
Math. Struct. in Comp. Science (2008), vol. 18, pp. 555–609. c© 2008 Cambridge University Press

doi:10.1017/S0960129508006762 Printed in the United Kingdom

Computation with classical sequents

STEFFEN VAN BAKEL† and P I ERRE LESCANNE‡

†Department of Computing, Imperial College London, 180 Queen’s Gate London SW7 2BZ, U.K.

Email: svb@doc.ic.ac.uk
‡École Normale Supérieure de Lyon, 46 Allée d’Italie 69364 Lyon 07, France

Email: Pierre.Lescanne@ens-lyon.fr

Received 10 November 2005; revised 27 June 2007

X is an untyped continuation-style formal language with a typed subset that provides a

Curry–Howard isomorphism for a sequent calculus for implicative classical logic. X can also

be viewed as a language for describing nets by composition of basic components connected

by wires. These features make X an expressive platform on which many different

(applicative) programming paradigms can be mapped. In this paper we will present the

syntax and reduction rules for X; in order to demonstrate its expressive power, we will show

how elaborate calculi can be embedded, such as the λ-calculus, Bloo and Rose’s calculus of

explicit substitutions λx, Parigot’s λμ and Curien and Herbelin’s λμμ̃.

X was first presented in Lengrand (2003), where it was called the λξ-calculus. It can be seen

as the pure untyped computational content of the reduction system for the implicative

classical sequent calculus of Urban (2000).

1. Introduction

A number of systems have appeared in the literature linking classical logic with a notion

of computation. In the past, say before the Ph.D. theses of Herbelin (Herbelin 1995)

and Urban (Urban 2000), the study of the relationship between computation, programming

languages and logic was concentrated mainly on natural deduction systems. In fact, these

deservedly carry the description ‘natural ’; in comparison with, for example, sequent style

systems, natural deduction systems are easy to understand and reason about. This holds

most strongly in the context of non-classical logics; for example, the relation between

intuitionistic logic and the lambda calculus (with types) is well studied and understood, and

has resulted in a vast and well-investigated area of research, resulting in, amongst others,

functional programming languages and, with much further development, to System F

(Girard 1986) and the Calculus of Constructions (Coquand and Huet 1985).

As an example of an approach for representing classical proofs, Parigot’s λμ-calculus

(see Parigot (1992)) is a natural deduction system in which there is one main conclusion

that is being manipulated and, possibly, several alternative ones. Adding conflict, ⊥, as a

pseudo-type (only negation, or A→⊥, is expressed; ⊥→A is not a type), the λμ-calculus

corresponds to minimal classical logic (Ariola and Herbelin 2003). The link between

† Partially supported by École Normale Supérieure de Lyon, France

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 556

classical logic and continuations and control was first established for the λC -calculus

(Griffin 1990) (where C stands for Felleisen’s C operator).

The sequent calculus, which was introduced by Gentzen in Gentzen (1935), is a logical

system in which the rules only introduce connectives (but on both sides of a sequent), in

contrast to natural deduction, which uses introduction and elimination rules. The only way

to eliminate a connective is to eliminate the whole formula in which it appears, through

an application of the (cut)-rule. Gentzen’s calculus for classical logic LK allows sequents

of the form A1, . . . , An � B1, . . . , Bm, where A1, . . . , An is to be understood as A1∧ . . .∧An

and B1, . . . , Bm is to be understood as B1∨ . . .∨Bm. Thus, LK appears as a very symmetrical

system.

A symmetrical lambda calculus was defined in Barbanera and Berardi (1996), essentially

allowing an application to be interpreted in two ways, thus encapsulating the non-

determinism of cut-elimination in Gentzen’s LK. On the other hand, the implicational

sequent calculus leads to a requirement for the left-introduction rules to manipulate

hypotheses, as studied by Herbelin in Herbelin (1995), Curien and Herbelin (2000) and

Herbelin (2005). The relation between call-by-name and call-by-value in the fragment of

LK with negation and conjunction in Wadler’s Dual Calculus was studied in Wadler (2003);

as in calculi like λμ and λμμ̃, the Dual Calculus considers a logic with active formulae.

The (cut)-rule does not increase the expressive power of the system since a cut-elimination

procedure has been defined that eliminates all applications of the (cut)-rule from the proof

of a sequent, thereby generating a proof in normal form of the same sequent, that is,

without a cut. It is defined using rewriting steps, that is, local reductions of the proof-tree,

which has, with some differences, the flavour of the evaluation of explicit substitutions

(de Bruijn 1978; Abadi et al. 1991). Indeed, the typing rule of an explicit substitution, say

in λx (Bloo and Rose 1995), is just a variant of the (cut)-rule, and much work has been

done to gain a better understanding of the connection between explicit substitutions and

local cut-reduction procedures.

This paper, which is a continuation of Lengrand (2003), presents a correspondence à la

Curry–Howard for LK, bringing together the various features of two different approaches

that we compare: that of Urban (Urban 2000; Urban and Bierman 2001; Urban 2001)

and that of Curien and Herbelin (Curien and Herbelin 2000). While Curien and Herbelin

insist on the duality of the calculus, Urban, in Urban (2000), thoroughly analyses, among

other things, Gentzen-like cut-elimination procedures, and defines a very general reduction

system for proofs in LK that is strongly normalising, and in which proofs are represented

by a syntax of terms. X is actually the implicative part of his calculus with a new syntax.

In this paper, we will try to take up the gauntlet on behalf of the sequent-style approach,

and make some further steps towards the development of a programming language based

on cut-elimination for the sequent calculus for classical logic. We will present a language

called X that describes nets, and its reduction rules, which join nets. The logic we will

consider is restricted to implication, but that is mainly because in this initial phase we have

aimed for simplicity; cut-elimination in sequent calculi is notorious for the large number

of rules, which will increase many-fold when considering additional logical connectives.

Breaking with the natural deduction paradigm comes at a price, in that abstraction

and application (corresponding to introduction of implication and modus ponens) are no

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 557

longer the basic tools of the extracted language. In fact, the language we obtain has more

of a continuation style, in that it models both the parameter as well as the context call.

However, abstraction and application can be faithfully implemented, and we will show

how X can be used to describe the behaviour of functional programming languages at a

very low level of granularity.

X as a language for describing nets

The basic pieces of X can be understood as components with entrance and exit wires

and ways to describe how to connect them to build larger nets. These components will be

briefly surveyed in the introduction and receive a more detailed treatment in Section 2.

We call the structures we build ‘nets’ because they are made of components connected by

wires.

X as a syntax for the sequent calculus

The origins of the work presented in this paper lie, first of all, in Lengrand (2002), where

Lengrand defined a first approach to the definition of a calculus, which he called λξ, that

would enjoy the Curry–Howard property for Gentzen’s Sequent Calculus. This became the

starting point for the results presented here. During discussions in 2002 between Lengrand

and the authors of this paper, it became clear that λξ was similar to the notation for

the sequent calculus first presented by Urban in his Ph.D. thesis (Urban 2000). This was

then studied in relation to λμμ̃ (Curien and Herbelin 2000) by Lengrand (Lengrand 2003)

through the calculus λξ. The decision to study the connection between λξ and λμμ̃, as

reported in Lengrand (2003), was not accidental, and was taken as the starting point for

our investigations. We changed the name of the calculus from λξ to X in order to avoid

a clash with the (ξ)-rule of the λ-calculus, and because the use of λ unjustifiably suggests

that abstraction is part of the syntax. In this paper, we will show in detail the interplay

between X and λμμ̃.

The natural context in which to study X is its role within the context of cut-elimination;

for this, X is naturally typed. From this, it is both a natural and straightforward step to

extend the research to an untyped X. This opens the possibility of not only studying the

relation between X and other untyped calculi, but also of expressing recursion through

a fixed-point construction, as well as studying normalisation and normalising reduction

strategies, and semantics.

As we believe strongly in the importance of syntax for gaining a better grasp of the

concepts, some of the contributions of this paper are to make the notation more intuitive

and readable by moving to an infix notation, and to insist on the computational aspect†.

This is achieved by studying X in the context of the normal functional programming

languages paradigms, but, more importantly, to cut the link between X and classical logic.

We achieve this by studying our language without types; in this way we will also consider

† The relationship between X and its predecessors is the same as the relationship between, say, mini-ML

(Clement 1986) and the lambda-calculus.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 558

nets that do not correspond to proofs – in particular, we consider non-termination nets.

In fact, we aim to study X outside the context of classical logic in much the same way as

the λ-calculus is studied outside the context of intuitionistic logic.

X as a fine-grained operational model of computation

When taking the λ-calculus as a model for programming languages, the operational

behaviour is provided by β-contraction. As is well known, β-contraction describes how

to calculate the value of a function applied to a parameter. In this, the parameter is

used to instantiate occurrences of the bound variable in the body through the process

of substitution. This description is rather basic as it says nothing about the actual cost

of the substitution, which is quite high at run time. Usually, a calculus of explicit

substitutions (Bloo and Rose 1995; Abadi et al. 1991; Lescanne 1994; Lengrand et al.

2004) is considered better suited for an accurate account of the substitution process and

its implementation. When we refer to the calculus of explicit substitution we are thinking

of λx, the calculus of explicit substitution with explicit names, due to Bloo and Rose (Bloo

and Rose 1995). λx gives a better account of substitution as it integrates substitutions

as first-class citizens, decomposes the process of inserting a term into atomic actions,

and explains in detail how substitutions are distributed through terms to be eventually

evaluated at the variable level.

In this paper, we will show that the level of description reached by explicit substitutions

can, in fact, be greatly refined. In X, we reach a ‘subatomic’ level by decomposing

explicit substitutions into smaller components. At this level, the calculus X explains how

substitutions and terms interact.

The calculus is in fact symmetric (Barbanera and Berardi 1996) and, unlike λx where

a substitution is applied to a term, a term in X can also be applied to a substitution.

Their interaction percolates subtly and gently through the term or substitution according

to the direction chosen. We will see that the these two kinds of interaction have a direct

connection with call-by-value and call-by-name strategies, which both have a natural

description in X.

The ingredients of the syntax

It is important to note that X does not have variables† – like the λ-calculus or λμμ̃ – as

possible places where terms might be inserted. Instead, X has wires, which are also called

connectors, that can occur free or bound in a term. As in the λ-calculus, the binding of a

wire indicates that it is active in the computation; but unlike in the λ-calculus, the binding

is not part of a term that is involved in the interaction, but is part of the interaction itself.

There are two kinds of wires – sockets (which are reminiscent of values) and plugs

(which are reminiscent of continuations) – and these correspond to variables and co-

variables, respectively, in Wadler (2003), or, alternatively, to Parigot’s lambda-variables

† Care should be taken not to become confused by the use of names like x for the class of connectors, which

are called plugs; these names are, in fact, inherited from λμμ̃.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 559

and mu-variables (Parigot 1992) (see also Curien and Herbelin (2000)). Wires are not

supposed to denote a location in a term like variables in the λ-calculus. Rather, wires are

seen a bit like ropes that can be knotted or tightened (like chemical bonds) with ropes of

other components.

This, in fact, has a direct analogy in the practice of sailing. Sailors give a very specific

name to each rope (main sail halyard, port jib sheet, and so on), and on a modern

competition sailboat every rope has its own colour to be sure that one tightens (or

loosens) a rope to (or from) its appropriate place or with (or from) the appropriate rope;

loosening the wrong rope can be catastrophic. In X, these colours naturally become kinds:

just as a rope has a colour, a wire has a kind.

One specificity of X is that syntactic constructors bind two wires, one of each kind†. In

X, bound wires receive a hat, so, to show that x is bound, we write x̂; note that in using the

‘hat’ -notation, we are maintaining the old tradition of Principia Mathematica (Whitehead

and Russell 1925; Whitehead and Russell 1997).

That a wire is bound in a net implies, naturally, that this wire is unknown outside that

net, but also that it ‘interacts’ with another ‘opposite’ wire that is bound in another net.

The interaction differs from one constructor to another, and is ruled by basic reductions

(see Section 2). In addition to bound wires, an introduction rule exhibits a free wire,

which is exposed and connectable. Frequently, but not invariably, this corresponds to the

creation of the wire.

Contents of this paper

In this paper we will present the formal definitions for X through its syntax and reduction

rules, and will show that the system is well behaved by stating a number of essential

properties. We will define a notion of simple type assignment for terms in X, in that we

will define a system of derivable judgements for which the terms of X are witnesses, and

will show a soundness result for this system by showing that a subject-reduction result

holds.

We will also compare X with a number of its predecessors. In fact, we will show

that a number of well-known calculi are easily, elegantly and surprisingly effectively

implementable in X. For anyone familiar with the problem of expressiveness, in view of

the fact that X is substitution-free, these result are truly novel. With the exception of λμμ̃,

it is not possible to embed X easily and naturally in these other calculi in such a way

that the major properties are preserved. This can be easily understood from the fact that

the vast majority of calculi in our area are confluent (Church–Rosser), whereas X is not.

A tool (which can be downloaded from http://www.doc.ic.ac.uk/~jr200/X) has

been developed using the term graph rewriting technology, that allows users to not only

input nets from X, but also terms from λ-calculus, using the interpretation of the latter

into X as specified in this paper. Details of the implementation can be found in van Bakel

and Raghunandan (2005) and van Bakel and Raghunandan (2006).

† This is also the case in Urban (2000), Urban and Bierman (2001) and Urban (2001), but this fact is made

very explicit in X by the use of Principia ’s notation.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 560

This paper presents an extended version of results that first appeared in Lengrand (2003)

and van Bakel et al. (2005), which were themselves deeply inspired by the work of Urban

and Bierman (Urban 2000; Urban and Bierman 2001; Urban 2001).

2. The X-calculus

The nets that are the objects of X are built using three kinds of building stones, or

constructors, called capsule, export and import. In addition, there is an operator called

cut, which is handy for describing net construction, and will eventually be eliminated by

rules.

2.1. The operators

Nets are connected through wires, which are named. In our description wires are oriented.

This means we know in which direction the ‘ether running through our nets’ moves, and

can say when a wire provides an entrance to a net or when a wire provides an exit. Thus

we make the distinction between exit wires, which we call plugs or outputs and entry

wires, which we call sockets or inputs. Plugs are named with Greek letters α, β, γ, δ, . . . ,

and sockets are named with Latin letters x, y, z,

When connecting two nets P and Q by an operator, say �, we may suppose that P has

a plug α and Q has a socket x that we want to bind together to create a flow from P to

Q. After the link has been established, the wires are plugged, and the names of the plug

and socket are forgotten. To be more precise, in P α̂ � x̂Q, the name α is not reachable

outside P and the name x is not reachable outside Q. This is reminiscent of a construction

like ∀x.P or λx.M in logic where the name x is not known outside the expressions. These

names are said to be bound. Likewise, in X, in a construction like P α̂ � x̂Q where α is a

plug of P and x is a socket of Q, there are two bound names, namely α and x, that are

bound in the interaction.

Definition 2.1 (Syntax). The nets of the X-calculus are defined by the following grammar,

where x, y, . . . range over the infinite set of sockets, and α, β, . . . over the infinite set of

plugs:

P ,Q ::= 〈y.β〉 | x̂P α̂·β | P α̂ [y] x̂Q | P α̂ † x̂Q .

As an illustration, we represent the basic nets diagrammatically as

�y β� �x P �α �β P �α [] x� Q�y
P �α x Q

Notice that, using the intuition sketched above, for example, the connector α is not

supposed to occur outside P ; this is formalised below by Definition 2.2 and Barendregt’s

Convention (see also below).

We see sockets as points where nets input, and plugs where they output, and write

inputs on the left and outputs on the right, as is also done in Wadler (2003).

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 561

We can motivate the constructions of X using the example of the ‘translations’ in a

huge international organisation†. The arguments below will be better established and

formalised in Section 3 when we will speak about types, which are the correct framework.

But, ofcourse, X is basically an untyped language.

Suppose wires carry words in a language such as Estonian or Portuguese, but also

translators between languages, such as ‘French to Dutch’. A capsule 〈y.β〉 connects inside

the socket y with the plug β. Everything entering the capsule on y in one language will

leave it in the same language on β. An export (x̂P α̂·β) can be seen as follows: P provides

a device that transforms words in a language received on x to words in a(nother) language

returned on α, therefore (ŷP α̂·β) is a translator, which can be seen as a ‘higher-order’

language, that is returned on a specific wire β, which can be connected later on. An

export can also be seen in terms of T-diagrams like those used in compiling technology

for bootstrapping – see Aho et al. (1988, Section 11.2). An import (P α̂ [y] x̂Q) is required

when one tries to connect two wires α and x to carry words from different languages. In

order for P and Q to communicate, a translator is needed, and this will be received on

the wire y, which is a socket.

The operator † is called a cut, and a term (net) of the form (P α̂ † x̂Q) is called a cut

net, which corresponds to an operation on the switch board. A cut is specific in that it

connects two nets, connecting the socket x of Q to the plug α of P ; this assumes that the

language expected on x is the same as the language delivered by α. The cut expresses the

need for a rewiring of the switch board: a language is on offer on a plug, and demanded

on a socket, and ‘dealing’ with the cut, which expresses the need for the connection to be

established, will cause the cut to be eliminated eventually by building the connection. The

calculus, defined by the reduction rules (Section 2.2) gives a detailed explanation of how

cuts are distributed through nets to be eventually erased at the level of capsules.

The following table gives the correspondence between the notation of X and that used

by Urban. Urban uses the first letters of the Latin alphabet for plugs, and the last for

sockets; he expresses input and output behaviour by using a π-calculus-like notation,

putting sockets between parentheses and plugs between angled brackets:

〈x.α〉 Ax(x, a)

x̂P β̂ ·α ImpR((x)〈b〉P , a)

P α̂ [x] ŷQ ImpL(〈a〉P , (y)Q, x)

P α̂ † x̂Q Cut(〈a〉P , (x)Q) .

It should be noted that, in the π-calculus, input a(x) and output a〈c〉 are actions, which

are consumed in the communication, and written pre-fix because computation runs ‘left-

to-right’: a(x).P | a〈c〉.Q→ P [c/x] | Q. In Urban’s notation, the brackets have a different

meaning: for example, in ImpR((x)〈b〉P , a), we have that P inputs on x and outputs on b,

but (x) and 〈b〉 are not actions, but descriptions. Notice that Urban’s notation is pre-fix,

which distorts the notion of ‘flow’ that X expresses; also, in ImpL(〈a〉P , (y)Q, x), it is not

clear that x will interface between P and Q.

† See http://europa.eu.int/comm/translation/index en.htm

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 562

We have already referred to the notion of bound names, and we will now give a formal

definition together with definitions of free sockets and plugs into X.

Definition 2.2. The free sockets and free plugs in a net are

fs(〈x.α〉) = {x}
fs(x̂P α̂·β) = fs(P)\{x}

fs(P α̂ [y] x̂Q) = fs(P)∪{y}∪(fs(Q)\{x})
fs(P α̂ † x̂Q) = fs(P)∪(fs(Q)\{x})

fp(〈x.α〉) = {α}
fp(x̂P α̂·β) = (fp(P)\{α})∪{β}

fp(P α̂ [y] x̂Q) = (fp(P)\{α})∪fp(Q)

fp(P α̂ † x̂Q) = (fp(P)\{α})∪fp(Q) .

A socket x or plug α occurring in P that is not free is said to be bound, written x ∈ bs(P)

and α ∈ bp(P). We will write x
∈ fs(P ,Q) for x
∈ fs(P) & x
∈ fs(Q).

