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We investigate the existence of solutions to systems of N differential equations
representing connections between minima of potentials with several equal depths
in R

n. Using variational techniques and in particular a method introduced by
Alikakos and Fusco we first prove such existence for N � 2 and two minima. Dealing
next with symmetric potentials corresponding to bulk free energies in crystals, we
establish existence for N � 2 in various cases of more than two minima. Finally, we
obtain a sufficient condition establishing existence of connections to potentials which
are not necessarily symmetric for arbitrary N and three minima.

1. Introduction

In this article we study the existence of connections between global minima of a
multiple-well potential in anisotropic media. We call such connections heteroclinic
connections or simply heteroclinics.

The setting of our problem is as follows. Let F : R
n → R be a C2 function

satisfying the following.

(H1) F (ξi) = 0, i = 1, . . . , n, and F (ξ) > 0 for ξ /∈ {ξ1, . . . , ξn}.

(H2) lim F (ξ) > 0, as |ξ| → ∞.

(H3) There exists a positive constant β � 1 such that 〈∇F (ξi+ξ), ξ〉 > 0, whenever
0 < |ξ| < β, for each i = 1, . . . , n.

Henceforth, by 〈 ·, ·〉 we denote the Euclidean inner product in R
n. For A2 a con-

stant, positive N ×N matrix, we investigate the existence of solutions to the system
A2U ′′ − ∇F (U) = 0, with U(x) = (u1(x), . . . , uN (x))T, x ∈ R, connecting global
minima of F , that is, we consider the problem

A2U ′′ − ∇F (U) = 0, lim
x→−∞

U(x) = ξp, lim
x→∞

U(x) = ξq, (1.1)

where ξp �= ξq are zeros of F . The matrix A2 in the physical applications is diagonal
and represents anisotropy; thus, the isotropic case is the one where A2 = I, the
identity matrix.

Problem (1.1) is variational with associated functional

E(U) =
∫

R

{ 1
2 |AU ′|2 + F (U)} dx. (1.2)
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We denote by A in (1.2) the positive square root of A2, which makes sense by the
definition of A2. We note that (1.1) is a Hamiltonian system and the functional E,
as defined in (1.2), represents the action.

The existence of solutions to (1.1) for arbitrary N , two minima and A2 being
the identity matrix is established in [2,12]. While Sternberg’s approach is based on
the Jacobi functional, Alikakos and Fusco use the action. Although the change of
variable V = AU transforms (1.1) to the isotropic case V ′′ − ∇F0(V ) = 0, where
F0(V ) = F (A−1V ) (see the end of this section), we apply the unilateral constraint
method, introduced in [2], directly to the anisotropic case and we show that, for any
N and for potentials with two global minima, there always exists a solution to (1.1).
Our proof uses the Euler–Lagrange equation of (1.2) and in that respect is slightly
different from that of [2], which is purely variational. Related issues, again for the
isotropic case, arbitrary N and two minima, are discussed in [1, 7] for symmetric
potentials and in [9], where the not necessarily symmetric potential satisfies more
restrictive structural hypotheses.

One of the main goals of this paper is to show how the unilateral constraint
method can be extended to establish existence of connections in the presence of
several global minima. In this direction we first investigate such existence in the
case of symmetric potentials having three or more global minima for some repre-
sentative and quite general examples arising in the study of motion of interfaces in
crystals. In particular, for N = 2 and three minima these examples have been stud-
ied in [4,5,10,11]. The matrix A2 there is diagonal, with diagonal [1, λ2], or [λ2, 1],
where λ > 0 is the anisotropy parameter. Using functional analytic or geomet-
ric singular perturbation techniques, these authors establish existence and obtain
detailed information for the solution, as λ approaches 0. For a class of this type of
examples, we prove the existence of heteroclinic connections for general diagonal
matrices in dimensions N = 2, 3.

Next, returning to general potentials with three global minima and N � 2, we
obtain a sufficient condition for existence of connections of the type of a strict
triangle inequality involving the action. For N = 2 this condition is also considered
in [1], in the context of symmetric potentials, and in [2], where it is associated to
geodesic distances defined by the Jacobi functional. In the latter paper it is shown
that this condition is also necessary.

