the flow in the capillary wave region thereby validates the
scenario proposed by Portalski (1964). Further, visualization experiments performed
by Davies (1961) and Friedman & Miller (1941) reveal that the capillary phenomena
of planar waves are essentially two-dimensional. Turbulent transport can therefore
be excluded and the two-dimensional simulation performed suffices to resolve the
backflow phenomenon.

The CSE phenomenon can be subdivided into three developmental episodes that are
linked to the evolution of the surface wave. Figure 7(a) depicts near-wall streamlines
of the flow shortly before separation occurs. A streamwise deceleration of the flow is
noticeable as evidenced by the shape of the streamlines there. Indeed, tracked in the
streamwise direction, the streamlines move away from the wall before re-approaching
it. They attain their maximal distance from the wall slightly downstream of the wave
trough. As for a given time the volume flow per unit width between two streamlines
is constant, this behaviour is associated with a streamwise deceleration and re-
acceleration of the mean flow in the near-wall region. This is more clearly identifiable
when investigating the corresponding profiles of the streamwise velocity component.
Figure 7(b) shows a significant deceleration (from x = 0.7410 to x = 0.7430) and re-
acceleration (from x = 0.7430 to x = 0.7456) of the flow. As evidenced by comparison
of the profiles at x = 0.7410 and x = 0.7430, the deceleration is associated with a sign
change of the second-order crosswise derivative from negative to positive near the
wall. This is due to the stronger deceleration of fluid elements closer to the wall with
lower kinetic energy leading to a near-wall turning point in the profile at x = 0.7440.
The change in shape of the velocity profile is characteristic for the separation of
wall-bounded flows. Further, between positions x = 0.7418 and x = 0.7430, the first-
order crosswise derivative at the wall approaches, but does not attain, the value zero
signifying that flow separation is imminent. As the flow re-accelerates in the streamwise
direction downstream of the wave trough (from x = 0.7430 to x = 0.7456) the second-
order crosswise derivative of the velocity profile re-converges towards a negative value
near the wall. Figure 7(c) shows the nucleus of the CSE forming at the wall slightly
downstream of the point of minimal film thickness. Accordingly, the corresponding
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Figure 7. Near-wall streamlines and streamwise velocity profiles in the capillary-wave region.
(a) Streamlines: t = 0.741; (b) velocity profiles: t = 0.741; (c) streamlines: t = 0.747;
(d) velocity profiles: t = 0.747.

velocity profile at x = 0.7561 manifests a slightly negative value of the streamwise
velocity component near the wall. The CSE subsequently grows attaining a crosswise
size of about 50 % of the minimal film thickness (figure 8a). In particular, figure 8(a)
shows that the flow is strongly influenced by the CSE at the crosswise position (i.e.
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Figure 8. (a) Near-wall streamlines, t = 0.819, and (b) streamwise velocity profiles,
t = 0.819, in the capillary-wave region.

y = 0.309) at which the velocity time traces were evaluated in figure 6(a). It therefore
follows that the time trace of the streamwise velocity component depicted in figure 6(a)
is associated with the existence of the CSE. Figure 8(b) shows the same qualitative
behaviour of the near-wall velocity profile upstream of the CSE (between x = 0.9186
and x = 0.9192) as shown in figure 7(b). However, here the streamwise change in the
shape of the near-wall profile is such that the threshhold of a vanishing first-order
crosswise derivative at the wall is reached at x = 0.9192. At this position, the flow
separation takes place. Downstream of the separation point between x = 0.9198 and
x = 0.9202 the velocity profiles are characterized by a second root next to the one
at the wall. Between the two roots, the streamwise velocity component is negative,
confirming the flow reversal discernible in figure 8(a). Moving further downstream,
the velocity profile re-approaches the pre-separation shape. Next to revealing regions
of backflow, the profiles in figures 7(b) to 8(b) indicate the complexity of the velocity
distribution in the capillary-wave region. Accurate models of wave dynamics based on
long-wave theory have been published by Nguyen & Balakotaiah (2000), Ruyer-Quil
& Manneville (2000), Mudunuri & Balakotaiah (2006) and Scheid et al. (2006). An
essential assumption in their approach concerns the degree of freedom of polynomials
representing the crosswise distribution of the streamwise velocity. The present results
could serve as a physical justification of such modelling assumptions. To account for
flow separation, polynomials representing the streamwise velocity component should
obviously be at least of third order. This is not the case for lowest-order models
which are based on a local approximation of the velocity profile with the solution for
developed smooth film flow.
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Case �x �y (y < 1.855) �y (y > 1.855) �t