We will normally adopt Barendregt’s convention (for Barendregt this was a convention

on variables, but here it will be a convention on names).

Convention on names. In a net or in a statement, a name is never both bound and free in

the same context.

We will also consider, for example, x bound in P [y/x] and P ··· Γ, x:A � Δ (this notion

will be introduced in Section 3).

As the main concept is that of a name, we will only define renaming, that is, replacement

of a name by another name. Indeed, it would make no sense to substitute a name by a

net. The definition of renaming relies on Barendregt’s convention on names; if a binding,

say x̂P of x in P , violates Barendregt’s convention, one can get it back by renaming,

that is, ŷP [y/x]; as is common in calculi with (some form of) explicit substitution, this

renaming can be internalised (see Section 2.5).

Definition 2.3 (Renaming of sockets and plugs).

〈x.α〉[y/x] = 〈y.α〉
〈z.α〉[y/x] = 〈z.α〉, x
= z

(ẑP α̂·β)[y/x] = ẑ(P [y/x])α̂·β
(P α̂ [x] ẑQ)[y/x] = (P [y/x])α̂ [y] ẑ(Q[y/x])

(P α̂ [u] ẑQ)[y/x] = (P [y/x])α̂ [u] ẑ(Q[y/x]), x
= u

(P α̂ † ẑQ)[y/x] = (P [y/x])α̂ † ẑ(Q[y/x])

〈x.α〉[β/α] = 〈x.β〉
〈x.γ〉[β/α] = 〈x.γ〉, α
= γ

(ẑP δ̂ ·α)[β/α] = ẑ(P [β/α])δ̂ ·β
(ẑP δ̂ ·γ)[β/α] = ẑ(P [β/α])δ̂ ·γ, α
= γ

(P δ̂ [x] ẑQ)[β/α] = (P [β/α])δ̂ [x] ẑ(Q[β/α])

(P δ̂ † ẑQ)[β/α] = (P [β/α])δ̂ † ẑ(Q[β/α]) .

Renaming will play an important part in dealing with α-conversion, a problem we will

discuss in Subsection 2.5.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 563

2.2. The rules

We will now come to the definition of reduction through the elimination of cuts; the

intuition in reduction is that the cut P α̂ † x̂Q expresses the intention to connect all αs

in P and xs in Q, and that reduction will realise this, by either connecting all αs to all

xs, or all xs to all αs (notice that this will not necessarily have the same effect; consider

the cases when either α or x does not occur). The base cases occur when a socket or a

plug is exposed and unique (is introduced, or connectable), since in this case building the

connection is straightforward, as is expressed by the first set of rules. Informally, a net P

introduces a socket x if P is constructed from sub-nets that do not contain x as a free

socket, so x only occurs at the ‘top level’. This means that P is either an import with a

middle connector [x] or a capsule with left part x. Similarly, a net introduces a plug α if

it is an export that ‘creates’ ·α or a capsule with right part α. We will now formally define

what it means for a net to introduce a socket or a plug (Urban uses the terminology

‘freshly introduce’ (Urban 2000)).

Definition 2.4 (Introduction).

P introduces x means P = 〈x.β〉 or P = Rα̂ [x] ŷQ, with x
∈ fs(R,Q).

P introduces β means P = 〈y.β〉 or P = x̂Qα̂·β, with β
∈ fp(Q).

We first present a simple family of reduction rules. They specify how to reduce a net

that cuts sub-nets that introduce connectors. These rules are naturally divided into four

categories depending on whether:

— a capsule is cut with a capsule;

— an export is cut with a capsule;

— a capsule is cut with an import; or

— an export is cut with an import.

There is no other pattern in which a plug is introduced on the left of a † and a socket is

introduced on the right.

Definition 2.5 (Logical reduction). Assuming that the nets of the left-hand sides of the

rules introduce the socket x and the plug α, the logical rules are

(cap) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉
(exp) : (ŷP β̂ ·α)α̂ † x̂〈x.γ〉 → ŷP β̂ ·γ
(imp) : 〈y.α〉α̂ † x̂(P β̂ [x] ẑQ) → P β̂ [y] ẑQ

(exp-imp) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP)β̂ † ẑR

or Qγ̂ † ŷ(P β̂ † ẑR) .

See Figure 1 for a diagrammatic representation.

Notice that in rule (exp-imp), in addition to the conditions for introduction of the

connectors that are active in the cut (α
∈ fp(P) and x
∈ fs(Q,R)), we can also state that

β
∈ fp(Q)\{γ}, as well as that y
∈ fs(R)\{z}, due to Barendregt’s convention.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 564

�y α� �α x �x β� → �y β�

�y P �β �α �α x �x γ� → �y P �β �γ

�y α� �α x Q �β [] z� R�x → Q �β [] z� R�y

�y P �β �α �α x Q �γ [] z� R�x → Q �γ y P �β z R

→ Q �γ y P �β z R

Fig. 1. Diagrammatic representation of logical reduction rules

Again in rule (exp-imp), one may observe that there are two right-hand sides: this is a

first appearance of the non-determinism in X, which is, as noted by Lafont, an intrinsic

part of cut elimination in classical logic.

We now need to define how to reduce a cut for cases when one of its sub-nets does

not introduce a socket or a plug. This requires us to extend the syntax with two new

operators, which we call activated cuts:

P ::= . . . | P α̂ † x̂Q | P α̂ † x̂Q .

Intuitively, P α̂ † x̂Q represents the intention to connect the xs in Q to the αs in P , moving

Q inside P to those places where α is connectable, that is, is introduced, and P α̂ † x̂Q
represents the intention to connect the αs to the xs.

Nets where cuts are not activated are called pure (the diagrammatical representation

of activated cuts is the same as that for straightened out (that is, non-activated) cuts).

Activated cuts are propagated through the nets, moving towards occurrences of the

connectors mentioned in the cut up to the point where they are connectable, and a logical

rule can be applied.

Definition 2.6 (Activating the cuts).

(act-l) : P α̂ † x̂Q → P α̂ † x̂Q, if P does not introduce α

(act-r) : P α̂ † x̂Q → P α̂ † x̂Q, if Q does not introduce x

Notice that both side conditions can be valid simultaneously, thereby validating both

rewrite rules at the same moment. In fact, this gives a critical pair or superposition for

our notion of reduction, and is a cause of the loss of confluence.

We will now define how to propagate an activated cut through sub-nets. The direction

of the activation shows the direction the cut should be propagated, hence the two sets of

reduction rules.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 565

Definition 2.7 (Propagation reduction). The rules of propagation are:

Left propagation

(† d) : 〈y.α〉α̂ † x̂P → 〈y.α〉α̂ † x̂P

(cap†) : 〈y.β〉α̂ † x̂P → 〈y.β〉, β
= α

(exp-outs†) : (ŷQβ̂ ·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P)β̂ ·γ)γ̂ † x̂P , γ fresh

(exp-ins†) : (ŷQβ̂ ·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P)β̂ ·γ, γ
= α

(imp†) : (Qβ̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P)β̂ [z] ŷ(Rα̂ † x̂P)

(cut†) : (Qβ̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P)β̂ † ŷ(Rα̂ † x̂P) .

Right propagation

(d †) : P α̂ † x̂〈x.β〉 → P α̂ † x̂〈x.β〉
(†cap) : P α̂ † x̂〈y.β〉 → 〈y.β〉, y
= x

(†exp) : P α̂ † x̂(ŷQβ̂ ·γ) → ŷ(P α̂ † x̂Q)β̂ ·γ
(†imp-outs) : P α̂ † x̂(Qβ̂ [x] ŷR) → P α̂ † ẑ((P α̂ † x̂Q)β̂ [z] ŷ(P α̂ † x̂R)), z fresh

(†imp-ins) : P α̂ † x̂(Qβ̂ [z] ŷR) → (P α̂ † x̂Q)β̂ [z] ŷ(P α̂ † x̂R), z
= x

(†cut) : P α̂ † x̂(Qβ̂ † ŷR) → (P α̂ † x̂Q)β̂ † ŷ(P α̂ † x̂R) .

Definition 2.8. We will write P → Q for the compatible closure of the one-step term

rewriting induced by the above rules, and write P →→ Q for its transitive closure (we will

often simply write P → Q for P →→ Q, to show that P reduces to Q, and reserve →→ for

a number of steps). We will subscript the arrow that represents our reduction to indicate

certain sub-systems, defined by a reduction strategy: for example, we will write →a for

the reduction that uses only Left propagation or Right propagation rules. In fact, →a is

the reduction that pushes † and † inward. We will also write P ↓Q if there exists an R

such that P →→ R and Q→→ R, that is, when P and Q have a common reduct.

The rules (exp-outs†) and (†imp-outs) deserve some attention. Note that in rule

(exp-outs†) we create a new name γ and that in rule (†imp-outs) we create a new

name z. This is done because a cut is duplicated: one copy is distributed inside and the

other is left outside as an inactive cut. A new name is created to respect Barendregt’s

hygiene convention; for instance, in the left-hand side of (exp-outs†), α may occur more

than once in ŷQβ̂ ·α, that is, once after the dot and again in Q. The occurrence after the

dot is dealt with separately by creating a new name γ. Note that the cut associated with

γ is then inactivated; this is because, although we now know that γ is introduced, we do

not know if x in Q is.

The same thing happens with x in (†imp-outs) and a new name z is created and the

external cut is inactivated.

The Renaming Lemma (2.11, which is stated and proved in Section 2.4) shows that in

the right-hand side of rules († d) and (d †) we could have written P [y/x] and P [β/α],

respectively, instead of the terms we have chosen. We made that choice for three reasons:

(1) We like to make all of the operations explicit and do not want to rely on operations

defined in the meta-theory, and internalising name substitutions would have required

us to include all the identities of Definition 2.3 as rules in the theory.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 566

(2) This small-step approach is closer to our philosophy of X, which tends to decompose

operations in as fine grained a way as possible.

(3) Note that if α is introduced in ŷQβ̂ ·α, then (exp-outs†) gives, with the Cancellation

Lemma (Lemma 2.10),

(ŷQβ̂ ·α)α̂ † x̂P →→ (ŷQβ̂ ·α)α̂ † x̂P ,

and († d) and this reduction play similar roles, namely, that of ‘deactivating’ cuts.

2.3. Strong normalisation

We should point out that when we use the above rules, not all typeable nets are strongly

normalisable. This is caused by the fact that arbitrary cut-elimination is too liberal;

for example, allowing (inactivated) cuts to propagate over cuts immediately leads to

non-termination, since we can always choose the outermost cut as the one to contract.

Although the notion of cut-elimination proposed here has no rule that would allow this

behaviour, it can be mimicked, which can lead to non-termination for typeable nets, as

already observed in Urban (2000).

Assuming x
∈ fs(Q), β
∈ fp(P), and P ,Q are both pure, then

P α̂ † x̂(〈x.β〉β̂ † ẑQ) → (act-r)

P α̂ † x̂(〈x.β〉β̂ † ẑQ) → (†cut)
(P α̂ † x̂〈x.β〉)β̂ † ẑ(P α̂ † x̂Q) → (d †), (†gc)

(P α̂ † x̂〈x.β〉)β̂ † ẑQ → (act-l)

(P α̂ † x̂〈x.β〉)β̂ † ẑQ → (cut†)

(P β̂ † ẑQ)α̂ † x̂(〈x.β〉β̂ † ẑQ) → († d), († gc)

P α̂ † x̂(〈x.β〉β̂ † ẑQ) .

Moreover, assuming P ··· Γ � α:A,Δ and Q ··· Γ, x:A � Δ (see Section 3), we can construct

P ··· Γ � α:A,Δ

(Ax)
〈x.β〉 ··· Γ, x:A � β:A,Δ

Q ··· Γ, x:A � Δ
(W)

Q ··· Γ, x:A, z:A � Δ
(cut)

〈x.β〉β̂ † ẑQ ··· Γ, x:A � Δ
(cut)

P α̂ † x̂(〈x.β〉β̂ † ẑQ) ··· Γ � Δ

and all the intermediate nets in the reduction above are typeable by the Witness Reduction

result (Theorem 3.6; example communicated by Alexander J. Summers).

Urban gives a solution for this unwanted reduction behaviour, and shows that it is

sufficient to obtain strong normalisation of typeable nets. He adds the rules

(P α̂ † x̂〈x.β〉)β̂ † ŷQ → (P β̂ † ŷQ)α̂ † ŷQ

P α̂ † x̂(〈x.β〉β̂ † ŷQ) → P α̂ † ŷ(P α̂ † x̂Q) ,

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 567

and gives them priority over the rules (cut†) and (†cut) by changing those to

(P α̂ † x̂Q)β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂(Qβ̂ † ûR), Q
= 〈x.β〉
P α̂ † x̂(Qβ̂ † ŷR) → (P α̂ † x̂Q)β̂ † ŷ(P α̂ † x̂R), Q
= 〈x.β〉 ,

thereby blocking the reduction of P α̂ † x̂(〈x.β〉β̂ † ẑQ) to (P α̂ † x̂〈x.β〉)β̂ † ẑQ.

Notice that the side condition Q
= 〈x.β〉 is quite different in character from the rules

for X we presented above, in that we now test for equality between circuits, rather than

just the occurrence of a connector within a circuit. In fact, it corresponds to replacing, for

example, rule (cut†) by the rules

(P α̂ † x̂〈x.β〉)β̂ † ŷQ → (P β̂ † ŷQ)α̂ † ŷQ

(P α̂ † x̂〈y.γ〉)β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂(〈y.γ〉β̂ † ŷR), x
= y ∨ γ
= β

(P α̂ † x̂(ẑQγ̂ ·δ))β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂((ẑQγ̂ ·δ)β̂ † ŷR)

(P α̂ † x̂(Q1γ̂ [z] v̂Q2))β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂((Q1γ̂ [z] v̂Q2)β̂ † ŷR)

(P α̂ † x̂(Q1γ̂ † v̂Q2))β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂((Q1γ̂ † v̂Q2)β̂ † ŷR) ,

and by replacing rule (†cut) by four similar rules, effectively adding eight rules. Although

these rules are fine as far as term rewriting is concerned, rewriting is no longer local as

they match against sub-nets of the nets involved in the cut. Note that the last two rules

might as well be replaced by

(P α̂ † x̂(Q1γ̂ [z] v̂Q2))β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂((Q1β̂ † ŷR)γ̂ [z] v̂(Q2β̂ † ŷR))

(P α̂ † x̂(Q1γ̂ † v̂Q2))β̂ † ŷR → (P β̂ † ŷR)α̂ † x̂((Q1β̂ † ŷR)γ̂ † v̂(Q2β̂ † ŷR)) .

2.4. Call-by-name and call-by-value

In this section we will define two sub-systems of reduction (that is, restricted versions of

the full reduction we defined above), which correspond roughly to call-by-name (cbn) and

call-by-value (cbv) reduction. Notice that this is essentially different from the approach

of Wadler (2003), which only defines two dual notions of reduction, and no overall notion

of reduction.

As in λμμ̃, only one notion of reduction is defined in X. When interpreting the λ-calculus

or λμ in λμμ̃, however, different interpretation functions are defined for the cbn and cbv

sub-calculi. Here we will define one interpretation function for each calculus, and show

that both cbn- and cbv-reduction are respected.

As mentioned above, when P does not introduce α and Q does not introduce x, P α̂ † x̂Q
is a superposition, meaning that two rules, namely (act-l) and (act-r), can both be fired.

The critical pair 〈P α̂ † x̂Q, P α̂ † x̂Q〉 may lead to different irreducible nets. This is to say

that the reduction relation → is not confluent. Non-determinism is a key feature of both

classical logic and rewriting logic.

We introduce two sub-reduction systems that favour one kind of activation whenever

the above critical pair occurs.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 568

Definition 2.9.

— If a cut can be activated in two ways, the cbv strategy only allows activation through

(act-l), and we write P →v Q in that case. We can reformulate this as the reduction

system obtained by replacing rule (act-r) by

(act-r) : P α̂ † x̂Q → P α̂ † x̂Q, if P introduces α and Q does not introduce x.

— The cbn strategy can only activate such a cut through (act-r), and as above, we write

P →n Q. Again, we can reformulate this as the reduction system obtained by replacing

rule (act-l) by

(act-l) : P α̂ † x̂Q → P α̂ † x̂Q, if P does not introduce α and Q introduces x.

Notice that in cbv, a right cut like P α̂ † x̂Q implies that α is introduced in P (that is, P is

a value), and that, in cbn, a left cut like P α̂ † x̂Q implies that x is introduced in Q (that

is, Q is a name).

We will now show some basic properties, which essentially show that the calculus is

well behaved; we will give the full proof to demonstrate reduction in X at work. Recall

that a net is pure if it contains no activated cuts.

Lemma 2.10 (Cancellation).

1 P α̂ † x̂Q→a P if α
∈ fp(P) and P is pure.

2 P α̂ † x̂Q→ P if α
∈ fp(P) and P is pure.

3 P α̂ † x̂Q→a Q if x
∈ fs(Q) and Q is pure.

4 P α̂ † x̂Q→ Q if x
∈ fs(Q) and Q is pure.

Proof.

1 We use induction on the structure of nets:

— P = 〈y.β〉:
〈y.β〉α̂ † x̂Q→a (cap†) 〈y.β〉 .

— P = ŷRβ̂ ·γ:
(ŷRβ̂ ·γ)α̂ † x̂Q →a (exp-ins†) ŷ(Rα̂ † x̂Q)β̂ ·γ →a (IH) ŷRβ̂ ·γ .

— P = Rβ̂ [z] ŷS:

(Rβ̂ [z] ŷS)α̂ † x̂Q →a (imp†)

(Rα̂ † x̂Q)β̂ [z] ŷ(Sα̂ † x̂Q) →a (IH) Rβ̂ [z] ŷS .

— P = Rβ̂ † ŷS:

(Rβ̂ † ŷS)α̂ † x̂Q →a (cut†)

(Rα̂ † x̂Q)β̂ † ŷ(Sα̂ † x̂Q) →a (IH) Rβ̂ † ŷS .

2 There are two cases to consider:

— P introduces α:

Hence α ∈ fp(P), so this is impossible.

— P does not introduce α:

Hence P α̂ † x̂Q→a (act-l) P α̂ † x̂Q, and the result follows from part 1.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 569

3 By induction on the structure of nets:

— Q = 〈y.β〉:
P α̂ † x̂〈y.β〉 →a (†cap) 〈y.β〉 .

— Q = ŷRβ̂ ·γ:
P α̂ † x̂(ŷRβ̂ ·γ) →a (†exp) ŷ(P α̂ † x̂R)β̂ ·γ →a (IH) ŷRβ̂ ·γ .

— Q = Rβ̂ [z] ŷS:

P α̂ † x̂(Rβ̂ [z] ŷS) →a (†imp-ins)

(P α̂ † x̂R)β̂ [z] ŷ(P α̂ † x̂S) →a (IH) Rβ̂ [z] ŷS .

— Q = Rβ̂ † ŷS:

P α̂ † x̂(Rβ̂ † ŷS) →a (†cut)
(P α̂ † x̂R)β̂ † ŷ(P α̂ † x̂S) →a (IH) Rβ̂ † ŷS .

4 There are two cases to consider:

— Q introduces x:

Hence x ∈ fs(Q), so this is impossible.

— Q does not introduce x:

Hence P α̂ † x̂Q→a (act-r) P α̂ † x̂Q, and the result follows from Part 2.10.