This paper consists of three parts. Sections 2–4 form the first part, which is
actually an extension of the results of [2] to our non-isotropic setting and deals
with existence of heteroclinic connections. Hence, for general N we define, in § 2, a
constrained problem and we prove existence of a solution. We also discuss regularity
properties of the solution. In § 3 we obtain information about the shape of the
minimizer and, in § 4, by removing the constraint, we show existence of a heteroclinic
connection in the case of two minima. The second part consists of § 5, where we
consider a model example and for N = 2, 3 and in the presence of symmetry we
establish existence of connections for three or more minima. Finally, in § 6 we give a
sufficient condition that guarantees existence of connections for general potentials
with three minima and N � 2.

We conclude this section with some comments regarding the transformation
of (1.1) to the one with A2 = I. For V = AU we set F0(V ) = F (A−1V ) or, equiv-
alently, F (U) = F0(AU). Then ∇UF (U) = AT∇V F0(AU); hence, equation (1.1) is
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transformed to

(AU)′′ − A−1AT∇V F0(AU) = 0 or, equivalently, V ′′ − ∇V F0(V ) = 0,

since A is self-adjoint. The minima of F0 are attained at the points {Aξi}n
i=1 and,

moreover, it can be easily checked that conditions (H1)–(H3) are satisfied. Possible
symmetries of the potential F are transferred to F0, that is, if S is an orthogonal
matrix satisfying AS = SA and F (SU) = F (U), then we have

F0(SV ) = F (A−1SV ) = F (SA−1V ) = F (A−1V ) = F0(V ).

We point out, however, that the non-constant coefficient case (A(x)U ′)′ −∇F (U) =
0 cannot be transformed to an isotropic case and, although this is a different prob-
lem, it would be of some interest to check to what extent the unilateral constrained
method handles this case.

2. The constrained problem

Via condition (H1) on F it follows that E(U) � 0, while E(ξi) = 0, for i = 1, . . . , n.
Hence, the trivial solutions U(x) = ξi of the equations in (1.1) are global minimizers
of the action E. In their presence and due to lack of compactness, since these
equations are autonomous, it is difficult to construct a connection between distinct
minima of F by minimizing E. This difficulty in [2] is surpassed by introducing a
certain type of constraints that are removed later, thus yielding a solution to (1.1).
Moreover, it can be proved that this solution is a local minimizer of the action E
(see § 4).

The heteroclinic connection joining the global minima ξp and ξq is trapped inside
appropriate cylinders constructed below. Given ξ ∈ R

n, � > 0 and L > 0 fixed, we
define

Z−
L,�(ξ) := {U ∈ W 1,2

loc (R; Rn) : |A(U(x) − ξ)| � � for x � −L},

Z+
L,�(ξ) := {U ∈ W 1,2

loc (R; Rn) : |A(U(x) − ξ)| � � for x � +L}.

}
(2.1)

Proposition 2.1. Let ξp �= ξq be global minima of F . If � and L are positive,
arbitrary and fixed constants, we define Z�

L(ξp, ξq) := Z−
L,�(ξp) ∩ Z+

L,�(ξq), where
Z−

L,�(ξp), and Z+
L,�(ξq) are as in (2.1). Then the constrained problem

min
Z�

L(ξp,ξq)

∫
R

{ 1
2 |AU ′|2 + F (U)} dx (2.2)

has a solution Uα, where α = (p, q), that is

0 � inf
Z�

L(ξp,ξq)
E = E(Uα) < ∞. (2.3)

Moreover, for � < 1
2 |A(ξp − ξq)| we have that E(Uα) > 0.

Proof. For a fixed positive L0 with L0 < L we consider the control function

U0(x) =

⎧⎪⎪⎨
⎪⎪⎩

ξp if x � −L0,

ξp
L0 − x

2L0
+ ξq

L0 + x

2L0
if − L0 � x � L0,

ξq if x � L0.

(2.4)
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Note that U0 is independent of L and that U0 ∈ Z�
L(ξp, ξq). Moreover, E(U0) < ∞;

hence, using F � 0 on R
n yields

0 � inf
Z�

L(ξp,ξq)
E � E(U0) < ∞.