1 4.545 × 10−4 0.062 0.124 6.260 × 10−6

2 2.273 × 10−4 0.031 0.062 3.130 × 10−6

3 1.136 × 10−4 0.015 0.031 1.565 × 10−6

Table 3. Dimensionless grid properties for investigated resolution variants.

Before proceeding with the analysis of the CSE, the adequacy of the spatial
resolution of the numerical simulation is investigated. The agreement between
numerical and experimental data presented in § 4.1 already serves toward the
validation of the chosen discretization. However, such a comparison cannot be realized
for all regions of the flow owing to the lack of experimental data in certain, less
accessible regions. In particular, this applies to the region of the CSE. Consequently,
the spatial and temporal discretization error in this region is investigated by way of
a systematic variation of grid and time-step resolution. To reduce the computational
burden, the employed computational domain is reduced in length to L = 60 mm
while the amplitude of the disturbance at the channel inlet is significantly increased.
This forces the development of the CSE over a shorter distance. Table 3 displays
the simulation properties for the investigated resolution variants. Figure 9(a) depicts
the film thickness distribution in the capillary-wave region for the three resolution
variants at the same point in time. It can be seen that the chosen spatial and
temporal resolution (case 2) is of sufficient accuracy. Further, figures 9(b) to 9(d)
depict corresponding streamline patterns along with the respective numerical grid.
Results show that the size and position of the CSE does not change significantly for
the two finest resolution variants, the finest grid revealing no new structures with
respect to case 2. The coarsest resolution variant underpredicts the size of the CSE.
In summary, the chosen spatial resolution for the numerical simulation (i.e. case 2) is
adequate for the resolution of the CSE phenomenon.

From figures 7(a) to 8(b), it is clear that the phenomenon giving rise to the CSE
is indeed that of near-wall flow separation (see e.g. Prandtl 1961; Sychev 1998). The
occurrence of this phenomenon in falling liquid films, however, is at first unexpected
and indeed the governing mechanism is different compared to classical boundary
layer separation:

Concerning flow reversal in falling liquid films the first question coming to mind
concerns the force causing such a behaviour. Arguably this governing force should
act in the upstream direction. Considering that the wall parallel component of the
gravitational force acts in the downstream direction and that viscosity forces are inner
forces, only the pressure force can be retained as such. Thus, we can conclude that
the CSE is induced by a positive pressure gradient in the capillary-wave region. This
is in agreement with boundary-layer separation theory. However, in the latter case the
pressure gradient is imposed on the boundary layer by the external flow. Bearing in
mind that the falling liquid film considered here exists in a quiescent atmosphere, the
positive pressure gradient causing the CSE must have a different origin. For falling
liquid films, the positive pressure gradient in the liquid phase is imposed by surface
tension forces which attain influence as a result of the distortion of the interface. This
is shown in figures 10(a), 10(c) and 11(a) which depict the streamwise distribution
of film thickness and static pressure difference �p = p − pr at the bounding wall.
To understand these diagrams, the nature of the relation between film thickness
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Figure 9. Comparison of numerical data for the resolution variants (cases 1 to 3) given in
table 3. (a) Distributions of instantaneous film thickness over one wave. (b)–(d) Streamline
patterns in the CSE region. (b) Case 1; (c) case 2; (d) case 3.
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Figure 10. Numerical data corresponding to streamlines in figures 7(a) and 7(c). (a, c)
Distribution of static wall pressure difference and film thickness for one wave. (b, d)
Distribution of dimensionless wall shear stress and force ratio Ψ in the capillary-wave region
(note change in ordinate scale). (a, b) t = 0.741; (c, d) t = 0747.
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Figure 11. Numerical data corresponding to streamlines in figure 8(a). (a) Distribution of
static wall pressure difference and film thickness for one wave. (b) Distribution of dimensionless
wall shear stress and force ratio Ψ in the capillary-wave region (note change in ordinate scale).
t = 0.819.