We will now show that a cut with a capsule leads to renaming.

Lemma 2.11 (Renaming).

1 P δ̂ † ẑ〈z.α〉 → P [α/δ] if P is pure.

2 P δ̂ † ẑ〈z.α〉 → P [α/δ] if P is pure.

3 〈z.α〉α̂ † x̂P → P [z/x] if P is pure.

4 〈z.α〉α̂ † x̂P → P [z/x] if P is pure.

Proof.

1 By induction on the structure of nets:

— P = 〈x.δ〉:
〈x.δ〉δ̂ † ẑ〈z.α〉 →a († d) 〈x.δ〉δ̂ † ẑ〈z.α〉 → (cap) 〈x.α〉 =

Δ 〈x.δ〉[α/δ] .

— P = 〈x.β〉, β
= δ:

〈x.β〉δ̂ † ẑ〈z.α〉 →a (cap†) 〈x.β〉 =
Δ 〈x.β〉[α/δ] .

— P = ŷQγ̂ ·δ:

(ŷQγ̂ ·δ)δ̂ † ẑ〈z.α〉 →a (exp-outs†), β fresh

(ŷ(Qδ̂ † ẑ〈z.α〉)γ̂ ·β)β̂ † ẑ〈z.α〉 → (exp)

ŷ(Qδ̂ † ẑ〈z.α〉)γ̂ ·α → (IH)

ŷQ[α/δ]γ̂ ·α =
Δ

(ŷQγ̂ ·δ)[α/δ] .

— P = ŷQγ̂ ·β, β
= δ:

(ŷQγ̂ ·β)δ̂ † ẑ〈z.α〉 →a (exp-ins†)

ŷ(Qδ̂ † ẑ〈z.α〉)γ̂ ·β → (IH)

ŷQ[α/δ]γ̂ ·β =
Δ

(ŷQγ̂ ·β)[α/δ] .

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 570

— P = Qβ̂ [x] ŷR:

(Qβ̂ [x] ŷR)δ̂ † ẑ〈z.α〉 →a (imp†)

(Qδ̂ † ẑ〈z.α〉)β̂ [x] ŷ(Rδ̂ † ẑ〈z.α〉) → (IH)

Q[α/δ]β̂ [x] ŷR[α/δ] =
Δ

(Qβ̂ [x] ŷR)[α/δ] .

— P = Qβ̂ † x̂R:

(Qβ̂ † x̂R)δ̂ † ẑ〈z.α〉 →a (cut†)

(Qδ̂ † ẑ〈z.α〉)β̂ † x̂(Rδ̂ † ẑ〈z.α〉) → (IH)

Q[α/δ]β̂ † x̂R[α/δ] =
Δ

(Qβ̂ † x̂R)[α/δ] .

2 If P δ̂ † ẑ〈z.α〉, there are two cases:

— P introduces δ:

Hence either:

– P = x̂Qβ̂ ·δ and δ
∈ fp(Q):

So

(x̂Qβ̂ ·δ)δ̂ † ẑ〈z.α〉 → (exp)

x̂Qβ̂ ·α =
Δ

(x̂Qβ̂ ·δ)[α/δ] .

– P = 〈x.δ〉:
So 〈x.δ〉δ̂ † ẑ〈z.α〉 → (cap) 〈x.α〉 =

Δ 〈x.δ〉[α/δ] .

— P does not introduce δ:

Hence, P δ̂ † ẑ〈z.α〉 →a P δ̂ † ẑ〈z.α〉, and the result follows from part 1.

3 By induction on the structure of nets:

— P = 〈x.δ〉:
〈z.α〉α̂ † x̂〈x.δ〉 →a (d †) 〈z.α〉α̂ † x̂〈x.δ〉 → (cap) 〈z.δ〉 =

Δ 〈x.δ〉[z/x] .

— P = 〈y.δ〉, y
= x:

〈z.α〉α̂ † x̂〈y.δ〉 →a (†cap) 〈y.δ〉 =
Δ 〈y.δ〉[z/x] .

— P = ŷQγ̂ ·δ:

〈z.α〉α̂ † x̂(ŷQγ̂ ·δ) →a (†exp)

ŷ(〈z.α〉α̂ † x̂Q)γ̂ ·δ → (IH)

ŷQ[z/x]γ̂ ·δ =
Δ

(ŷQγ̂ ·δ)[z/x] .

— P = Qβ̂ [x] ŷR:

〈z.α〉α̂ † x̂(Qβ̂ [x] ŷR) →a (†imp-outs)

〈z.α〉α̂ † v̂((〈z.α〉α̂ † x̂Q)β̂ [v] ŷ(〈z.α〉α̂ † x̂R)) → (IH)

〈z.α〉α̂ † v̂(Q[z/x]β̂ [v] ŷR[z/x]) → (imp)

Q[z/x]β̂ [z] ŷR[z/x] =
Δ

(Qβ̂ [x] ŷR)[z/x] .

— P = Qβ̂ [v] ŷR, v
= x:

〈z.α〉α̂ † x̂(Qβ̂ [v] ŷR) →a (†imp-ins)

(〈z.α〉α̂ † x̂Q)β̂ [v] ŷ(〈z.α〉α̂ † x̂R) → (IH)

Q[z/x]β̂ [v] ŷR[z/x] =
Δ

(Qβ̂ [v] ŷR)[z/x] .

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 571

— P = Qβ̂ † ŷR:

〈z.α〉α̂ † x̂(Qβ̂ † ŷR) →a (†cut)
(〈z.α〉α̂ † x̂Q)β̂ † ŷ(〈z.α〉α̂ † x̂R) → (IH)

Q[z/x]β̂ † ŷR[z/x] =
Δ

(Qβ̂ † ŷR)[z/x] .

4 If 〈z.α〉α̂ † x̂P , there are two cases:

— P introduces x:

Hence, either:

– P = Qβ̂ [x] ŷR, and x does not occur free in Q,R:

So 〈z.α〉α̂ † x̂(Qβ̂ [x] ŷR) → (imp) Qβ̂ [z] ŷR =
Δ

(Qβ̂ [x] ŷR)[z/x] .

– P = 〈x.β〉:
So 〈z.α〉α̂ † x̂〈x.β〉 → (cap) 〈z.β〉 =

Δ 〈x.β〉[z/x] .

— P does not introduce x:

Hence, 〈z.α〉α̂ † x̂P →a 〈z.α〉α̂ † x̂P and the result follows from part 1.

These results motivate an extension (in both sub-systems) of the reduction rules.

Formulating new rules in the shape of the above results, we get

(† gc) : P α̂ † x̂Q → P , if α
∈ fp(P), P pure

(†gc) : P α̂ † x̂Q → Q, if x
∈ fs(Q), Q pure

(ren-r) : P δ̂ † ẑ〈z.α〉 → P [α/δ], P pure

(ren-l) : 〈z.α〉α̂ † x̂P → P [z/x], P pure .

The admissibility of these rules for nets that are not pure is shown in van Bakel and

Raghunandan (2006).

2.5. α-conversion

Renaming is normally an essential part of α-conversion – the process of renaming

bound objects in a language to avoid clashes during computation. The most familiar

context in which this occurs is, of course, the λ-calculus, where, when reducing a net

like (λxy.xy)(λxy.xy), α-conversion is essential. In this section we will briefly discuss the

solution of van Bakel and Raghunandan (2006), which deals precisely with this problem

in X.

Example 2.12. Take the following reduction:

(ŷ〈y.ρ〉ρ̂·γ)γ̂ † x̂(〈x.δ〉δ̂ [x] ŵ〈w.α〉) → (act-r), (†imp-outs)

(ŷ〈y.ρ〉ρ̂·γ)γ̂ † ẑ(((ŷ〈y.ρ〉ρ̂·γ)γ̂ † x̂〈x.δ〉)δ̂ [z] ŵ((ŷ〈y.ρ〉ρ̂·γ)γ̂ † x̂〈w.α〉))
→ (d †), (exp), (†cap)

(ŷ〈y.ρ〉ρ̂·γ)γ̂ † ẑ((ŷ〈y.ρ〉ρ̂·δ)δ̂ [z] ŵ〈w.α〉) → (exp-imp)

((ŷ〈y.ρ〉ρ̂·δ)δ̂ † ŷ〈y.ρ〉)ρ̂ † ŵ〈w.α〉

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 572

It is clear that the last term contravenes Barendregt’s convention: ρ is both free and

bound in (ŷ〈y.ρ〉ρ̂·δ)δ̂ † ŷ〈y.ρ〉. If we were to continue the reduction, we would get

((ŷ〈y.ρ〉ρ̂·δ)δ̂ † ŷ〈y.ρ〉)ρ̂ † ŵ〈w.α〉 → (exp)

(ŷ〈y.ρ〉ρ̂·ρ)ρ̂ † ŵ〈w.α〉 .
Notice that ρ is not introduced in ŷ〈y.ρ〉ρ̂·ρ, since ρ ∈ fp(〈y.ρ〉). So the cut is propagated,

and we get

→ (act-l), (exp-outs†), († d)

(ŷ(〈y.ρ〉ρ̂ † ŵ〈w.α〉)ρ̂·θ)θ̂ † ŵ〈w.α〉 → (cap), (exp)

ŷ〈y.α〉ρ̂·α .
This is not correct since (ŷ〈y.ρ〉ρ̂·ρ)ρ̂ † ŵ〈w.α〉 α-converges to (ŷ〈y.σ〉σ̂ ·ρ)ρ̂ † ŵ〈w.α〉,
where the ρ is introduced, whereas we should have obtained ŷ〈y.ρ〉ρ̂·α.

It is clear from this example that α-conversion is needed to some extent in any

implementation of X. Three† solutions to this problem are proposed in van Bakel and

Raghunandan (2005; 2006), and these are compared in terms of efficiency. The first

uses a lazy-copying strategy to avoid sharing of bound connectors; the second enforces

Barendregt’s convention, by renaming bound connectors when nesting is created; the third

avoids capture of names, but allows breaches of Barendregt’s convention. This is achieved

by changing, for example, the rule (exp-imp)

(ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) →
{

Qγ̂ † ŷ(P β̂ † ẑR)

(Qγ̂ † ŷP)β̂ † ẑR .

A conflict with Barendregt’s convention is generated in this rule by the fact that we

may have β = γ or y = z, or β occurs in Q, or y in R. Or, when striving for capture

avoidance, it might be that y occurs free in R, or β in Q. In either case, these connectors

need to be renamed; one of the great plus points of X is that this can be done within

the language itself, unlike for the λ-calculus. In fact, using Lemma 2.11, we can give an

α-conflict free version of X (see below).

In contrast, this is impossible in the λ-calculus, where the only reduction rule is

(λx.M)N → M[N/x], and α-conversion is essential when reducing (λxy.xy)(λxy.xy).

Without it, one would get

(λxy.xy)(λxy.xy) → λy.(λxy.xy)y → λyy.yy .

The conflict is caused by the fact that in the second step, the right-most y is brought

under the innermost binder, which causes variables bound by the outermost binding to

‘swap scope’ while reducing.

A particular problem in dealing with α-conversion is that in the β-reduction rule

(λx.M)N →M[N/x], the substitution in the right-hand side is supposed to be immediate;

since the structure of M and N is anonymous, it is impossible to detect an α-conflict

here, which typically depends on bindings occurring inside M and N. For example, in

the first step of the reduction above, the latter term is identical to λy.xy[(λxy.xy)/x];

† Note that De Bruijn indices are not discussed in van Bakel and Raghunandan (2006).

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 573

the actual carrying out of the substitution, which brings the right-most binder under the

left-most is not part of the reduction system itself, but specified in the auxiliary definition

of substitution. This makes α-conversion difficult to tackle in the context of the pure

λ-calculus.

To consider substitution as a separate syntactic construct implies moving from the

λ-calculus to λx. There the situation is slightly different, in that we can now say that

(λy.M)〈x=N〉 → λz.(M 〈y= z〉〈x=N〉),

which prevents a conflict on a possibly free y in N. This is expensive though, as it is

performed on all substitutions on abstractions, and does not actually detect the conflict,

but just prevents it.

InX however, not only is the α-conflict solved, but also detected, all within the reduction

system of X itself. This is achieved, essentially, by expressing

(λy.M)〈x=N〉 → λz.(M 〈y= z〉〈x=N〉), if y free in N .

As shown in van Bakel and Raghunandan (2006), in order to deal accurately with

α-conversion for the case of capture-avoidance, the rule (exp-imp) needs to be replaced by

(assuming that α, x are introduced, and that v, δ are fresh):

(ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(P β̂ † ẑR), y
∈ fs(R)

(ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † v̂((〈v.δ〉δ̂ † ŷP)β̂ † ẑR), y ∈ fs(R)

(ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP)β̂ † ẑR, β
∈ fp(Q)

(ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷ(P β̂ † v̂〈v.δ〉))δ̂ † ẑR, β ∈ fp(Q) .

We must also deal with almost all of the propagation rules (the exceptions are († d),

(cap†), (d †), and (†cap)).

3. Typing for X: from sequent calculus to X

As we mentioned in the introduction, X is inspired by the sequent calculus, so it is

worthwhile recalling some of the principles. The sequent calculus we consider just has

implication, no structural rules and a changed axiom. It offers an extremely natural

presentation of the classical propositional calculus with implication, and is a variant of

system LK. It has the four rules axiom, right introduction of the arrow, left introduction

and cut:

(ax) : Γ, A � A,Δ (⇒L) :
Γ � A,Δ Γ, B � Δ

Γ, A⇒B � Δ

(⇒R) :
Γ, A � B,Δ

Γ � A⇒B,Δ
(cut) :

Γ � A,Δ Γ, A � Δ

Γ � Δ
.

The elimination of rule (cut) plays a major role in LK, since for proof theoreticians,

cut-free proofs enjoy nice properties. Proof reductions by cut-elimination were proposed

by Gentzen, and these reductions become the fundamental principle of computation in

X.

Another nice property of proof systems is known as the Curry–Howard correspondence.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 574

Definition 3.1 (Curry–Howard isomorphism). ‘Terms as proofs; types as propositions.’ If M

is a (closed) term and A is a type, then M is of type A if and only if A, read as a logical

formula, is provable in the corresponding logic, using a proof whose structure corresponds

to M.

This isomorphism expresses the fact that one can associate a term with a proof such that

propositions become types and proof reductions become term reductions (or computations

in X). This phenomenon was first discovered for combinatory logic (Curry et al. 1958), and

later the connection between the λ-calculus and intuitionistic logic was put in evidence.

The Curry–Howard correspondence for X is with the classical propositional calculus and

is given through the sequent calculus described above. Propositions are given names: those

that appear in the left part of a sequent are given names like x, y, z, and those that appear

in the right part of a sequent are given names like α, β, γ.

Definition 3.2 (Types and contexts).

1 The set of types is defined by the grammar

A,B ::= ϕ | A→B

where ϕ is a basic type. The types considered in this paper are normally known as

simple (or Curry) types.

2 A context of sockets Γ is a mapping from sockets to types, denoted as a finite set of

statements x:A, such that the subject of the statements (x) are distinct. We write Γ, x:A

for the context defined by

Γ, x:A = Γ∪{x:A}, if Γ is not defined on x

= Γ, otherwise.

(Note that the second case implies that x:A ∈ Γ.) So, writing a context as Γ, x:A

implies x:A ∈ Γ or Γ is not defined on x. When we write Γ1,Γ2, we mean the union

of Γ1 and Γ2 when Γ1 and Γ2 are coherent (if Γ1 contains x:A1 and Γ2 contains x:A2,

then A1 = A2).

3 Contexts of plugs Δ are defined in a similar way.

The notion of type assignment on X that we present in this section is the basic

implicative system for classical logic (Gentzen system LK) as described above. The

Curry–Howard property is easily achieved by erasing all term information.

Definition 3.3 (Typing for X).

1 Type judgements are expressed through a ternary relation P ··· Γ � Δ, where Γ is a

context of sockets, Δ is a context of plugs and P is a net. We say that P is the witness

of this judgement.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 575

2 Type assignment for X is defined by the following sequent calculus:

(cap) : 〈y.α〉 ··· Γ, y:A � α:A,Δ (imp) :
P ··· Γ � α:A,Δ Q ··· Γ, x:B � Δ

P α̂ [y] x̂Q ··· Γ, y:A→B � Δ

(exp) :
P ··· Γ, x:A � α:B,Δ

x̂P α̂·β ··· Γ � β:A→B,Δ
(cut) :

P ··· Γ � α:A,Δ Q ··· Γ, x:A � Δ

P α̂ † x̂Q ··· Γ � Δ
.

We write P ··· Γ � Δ if there exists a derivation that has this judgement in the bottom

line, and write D ::P ··· Γ � Δ if we want to name that derivation.

Γ and Δ carry the types of the free connectors in P as unordered sets. There is no

notion of type for P itself: instead, the derivable statement shows how P is connectable.

Lemma 3.4 (Weakening). The following rule is admissible:

P ··· Γ � Δ
(W)

P ··· Γ′ � Δ′

for any Γ′ ⊇ Γ and Δ′ ⊇ Δ.

Proof. The proof is by induction on the proof tree for P ··· Γ � Δ. We will only consider

two cases, the other two work in the same way.

(cap):

So P ≡ 〈y.α〉. Hence, Γ′ ⊇ Γ ⊇ {y:A} and Δ′ ⊇ Δ ⊇ {α:A}, so 〈y.α〉 ··· Γ′ � Δ′.

(imp):

So P ≡ Qα̂ [y] x̂R, Γ ≡ Γ1, y:A→B and

P ··· Γ � Δ ≡ Qα̂ [y] x̂R ··· Γ1, y:A→B � Δ.

We have Q ··· Γ1 � α:A,Δ and R ··· Γ1, x:B � Δ. If y:A→B ∈ Γ1, that is, Γ ≡ Γ1, we

write Γ′1 ≡ Γ′, otherwise we write Γ′1 ≡ Γ′\y:A→B. Notice that Γ′1 ⊇ Γ1. By induction,

we have Q ··· Γ′1 � α:A,Δ′ and R ··· Γ′1, x:B � Δ′, and Qα̂ [y] x̂R ··· Γ′1, y:A→B � Δ′

follows by (imp).

Example 3.5 (A proof of Peirce’s Law). The following is a proof of Peirce’s Law in

classical logic:

(Ax)
A � A,B

(⇒R)
� A⇒B,A

(Ax)
A � A

(⇒L)
(A⇒B)⇒A � A

(⇒R)
� ((A⇒B)⇒A)⇒A

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 576

Inhabiting this proof in X gives the derivation

(cap)
〈y.δ〉 ··· y:A � δ:A, η:B

(exp)
ŷ〈y.δ〉η̂ ·φ ··· � φ:A→B, δ:A

(cap)
〈w.δ〉 ··· w:A � δ:A

(imp)
(ŷ〈y.δ〉η̂ ·φ)φ̂ [z] ŵ〈w.δ〉 ··· z:(A→B)→A � δ:A

(exp)
ẑ((ŷ〈y.δ〉η̂ ·φ)φ̂ [z] ŵ〈w.δ〉)δ̂ ·γ ··· � γ:((A→B)→A)→A

The soundness result of simple type assignment with respect to reduction is stated as

usual in the following way.

Theorem 3.6 (Witness reduction). If P ··· Γ � Δ and P → Q, then Q ··· Γ � Δ.