If {Uj} ⊂ Z�
L(ξp, ξq) is a minimizing sequence, that is E(Uj) → inf E, assuming,

without loss of generality, that E(Uj) � E(U0), for all j, we obtain the following a
priori estimate:

1
2

∫
R

|AU ′
j |2 dx � E(Uj) � E(U0) < ∞, (2.5)

which, via Morrey’s inequality

|AUj(x1) − AUj(x2)| � |x1 − x2|1/2
( ∫

R

|AU ′
j |2 dx

)1/2

,

leads to
|AUj(x1) − AUj(x2)| � |x1 − x2|1/2{2E(U0)}1/2. (2.6)

On the other hand, we have

|AUj(x)| � max{|Aξp|, |Aξq|} + �, |x| � L, (2.7)

by the definition of Z�
L(ξp, ξq) and the Uj . Moreover, for x � −L, via (2.6) one also

obtains |AUj(x)| � |AUj(−L)| + |x + L|1/2{2E(U0)}1/2; hence,

|AUj(x)| � |Aξp| + � + 2
√

LE(U0), |x| � L. (2.8)

It then follows that the sequence {AUj} is equicontinuous and uniformly bounded on
every bounded interval. Hence, by the Ascoli–Arzelà theorem, this is relatively com-
pact in C([−a, a]), for any a ∈ R. We can thus obtain a subsequence, again denoted
by {AUj}, which converges uniformly on compact sets to some AUα ∈ W 1,2

loc . By
weak compactness in L2(R), via (2.5), we have that AU ′

j ⇀ AU ′
α weakly in L2(R),

where U ′
α is understood in the sense of distributions. Also, E(Uj) → inf E. By weak

lower semicontinuity in L2, on the one hand, we have

lim
j→∞

∫
R

|AU ′
j |2 dx �

∫
R

|AU ′
α|2 dx, (2.9)

while, on the other hand, by Fatou’s lemma, via the pointwise convergence Uj(x) →
Uα(x) on R, we have

lim
j→∞

∫
R

F (Uj) dx �
∫

R

F (Uα) dx. (2.10)

Finally, combining (2.9) and (2.10), we obtain E(Uα) � limj→∞ E(Uj) = inf E. By
the imbedding W 1,2

loc ↪→ C, Uα is a continuous function joining two distinct states
over the finite interval [−L, L]. Hence, E(Uα) is strictly positive.

Remark 2.2. For a function U : R → R
n and ξ ∈ R

n we can write

U(x) − ξ = |A(U(x) − ξ)| U(x) − ξ

|A(U(x) − ξ)| =: ρ(x)n(x), (2.11)
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where ρ(x) � 0, and the vector n is normalized so that |An(x)| = 1. We call the
expression U − ξ = ρ(x)n(x) the polar form of U − ξ. Note that ρ is defined for
all x, and that the polar form of U is well defined for ρ �= 0, that is, ρ > 0. For
U ∈ W 1,2

loc and on the set {x : ρ(x) > 0}, it follows that ρ,n ∈ W 1,2
loc . Moreover,

|AU ′|2 = 〈A2U ′, U ′〉
= 〈A2(ρ′n + ρn′), ρ′n + ρn′〉
= (ρ′)2 + ρ2|An′|2,

since 〈A2n,n′〉 = 0. On {x : U(x) = ξ}, on the other hand, we have |U ′| = 0, in
the W 1,2 sense. Therefore, if Q is any measurable set, then∫

Q

|AU ′|2 dx =
∫

Q∩{ρ>0}
[(ρ′(x))2 + ρ2(x)|An′(x)|2] dx,

and in what follows an integral like the one on the left will be interpreted in this
way.

If Uα is a solution of (2.2), then a consequence of proposition 2.1 is that

Uα(x) =

{
ξp + ρp(x)np(x) if x � −L,

ξq + ρq(x)nq(x) if x � +L,
(2.12)

with 0 � ρi � �, for i = p, q. We now derive necessary conditions for Uα to be a
global minimizer of the constrained problem.

Proposition 2.3. Let Uα be a solution to (2.2) of the form (2.12) with |Ani(x)| =
1, i = p, q. Then the following hold:

ρ′′
q − ρq|An′

q|2 − 〈∇F (Uα),nq〉 � 0 weakly (2.13)

on (L,∞) ∩ {x � L : ρq(x) > 0}, and with an analogous condition for x � −L.
Moreover,

ρ′′
q − ρq|An′

q|2 − 〈∇F (Uα),nq〉 = 0 classically (2.14)

in a neighbourhood of any point x0, where ρq(x0) ∈ (0, �).