and pressure distribution in the liquid phase is recalled. Under the assumption of
the dominance of pressure and surface tension forces and negligible gas pressure
variation, the streamwise derivative of liquid pressure at the interface reduces to the
following expression derived from the coupling condition in (3.4):

∂pl

∂x
= −ε We

31/3

∂κ

∂x
, κ =

ε (∂2δ/∂x2)

(1 + ε2 (∂δ/∂x)2)3/2
, (4.2)

where κ is introduced to designate the dimensionless interface curvature (subsequently
referred to as interface curvature). For falling liquid films, owing to the small values
of the crosswise velocity component, the dominant terms in the momentum equation
in the crosswise direction are the pressure term and the gravitational term. Thus, for
these flows, the pressure distribution on the wall is largely defined by the interface
pressure distribution. It can thereby be concluded that the sign and absolute value of
the streamwise pressure gradient at the wall are defined by the streamwise derivative
of the interface curvature. It follows from the topological nature of surface waves
that the pressure distribution in falling liquid films is always characterized by regions
conducive to flow reversal. This corresponds to the conclusion that Kapitza &
Kapitza (1965) come to, in a purely formal manner without considering the presence
of capillary waves. Figures 10(a), 10(c) and 11(a) show that the conditions in the
capillary-wave region are the most conducive to flow reversal. There, because of the
small wavelength and large curvature of the capillary waves, large negative changes
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in interface curvature (from positive to negative curvature) take place over a small
distance. This leads to positive values of the streamwise pressure derivative at the
wall which are significantly larger than in any other region of the flow. It is therefore
understandable that the CSE develops in the capillary-wave region. The figures also
show the temporal evolution of the pressure distribution at the wall as the capillary
waves develop. An increase in the maximal positive value of the streamwise pressure
gradient is discernible in figures 10(a), 10(c) and 11(a) as the capillary waves grow.
This behaviour concurs with the episodes of flow deceleration, CSE nucleation and
CSE growth (figures 7a, c, 8a). However, to assess the possibility of flow reversal it is
not enough to investigate the pressure distribution along the wall. In fact, the resulting
pressure force must be compared to the streamwise component of the gravitational
force. Only if the former exceeds the latter, does the resulting streamwise external
force act in the upstream direction, enabling flow reversal. In order to quantify
this criterion, the ratio of the streamwise pressure force per unit volume to the
streamwise gravitational force per unit volume Ψ (evaluated at the wall) as well as
the dimensionless wall shear stress cf :

Ψ = −∂p

∂x
Fr2 ε, cf = −2 Re

∂u

∂y

∣∣∣∣
y=0

, (4.3)

are represented in figures 10(b), 10(d) and 11(b) for the points in time corresponding
to figures 10(a), 10(c) and 11(a). The figures show that Ψ falls below the value −1 only
in the capillary-wave region which thereby is the only one where flow reversal and
thus the development of the CSE can take place. In figure 10(b), it is also discernible
that flow reversal (indicated by a sign change in the dimensionless wall shear stress)
does not take place as soon as Ψ falls below the value −1. However, after the CSE
has attained a certain size the most upstream point of flow reversal coincides with
the point at which Ψ attains the value −1 (figures 10d , 11d).