Proof. We use induction on the length of reduction sequences. We will only show the

interesting base cases; note that weakening will be used occasionally.

Logical rules:

(cap): 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉

〈y.α〉 ··· Γ, y:A � α:A,Δ 〈x.β〉 ··· Γ, x:A � β:A,Δ

〈y.α〉α̂ † x̂〈x.β〉 ··· Γ, y:A � β:A,Δ
〈y.β〉 ··· y:A,Γ � β:A,Δ

(exp): (ŷP β̂ ·α)α̂ † x̂〈x.γ〉 → ŷP β̂ ·γ

D

P ··· Γ, y:A � β:B, γ:A→B,Δ

ŷP β̂ ·α ··· Γ � α:A→B, γ:A→B,Δ 〈x.γ〉 ··· Γ, x:A→B � γ:A→B,Δ

(ŷP β̂ ·α)α̂ † x̂〈x.γ〉 ··· Γ � γ:A→B,Δ

D

P ··· Γ, y:A � β:B, γ:A→B,Δ

ŷP β̂ ·γ ··· Γ � γ:A→B,Δ

(imp): 〈y.α〉α̂ † x̂(Qβ̂ [x] ẑR) → Qβ̂ [y] ẑR

〈y.α〉 ··· Γ, y:A→B � α:A→B,Δ

D1

Q ··· Γ, y:A→B � β:A,Δ

D2

R ··· Γ, y:A→B, z:B � Δ

Qβ̂ [x] ẑR ··· Γ, y:A→B, x:A→B � Δ

〈y.α〉α̂ † x̂(Qβ̂ [x] ẑR) ··· Γ, y:A→B � Δ

D1

Q ··· Γ, y:A→B � β:A,Δ

D2

R ··· Γ, y:A→B, z:B � Δ

Qβ̂ [y] ẑR ··· Γ, y:A→B � Δ

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 577

(exp-imp): (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(P β̂ † ẑR)

D1

P ··· Γ, y:A � β:B,Δ

ŷP β̂ ·α ··· Γ � α:A→B,Δ

D2

Q ··· Γ � γ:A,Δ

D3

R ··· Γ, z:B � Δ

Qγ̂ [x] ẑR ··· Γ, x:A→B � Δ

(ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) ··· Γ � Δ

D2

Q ··· Γ � γ:A,Δ

Q ··· Γ � β:B, γ:A,Δ

D1

P ··· Γ, y:A � β:B,Δ

Qγ̂ † ŷP ··· Γ � β:B,Δ

D3

R ··· Γ, z:B � Δ

(Qγ̂ † ŷP)β̂ † ẑR ··· Γ � Δ

(exp-imp): (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → Qγ̂ † ŷ(P β̂ † ẑR)

D2

Q ··· Γ � γ:A,Δ

D1

P ··· Γ, y:A � β:B,Δ

D3

R ··· Γ, z:B � Δ

R ··· Γ, y:A, z:B � Δ

P β̂ † ẑR ··· Γ, y:A � Δ

Qγ̂ † ŷ(P β̂ † ẑR) ··· Γ � Δ

† propagation

(exp-outs†): (ŷQβ̂ ·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P)β̂ ·γ)γ̂ † x̂P

D1

Q ··· Γ, y:A � β:B,Δ

ŷQβ̂ ·α ··· Γ � α:A→B,Δ

D2

P ··· Γ, x:A→B � Δ

(ŷQβ̂ ·α)α̂ † x̂P ··· Γ � Δ

D1

Q ··· Γ, y:A � β:B,Δ

Q ··· Γ, y:A � α:A→B, β:B,Δ

D2

P ··· Γ, x:A→B � Δ

P ··· Γ, x:A→B � β:B,Δ

Qα̂ † x̂P ··· Γ, y:A � β:B,Δ

ŷ(Qα̂ † x̂P)β̂ ·γ ··· Γ � γ:A→B,Δ

D2

P ··· Γ, x:A→B � Δ

(ŷ(Qα̂ † x̂P)β̂ ·γ)γ̂ † x̂P ··· Γ � Δ

(imp†): (Qβ̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P)β̂ [z] ŷ(Rα̂ † x̂P)

D1

Q ··· Γ � α:C, β:A,Δ

D2

R ··· Γ, y:B � α:C,Δ

Qβ̂ [z] ŷR ··· Γ, z:A→B � α:C,Δ

D3

P ··· Γ, z:A→B, x:C � Δ

(Qβ̂ [z] ŷR)α̂ † x̂P ··· Γ, z:A→B � Δ

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 578

D1

Q ··· Γ � α:C, β:A,Δ

Q ··· Γ, z:A→B � α:C, β:A,Δ

D3

P ··· Γ, z:A→B, x:C � Δ

P ··· Γ, z:A→B, x:C � β:A,Δ

Qα̂ † x̂P ··· Γ, z:A→B � β:A,Δ .
.
.
.
.
.
.
.
.
.
.
.

D2

R ··· Γ, y:B � α:C,Δ

R ··· Γ, z:A→B, y:B � α:C,Δ

D3

P ··· Γ, z:A→B, x:C � Δ

P ··· Γ, z:A→B, x:C, y:B � Δ

Rα̂ † x̂P ··· Γ, z:A→B, y:B � Δ

(Qα̂ † x̂P)β̂ [z] ŷ(Rα̂ † x̂P) ··· Γ, z:A→B � Δ

(cut†): (Qβ̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P)β̂ † ŷ(Rα̂ † x̂P)

D1

Q ··· Γ � α:C, β:B,Δ

D2

R ··· Γ, y:B � α:C,Δ

Qβ̂ † ŷR ··· Γ � α:C,Δ

D3

P ··· Γ, x:C � Δ

(Qβ̂ † ŷR)α̂ † x̂P ··· Γ � Δ

D1

Q ··· Γ � α:C, β:B,Δ

D3

P ··· Γ, x:C � Δ

P ··· Γ, x:C � β:B,Δ

Qα̂ † x̂P ··· Γ � β:B,Δ

D2

R ··· Γ, y:B � α:C,Δ

D3

P ··· Γ, x:C � Δ

P ··· Γ, y:B, x:C � Δ

Rα̂ † x̂P ··· Γ, y:B � Δ

(Qα̂ † x̂P)β̂ † ŷ(Rα̂ † x̂P) ··· Γ � Δ

† propagation

(†imp-outs): P α̂ † x̂(Qβ̂ [x] ŷR) → P α̂ † ẑ((P α̂ † x̂Q)β̂ [z] ŷ(P α̂ † x̂R))

D1

P ··· Γ � α:A→B,Δ

D2

Q ··· Γ � β:A,Δ

D3

R ··· Γ, y:B � Δ

Qβ̂ [x] ŷR ··· Γ, x:A→B � Δ

P α̂ † x̂(Qβ̂ [x] ŷR) ··· Γ � Δ

D1

P ··· Γ � α:A→B,Δ

D1

P ··· Γ � α:A→B,Δ

P ··· Γ � α:A→B, β:A,Δ

D2

Q ··· Γ � β:A,Δ

Q ··· Γ, x:A→B � β:A,Δ

P α̂ † x̂Q ··· Γ � β:A,Δ ..
..
..
..
..
..

D1

P ··· Γ � α:A→B,Δ

P ··· Γ, y:B � α:A→B,Δ

D3

R ··· Γ, y:B � Δ

R ··· Γ, x:A→B, y:B � Δ

P α̂ † x̂R ··· Γ, y:B � Δ

(P α̂ † x̂Q)β̂ [v] ŷ(P α̂ † x̂R) ··· Γ, v:A→B � Δ

P α̂ † v̂((P α̂ † x̂Q)β̂ [v] ŷ(P α̂ † x̂R)) ··· Γ � Δ

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 579

(†cut): P α̂ † x̂(Qβ̂ † ŷR) → (P α̂ † x̂Q)β̂ † ŷ(P α̂ † x̂R)

D1

P ··· Γ � α:A,Δ

D2

Q ··· Γ, x:A � β:B,Δ

D3

R ··· Γ, x:A, y:B � Δ

Qβ̂ † ŷR ··· Γ, x:A � Δ

P α̂ † x̂(Qβ̂ † ŷR) ··· Γ � Δ

D1

P ··· Γ � α:A,Δ

P ··· Γ � α:A, β:B,Δ

D2

Q ··· Γ, x:A � β:B,Δ

P α̂ † x̂Q ··· Γ � β:B,Δ

D1

P ··· Γ � α:A,Δ

R ··· Γ, y:B � α:A,Δ

D3

P ··· Γ, x:A, y:B � Δ

P α̂ † x̂R ··· Γ, y:B � Δ

(P α̂ † x̂Q)β̂ † ŷ(P α̂ † x̂R) ··· Γ � Δ

4. Interpreting the λ-calculus

In this section, we will illustrate the expressive power of X by showing that we can

faithfully interpret the λ-calculus (Church 1940; Barendregt 1984) – a similar result was

shown in Urban (2000). In the following sections we will show a comparable result for

λx, λμ, and λμμ̃. Using the notion of Curry type assignment, we will show that assignable

types are preserved by the interpretation.

In part, the interpretation results could be seen as variants of similar results obtained

by Curien and Herbelin in Curien and Herbelin (2000). Indeed, we could have defined

our mappings using the mappings of λ-calculus and λμ into λμμ̃, and then concatenating

these with the mapping from λμμ̃ to X, but our encoding is more detailed and precise

than that and also deals with explicit substitution.

One should note that for Curien and Herbelin (2000) the preservation of the cbv and

cbn evaluations relies on two distinct translations of terms. For instance, the cbv and cbn

λ-calculi can both be encoded into CPS (Appel and Jim 1989), and there it is clear that

what accounts for the distinction between cbv and cbn is the encodings themselves, and

not the way CPS reduces the encoded terms.

In contrast, in X we have no need for two separate interpretation functions, and we

will only define one. Combining this with the two sub-reduction systems →v and →n ,

we can encode the cbv and cbn λ-calculi.

We will assume familiarity with the λ-calculus (Barendregt 1984), and just recall the

definition of lambda terms and β-contraction.

Definition 4.1 (Lambda terms and β-contraction (Barendregt 1984)).

1 The set Λ of lambda terms is defined by the syntax

M,N ::= x | λx.M |MN .

Terms x and λx.M are called values.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 580

2 The reduction relation →β is defined as the contextual (that is, compatible

(Barendregt 1984)) closure of the rule

(λx.M)N →β M[N/x] .

3 If the contraction (λx.M)N →β M[N/x] is fired only when N is a value, the reduction

is called call-by-value (or cbv for short) and written →v . No confusion is possible

with the reduction with the same name in X, since the nets on which both reductions

apply are not in the same syntactic category.

This calculus has a notion of type assignment that corresponds nicely to implicational

propositional logic, in the framework of natural deduction.

The rules of natural deduction define how to manipulate logical objects called sequents

that have the form S � A, where A is a formula of propositional logic and S is a set of

such formulae. The sequent means that A can be proved from the axioms S . The rules

of natural deduction either introduce or eliminate connectives in the proposition on the

right-hand side of the sequent.

For instance, the implication is introduced by the rule

Γ, A � B
(⇒I)

Γ � A⇒B

and eliminated by modus ponens

Γ � A⇒B Γ � A
(⇒E)

Γ � B
.

We then add the rule that allows us to use an axiom:

(A ∈ Γ)
Γ � A

.

These three rules form the intuitionistic implicative logic. Notice that this logic is less

expressive than classical logic: for instance, Peirce’s law (Example 3.5) cannot be proved

from these rules.

We can simulate (⇒I) easily in sequent calculus; the modus ponens rule of natural

deduction is simulated by a short reasoning:

Γ � A⇒B,Δ
(W)

Γ � A⇒B,B,Δ

Γ � A,Δ
(W)

Γ � A,B,Δ
(ax)

Γ, B � B,Δ
(L⇒)

Γ, A⇒B � B,Δ
(cut)

Γ � B,Δ

(cf. Gentzen (1935)). Now the situation where the introduction rule of a connective is

followed directly by the elimination rule is traditionally called a cut in natural deduction

(van Dalen 1994). In that case the proof can be easily transformed into a simpler one, by

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 581

the process of cut-elimination. For instance,

D1

Γ, A � B

Γ � A⇒B

D2

Γ � A

Γ � B

can be transformed into a simpler proof: the one of Γ, A � B in which every time the

axiom A is used we replace the use of the axiom by the proof of Γ � A.

D2

Γ � A

D1

Γ � B

Hence the conclusion is Γ � B, as required.

Now, formulae of propositional logic can be seen as types of functional programming

(especially the simply typed λ-calculus) and vice-versa. The implication A⇒B corres-

ponds to a functional type A→B. And, furthermore, the inference rules of intuitionistic

propositional logic are isomorphic to the typing rules of simply typed λ-calculus.

Definition 4.2 (Type assignment for the λ-calculus).

(Ax) :
Γ, x:A �λ x :A

(→I) :
Γ, x:A �λ M :B

Γ �λ λx.M :A→B

(→E) :
Γ �λ M :A→B Γ �λ N :A

Γ �λ MN :B

We will begin by defining the direct encoding of the λ-calculus into X.

Definition 4.3 (Interpretation of the λ-calculus in X).

��x��αλ =
Δ 〈x.α〉

��λx.M��αλ =
Δ

x̂��M��βλβ̂ ·α β fresh

��MN��αλ =
Δ ��M��γλγ̂ † x̂(��N��βλβ̂ [x] ŷ〈y.α〉) γ, β, x, y fresh

Observe that every sub-net of ��M��αλ has exactly one free plug, and that this is precisely

α. Moreover, note that the output (that is, result) is anonymous in the λ-calculus: the

destination an operand ‘moves’ to carries a name through a variable, but where it comes

from is not mentioned, as it is implicit. Since a net is allowed to return a result in more

than one way in X, in order for us to connect outputs to inputs, we have to name the

outputs, and this forces a name on the output of an interpreted λ-term M too. This

name, say α, is carried in the sub-script of ��M��αλ, and is also the name of the current

continuation, that is, the name of the hole in the context in which M occurs.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 582

A similar interpretation is defined in Urban (2000), but it differs in the final case, where

it states

��MN��αλ =
Δ ��M��γλ [γ := (x)(��N��βλβ̂ [x] ŷ〈y.α〉)] .

This definition depends on an additional notion of substitution P [γ := (x)Q], which is

defined as a recursive transformation of P using cuts. Since this substitution is defined in

the manner of left propagation, essentially stating

��MN��αλ =
Δ ��M��γλγ̂ † x̂(��N��βλβ̂ [x] ŷ〈y.α〉) γ, β, x, y fresh ,

Urban’s interpretation actually ignores certain reduction paths that are accessible from our

interpretation by right-activating the cut, and if we used Urban’s interpretation, some of

our results below could not be achieved; in particular, when using Urban’s interpretation,

it is not possible to show that cbn reduction is modelled.

Also, because of this substitution, reasoning over this interpretation in our proofs

below would be much more complicated, and those proofs would lose their elegance. For

example, to prove that type assignment is preserved for this interpretation, we would need

to prove a substitution lemma, which would give a much more involved proof than the

one we achieve in Theorem 4.8. Moreover, it is possible to show that

��M��γλγ̂ † x̂(��N��βλβ̂ [x] ŷ〈y.α〉) →→ ��M��γλ [γ := (x)(��N��βλβ̂ [x] ŷ〈y.α〉)] .

In all, we feel our choice is justified.

It is worth noting that the interpretation function ��·��αλ does not generate a confluent

sub-calculus. We illustrate this with the following example.

Example 4.4. First note that

��xx��αλ =
Δ ��x��γλγ̂ † ẑ(��x��βλβ̂ [z] ŷ〈y.α〉) =

Δ

〈x.γ〉γ̂ † ẑ(〈x.β〉β̂ [z] ŷ〈y.α〉) → (imp)

〈x.β〉β̂ [x] ŷ〈y.α〉 .

Moreover, notice that the above (imp) reduction is the only possible one, making the

reduction deterministic. So we can write

��xx��αλ → 〈x.β〉β̂ [x] ŷ〈y.α〉 .

Now

��(λx.xx)(yy)��αλ =
Δ

��λx.xx��βλβ̂ † v̂(��yy��γλγ̂ [v] ŵ〈w.α〉) =
Δ

(x̂��xx��δλδ̂ ·β)β̂ † v̂(��yy��γλγ̂ [v] ŵ〈w.α〉) → (exp-imp)

��yy��γλγ̂ † x̂(��xx��δλδ̂ † ŵ〈w.α〉) → (ren-r)

��yy��γλγ̂ † x̂��xx��αλ
2→ (imp)

(〈y.σ〉σ̂ [y] ẑ〈z.γ〉)γ̂ † x̂(〈x.τ〉̂τ [x] û〈u.α〉) .

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 583

This net now has one cut only, but it can be activated in two ways (notice that neither

γ nor x is introduced here). This results in either

��yy��γλγ̂ † x̂��xx��αλ → (act-l)

��yy��γλγ̂ † x̂��xx��αλ =
Δ

(〈y.σ〉σ̂ [y] ẑ〈z.γ〉)γ̂ † x̂��xx��αλ → (imp†)

(〈y.σ〉γ̂ † x̂��xx��αλ)σ̂ [y] ẑ(〈z.γ〉γ̂ † x̂��xx��αλ) → (cap†), († d), (act-r)

〈y.σ〉σ̂ [y] ẑ(〈z.γ〉γ̂ † x̂��xx��αλ) =
Δ

〈y.σ〉σ̂ [y] ẑ(〈z.γ〉γ̂ † x̂(〈x.τ〉̂τ [x] û〈u.α〉)) → (†imp-outs)

〈y.σ〉σ̂ [y] ẑ(〈z.γ〉γ̂ † v̂((〈z.γ〉γ̂ † x̂〈x.τ〉)τ̂ [v] û(〈z.γ〉γ̂ † x̂〈u.α〉)))
→ (d †), (†cap), (cap)

〈y.σ〉σ̂ [y] ẑ(〈z.γ〉γ̂ † v̂(〈z.τ〉̂τ [v] û〈u.α〉)) → (imp)

〈y.σ〉σ̂ [y] ẑ(〈z.τ〉̂τ [z] û〈u.α〉)

or

��yy��γλγ̂ † x̂��xx��αλ → (act-r)

��yy��γλγ̂ † x̂��xx��αλ =
Δ

��yy��γλγ̂ † x̂(〈x.τ〉̂τ [x] û〈u.α〉) → (†imp-outs)

��yy��γλγ̂ † ŵ((��yy��γλγ̂ † x̂〈x.τ〉)τ̂ [w] û(��yy��γλγ̂ † x̂〈u.α〉)) → (d †), (act-l), (†cap)

��yy��γλγ̂ † ŵ((��yy��γλγ̂ † x̂〈x.τ〉)τ̂ [w] û〈u.α〉) =
Δ

��yy��γλγ̂ † ŵ(((〈y.σ〉σ̂ [y] ẑ〈z.γ〉)γ̂ † x̂〈x.τ〉)τ̂ [w] û〈u.α〉) → (imp†)

��yy��γλγ̂ † ŵ(((〈y.σ〉γ̂ † x̂〈x.τ〉)σ̂ [y] ẑ(〈z.γ〉γ̂ † x̂〈x.τ〉))τ̂ [w] û〈u.α〉)
→ (cap†), († d), (cap), (act-l)

��yy��γλγ̂ † ŵ((〈y.σ〉σ̂ [y] ẑ〈z.τ〉)τ̂ [w] û〈u.α〉) =
Δ

(〈y.σ〉σ̂ [y] ẑ〈z.γ〉)γ̂ † ŵ((〈y.σ〉σ̂ [y] ẑ〈z.τ〉)τ̂ [w] û〈u.α〉) → (imp†)

(〈y.σ〉γ̂ † ŵ((〈y.σ〉σ̂ [y] ẑ〈z.τ〉)τ̂ [w] û〈u.α〉))σ̂ [y]

ẑ(〈z.γ〉γ̂ † ŵ((〈y.σ〉σ̂ [y] ẑ〈z.τ〉)τ̂ [w] û〈u.α〉)) → (cap†), († d),

〈y.σ〉σ̂ [y] ẑ(〈z.γ〉γ̂ † ŵ((〈y.σ〉σ̂ [y] ẑ〈z.τ〉)τ̂ [w] û〈u.α〉)) → (imp)

〈y.σ〉σ̂ [y] ẑ((〈y.σ〉σ̂ [y] ẑ〈z.τ〉)τ̂ [z] û〈u.α〉) .