Proof. We give the proof for i = q; the other case is similar. We consider appropriate
variations about ρq so that the condition 0 � ρ(x) � � is preserved. So let r(x) � 0
be in C∞

c with support in (L,∞) ∩ {x � L : ρq(x) > 0}. By the imbedding
W 1,2

loc ↪→ C the set {x � L : ρq(x) > 0} is open in [L,∞). We introduce the
variations Uε(x) = Uα(x) − εr(x)nq(x), that is,

Uε(x) =

{
Uα(x) if x < L,

ξq + (ρq(x) − εr(x))nq(x) if x � L,

which satisfy the constraint for ε > 0 and sufficiently small. Therefore, the function
ε → E(Uε) is defined on [0, ε0] and satisfies the condition E(Uε) � E(Uα) for
0 � ε � ε0. Thus,

d
dε

∣∣∣∣
ε=0

E(Uε) � 0. (2.15)
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As in remark 2.2 we obtain

|AU ′
ε|2 = 〈A2[(ρ′

q − εr′)nq + (ρq − εr)n′
q], (ρ

′
q − εr′)nq + (ρq − εr)n′

q〉
= (ρ′

q − εr′)2 + (ρq − εr)2〈A2n′
q,n

′
q〉

for x � L. Therefore,

E(Uε) =
∫

x<L

{ 1
2 |AU ′

α|2 + F (Uα)} dx

+
∫

x�L

{ 1
2 [(ρ′

q − εr′)2 + (ρq − εr)2|An′
q|2] + F (Uα − εrnq)} dx.

Hence, we compute

d
dε

∣∣∣∣
ε=0

E(Uε) = −
∫

x�L

{ρ′
qr

′ + ρqr|An′
q|2 + 〈∇F (Uα), rnq〉} dx.

This implies via (2.15) that the integral above is non-positive for all test functions
r � 0 defined as above, which is equivalent to (2.13).

Suppose now that ρq(x0) ∈ (0, �), for some x0 > L. Then, by continuity, there
exists δ > 0 so that ρq(x) ∈ (0, �) for all x ∈ B̄(x0, δ). Take r ∈ C∞

c (B(x0, δ)) and
note that the variations Uε = Uα + εr(x)n(x) are in Z+

L,�(ξq), for |ε| small enough.
Thus, ε → E(Uε) is defined on (−ε0, ε0) and E(Uε) � E(Uα), for −ε0 � ε � ε0.
Therefore, (2.15) holds as an equality. Then∫

x�L

{ρ′
qr

′ + ρqr|An′
q|2 + 〈∇F (Uα), rnq〉} dx = 0

for all r ∈ C∞
c (B(x0, δ)). This is, however, equivalent to (2.14) in the weak sense

in W 1,2(B(x0, δ)) or, equivalently,

A2U ′′
α − ∇F (Uα) = 0 in B(x0, δ) (2.16)

weakly. Using the fact that F ∈ C2 and bootstrap arguments we conclude that Uα

is C3 on B(x0, δ). Thus, Uα satisfies (2.16) classically. Since ρq > 0 on B(x0, δ), it
follows that (2.14) is satisfied classically on B(x0, δ). The proof of the proposition
is complete.

3. On the minimizer of the constrained problem

We denote by ‖A‖ the induced norm of the matrix A, that is, the one defined by
‖A‖ = sup{|Aξ|/|ξ| : ξ �= 0}. Observe that for |Aξ| = 1 we have λ−1

max � |ξ| � λ−1
min,

where λmin and λmax are the minimum and maximum eigenvalues of A. Therefore,
condition (H3) on F implies the following.

(H3′) There exists a constant β′ := β(λmin/λmax) such that

0 < t < β′‖A‖ and |Aξ| = 1 =⇒ 〈∇F (ξi + tξ), ξ〉 > 0, (3.1)

for all global minima ξi of F , i = 1, . . . , n.

We set �0 := β′‖A‖ and we may assume that 2�0 < min{|A(ξi−ξj)| : i, j = 1, . . . , n}.
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Lemma 3.1. Let � < �0. If Uα is a minimizer of the constrained problem (2.2),
then for |x| � L it is Uα(x) = ξi + ρi(x)ni(x), i = p, q, with ρ(x) � � < �0. Then,
dropping subscripts, ρ satisfies

ρ′′ > 0 weakly (3.2)

on {|x| � L : ρ(x) > 0}.

Proof. By (2.13), (2.12) and on {|x| � L : ρ(x) > 0} we have

ρ′′ − ρ|An′|2 � 〈∇F (ξ + ρn),n〉,

whence (3.2) follows via (3.1), since ρ � �.