4.2.2. Heat transfer enhancement due to the CSE

Adomeit et al. (2000) and Kunugi & Kino (2005) show that the presence of the
CSE significantly enhances heat transfer from the bounding wall to the liquid. The
obvious explanation for this observation is the crosswise convective heat transfer
induced by the CSE. Kunugi & Kino (2005) base this explanation on plots of the
instantaneous velocity vector field showing the backflow in the capillary-wave region.
This Eulerian approach could incorrectly suggest that the mixing length is of the
order of the scale of the CSE. Because the wave velocity is considerably larger than
the mean flow velocity in the residual layer, the conditions conducive to backflow are
imposed for only a limited period by surface waves travelling over a given region of
the film. Fluid elements are exposed only briefly to the annular streamlines of the
CSE. To estimate the appropriate mixing length, a Lagrangian approach seems to be
more suitable.

Figure 12(a) depicts path lines of fluid elements calculated from starting points
equally distributed over the film thickness in the capillary-wave region. Path lines are
calculated for a time interval (t = 1.299 to t = 1.316) corresponding to the transit
of the capillary waves whereby the first and last point of each path line is associated
with the corresponding bound of the time interval. Results show the fluid elements
describing ‘loop’ or ‘hook’ shaped trajectories as the capillary waves pass over their
position. Because of the decrease in flow velocity towards the wall, trajectories of fluid
elements travelling near the wall are influenced at an earlier stage by the passing waves
than those of fluid elements travelling further from the wall. Hence, the streamwise
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Figure 12. (a) Distribution of path lines computed for the transit of the CSE region (t = 1.299
to t = 1.316) and instantaneous film thickness for t = 1.3106. (b) Instantaneous streamline
pattern in the CSE region for t = 1.3106 (note change in ordinate scale).

position of the characteristic ‘loops’ or ‘hooks’ moves downstream as the wall distance
of the path line starting point increases. The film thickness distribution for the point in
time (t = 1.3106) corresponding to the cusp in the highlighted ‘hook’ shaped path line
is included in the graph. The associated streamline pattern is depicted in figure 12(b).
Fluid elements travelling above the CSE centre follow ‘hook’ shaped path lines as
they do not encounter flow reversal as opposed to near-wall elements which follow
‘loop’ shaped path lines. Figure 13(a) provides a close up view of ‘loop’ shaped path
lines as these are not easily identifiable in figure 12(a). For this the near-wall region in
figure 12(a) was magnified in the crosswise direction. Subsequently, path lines starting
from points equally distributed over the magnified region were computed over the
same time interval as for those depicted in figure 12(a). The streamwise extension of
the region depicted in figure 13(a) is chosen such that all characteristic ‘loops’ are
displayed. As near-wall fluid elements are reached by the travelling capillary waves at
an early stage, this region is thus significantly shorter than in figure 12(a). Similar to
figure 12(a), the characteristic ‘loops’ displayed in figure 13(a) shift in the streamwise
direction with increasing wall distance.

The crosswise scale of the ‘loops’ or ‘hooks’ defines the local mixing length. This
scale increases with the wall distance as the exposure time to the CSE conditions
increases owing to the decreasing difference between wave velocity and flow velocity.
Written in dimensionless form (using the appropriate scales defined in § 3.1) the effect
on the mixing length l can be approximated as follows:

l = 1
2
ṽ�t ≈ 1

2
ṽ

Λ

(cw − u)
, (4.4)
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Figure 13. (a) Magnified view of the near-wall region in figure 12(b) showing loop-shaped
path lines computed for the transit of the CSE region (t = 1.299 to t = 1.316). (b) Time traces
of wall Nusselt number and dimensionless wall shear stress at x = 0.9000 in figure 12.