Notice that both reductions return normal forms, and that these are different.

We will show that the cbn reduction on the λ-calculus is respected by the interpretation
�� ��λ. First we show a substitution result.

Lemma 4.5.

1 ��N��δλδ̂ † x̂��M��αλ→ ��M[N/x]��αλ.
2 ��N��δλδ̂ † x̂��M��αλ→ ��M[N/x]��αλ.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 584

Proof.

1 By induction on the structure of lambda terms:

M = x:

��N��δλδ̂ † x̂��x��αλ =
Δ ��N��δλδ̂ † x̂〈x.α〉 → (ren-l)

��N��δλ[α/δ] =
Δ ��N��αλ =

Δ ��x[N/x]��αλ .

M = y
= x

��N��δλδ̂ † x̂��y��αλ =
Δ ��N��δλδ̂ † x̂〈y.α〉 → (†cap)

〈y.α〉 =
Δ ��y��αλ =

Δ ��y[N/x]��αλ .

M = λy.M ′

��N��δλδ̂ † x̂��λy.M ′��αλ =
Δ

��N��δλδ̂ † x̂(ŷ��M ′��βλβ̂ ·α) → (†exp)

ŷ(��N��δλδ̂ † x̂��M ′��βλ)β̂ ·α → (IH)

ŷ��M ′[N/x]��βλβ̂ ·α =
Δ ��(λy.M ′)[N/x]��αλ .

M = PQ

��N��δλδ̂ † x̂��PQ��αλ =
Δ

��N��δλδ̂ † x̂(��P ��γλγ̂ † ẑ(��Q��βλβ̂ [z] ŷ〈y.α〉)) → (†cut)
(��N��δλδ̂ † x̂��P ��γλ)γ̂ † ẑ(��N��δλδ̂ † x̂(��Q��βλβ̂ [z] ŷ〈y.α〉)) → (†imp-ins)

(��N��δλδ̂ † x̂��P ��γλ)γ̂ † ẑ((��N��δλδ̂ † x̂��Q��βλ)β̂ [z] ŷ(��N��δλδ̂ † x̂〈y.α〉))
→ (†cap)

(��N��δλδ̂ † x̂��P ��γλ)γ̂ † ẑ((��N��δλδ̂ † x̂��Q��βλ)β̂ [z] ŷ〈y.α〉) → (IH)

��P [N/x]��γλγ̂ † ẑ(��Q[N/x]��βλβ̂ [z] ŷ〈y.α〉) =
Δ

��P [N/x]Q[N/x]��αλ =
Δ ��(PQ)[N/x]��αλ .

2 There are two cases to consider:

— ��M��αλ introduces x:

By Definition 4.3, this is only possible if M = x (and then ��M��αλ = 〈x.α〉). Then
��N��δλδ̂ † x̂〈x.α〉 → ��N��αλ by (ren-r); notice that ��N��αλ = ��x[N/x]��αλ.

— ��M��αλ does not introduce x:

So ��N��δλδ̂ † x̂��M��αλ → (act-r) ��N��δλδ̂ † x̂��M��αλ and the result follows from the

first part.

Theorem 4.6 (Simulation of CBN for the λ-calculus). If M→n N, then ��M��γλ→n
��N��γλ.

Proof. We use induction on the number of steps. We will only show the base case,

which is, in turn, proved by induction on the structure of terms: again, we will only show

the base case, namely M = (λx.P)Q. In this case, (λx.P)Q → P [Q/x], hence we have to

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 585

prove

��(λx.P)Q��αλ =
Δ

��λx.P ��γλγ̂ † ŷ(��Q��βλβ̂ [y] ẑ〈z.α〉) =
Δ

(x̂��P ��δλδ̂ ·γ)γ̂ † ŷ(��Q��βλβ̂ [y] ẑ〈z.α〉) → (exp-imp)

��Q��βλβ̂ † x̂(��P ��δλδ̂ † ẑ〈z.α〉) → (ren-r)

��Q��βλβ̂ † x̂��P ��αλ → (4.5)

��P [Q/x]��αλ .
Notice that we would have achieved the same result if we had used the other version of

exp-imp in the above reduction, namely

(x̂��P ��δλδ̂ ·γ)γ̂ † ŷ(��Q��βλβ̂ [y] ẑ〈z.α〉) → (exp-imp)

(��Q��βλβ̂ † x̂��P ��δλ)δ̂ † ẑ〈z.α〉 → (ren-r)

��Q��βλβ̂ † x̂��P ��αλ .

Notice that in this reduction, all reduction steps are allowed in →n .

Notice also that 〈z.α〉 introduces z; if ��P ��δλ introduces δ, then either rule (cap) or (exp)

can be applied. When ��P ��δλ does not introduce δ, the cut needs to be activated, leading

to

��P ��δλδ̂ † ẑ〈z.α〉 → ��P ��δλδ̂ † ẑ〈z.α〉 .
This is allowed by rule (act-l) in →n , as both side conditions are satisfied.

When encoding the cbv λ-calculus, we also use the ��·��αλ interpretation. Notice that a

term like (λx.M)(PQ) is not a redex in the cbv λ-calculus. As above, we get

��(λx.M)(PQ)��αλ =
Δ ��λx.M��βλβ̂ † v̂(��PQ��γλγ̂ [v] ŵ〈w.α〉)
=
Δ

(x̂��M��δλδ̂ ·β)β̂ † v̂(��PQ��γλγ̂ [v] ŵ〈w.α〉)
→ ��PQ��γλγ̂ † x̂(��M��δλδ̂ † ŵ〈w.α〉)
→ ��PQ��γλγ̂ † x̂��M��αλ

=
Δ

(��P ��σλσ̂ † t̂(��Q��τλτ̂ [t] û〈u.γ〉))γ̂ † x̂��M��αλ .

In particular, γ is not introduced in the outermost cut, so (act-l) can be applied. What the

cbv reduction should guarantee, however, is that (act-r) cannot be applied, since then the

propagation of ��P ��σλσ̂ † t̂(��Q��τλτ̂ [t] û〈u.γ〉) into ��M��αλ is blocked (which would produce
��M[(PQ)/x]��αλ, by Lemma 4.5). It should be noted that we can only apply rule (act-r)

if both ��P ��σλσ̂ † t̂(��Q��τλτ̂ [t] û〈u.γ〉) introduces γ and ��M��αλ does not introduce x. This is

not the case, since the first test fails.

On the other hand, if N is a λ-value (that is, either a variable or an abstraction),

then ��N��γλ introduces γ (in fact, N is a value if and only if ��N��γλ introduces γ). Then

��N��γλγ̂ † x̂��M��αλ cannot be reduced by rule (act-l), but either by rule (act-r) or a logical

rule. As in the proof of Theorem 4.6, this enables the reduction

��N��γλγ̂ † x̂��M��αλ →v
��M[N/x]��αλ .

So cbv reduction for the λ-calculus is respected by the interpretation function, using →v .

Theorem 4.7 (Simulation of cbv for the λ-calculus). If M→v N, then ��M��γλ→v
��N��γλ.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 586

Proof. As in the proof of Theorem 4.6, we only show the case M = (λx.P)Q. Notice

that we also have ��(λx.P)Q��δλ→v
��Q��βλβ̂ † x̂��P ��δλ (so this is true for both strategies). In

this reduction, all reduction steps are allowed in →v ; as above, the only activation of a

cut that might be required is in the application of (ren-r), when, perhaps,

��P ��δλδ̂ † ẑ〈z.α〉 → ��P ��δλδ̂ † ẑ〈z.α〉

when δ is not introduced in P . This is allowed by rule (act-l) in →v .

Now we show that ��Q��βλβ̂ † x̂��P ��δλ→v
��P [Q/x]��α if and only if Q is a value:

If:

Let Q be a value, so ��Q��βλ introduces β.

As in the proof of Theorem 4.6, we now have two cases:

— ��P ��αλ introduces x:

By Definition 4.3, this is only possible if P = x (and then ��P ��αλ = 〈x.α〉). So we

have ��Q��βλβ̂ † x̂〈x.α〉→v
��Q��αλ by (ren-r), and ��Q��αλ = ��x[Q/x]��αλ.

— ��P ��αλ does not introduce x:

Since the side conditions for rule (act-r) are satisfied, we get

��Q��βλβ̂ † x̂��P ��δλ→v (act-r)��Q��βλβ̂ † x̂��P ��δλ ,
as noted above.

Only if:

Let Q = RS . Hence,

��RS��γλγ̂ † x̂��P ��αλ → (��R��δλδ̂ † ẑ(��S��βλβ̂ [z] v̂〈v.γ〉))γ̂ † x̂��P ��αλ .

Now there are two cuts that can be activated, and we get either

(��R��δλδ̂ † ẑ(��S��βλβ̂ [z] v̂〈v.γ〉))γ̂ † x̂��P ��αλ →
(��R��δλδ̂ † ẑ(��S��βλβ̂ [z] v̂〈v.γ〉))γ̂ † x̂��P ��αλ →
(��R��δλγ̂ † x̂��P ��αλ)δ̂ † ẑ((��S��βλβ̂ [z] v̂〈v.γ〉)γ̂ † x̂��P ��αλ) → . . .

or

(��R��δλδ̂ † ẑ(��S��βλβ̂ [z] v̂〈v.γ〉))γ̂ † x̂��P ��αλ →
T γ̂ † x̂��P ��αλ

where T is ��R��δλδ̂ † ẑ(��S��βλβ̂ [z] v̂〈v.γ〉) if ��R��δλ does not introduce δ, and the result

of applying the appropriate logical rule to ��R��δλδ̂ † ẑ(��S��βλβ̂ [z] v̂〈v.γ〉) if it does;

note that z is introduced in ��S��βλβ̂ [z] v̂〈v.γ〉.
In both cases, the reduction will continue inside the left-hand side of the outermost

(non-active) cut. The cbv reduction will only allow right-activation of the outermost

cut when the reduction of R returns a net that introduces γ, that is, is a capsule or an

export. In any case, the reduction will not lead to ��P [(RS)/x]��αλ.

Notice that we need to show both implications in the proof above. Just proving ‘If Q is

a value, then . . . ’ does not guarantee that the contraction will not take place if Q is not

a value. Also, we need to show that the contraction has the desired result; the reduction

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 587

we have in Theorem 4.6 is not necessarily a reduction in cbv, and Lemma 4.5 only shows

a result for right-activated cuts.

Using the last two results, the significance of Example 4.4 becomes clearer. Remember

that

��(λx.xx)(yy)��αλ →v 〈y.σ〉σ̂ [y] ẑ(〈z.τ〉̂τ [z] û〈u.α〉)
��(λx.xx)(yy)��αλ →n 〈y.σ〉σ̂ [y] ẑ((〈y.σ〉σ̂ [y] ẑ〈z.τ〉)τ̂ [z] û〈u.α〉) .

In the λ-calculus, (λx.xx)(yy) has different normal forms with respect to cbv and cbn

λ-reduction ((λx.xx)(yy) and yy(yy), respectively), which are both interpreted in X. The

net ��(λx.xx)(yy)��αλ is not a normal form in X for →v : it contains cuts. But, true to its

nature, the cbv reduction will not return ��yy(yy)��αλ, but, instead, returns the net ��yy��λ

with the duplication ��zz��αλ ‘waiting to be applied’ in the continuation.

We can now show that typeability is preserved by ��·��αλ.

Theorem 4.8. If Γ �λ M :A, then ��M��αλ ··· Γ � α:A.

Proof. We use induction on the structure of derivations in �λ; note that we use

weakening.

(ax):

We have M = x and Γ = Γ′, x:A. Then notice that

(cap)��x��αλ ··· Γ′, x:A � α:A

(→I):

We have M = λx.N, A = C→D and Γ, x:C �λ N :D. Hence, by induction, there exists

a derivation D :: ��N��βλ ··· Γ, x:C � β:D, and we can construct

D

��N��βλ ··· Γ, x:C � β:D
(exp)

x̂��N��βλβ̂ ·α ··· Γ � α:C→D

Notice that x̂��N��βλβ̂ ·α = ��λx.N��αλ.

(→E):

We have M = PQ, and there exists B such that Γ �λ P :B→A and Γ �λ Q :B. By

induction, there exist derivations D1 :: ��P ��γλ ··· Γ � γ:B→A and D2 :: ��Q��βλ ··· Γ � β:B,

and we can construct

D1

��P ��γλ ··· Γ � γ:B→A

��P ��γλ ··· Γ � α:A, γ:B→A

D2

��Q��βλ ··· Γ � β:B

��Q��βλ ··· Γ � β:B, α:A 〈y.α〉 ··· Γ, y:A � α:A

��Q��βλβ̂ [x] ŷ〈y.α〉 ··· Γ, x:B→A � α:A

��P ��γλγ̂ † x̂(��Q��βλβ̂ [x] ŷ〈y.α〉) ··· Γ � α:A

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 588

Notice that ��PQ��αλ = ��P ��γλγ̂ † x̂(��Q��βλβ̂ [x] ŷ〈y.α〉), and that this derivation corres-

ponds (of course) to the simulation of the modus ponens rule as discussed above.

As already suggested in Section 4, this theorem is in fact a reformulation of Gentzen’s

correctness result on the embedding of natural deduction in the sequent calculus.

To reinforce the fact that we consider more than just those nets that represent proofs,

we will now give an example of a non-terminating reduction sequence.

Example 4.9 (Reducing ��ΔΔ��βλ). Recall that ��xx��βλ → 〈x.δ〉δ̂ [x] ŷ〈y.β〉 . Now ��ΔΔ��βλ

reduces as follows:

��ΔΔ��βλ =
Δ

��λx.xx��γλγ̂ † ẑ(��λx.xx��γλγ̂ [z] ŷ〈y.β〉) =
Δ

(x̂��xx��αλα̂·δ)δ̂ † ẑ(��λx.xx��γλγ̂ [z] ŷ〈y.β〉) → (exp-imp)

��λx.xx��γλγ̂ † x̂(��xx��αλα̂ † ŷ〈y.β〉) → (ren-r)

��λx.xx��γλγ̂ † x̂��xx��βλ →
��λx.xx��γλγ̂ † x̂(〈x.δ〉δ̂ [x] ŷ〈y.β〉) → (act-r) &

(†imp-outs)

��λx.xx��γλγ̂ † ẑ((��λx.xx��γλγ̂ † x̂〈x.δ〉)δ̂ [z] ŷ(��λx.xx��γλγ̂ † x̂〈y.β〉)) → (†cap)

��λx.xx��γλγ̂ † ẑ((��λx.xx��γλγ̂ † x̂〈x.δ〉)δ̂ [z] ŷ〈y.β〉) → (d †) & (ren-r)

��λx.xx��γλγ̂ † ẑ(��λx.xx��δλδ̂ [z] ŷ〈y.β〉) =
Δ ��ΔΔ��βλ

5. Interpreting λx

In this section we will interpret a calculus of explicit substitutions, λx, which was

introduced by Bloo and Rose (Bloo and Rose 1995), and in which a β-reduction of

the λ-calculus is split into several atomic steps of computation. We will show that X has

a fine level of atomicity as it simulates each reduction step of λx by describing how the

explicit substitutions interact with nets.

Bloo and Rose introduce the concept of substitution within the syntax of the calculus,

making it explicit, by adding the operator M 〈x=N〉.

Definition 5.1 (Bloo and Rose 1995). The syntax of λx is an extension of the syntax of

the λ-calculus:

M,N ::= x | λx.M |MN |M 〈x=N〉 .
Type assignment on λx is defined as for the λ-calculus, with the added syntactic construct

being dealt with by the (cut)-rule:

(Ax) :
Γ, x:A �λx x :A

(cut) :
Γ, x:A �λx M :B Γ �λx N :A

Γ �λx M 〈x=N〉 :B

(→I) :
Γ, x:A �λx M :B

Γ �λx λx.M :A→B
(→E) :

Γ �λx M :A→B Γ �λx N :A

Γ �λx MN :B
.

Notice that the (cut)-rule does not enable us to prove sequents that were not provable

in �λ. We can derive from Γ, x:A �λ M :B and Γ �λ N :A also Γ �λ (λx.M)N :B. Also,

the Substitution Lemma shows that the (cut)-rule is admissible in �λ, replacing the explicit

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 589

substitution by the implicit

if Γ, x:A �λ M :B and Γ �λ N :A, then also Γ �λ M[N/x] :B.

Explicit substitution explicitly describes the process of executing a β-reduction, that is,

expresses syntactically the details of the computation as a succession of atomic, constant-

time steps (as in a first-order rewriting system), where the β-reduction is split into several

steps.

Definition 5.2 (Bloo and Rose 1995). The reduction relation is defined by the following

rules:

(B) : (λx.M)P →M 〈x=P 〉
(App) : (MN)〈x=P 〉→M 〈x=P 〉N 〈x=P 〉
(Abs) : (λy.M)〈x=P 〉→ λy.(M 〈x=P 〉)

(VarI) : x〈x=P 〉→ P

(VarK) : y 〈x=P 〉→ y

(gc) :M 〈x=P 〉→M,x
∈ fv(M) .

The notion of reduction in λx is obtained by deleting rule (gc), and the notion of

reduction in λxgc is obtained by deleting rule (VarK). The rule (gc) is called ‘garbage

collection’, as it removes useless substitutions.

Our notion of cbv-λx follows the λ-calculus treatment in a natural way.

Definition 5.3 (Call by value in λx). Just as in the λ-calculus, a term in λx is a value if it

is a variable or an abstraction. In a cbv β-reduction, the argument must be a value, so

that means that when it is simulated by cbv-λx, all the substitutions created are of the

form M 〈x=N〉, where N is a value, that is, either a variable or an abstraction.

Hence, we build cbv-λx by a syntactic restriction:

M ::= x | λx.M |M1M2 |M 〈x= λx.N〉 |M 〈x= y〉 .

The cbv β-reduction is the reduction generated by the rules of Definition 5.2 with rule

(B) applied only when P is a value.

Subject reduction still holds, as we can still see the computation in λx as cut-elimination:

now this process consists of discarding the situations where the elimination of a connective

follows its introduction by using the (cut)-rule and moving it towards the applications of

the axiom-rule until it disappears.