Lemma 3.2. Let � and Uα be as in lemma 3.1. Suppose that

(i) ρ1 < ρ2 < � and ρ(a) = ρ(b) = ρ1 for L � a < b (respectively, b < a � −L),

(ii) ρ(x) � ρ2 on [a, b] (respectively, [b, a]).

Then ρ(x) < ρ1 on (a, b) (respectively, (b, a)).

Proof. Since Uα ∈ W 1,2
loc ↪→ C, the boundary conditions ρ(a) = ρ(b) = ρ1 are well

defined. Moreover, by continuity the set {x : ρ(x) > ρ1} is open and we may assume
that (a, b) is a connected component of this set. By (3.2) ρ′′ � 0 on (a, b) and so,
by the maximum principle, ρ attains its maximum at a or at b. Thus, ρ(x) � ρ1
on (a, b). The strict inequality follows by the strong maximum principle, since ρ is
continuous on [a, b] and C2 on (a, b), as implied by proposition 2.3. The proof is
complete.

Lemma 3.3. Let � and Uα be as in lemma 3.1. Then ρ can attain the value �, if at
all, at x = ±L. Moreover, ρ is strictly monotonically decreasing to 0 in x � L, with
an analogous result for x � −L.

Proof. We begin by showing that the equation

ρ(x) = ρ∗, 0 < ρ∗ < � < �0, (3.3)

has at most one solution in x � L. We argue by contradiction, so assume that there
exist a < b such that ρ(a) = ρ(b) = ρ∗.

Case 1. Assume that there exists c ∈ (a, b) such that ρ(c) > ρ∗. Thus, if (a∗, b∗)
is the maximal connected component of the set {x ∈ (a, b) : ρ(x) > ρ∗} containing
c, the following hold:

a∗ < b∗, ρ(a∗) = ρ(b∗) = ρ∗, ρ(x) > ρ∗, x ∈ (a∗, b∗). (3.4)

This behaviour though is excluded by lemma 3.2.

Case 2. We assume now that ρ(x) � ρ∗ in (a, b) and ρ(a) = ρ(b) = ρ∗. Since
ρ∗ < �, locally near b the minimizer Uα does not realize the constraint and satisfies
the equation A2U ′′

α − ∇F (Uα) = 0 classically. In particular, it is smooth near b;
hence, ρ is defined and is smooth near b. Let d ∈ (a, b) be such that ρ > 0 on (d, b).
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On (d, b) ρ satisfies ρ′′ > 0 by (3.2); hence, ρ′(b) > 0 by the Hopf boundary lemma.
Therefore, ρ(x) > ρ∗ in a right neighbourhood of b. On the other hand, from (2.3)
we deduce that ∫

|x|�L

F (Uα) dx < ∞.

In light of (H1) and (H3′) we conclude that, for the integral to be finite, we must
have ρ(xj) → 0 along a sequence xj → ∞. But then, by continuity, we deduce the
existence of a c > b such that ρ(b) = ρ(c) = ρ∗ and ρ(x) > ρ∗ on (b, c), which
contradicts lemma 3.2. Consequently, the case under discussion ρ(a) = ρ(b) = ρ∗,
ρ(x) � ρ∗ on (a, b) cannot occur either. Thus, we have proved that (3.3) has at
most one solution.

Suppose now that ρ(x̄) = �, for some x̄ > L. If ρ(L) < �, we arrive at a contra-
diction by choosing ρ∗ ∈ (ρ(L), �) in (3.3) and recalling that ρ(x) → 0 as x → ∞.
Thus, necessarily, ρ(x) ≡ � on [L, x̄]. But then Uα is smooth on [L, x̄] and ρ′′(x) = 0
there, violating the condition that ρ′′ > 0 by (3.2). Thus, this option also leads to
a contradiction. The proof is complete.

The following lemma is especially significant because it can be used to control
the minimizer outside the cylinders.