where ṽ designates the characteristic crosswise velocity induced by the CSE, cw

signifies the wave velocity, Λ the capillary wavelength and u the local streamwise
velocity component prior to the wave transit which approximately satisfies a quadratic
profile (see e.g. Alekseenko et al. 1994). Figure 13(b) depicts local time traces of the
dimensionless wall shear stress cf defined by (4.3) and the wall Nusselt number
Nu = −∂Θ/∂y|y=0 evaluated at the streamwise position x = 0.9000. This position
corresponds to that of the cusp in the highlighted ‘hook’ shaped path line in
figure 12(a) so that the effect of the passing capillary wave on crosswise convective
transport can be appreciated. Time traces were chosen over a spatial representation in
order to isolate the effect of the CSE on heat transfer from effects due to the streamwise
development of the temperature field. A change of sign in the dimensionless wall shear
stress indicates the transit of the CSE region at the considered streamwise position.
The figure shows that this coincides with a steep increase in the wall Nusselt number
which attains its maximal value. After the transit of the CSE the Nusselt number
remains high, decreasing to the value in the residual layer as the large wave moves
by. For the regime investigated here, the CSE-induced increase of the Nusselt number
is not as dramatic as reported by Kunugi & Kino (2005) and its influence on the
temporally averaged Nusselt number is therefore not dominant. However, the onset
of the heat transfer intensification is caused by the CSE. Further work is required to
elucidate the contributions of the different mechanisms of heat transfer intensification
in falling liquid films.
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5. Conclusions
Spatially and temporally highly resolved numerical simulation of falling liquid film

flow has been performed for a visco capillary regime. Attention has been directed to
the elucidation of the backflow phenomenon arising in the region of capillary waves.
Numerical results show that backflow develops as a result of flow separation at the wall
in the residual layer of the film. The adverse pressure distribution inducing separation
is imposed by the strong third-order deformation of the interface caused by capillary
waves. Surface tension forces thereby act on the interface pressure jump as a result
of the deformation. A necessary condition for separation is the compensation of the
streamwise component of gravity by pressure forces. It has been shown that only in the
region of capillary waves is the change in interface curvature of sufficient magnitude
to cause the required adverse pressure distribution. Flow separation leads to a near-
wall separation eddy varying in size as the capillary-wave profile develops. These
results constitute the first mechanistic explanation of the backflow phenomenon to
date. Numerical data were compared to experimental data to support the conclusions
drawn. Comparison of numerical results with velocity time traces measured with laser-
Doppler velocimetry yields good agreement. Characteristic features of time traces
induced by the separation eddy are exhibited in both experimental and numerical
data. Excellent agreement between experiment and simulation is obtained with respect
to wave dynamics. The streamwise evolution of wave amplitude is predicted accurately
by numerical simulation. Numerical and experimental time traces of film thickness in
the developed region are also in agreement. Specifically the number, amplitude and
period length of capillary waves is predicted accurately by the simulation. This serves
as proof that the conditions conducive to flow separation are present in the case of
falling liquid film flow. Further, the effect of the separation eddy on heat transfer
from the wall to the liquid has been explained. Capillary waves travelling over the
film substrate locally induce separation conditions for a time span depending on
the difference between flow velocity and wave velocity. Therefore fluid elements are
subjected to the annular streamlines in the separation eddy for only a limited time
span. Resulting path lines are distorted in the crosswise direction owing to transiting
capillary waves. The distortion is either ‘loop’ or ‘hook’ shaped depending on the wall
distance of the considered fluid element. The resulting crosswise convective transport
to and away from the wall is the cause of the well-documented increase of the heat
transfer coefficient in the capillary-wave region. The scale of the path line distortion
has been shown to be considerably smaller than the scale of the eddy and to increase
with wall distance. Future investigations of the considered topic should concentrate
on the derivation of a quantitative relation for the prediction of regimes characterized
by backflow. Further a more detailed analysis of interaction between momentum and
heat transfer in the region of backflow must be conducted with the goal of identifying
regimes of optimal heat transfer. Further, the presented results seem to indicate that
modelling approaches for heat transfer in the capillary-wave region on the basis of the
mixing-length concept could prove successful. Finally, the investigation of capillary
separation eddies in film flow with three-dimensional wave dynamics is desirable.
There, both their effect on heat transfer and three-dimensional wave dynamics is of
interest.
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540 ‘Model-based Experimental Analysis of Kinetic Phenomena in Fluid Multi-phase
Reactive Systems’.
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