Definition 5.4 (Interpretation of λx in X). We define ��·��αλx as the interpretation ��·��αλ by

adding a case for the explicit substitution:

��x��αλx =
Δ 〈x.α〉

��λx.M��αλx =
Δ

x̂��M��βλxβ̂ ·α
��MN��αλx =

Δ ��M��γλxγ̂ † x̂(��N��βλxβ̂ [x] ŷ〈y.α〉)
��M 〈x=N〉��αλx =

Δ ��N��βλxβ̂ † x̂��M��αλx .
Note that the interpretation of the λ-calculus comes from just the first three rules.

Note also that the cut is activated in the final alternative, which might seem in contrast

with Lemma 4.5, where we justified the fact that the cut ��N��βλxβ̂ † x̂��M��αλx reduces to

��M[N/x]��αλx, but, using the inactivated cut, we cannot prove that

��(PQ)〈x=N〉��αλx→ ��(P 〈x=N〉)(Q〈x=N〉)��αλx

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 590

as in Theorem 5.7 below, but would only be able to manage

��(PQ)〈x=N〉��αλx ↓ ��(P 〈x=N〉)(Q〈x=N〉)��αλx .

Now notice that, again, N is a value if and only if ��N��αλx introduces α.

Theorem 5.5. If Γ �λx M :A, then ��M��αλx ··· Γ � α:A.

The proof is a straightforward extension of the proof of Theorem 4.8.

We will now show that the reductions can be simulated, hence preserving the evaluation

strategies.

Theorem 5.6 (Simulation of rule (B)).

— cbn:

��(λx.M)N��αλx→n
��M 〈x=N〉��αλx .

— cbv:

��(λx.M)N��αλx→v
��M 〈x=N〉��αλx if and only if N is a value.

Proof.

��(λx.M)N��αλx =
Δ

��λx.M��γλxγ̂ † ŷ(��N��βλxβ̂ [y] ẑ〈z.α〉) =
Δ

(x̂��M��δλxδ̂ ·γ)γ̂ † ŷ(��N��βλxβ̂ [y] ẑ〈z.α〉) → (exp-imp)

��N��βλxβ̂ † x̂(��M��δλxδ̂ † ẑ〈z.α〉) → (act-r)

��N��βλxβ̂ † x̂(��M��δλxδ̂ † ẑ〈z.α〉) → (ren-r)

��N��βλxβ̂ † x̂��M��αλx =
Δ ��M 〈x=N〉��αλx .

Note that this reduction sequence is valid in the cbn evaluation, which proves the first

point.

For the cbv evaluation, the step act-r is possible if and only if ��N��βλx introduces β,

that is, if and only if N is a value. The proof is then completed using Lemma 4.5.

Notice that we could also show ��(λx.M)N��αλx→n
��N��βλβ̂ † x̂��M��α, but that using the

definition ��M 〈x=N〉��αλx=
Δ ��N��βλβ̂ † x̂��M��α would give problems for the next proof.

Theorem 5.7 (Simulation of the other rules). Let M → N by any of the rules (App), (Abs),

(VarI), (VarK), (gc). Then ��M��γλx→v
��N��γλx and ��M��γλx→n

��N��γλx.

Proof. We only show the interesting cases. In the following we activate the cut to the

right, which corresponds to both cbv and cbn if N is a value and corresponds to cbn

otherwise.

— ��(PQ)〈x=N〉��αλx→ ��(P 〈x=N〉)(Q〈x=N〉)��αλx:

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 591

��(PQ)〈x=N〉��αλx =
Δ

��N��βλxβ̂ † x̂��PQ��αλx =
Δ

��N��βλxβ̂ † x̂(��P ��γλxγ̂ † ŷ(��Q��βλxβ̂ [y] ẑ〈z.α〉)) → (†cut)
(��N��βλxβ̂ † x̂��P ��γλx)γ̂ † ŷ(��N��βλxβ̂ † x̂(��Q��βλxβ̂ [y] ẑ〈z.α〉)) → (†imp-ins)

(��N��βλxβ̂ † x̂��P ��γλx)γ̂ † ŷ((��N��βλxβ̂ † x̂��Q��βλx)β̂ [y] ẑ(��N��βλxβ̂ † x̂〈z.α〉)) =
Δ

��P 〈x=N〉��γλxγ̂ † ŷ(��Q〈x=N〉��βλxβ̂ [y] ẑ(��N��βλxβ̂ † x̂〈z.α〉)) → (†cap)

��P 〈x=N〉��γλxγ̂ † ŷ(��Q〈x=N〉��βλxβ̂ [y] ẑ〈z.α〉) =
Δ

��(P 〈x=N〉)(Q〈x=N〉)��αλx.

— ��(λy.M)〈x=N〉��αλx→ ��λy.M 〈x=N〉��αλx:
��(λy.M)〈x=N〉��αλx =

Δ

��N��βλxβ̂ † x̂��λy.M��αλx =
Δ

��N��βλxβ̂ † x̂(ŷ��M��γλxγ̂ ·α) → (†exp)

ŷ(��N��βλxβ̂ † x̂��M��γλx)γ̂ ·α =
Δ

ŷ��M 〈x=N〉��γλxγ̂ ·α =
Δ ��λy.M 〈x=N〉��αλx .

— ��x〈x=N〉��αλx→ ��N��αλx:
��x〈x=N〉��αλx =

Δ

��N��βλxβ̂ † x̂��x��αλx =
Δ

��N��βλxβ̂ † x̂〈x.α〉 → (d †)
��N��βλxβ̂ † x̂〈x.α〉 → (ren-r) ��N��αλx .

— ��y 〈x=N〉��αλx→ ��y��αλx:
��y 〈x=N〉��αλx =

Δ

��N��βλxβ̂ † x̂��y��αλx =
Δ

��N��βλxβ̂ † x̂〈y.α〉 → (†cap)

〈y.α〉 =
Δ ��y��αλx .

— ��M 〈x=N〉��αλx→ ��M��αλx, if x
∈ fv(M):

��M 〈x=N〉��αλx =
Δ

��N��βλxβ̂ † x̂��M��αλx → (†gc) ��M��αλx .

We can now say that λx reduction is preserved by the interpretation of terms into X.

Theorem 5.8 (Simulation of λx).

1 If M→v N, then ��M��γλx→v
��N��γλx

2 If M→n N, then ��M��γλx→n
��N��γλx

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 592

We can add the following composition rule to the reduction system of λx:

M 〈x=P 〉〈y=Q〉 →M 〈y=Q〉〈x=P 〈y=Q〉〉 .

It is trivial to see that this rule breaks the strong normalisation property for typed terms

(Bloo and Geuvers 1996) and cannot be simulated. But it can be useful for reasoning by

equivalence. If we abandon strong normalisation, we can merge the three kinds of cuts.

It can be done, for instance, by setting the equivalence

P α̂ † x̂Q ∼ P α̂ † x̂Q ∼ P α̂ † x̂Q .

In this case the composition rule can be simulated (in both strategies cbv and cbn) as

follows:

��M 〈x=P 〉〈y=Q〉��αλx =
Δ

��Q��βλxβ̂ † ŷ(��P ��δλxδ̂ † x̂��M��αλx) →

(��Q��βλxβ̂ † ŷ��P ��δλx)δ̂ † x̂(��Q��βλxβ̂ † ŷ��M��αλx) =
Δ

��M 〈y=Q〉〈x=P 〈y=Q〉〉��αλx.
There are some interesting issues arising from this that deserve to be explored.

6. Interpreting λμ

Parigot’s λμ-calculus (Parigot 1992) is a proof-term syntax for classical logic, but expressed

in the setting of natural deduction. We extend the syntax of formulae with the constant

⊥ (false). Natural deduction deals with classical logic by allowing the logical rule

Γ, A⇒⊥ � ⊥
Γ � A

.

An assumption can now be discharged by either the introduction of ‘⇒’ or by this rule

(if the assumption has the form A⇒⊥). This leads to a splitting of the set of axioms into

two parts: the first where the assumptions might be discharged purely by the introduction

of ‘⇒’, and the second where the assumptions might be discharged purely by reasoning by

contradiction. Since the latter part is of the form (A1⇒⊥, . . . , An⇒⊥), where the comma

is to be thought as a conjunction, the sequent

Γ, A1⇒⊥, . . . , An⇒⊥ � B

is logically equivalent to the multi-conclusion sequent

Γ � B | A1, . . . , An ,

since in classical logic (A⇒⊥)⇒B is logically equivalent to A ∨ B; ‘both |’ and ‘,’ are to

be thought of as a disjunction. The reasoning by contradiction becomes

Γ � ⊥ | A,Δ
Γ � A | Δ

,

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 593

which exhibits the neutrality of ⊥ for the disjunction; notice that here we have implicitly

assumed the truly classical ((A⇒⊥)⇒⊥)⇒A.

However, when we assumed A⇒⊥, we may have wanted to use it not only for reasoning

by contradiction, but also as an implication as such:

Γ, A⇒⊥ � A⇒⊥ Γ, A⇒⊥ � A

Γ, A⇒⊥ � ⊥

Thus, in the multi-conclusion style sequent, we have to add the rule

Γ � A | A,Δ
Γ � ⊥ | A,Δ

where again the neutrality of ⊥ for the disjunction is exhibited.

In Parigot (1992), Parigot created the λμ-calculus, the typing system of which is

isomorphic to this multi-conclusion logical system; this is achieved by extending the

syntax with two new constructs that act as witnesses to the two rules discussed above. It

uses two disjoint sets of variables (Latin letters and Greek letters). The sequents typing

terms are of the form Γ � A | Δ , marking the conclusion A as active.

Definition 6.1 (Terms of λμ – version 1). The terms of λμ version 1 are

M,N ::= x | λx.M |MN | [α]M | μα.M .

Definition 6.2 (Typing rules for λμ). Type assignment for λμ is defined by the following

natural deduction system; there is a main, or active, conclusion, labelled by a term of this

calculus, and the alternative conclusions are labelled by the set of Greek variables α, β,

(x:A ∈ Γ)
Γ �λμ x:A | Δ

Γ, x:A �λμ M:B | Δ
Γ �λμ λx.M:A→B | Δ

Γ �λμ M:A→B | Δ Γ �λμ N:A | Δ
Γ �λμ MN:B | Δ

Γ �λμ M:A | α:A,Δ
Γ �λμ [α]M:⊥ | α:A,Δ

Γ �λμ M:⊥ | α:A,Δ
Γ �λμ μα.M:A | Δ

.

We can think of [α]M as storing the type of M amongst the alternative conclusions by

giving it the name α – the set of Greek variables is called the set of name variables. Also,

μα.M binds α in M; the notion of α-conversion extends naturally to bound names.

Note that we have the Weakening Property: If Γ �λμ M:A | Δ and Γ ⊆ Γ′ and Δ ⊆ Δ′,

then Γ′ �λμ M:A | Δ′.
It is interesting to note that even if ⊥ is not included in the language (and hence

(A→⊥)→⊥ is not even a type), we stay in classical logic by collapsing the last two rules

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 594

into

Γ �λμ M:B | α:A, β:B,Δ

Γ �λμ μα.[β]M:A | β:B,Δ

Γ �λμ M:B | α:B,Δ
Γ �λμ μα.[α]M:B | Δ

.

That is, we force the naming to be followed by a μ-abstraction. Thus, we have the following

definition.

Definition 6.3 (Terms of λμ – version 2). The terms of λμ version 2 are defined by the

grammar

M,N ::= x | λx.M |MN | μβ.[α]M .

The syntax of Definition 6.1 is the original definition of Parigot (1992); the syntax in

Definition 6.3 was introduced later in Parigot (1993) and de Groote (1994).

Since ⊥ is not a type in the system we consider here for X, it is the relationship between

this last variant of λμ and X that we will study.

As an example illustrating the fact that this system is still more powerful than the

system for the λ-calculus, here is a proof of Peirce’s Law (due to Ong and Stewart (1997)):

x:((A→B)→A) �λμ x:(A→B)→A | α:A

x:((A→B)→A), y:A �λμ y:A | α:A, β:B

x:((A→B)→A), y:A �λμ μβ.[α]y:B | α:A
x:((A→B)→A) �λμ λy.μβ.[α]y:A→B | α:A

x:((A→B)→A) �λμ x(λy.μβ.[α]y):A | α:A
x:((A→B)→A) �λμ μα.[α](x(λy.μβ.[α]y)):A

�λμ λx.μα.[α](x(λy.μβ.[α]y)):((A→B)→A)→A

Now, as the system is still in a natural deduction style, we still have cut situations that

we might want to eliminate. Hence, we have the following rules of computation in λμ.

Definition 6.4 (λμ reduction). Reduction on λμ-terms is defined as the compatible closure

of the rules

logical (β) : (λx.M)N → M[N/x]

structural (μ) : (μα.[β]M)N → μγ.([β]M)[N·γ/α]

renaming : μα.[β](μγ.[δ]M) → μα.[δ]M[β/γ]

erasing : μα.[α]M → M, if α does not occur in M

where M[N·γ/α] stands for the term obtained from M in which every (pseudo) sub-term

of the form [α]M ′ is substituted by [γ](M ′N) (γ is a fresh variable).

Note that in this calculus, the computation of substitutions is implicit.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 595

Definition 6.5 (Interpretation of λμ in X). We define ��·��αλμ as the interpretation ��·��αλ by

adding an alternative for μ-terms:

��x��αλμ =
Δ 〈x.α〉

��λx.M��αλμ =
Δ

x̂��M��βλμβ̂ ·α

��MN��αλμ =
Δ ��M��γλμγ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉)

��μδ.[γ]M��αλμ =
Δ ��M��γλμδ̂ † x̂〈x.α〉 .

In a similar way to what we did in previous sections (see Lemma 4.5), we can prove

��N��βλμβ̂ † x̂��M��αλμ → ��M[N/x]��αλμ

��M��γλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉) → ��μτ.([γ]M)[N·τ/δ]��αλμ.

This result will be convenient later.

Notice that the final alternative is justified, since we can show the following result.

Lemma 6.6. The following rule is admissible:

��(μδ.[γ]M)N��αλμ → ��M��γλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉) .

Proof.

��(μδ.[γ]M)N��αλμ =
Δ

��μδ.[γ]M��νλμν̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉) =
Δ

(��M��γλμδ̂ † ẑ〈z.ν〉)ν̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉) → (ren-r)

��M��γλμ[ν/δ]ν̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉) → (=α)

��M��γλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉).

Notice the similarity between the net ��MN��αλμ and the result of running ��(μδ.[γ]M)N��αλμ;
the difference lies only in a bound plug. This implies that for the λ-calculus we can only

connect to the plug that corresponds to the name of the term itself, but for the λμ-calculus

we can also connect to plugs that occur inside, that is, to named sub-terms.

We will now show that the above definition of the encoding of μ-substitution is correct:

notice that, unlike the case for the λ-calculus, we can only show that the interpretation

is preserved modulo equivalence, not modulo reduction – a similar restriction holds also

for the interpretation of λμ in λμμ̃ achieved in Curien and Herbelin (2000)†.

Lemma 6.7.

(1) ��M��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) ↓ ��M[N·γ/δ]N��γλμ.
(2) ��M��νλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) ↓ ��M[N·γ/δ]��νλμ, if δ
= ν.

Proof. We use simultaneous induction on the structure of terms. We will only show the

interesting cases.

† A corrected version of this paper is available from Herbelin’s home page.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 596

(1) M = λz.M ′:

��λz.M ′��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) =
Δ

(ẑ��M ′��σλμσ̂ ·δ)δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) →

(ẑ(��M ′��σλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉))σ̂ ·τ)τ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) ↓ (IH.2)

(ẑ��M ′[N·γ/δ]��σλμσ̂ ·τ)τ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) =
Δ

��λz.M ′[N·γ/δ]��τλμτ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) =
Δ

��(λz.M ′)[N·γ/δ]N��γλμ .

M = M1M2:

��M1M2��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) =
Δ

(��M1��σλμσ̂ † ẑ(��M2��τλμτ̂ [z] v̂〈v.δ〉))δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) ↓ (IH.2)

��M1[N·γ/δ]��σλμσ̂ † ẑ(��M2[N·γ/δ]��τλμτ̂ [z] v̂(��N��βλμβ̂ [v] ŷ〈y.γ〉)) ←

(��M1[N·γ/δ]��σλμσ̂ † ẑ(��M2[N·γ/δ]��τλμτ̂ [z] v̂〈v.τ〉)) τ̂ † x̂

(��N��βλμβ̂ [x] ŷ〈y.γ〉) ←

��M1[N·γ/δ]M2[N·γ/δ]��τλμτ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) =
Δ

��(M1M2)[N·γ/δ]N��γλμ .

M = μσ.[δ]M ′:

��μσ.[δ]M ′��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) =
Δ

(��M ′��δλμσ̂ † ẑ〈z.δ〉)δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) →

(��M ′��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉))σ̂ † ẑ(〈z.δ〉δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉)) →
(��M ′��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉))σ̂ † ẑ(��N��βλμβ̂ [z] ŷ〈y.γ〉) ↓ (IH.1)

��M ′[N·γ/δ]N��γλμσ̂ † ẑ(��N��βλμβ̂ [z] ŷ〈y.γ〉) ← (=α)

(��M ′[N·γ/δ]N��γλμσ̂ † ŵ〈w.ν〉)ν̂ † ẑ(��N��βλμβ̂ [z] ŷ〈y.γ〉) =
Δ

��μσ.[γ]M ′[N·γ/δ]N��νλμν̂ † ẑ(��N��βλμβ̂ [z] ŷ〈y.γ〉) =
Δ

��(μσ.[γ]M ′[N·γ/δ]N)N��γλμ =

��(μσ.[δ]M ′)[N·γ/δ]N��γλμ .

(2) M = μσ.[δ]M ′

��μσ.[δ]M ′��νλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) =
Δ

(��M ′��δλμσ̂ † ẑ〈z.ν〉)δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) →
(��M ′��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉))σ̂ † ẑ(〈z.ν〉δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉)) →
(��M ′��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉))σ̂ † ẑ〈z.ν〉 ↓ (IH.1)

��M ′[N·γ/δ]N��γλμσ̂ † ẑ〈z.ν〉 ← (=α)

(��M ′[N·γ/δ]N��γλμσ̂ † ŵ〈w.τ〉)τ̂ † ẑ〈z.ν〉 =
Δ

��μσ.[γ]M ′[N·γ/δ]N��τλμτ̂ † ẑ〈z.ν〉 →
��(μσ.[γ]M ′[N·γ/δ]N)��νλμ =

��(μσ.[δ]M ′)[N·γ/δ]��νλμ .

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 597

M = μσ.[τ]M ′

��μσ.[τ]M ′��νλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) =
Δ

(��M ′��τλμσ̂ † ẑ〈z.ν〉)δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉) →
(��M ′��τλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉)) σ̂ † ẑ

(〈z.ν〉δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.γ〉)) ↓ (IH.2)

��M ′[N·γ/δ]��τλμσ̂ † ẑ〈z.ν〉 →
��(μσ.[τ]M ′)[N·γ/δ]��νλμ .

Note that a number of the ‘reverse’ reduction steps in this proof could have been

avoided by defining ��μα.[β]M��γλμ =
Δ ��M��βλμ[γ/α]. But, as is evident from case M = M1M2

in the proof of Part 1, this would not give a proof that the interpretation is preserved by

reduction.