Lemma 3.4. Let Uα be a minimizer of the constrained problem and let ξk ∈ {ξp, ξq}.
Let ρ̂ be a constant with 2ρ̂ < �0, and assume that, for some x1 < x2,

|A(Uα(x1) − ξk)| = |A(Uα(x2) − ξk)| = ρ̂. (3.5)

Then, for x ∈ [x1, x2], the following holds:

|A(Uα(x) − ξk)| � 2ρ̂. (3.6)

Proof. Set I = [x1, x2], and define G = {x ∈ I : |A(Uα(x) − ξk)| > ρ̂}. If G = ∅,
then (3.6) holds trivially, so we may assume that G �= ∅. Let Uα(x) = ξk +ρ(x)n(x)
be the polar form of Uα on I. Then, because of the normalization of n, we have
that ρ = |A(Uα − ξk)|, and hence

G = {x ∈ I : ρ(x) > ρ̂}. (3.7)

Uα is continuous, via the imbedding W 1,2
loc ↪→ C, and so is ρ. Thus, G is an open

set. For an arbitrary but fixed δ > 0 satisfying 2ρ̂ + δ < �0 we split G into

G+ = {x ∈ I : ρ(x) > 2ρ̂ + δ},

G− = {x ∈ I : ρ̂ < ρ(x) � 2ρ̂ + δ}.

We will show that the measure |G+| of G+ is zero. Observe that x1, x2 ∈ ∂G and
that, trivially, Uα is a global minimizer of the localized problem

min
u∈W 1,2(G;Rn),

|A(u(xi)−ξk)|=ρ̂, i=1,2

∫
G

{ 1
2 |Au′|2 + F (u)} dx.
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Considering the cut-off function

h(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if s � ρ̂,

2ρ̂ + δ − s

ρ̂ + δ
if ρ̂ � s � 2ρ̂ + δ,

0 if s � 2ρ̂ + δ,

(3.8)

we define for x ∈ [x1, x2] the modified function

Ûα(x) = ξk + ρ̂h(ρ(x))n(x). (3.9)

Note that 0 = h(2ρ̂ + δ) � h(s) � h(ρ̂) = 1. Moreover, Ûα, being the composition
of a W 1,2 function with a Lipschitz function, belongs to W 1,2(G). For this result
we refer the reader to [8].

Claim 3.5. E(Ûα; G) < E(Uα; G), that is∫
G

{ 1
2 |AÛ ′

α|2 + F (Ûα)} dx <

∫
G

{ 1
2 |AU ′

α|2 + F (Uα)} dx. (3.10)

Proof of claim 3.5. We first show that

|AÛ ′
α| < |AU ′

α| on G. (3.11)

Recalling that |AU ′
α|2 = (ρ′)2+ρ2|An′|2 (see remark 2.2), in analogy we compute

|AÛ ′
α|2 = [(ρ̂h(ρ))′]2 + [ρ̂h(ρ)]2|An′|2

� ρ̂2

(ρ̂ + δ)2
(ρ′)2 + ρ̂2|An′|2 (h � 1)

< (ρ′)2 + ρ2|An′|2 by (3.7)

= |AU ′
α|2.

Therefore, (3.11) is verified. Next we show that

F (Ûα(x)) < F (Uα(x)) on G− (3.12)

or, equivalently, F (ξk + ρ̂h(ρ(x))n) < F (ξk + ρ(x)n) on ρ̂ < ρ(x) � 2ρ̂ + δ. Since
h � 1, we have ρ̂h(ρ(x)) � ρ̂ < ρ(x). Therefore, (3.12) follows from the fact that
the function g(t) = F (ξk + tn), 0 < t < �0, is strictly increasing since, via (3.1),
g′(t) = 〈∇F (ξk + tn),n〉 > 0, and ρ̂ + δ < �0. Noting that, on G+, Ûα = ξk, and
hence F (Ûα) = 0 < F (Uα), finally, we obtain∫

G

[ 12 |AÛ ′
α|2 + F (Ûα)] dx

(3.11)
�

∫
G

[ 12 |AU ′
α|2 + F (Ûα)] dx

=
∫

G−

[ 12 |AU ′
α|2 + F (Ûα)] dx +

∫
G+

1
2 |AU ′

α|2 dx
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(3.12)
�

∫
G−

[ 12 |AU ′
α|2 + F (Uα)] dx +

∫
G+

1
2 |AU ′

α|2 dx

<

∫
G−

[ 12 |AU ′
α|2 + F (Uα)] dx +

∫
G+

[ 12 |AU ′
α|2 + F (Uα)] dx.

The proof of the claim is complete.

Since (3.10) violates the condition that Uα is a global minimizer, we conclude
that |G+| = 0 or, equivalently, |A(Uα − ξk)| � 2ρ̂ + δ holds almost everywhere on
G, and hence everywhere because Uα is regular. This result is true for every δ > 0.
Therefore, |A(Uα − ξk)| � 2ρ̂ on G. Since ρ(x) � ρ̂, for x ∈ I \ G, (3.6) holds on all
of [x1, x2].