Note also that, for the (renaming) and (erasure) rules, we have

��μα.[β](μγ.[δ]M)��σλμ =
Δ

��μγ.[δ]M��βλμα̂ † x̂〈x.σ〉 =

(��M��δλμγ̂ † x̂〈x.β〉)α̂ † x̂〈x.σ〉 →
��M[β/γ]��δλμα̂ † x̂〈x.σ〉 =

��μα.[δ]M[β/γ]��σλμ

and

��μα.[α]M��σλμ =
Δ

��M��αλμα̂ † x̂〈x.σ〉 →
��M��σλμ .

We can now show that λμ’s reduction is preserved by our interpretation.

Theorem 6.8 (Simulation of CBN for λμ). If M→n N, then ��M��αλμ ↓n ��N��αλμ.

Proof. As before, the proof is by induction on the length of the reductions sequence.

We will just show the base case, and, by the above, we only need to focus on rules (β) and

(μ). The proof for case (β) is as for Theorem 4.6, and for case (μ), we have the following

cases:

— (μδ.[δ]M)N → μα.([δ]M)[N·α/δ]:

By Lemma 6.6, we already know that

��(μδ.[δ]M)N��αλμ → ��M��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉)

(notice that x is introduced). Again, there are two cases to consider:

– δ is introduced:

So either:

• ��M��δλμ = 〈z.δ〉:
Note that

〈z.δ〉δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉) → ��N��βλμβ̂ [z] ŷ〈y.α〉

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 598

and that

��μα.[α]zN��αλμ =
Δ ��zN��αλμα̂ † v̂〈v.α〉

=
Δ

(��z��γλμγ̂ † ŵ(��N��βλμβ̂ [w] â〈a.α〉))α̂ † v̂〈v.α〉

→ ��N��βλμβ[z]y〈y.α〉.

• ��M��δλμ = ẑ��M ′��βλμβ̂ ·δ:

So M = λz.M ′ and δ does not occur in M ′. Note that

��μα.([δ](λx.M ′))[N·α/δ]��αλμ =

��μα.[α](λx.M ′)N��αλμ =
Δ

((ẑ��M ′��βλμβ̂ ·δ)δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉))α̂ † v̂〈v.α〉 →

(ẑ��M ′��βλμβ̂ ·δ)δ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉) .

– δ is not introduced:

So the latter reduces to ��M��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉).
By Lemma 6.7, ��M��δλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉) ↓ ��M[N·α/δ]N��αλμ. Note that

��M[N·α/δ]N��αλμ ← ��M[N·α/δ]N��αλμα̂ † v̂〈v.α〉 =
Δ ��μα.[α]M[N·α/δ]N��αλμ.

— (μδ.[ν]M)N → μα.[ν](M[N·α/δ]):

Again by Lemma 6.6, we know that

��(μδ.[ν]M))N��αλμ → ��M��νλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉).

Since δ is not introduced, the latter reduces to ��M��νλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉).
By Lemma 6.7, ��M��νλμδ̂ † x̂(��N��βλμβ̂ [x] ŷ〈y.α〉) ↓ ��M[N·α/δ]��νλμ. Note that

��M[N·α/δ]��νλμ ← ��M[N·α/δ]��νλμα̂ † v̂〈v.α〉 =
Δ ��μα.[ν]M[N·α/δ]��αλμ.

We can also show that types are preserved by the interpretation.

Theorem 6.9. If Γ �λμ M:A | Δ, then ��M��αλμ ··· Γ � α:A,Δ.

Proof. The proof is similar to that of Theorem 4.8. We only need to focus here on the two

rules dealing with μ-abstractions. First, let M = μδ.[γ]N. Then ��M��αλμ =
Δ ��N��γλμδ̂ † x̂〈x.α〉.

If we assume Γ �λμ M:A | γ:B,Δ, we also have Γ �λμ N:B | δ:A, γ:B,Δ, and then
��N��γλμ ··· Γ � δ:A, γ:B follows by induction. Hence,

��N��γλμ ··· Γ � δ:A, γ:B,Δ 〈x.α〉 ··· Γ, x:A � α:A, γ:B,Δ

��N��γλμδ̂ † x̂〈x.α〉 ··· Γ � α:A, γ:B,Δ

The alternative, M = μδ.[δ]N, is similar.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 599

7. Interpreting λμμ̃

In its typed version, X is a proof-term syntax for a classical sequent calculus. Another

proof-system was proposed for (a variant of) classical sequent calculus in Curien and

Herbelin’s λμμ̃-calculus (Curien and Herbelin 2000). It is interesting to relate these two

formalisms and to observe that λμμ̃ can be interpreted in X as well.

For the λμμ̃-calculus presented in Curien and Herbelin (2000), there are two sets of

variables: x, y, z . . . label the types of the hypotheses and α, β, γ . . . label the types of the

conclusions. Moreover, the syntax of λμμ̃ has three different categories: commands, terms

and contexts or co-terms. Correspondingly, they are typed by three kinds of sequents:

the usual sequents Γ � Δ type commands, while the sequents typing terms (respectively,

contexts) are of the form Γ � A | Δ (respectively, Γ | A � Δ), marking the conclusion

(respectively, hypothesis) A as active.

Definition 7.1 (Commands, Terms and Contexts).

c ::= 〈v ||e〉 (commands)

e ::= α | v·e | μ̃x.c (contexts)

v ::= x | λx.v | μβ.c (terms) .

Here μα.c, μ̃x.c′ and λy.v bind α in c, x in c′ and y in v, respectively; as usual, we

will consider terms, contexts and commands up to α-conversion, writing them in a way

satisfying Barendregt’s convention.

A context can be a variable but can also be more complex (so as to have a typing

rule introducing ‘→’ on the left-hand side of a sequent), and commands fill the hole of a

context with a term.

Definition 7.2 (Typing for λμμ̃).

(cut) :
Γ �λμμ̃ v:A | Δ Γ | e:A �λμμ̃ Δ

〈v ||e〉 : Γ �λμμ̃ Δ

(Ax-c) : Γ | α:A �λμμ̃ α:A,Δ

(LI) :
Γ �λμμ̃ v:A | Δ Γ | e:B � Δ

Γ | v · e:A→B �λμμ̃ Δ

(μ̃) :
c : Γ, x:A �λμμ̃ Δ

Γ | μ̃x.c:A �λμμ̃ Δ

(Ax-t) : Γ, x:A �λμμ̃ x:A | Δ

(RI) :
Γ, x:A �λμμ̃ v:B | Δ

Γ �λμμ̃ λx.v:A→B | Δ

(μ) :
c : Γ �λμμ̃ α:A,Δ

Γ �λμμ̃ μα.c:A | Δ

Note that the type of a context is the type that a term is expected to have in order to fill

the hole, much like the import circuit in X. With the conventional notation for contexts,

v · e is to be thought of as e[[] v]. We see here how a term (respectively, a context) is built

either by introducing ‘→’ on the right-hand side (respectively, left-hand side) of a sequent,

or just by activating one conclusion (respectively, hypothesis) from a sequent typing a

command: μα.c is inherited from λμ, and μ̃x.c is to be thought of as let x = [] in c.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 600

Proofs can sometimes be simplified, that is, commands can be computed by eliminating

the cuts.

Definition 7.3 (Reduction in λμμ̃).

(→) : 〈λx.v1 || v2 · e〉 → 〈v2 || μ̃x.〈v1 ||e〉〉
(μ) : 〈μβ.c || e〉 → c[e/β]

(μ̃) : 〈v || μ̃x.c〉 → c[v/x] .

The system has a critical pair 〈μα.c1 || μ̃x.c2〉, and applying rule (μ) in this case gives

a call-by-value evaluation, whereas applying rule (μ̃) gives a call-by-name evaluation. As

expected, the system with both rules is not confluent, as neither is the cut-elimination of

the classical sequent calculus.

Herbelin’s λμμ̃-calculus elegantly expresses the duality of LK’s left- and right-introduction

in a very symmetrical syntax. But the duality goes beyond that: for instance, the symmetry

of the reduction rules display syntactically the duality between the cbv and cbn evaluations

(see also Wadler (2003)). Indeed, the call-by-value reduction →v is obtained by forbidding

a μ̃-reduction when the redex is also a μ-redex, whereas the call-by-name reduction →n

forbids a μ-reduction when the redex is also a μ̃-redex. We show here how X accounts

for this duality.

However, this duality notwithstanding, λμμ̃ does not fully represent LK. The LK proof

Γ, A �lk B,Δ
(→R)

Γ �lk A→B,Δ

Γ �lk A,Δ Γ, B �lk Δ
(→L)

Γ, A→B �lk Δ
(cut)

Γ �lk Δ

(inhabited in X by the left-hand side of rule (exp-imp)) reduces to both

Γ �lk A,Δ

Γ, A �lk B,Δ

Γ, B �lk Δ

Γ, A, B �lk Δ

Γ, A �lk Δ

Γ �lk Δ

and

Γ �lk A,Δ

Γ �lk A,B,Δ Γ, A �lk B,Δ

Γ �lk B,Δ Γ, B �lk Δ

Γ �lk Δ

The first result is represented in the normal reduction system of λμμ̃, but the second is

not, whereas both are represented in X, by the two right-hand sides of rule (exp-imp).

This implies, of course, that there does not exist a full reduction preserving interpretation

of X into λμμ̃.

We can show that there exists an obvious translation from X into λμμ̃.

Definition 7.4 (Translation of X into λμμ̃ (Lengrand 2003)).

��〈x.α〉��X =
Δ 〈x ||α〉

��x̂P α̂·β��X =
Δ 〈λx.μα.��P ��X || β〉

��P α̂ [x] ŷQ��X =
Δ 〈x || (μα.��P ��X)·(μ̃y.��Q��X)〉

��P α̂ † x̂Q��X =
Δ 〈μα.��P ��X || μ̃x.��Q��X〉 .

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 601

In fact, this is the origin of X: Curien and Herbelin gave a hint in Curien and

Herbelin (2000, Remark 4.1) of a way to connect LKμμ̃ and LK. The proofs of LK embed

in LKμμ̃ by considering the following sub-syntax of λμμ̃:

c ::= 〈x ||α〉 | 〈λx.μα.c || β〉 | 〈y || μα.c·μ̃x.c〉 | 〈μα.c || μ̃x.c〉

where the typing rules correspond to the axiom rule, the right introduction of ‘⇒’, the left

introduction of ‘⇒’ and the rule for a cut, respectively. Later it was discovered that this

corresponded closely to Urban’s approach in Urban (2000); however, as discussed above

following Definition 4.3, the approaches differ.

Although X is in fact a sub-syntax of λμμ̃, it is no less expressive. On the contrary,

on the logical side, two proofs of the same sequent might be considered to be different

in LKμμ̃ just because the naming of formulae, or the activation/deactivation of formulae,

has not been done in the same way.

We can consider proofs up to such differences with equivalence classes, and, moreover,

there is a unique proof of each class in X: the one eagerly naming all formulae it deals

with.

In concrete terms, here is a translation of λμμ̃ into X that preserves the typing.

Definition 7.5 (Translation of λμμ̃ into X (Lengrand 2003)).

��〈v ||e〉��λμμ̃ =
Δ ��v��λμμ̃α α̂ † x̂��e��λμμ̃x

��x��λμμ̃α =
Δ 〈x.α〉

��λx.v��λμμ̃α =
Δ

x̂��v��λμμ̃β β̂ ·α
��μβ.c��λμμ̃α =

Δ ��c��λμμ̃β̂ † x̂〈x.α〉

��α��λμμ̃x =
Δ 〈x.α〉

��v·e��λμμ̃x =
Δ ��v��λμμ̃α α̂ [x] ŷ��e��λμμ̃y

��μ̃y.c��λμμ̃x =
Δ 〈x.β〉β̂ † ŷ��c��λμμ̃ .

Example 7.6. Ghilezan and Lescanne (2004) showed that Peirce’s Law ((A→B)→A)→A

can be inhabited in λμμ̃ by the term

λz.μα.〈z || (λy.μβ.〈y ||α〉) · α〉 ,

which is a term in normal form that is itself the reduction of the translation of the

λμ-term given by Ong and Stewart (1997) (see Section 6) and is typeable as follows (where

� = �λμμ̃):

z:(A→B)→A � z:(A→B)→A | α:A

z:(A→B)→A | y:A � y:A, α:A, β:B z:(A→B)→A, y:A, α:A � α:A | β:B

〈y ||α〉 : z:(A→B)→A, y:A � β:B, α:A

z:(A→B)→A, y:A � μβ.〈y ||α〉:B | α:A
z:(A→B)→A � λy.μβ.〈y ||α〉:A→B | α:A z:(A→B)→A | α:A � α:A

z:(A→B)→A | λy.μβ.〈y ||α〉 · α:(A→B)→A � α:A

〈z || (λy.μβ.〈y ||α〉) · α〉 : z:(A→B)→A � α:A

z:(A→B)→A � μα.〈z || (λy.μβ.〈y ||α〉) · α〉:A
� λz.μα.〈z || (λy.μβ.〈y ||α〉) · α〉:((A→B)→A)→A

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 602

When we remove all term information from this derivation, we obtain a semi-proof for

Peirce’s Law in classical logic

(A⇒B)⇒A � (A⇒B)⇒A | A

(A⇒B)⇒A | A � A,A, B (A⇒B)⇒A,A, A � A | B
(A⇒B)⇒A,A � B,A

(A⇒B)⇒A,A � B | A
(A⇒B)⇒A � A⇒B | A (A⇒B)⇒A | A � A

(A⇒B)⇒A | (A⇒B)⇒A � A

(A⇒B)⇒A � A

(A⇒B)⇒A � A

� ((A⇒B)⇒A)⇒A

Notice that the term λz.μα.〈z || (λy.μβ.〈y ||α〉) · α〉 is in normal form, whereas the proof

has two cuts that can be eliminated.

Moreover, the two (activation) steps, that is, the μ-abstractions, in this derivation do not

correspond to a logical rule. This means that all provable judgements can be inhabited,

but not all derivations correspond to proofs.

Using the translation function ��·��λμμ̃ on the λμμ̃-term, we obtain

��λz.μα.〈z || (λy.μβ.〈y ||α〉) · α〉��λμμ̃γ =
Δ

ẑ��μα.〈z || (λy.μβ.〈y ||α〉) · α〉��λμμ̃δ δ̂ ·γ =
Δ

ẑ(��〈z || (λy.μβ.〈y ||α〉) · α〉��λμμ̃α̂ † x̂〈x.δ〉)δ̂ ·γ =
Δ

ẑ((��z��λμμ̃ε ε̂ † x̂��(λy.μβ.〈y ||α〉) · α��λμμ̃x)α̂ † x̂〈x.δ〉)δ̂ ·γ =
Δ

ẑ((〈z.ε〉ε̂ † x̂(��λy.μβ.〈y ||α〉��λμμ̃φ φ̂ [x] ŵ��α��λμμ̃w))α̂ † x̂〈x.δ〉)δ̂ ·γ =
Δ

ẑ((〈z.ε〉ε̂ † x̂((ŷ(��〈y ||α〉��λμμ̃β̂ † v̂〈v.η〉)η̂ ·φ)φ̂ [x] ŵ〈w.α〉))α̂ † x̂〈x.δ〉)δ̂ ·γ =
Δ

ẑ((〈z.ε〉ε̂ † x̂((ŷ((��y��λμμ̃ρ ρ̂ † û��u��λμμ̃α)β̂ † v̂〈v.η〉)η̂ ·φ)φ̂ [x] ŵ〈w.α〉))α̂ † x̂〈x.δ〉)δ̂ ·γ =
Δ

ẑ((〈z.ε〉ε̂ † x̂((ŷ((〈y.ρ〉ρ̂ † û〈u.α〉)β̂ † v̂〈v.η〉)η̂ ·φ)φ̂ [x] ŵ〈w.α〉))α̂ † x̂〈x.δ〉)δ̂ ·γ .

Notice that the process obtained through translation has four cuts – removing these

produces the following (inside out) reduction sequence:

ẑ((〈z.ε〉ε̂ † x̂((ŷ((〈y.ρ〉ρ̂ † û〈u.α〉)β̂ † v̂〈v.η〉)η̂ ·φ)φ̂ [x] ŵ〈w.α〉))α̂ † x̂〈x.δ〉)δ̂ ·γ →
ẑ((〈z.ε〉ε̂ † x̂((ŷ(〈y.α〉β̂ † v̂〈v.η〉)η̂ ·φ)φ̂ [x] ŵ〈w.α〉))α̂ † x̂〈x.δ〉)δ̂ ·γ →
ẑ((〈z.ε〉ε̂ † x̂((ŷ〈y.α〉η̂ ·φ)φ̂ [x] ŵ〈w.α〉))α̂ † x̂〈x.δ〉)δ̂ ·γ →
ẑ(((ŷ〈y.α〉η̂ ·φ)φ̂ [z] ŵ〈w.α〉)α̂ † x̂〈x.δ〉)δ̂ ·γ →
ẑ((ŷ〈y.δ〉η̂ ·φ)φ̂ [z] ŵ〈w.δ〉)δ̂ ·γ .

The final term is exactly that of Example 3.5.

The interpretation function preserves typeability.

Lemma 7.7.

1 If Γ �λμμ̃ v:A |Δ, then ��v��λμμ̃α ··· Γ � α:A,Δ.

2 If Γ | e:A �λμμ̃ Δ, then ��e��λμμ̃x ··· Γ, x:A � Δ.

3 If c : Γ �λμμ̃ Δ, then ��c��λμμ̃ ··· Γ � Δ.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 603

Proof. The proof is straightforward by simultaneous induction on the structure of

derivations.

Lengrand (2003) showed that we can simulate the implicit substitution of λμμ̃ in X.

Lemma 7.8.

1 ��c��λμμ̃α̂ † x̂��e��λμμ̃x → ��c[e/α]��λμμ̃.
2 ��v��λμμ̃β α̂ † x̂��e��λμμ̃x → ��v[e/α]��λμμ̃β .

3 ��e′��λμμ̃z α̂ † x̂��e��λμμ̃x → ��e′[e/α]��λμμ̃z .

Proof. The proof is by simultaneous induction on the structure of nets.

Similarly, we can show the following results.

Lemma 7.9.

1 ��v��λμμ̃α α̂ † x̂��c��λμμ̃ → ��c[v/x]��λμμ̃.
2 ��v��λμμ̃α α̂ † x̂��v′��λμμ̃β → ��v′[v/x]��λμμ̃β .

3 ��v��λμμ̃α α̂ † x̂��e��λμμ̃y → ��e[v/x]��λμμ̃y .

We can now strengthen these results by stating that this simulation preserves evaluations.

Theorem 7.10 (Simulation of λμμ̃). If c→ c′, then ��c��λμμ̃ ↓ ��c′��λμμ̃.

Proof. We use induction of the length of the reduction sequence. We will only show the

base cases:

(→) We have c = 〈λx.v1 ||v2·e〉 and c′ = 〈v2 || μ̃x.〈v1 ||e〉〉. Hence,

��〈λx.v1 ||v2·e〉��λμμ̃ = ��λx.v1��λμμ̃α α̂ † ŷ��v2·e��λμμ̃y

= (x̂��v1��λμμ̃β β̂ ·α)α̂ † ŷ(��v2��λμμ̃γ γ̂ [y] ẑ��e��λμμ̃z)

→ ��v2��λμμ̃γ γ̂ † x̂(��v1��λμμ̃β β̂ † ẑ��e��λμμ̃z)

(= α) ← ��v2��λμμ̃γ γ̂ † ŷ(〈y.δ〉δ̂ † x̂(��v1��λμμ̃β β̂ † ẑ��e��λμμ̃z))

= ��v2��λμμ̃γ γ̂ † ŷ(〈y.δ〉δ̂ † x̂��〈v1 ||e〉��λμμ̃)
= ��v2��λμμ̃γ γ̂ † ŷ��μ̃y.〈v1 ||e〉��λμμ̃ .

(μ) This follows by Lemma 7.8.

(μ̃) This follows by Lemma 7.9.

Notice that, had we defined ��μβ.c��λμμ̃α = ��c��λμμ̃[α/β] and ��μ̃y.c��λμμ̃x = ��c��λμμ̃[x/y], we

could have shown that c→ c′ implies ��c��λμμ̃ → ��c′��λμμ̃.
In fact, we can even show the following results.

Theorem 7.11.

1 If c→n c
′, then ��c��λμμ̃ ↓n ��c′��λμμ̃.

2 If c→v c
′, then ��c��λμμ̃ ↓v ��c′��λμμ̃.

Curien and Herbelin define two encodings.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 604

Definition 7.12 (Curien and Herbelin 2000)). The interpretation ·< and interpretation ·>
of λμ into λμμ̃ are defined as follows:

x< =
Δ

x

(λx.M)< =
Δ

λx.M<

(MN)< =
Δ

μα.〈N< || μ̃x.〈M< ||x · α〉〉
(μβ.c)< =

Δ
μβ.c<

([α]M)< =
Δ 〈M< ||α〉

x> =
Δ

x

(λx.M)> =
Δ

λx.M>

(MN)> =
Δ

μα.〈M> ||N>·α〉
(μβ.c)> =

Δ
μβ.c>

([α]M)> =
Δ 〈M> ||α〉 .

·< corresponds to right-to-left call-by-value, and ·> is related to left-to-right call-by-

value.

Curien and Herbelin’s result is given by the following theorem.

Theorem 7.13 (Simulation of λμ in λμμ̃ (Curien and Herbelin 2000)).

1 If M→v N, then M<→v N
< up to μ-expansion.

2 If M→n N, then M>→n N
> up to μ-expansion.

Theorem 7.13 also holds for the restriction of λμ to the traditional λ-calculus (but

without the restriction of ‘up to μ-expansion’). However, one might be disappointed that

the preservation of the cbv and cbn evaluations relies on two distinct translations of

terms.

As above, the cbv/cbn distinction is accounted for by the encodings themselves, and

the distinction between cbv and cbn relies mostly on Curien and Herbelin’s two distinct

encodings rather than the features of λμμ̃. The same holds for Wadler (2003). While

their cbn translation seems intuitive, in order to give an accurate interpretation of the

cbv-λ-calculus, they apparently need to twist it in a more complex way than we do since

we can show the following result.

Lemma 7.14. M< →M>.

Proof. We use induction on the structure of terms. The interesting case is

(NP)< =
Δ

μα.〈N< || μ̃x.〈M< ||x · α〉〉 → (IH)

μα.〈N> || μ̃x.〈M> ||x · α〉〉 →μ̃

μα.〈M> ||N>·α〉 =
Δ

(NP)> .

This result is a bit disappointing since the cbn encoding turns out to be more refined

than the cbv encoding.

Of course, by Theorem 7.10, we also have the following result.

Lemma 7.15. ��M<��λμμ̃
β ↓ ��M>��λμμ̃

β .

But we now show that we can take the simplest translation (that is, ��·>��λμμ̃β) for both cbv

and cbn, and that the evaluation strategies of X reflects the distinction between them,

in showing that the interpretation ��·��αλ is more refined that the composition of ·> and
��·��λμμ̃α .

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 605

Lemma 7.16. ��M>��λμμ̃
β → ��M��βλ.

Proof. By induction on the structure of terms:

M = x:

��x>��λμμ̃β =
Δ ��x��λμμ̃β =

Δ 〈x.β〉 =
Δ ��x��βλ .

M = λx.M ′:

��(λx.M ′)>��λμμ̃β =
Δ

��λx.M ′>��λμμ̃
β =

Δ

x̂��M ′>��λμμ̃
α α̂·β → (IH)

x̂��M ′��αλα̂·β =
Δ

��λx.M ′��βλ .
M = PQ:

��(PQ)>��λμμ̃β =
Δ

��μα〈P> ||Q>·α〉��λμμ̃β =
Δ

��〈P> ||Q>·α〉��λμμ̃α̂ † x̂〈x.β〉 → (ren-r)

��〈P> ||Q>·β〉��λμμ̃ =
Δ

��P>��λμμ̃
γ γ̂ † x̂��Q>·β��λμμ̃x =

Δ

��P>��λμμ̃
γ γ̂ † x̂(��Q>��λμμ̃

α α̂ [x] ŷ��β��λμμ̃y) =
Δ

��P>��λμμ̃
γ γ̂ † x̂(��Q>��λμμ̃

α α̂ [x] ŷ〈y.β〉) → (IH)

��P ��γλγ̂ † x̂(��Q��αλα̂ [x] ŷ〈y.β〉) =
Δ

��PQ��βλ .

8. Conclusions and future work

We have seen that X is an application- and substitution-free formal language that provides

a Curry–Howard isomorphism for a sequent calculus for implicative classical logic. But,

of greater interest, we have seen that X is very well suited to being a generic abstract

machine for the running of (applicative) programming languages by building not only an

interpretation for λ, λμ and λμμ̃, but also for λx.

A wealth of research lies in the future, of which this paper is but the first step, the

seed. We intend to study (strong) normalisation and the confluence of the cbn and cbv

strategies, to extend X so that we can represent the other logical connectives, to study

the relationship with linear logic and proofnets (both typed and untyped), and how to

express recursion, functions, and so on.

Details of the implementation of the tool for X can be found in van Bakel and Raghun-

andan (2005; 2006). Polymorphism is introduced in Summers and van Bakel (2006), the

encoding of other connectors in Raghunandan and Summers (2006), and the interpretation

of X in λμ in Audebaud and van Bakel (2006). The relation between X and Π is currently

under investigation.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 606

Appendix A. The rules of X

In this appendix we collect together all the rules of X, and also give the admissible rules.

Logical Reduction (applicable only if α and x are introduced).

(cap) : 〈y.α〉α̂ † x̂〈x.β〉 → 〈y.β〉
(exp) : (ŷP β̂ ·α)α̂ † x̂〈x.γ〉 → ŷP β̂ ·γ
(imp) : 〈y.α〉α̂ † x̂(P β̂ [x] ẑQ) → P β̂ [y] ẑQ

(exp-imp) : (ŷP β̂ ·α)α̂ † x̂(Qγ̂ [x] ẑR) → (Qγ̂ † ŷP)β̂ † ẑR

or Qγ̂ † ŷ(P β̂ † ẑR) .

Activations

(act-l) : P α̂ † x̂Q → P α̂ † x̂Q, if P does not introduce α

(act-r) : P α̂ † x̂Q → P α̂ † x̂Q, if Q does not introduce x .

Left Propagation

(† d) : 〈y.α〉α̂ † x̂P → 〈y.α〉α̂ † x̂P

(cap†) : 〈y.β〉α̂ † x̂P → 〈y.β〉, β
= α

(exp-outs†) : (ŷQβ̂ ·α)α̂ † x̂P → (ŷ(Qα̂ † x̂P)β̂ ·γ)γ̂ † x̂P , γ fresh

(exp-ins†) : (ŷQβ̂ ·γ)α̂ † x̂P → ŷ(Qα̂ † x̂P)β̂ ·γ, γ
= α

(imp†) : (Qβ̂ [z] ŷR)α̂ † x̂P → (Qα̂ † x̂P)β̂ [z] ŷ(Rα̂ † x̂P)

(cut†) : (Qβ̂ † ŷR)α̂ † x̂P → (Qα̂ † x̂P)β̂ † ŷ(Rα̂ † x̂P) .

Right Propagation

(d †) : P α̂ † x̂〈x.β〉 → P α̂ † x̂〈x.β〉
(†cap) : P α̂ † x̂〈y.β〉 → 〈y.β〉, y
= x

(†exp) : P α̂ † x̂(ŷQβ̂ ·γ) → ŷ(P α̂ † x̂Q)β̂ ·γ
(†imp-outs) : P α̂ † x̂(Qβ̂ [x] ŷR) → P α̂ † ẑ((P α̂ † x̂Q)β̂ [z] ŷ(P α̂ † x̂R)), z fresh

(†imp-ins) : P α̂ † x̂(Qβ̂ [z] ŷR) → (P α̂ † x̂Q)β̂ [z] ŷ(P α̂ † x̂R), z
= x

(†cut) : P α̂ † x̂(Qβ̂ † ŷR) → (P α̂ † x̂Q)β̂ † ŷ(P α̂ † x̂R) .

Admissible rules

(† gc) : P α̂ † x̂Q → P , if α
∈ fp(P), P pure

(†gc) : P α̂ † x̂Q → Q, if x
∈ fs(Q), Q pure

(ren-r) : P δ̂ † ẑ〈z.α〉 → P [α/δ], P pure

(ren-l) : 〈z.α〉α̂ † x̂P → P [z/x], P pure .

Modified activations for cbv and cbn

(act-r) : P α̂ † x̂Q → P α̂ † x̂Q, if P introduces α and Q does not introduce x.

(act-l) : P α̂ † x̂Q → P α̂ † x̂Q, if P does not introduce α and Q introduces x.

Acknowledgements

We would like to thank Alexander Summers, Daniel Hirschkoff, Dragiša Žunić, Harry

Mairson, Jamie Gabbay, Jayshan Raghunandan, Luca Cardelli, Luca Roversi, Maria

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 607

Grazia Vigliotti, Mariangiola Dezani-Ciancaglini, Philippe Audebaud and Simona Ronchi

della Rocca for many fruitful discussions on the topic of this paper.

We are especially grateful to Stéphane Lengrand, who was there at the origins of this

research, and has kindly let us integrate his papers in ours.

We would also like to thank Hugo Herbelin for carefully reading our paper, and for

suggesting many improvements and corrections.

References

Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J.-J. (1991) Explicit substitutions. Journal of

Functional Programming 1 (4) 375–416.

Aho, A.V., Sethi, R. and Ullman, J.D. (1988) Compilers: Principles, Techniques and Tools, Addison-

Wesley.

Appel, A.W. and Jim, T. (1989) Continuation-passing, closure-passing style. In: Proceedings of the

16th ACM SIGPLAN-SIGACT symposium on Principles of Programming languages, ACM Press

293–302.

Ariola, Z.M. and Herbelin, H. (2003) Minimal classical logic and control operators. In:

Baeten, J. C.M., Lenstra, J.K., Parrow, J. and Woeginger, G. J. (eds.) ICALP. Springer-Verlag

Lecture Notes in Computer Science 2719 871–885.

Ariola, Z.M., Herbelin, H. and Sabry, A. (2004) A type-theoretic foundation of continuations and

prompts. In: Proceedings of the Ninth ACM SIGPLAN International Conference on Functional

Programming (ICFP’04), ACM 40–53.

Audebaud, P. and van Bakel, S. (2006) Understanding X with λμ. Consistent interpretations of the

implicative sequent calculus in natural deduction (submitted).

van Bakel, S., Lengrand, S. and Lescanne, P. (2005) The language X: circuits, computations

and classical logic. In: M.Coppo, E. Lodi and G.M. Pinna (eds.) Proceedings of Ninth Italian

Conference on Theoretical Computer Science (ICTCS’05), Siena, Italy. Springer-Verlag Lecture

Notes in Computer Science 3701 81–96.

van Bakel, S. and Raghunandan, J. (2005) Implementing X. Electronic Proceedings of Second

International Workshop on Term Graph Rewriting 2004 (TermGraph’04). Electronic Notes in

Theoretical Computer Science.

van Bakel, S. and Raghunandan, J. (2006) Capture avoidance and garbage collection forX. Presented

at the Third International Workshop on Term Graph Rewriting 2006 (TermGraph’06), Vienna,

Austria.

Barbanera, F. and Berardi, S. (1996) A symmetric lambda calculus for classical program extraction.

Information and Computation 125 (2) 103–117.

Barendregt, H. (1984) The Lambda Calculus: its Syntax and Semantics, revised edition, North-

Holland.

Barendregt, H. and Ghilezan, S. (2000) Lambda terms for natural deduction, sequent calculus and

cut-elimination. Journal of Functional Porgramming 10 (1) 121–134.

Bloo, R. and Geuvers, J.H. (1996) Explicit substitution: on the edge of strong normalisation.

Computing Science Reports 96–10, Eindhoven University of Technology, The Netherlands. (To

appear in Theoretical Computer Science.)

Bloo, R. and Rose, K. (1995) Preservation of strong normalisation in named lambda calculi with

explicit substitution and garbage collection. CSN’95 – Computer Science in the Netherlands 62–72.

(Available at ftp://ftp.diku.dk/diku/semantics/papers/D-246.ps.)

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

S. van Bakel and P. Lescanne 608

de Bruijn, N.G. (1978) A namefree lambda calculus with facilities for internal definition

of expressions and segments. TH-Report 78-WSK-03, Technological University Eindhoven,

Netherlands, Department of Mathematics.

Church, A. (1940) A formulation of the simple theory of types. The journal of Symbolic Logic 5

56–68.

Clement, D. (1986) A Simple Applicative Language: MINI-ML. Technical Report 529, INRIA

centre Sophia Antipolis (France).

Coquand, T. and Huet, G. P. (1985) Constructions: A higher order proof system for mechanizing

mathematics. European Conference on Computer Algebra (1) 151–184.

Curien, P.-L. and Herbelin, H. (2000) The Duality of Computation. In: Proc. of the 5th ACM

SIGPLAN International Conference on Functional Programming (ICFP’00), ACM 233–243.

(A corrected version is available from http://yquem.inria.fr/ herbelin/publis/icfp-

CuHer00-duality+errata.ps.gz)

Curry, H. B., Feys, R. and Craig, W. (1958) Combinatory Logic, Vol. 1, Elsevier Science Publishers

B.V.

van Dalen, D. (1994) Logic and Structure, Springer-Verlag.

Danos, V., Joinet, J.-B. and Schellinx, H. (1996) Computational isomorphisms in classical logic

(extended abstract). Electronic Notes in Theoretical Computer Science 3.

Danos, V., Joinet, J.-B. and Schellinx, H. (1997) A new deconstructive logic: Linear logic. The journal

of Symbolic Logic 62.

Gentzen, G. (1935) Untersuchungen über das Logische Schliessen. Mathematische Zeitschrift 39

176–210 and 405–431. (English translation in Szabo (1969, Pages 68–131)).

Ghilezan, S. and Lescanne, P. (2004) Classical proofs, typed processes and intersection types. In:

Berardi, S., Coppo, M. and Damiani, F. (eds.) TYPES’03 (to appear in Springer-Verlag Lecture

Notes in Computer Science).

Girard, J. Y. (1986) The system F of variable types, fifteen years later. Theoretical Computer Science

45 159–192.

Girard, J.-Y. (1987) Linear logic. Theoretical Computer Science 50 1–102.

Girard, J.-Y. (1991) A new constrcutive logic: classical logic. Mathematical Structures in Computer

Science 1 (3) 255–296.

Griffin, T. (1990) A formulae-as-types notion of control. In: Proceedings of the 17th Annual ACM

Symposium on Principles Of Programming Languages 47–58.

de Groote, P. (1994) On the relation between the λμ-calculus and the syntactic theory of sequential

control. In: Proceedings of the 5th International Conference on Logic Programming and

Automated Reasoning, (LPAR’94). Springer-Verlag Lecture Notes in Computer Science 822 31–43.

Herbelin, H. (1995) Séquents qu’on calcule : de l’interprétation du calcul des séquents comme calcul

de λ-termes et comme calcul de stratégies gagnantes, Thèse d’université, Université Paris 7.

Herbelin, H. (2005) C’est maintenant qu’on calcule: au cœur de la dualité, Mémoire d’habilitation,

Université Paris 11.

Krivine, J.-L. (1994) Classical logic, storage operators and second-order lambda-calculus. Ann. Pure

Appl. Logic 68(1) 53–78.

Lengrand, S. (2002) A computational interpretation of the cut-rule in classical sequent calculus,

Master’s thesis, Mathematical Institute and Computing Laboratory, University of Oxford.

Lengrand, S. (2003) Call-by-value, call-by-name, and strong normalization for the classical sequent

calculus. In: Gramlich, B. and Lucas, S. (eds.) Post-proceedings of the 3rd Workshop on Reduction

Strategies in Rewriting and Programming (WRS 2003). Electronic Notes in Theoretical Computer

Science 86.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

Computation with classical sequents 609

Lengrand, S. (2006) Normalisation & Equivalence in Proof Theory & Type Theory, Ph.D. thesis,

University of Paris VII and University of St Andrews.

Lengrand, S., Lescanne, P., Dougherty, D., Dezani-Ciancaglini, M. and van Bakel, S. (2004)

Intersection types for explicit substitutions. Information and Computation 189 (1) 17–42.

Lescanne, P. (1994) From λσ to λυ, a journey through calculi of explicit substitutions. In: Boehm, H.

(ed.) Proceedings of the 21st Annual ACM Symposium on Principles Of Programming Languages,

ACM 60–69.

Ong, C.-H. L. and Stewart, C.A. (1997) A Curry-Howard foundation for functional computation

with control. In: Proceedings of the 24th Annual ACM Symposium on Principles Of Programming

Languages 215–227.

Parigot, M. (1992) An algorithmic interpretation of classical natural deduction. In: Proc. of Int.

Conf. on Logic Programming and Automated Reasoning, LPAR’92. Springer-Verlag Lecture

Notes in Computer Science 624 190–201.

Parigot, M. (1993) Classical proofs as programs. Kurt Gödel Colloquium 263–276. (Presented at

TYPES Workshop, at Bǎstad, June 1992.)

Raghunandan, J. and Summers, A. (2006) On the Computational Representation of Classical Logical

Connectives. (Presented at 2nd International Workshop on Developments in Computational

Models (DCM 2006), Venice, Italy.)

Summers, A. and van Bakel, S. (2006) Approaches to polymorphism in classical sequent calculus.

In: Sestoft, P. (ed.) Proceedings of 15th European Symposium on Programming (ESOP’06).

Springer-Verlag Lecture Notes in Computer Science 3924 84–99.

Szabo, M.E. (ed.) (1969) The Collected Papers of Gerhard Gentzen, Studies in Logic and the

Foundations of Mathematics, North-Holland.

Urban, C. (2000) Classical Logic and Computation, Ph.D. thesis, University of Cambridge.

Urban, C. (2001) Strong Normalisation for a Gentzen-like Cut-Elimination Procedure. In:

Proceedings of Typed Lambda Calculus and Applications (TLCA’01). Springer-Verlag Lecture

Notes in Computer Science 2044 415–429.

Urban, C. and Bierman, G.M. (2001) Strong normalisation of cut-elimination in classical logic.

Fundamentae Informaticae 45 (1,2) 123–155.

Wadler, P. (2003) Call-by-Value is Dual to Call-by-Name. In: Proceedings of the eighth ACM

SIGPLAN international conference on Functional programming 189 – 201.

Whitehead, A.N. and Russell, B. (1925) Principia Mathematica, 2nd edition, Cambridge University

Press.

Whitehead, A.N. and Russell, B. (1997) Principia Mathematica to *56, 2nd edition, Cambridge

Mathematical Library, Cambridge University Press.

https://doi.org/10.1017/S0960129508006762 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129508006762