From the proof of lemma 3.4 we obtain the following lemma.

Lemma 3.6. Let ξk be a global minimum of F , let ρ̂ be a constant with 2ρ̂ � �0,
and let U ∈ W 1,2([x1, x2]; Rn) with polar form U(x) = ξk + ρ(x)n(x) be such that

(i) |A(U(x1) − ξk)| = |A(U(x2) − ξk)| = ρ̂,

(ii) there exists x0 ∈ (x1, x2) such that ρ(x0) = |A(U(x) − ξk)| > ρ̂.

There then exists Û ∈ W 1,2([x1, x2]; Rn) satisfying

(a) Û(x1) = U(x1), Û(x2) = U(x2),

(b) |A(Û(x) − ξk)| < ρ̂, x ∈ (x1, x2),

(c) E(Û ; (x1, x2)) < E(U ; (x1, x2)).

Note that, as opposed to the previous cases, the function U is not necessarily a
minimizer of the constrained problem. This result will be used in later sections.

4. The existence theorem for two minima

The solution of the constrained problem (2.2) is not a solution of (1.1) unless the
constraint is not realized. In the following theorem we show that if the potential
has exactly two minima, then the constraint can be removed yielding a heteroclinic
connection.

Theorem 4.1. Let F be a C2(Rn) potential function with only two equal minima
at ξ1 and ξ2 satisfying the conditions (H1), (H2) and (H3′). There then exists a
connection between ξ1 and ξ2.

Proof. Let � be such that 1
2�0 � � < �0, where �0 = β′‖A‖, and β′ is as in (H3′).

For α = (1, 2), let Uα be a solution of the constrained problem. Then Uα(x) =
ξi + ρi(x)ni(x), i = 1, 2, for |x| � L with ρi(x) � �. We need to show that the
constraint can be avoided for L sufficiently large. We recall, by lemma 3.3, that this
may realized at x = ±L.

Case 1. Either (i) ρ(−L) < � and ρ(L) = � or (ii) ρ(−L) = � and ρ(L) < �.
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(i) By translating Uα(x) slightly to the left we can avoid the constraint. So, for
τ > 0 and sufficiently small, Uα(x + τ) provides a solution to (1.1). Case (ii) is
treated similarly.

Case 2. Assume that ρ(−L) = ρ(L) = �.

(i) We show that Uα(x) is outside B(ξ1,
1
4β′) ∪ B(ξ2,

1
4β′) for |x| < L. To prove

this claim we argue by contradiction. First we take B(ξ2,
1
4β′). Suppose that there

exists x1 ∈ (−L, L) such that Uα(x1) ∈ B(ξ2,
1
4β′). Clearly, there is also a x2 > L

such that Uα(x2) ∈ B(ξ2,
1
4β′) since, by lemma 3.3, Uα(x) approaches ξ2 as x → ∞.

Thus, |Uα(xi)−ξ2| < 1
4β′, for i = 1, 2, and therefore, via the definition of the norm,

|A(Uα(xi) − ξ2)| < �0/4. Now, applying lemma 3.4, we conclude that ρ(x) < 1
2�0

on [x1, x2]. In particular, � = ρ(L) < 1
2�0, which is a contradiction by the choice

� � 1
2�0. Thus, there is no such x1. The case B(ξ1,

1
4β′) is treated analogously.

(ii) Making use of the fact that F has exactly two global minima, via (H1) and
(H2) it follows that there exists c0 > 0 such that

F (ξ) � c0 > 0, |ξ − ξi| � 1
4β′, i = 1, 2. (4.1)

Consequently, using (i), we find the estimate∫ L

−L

F (Uα(x)) dx � 2Lc0. (4.2)

Recalling that the function U0 in (2.4) is independent of L, as long as L > L0, and
that E(Uα) � E(U0) < ∞, via (4.2) we obtain

E(U0) � E(Uα) �
∫ L

−L

F (Uα(x)) dx � 2Lc0.

This leads to a contradiction if L is taken so that 2Lc0 > E(U0). Thus, case 2 is
impossible for large L. The proof is complete.

Remark 4.2. Let U12 be the connection provided by theorem 4.1. It can be proved
that U12 is a minimizer of the action in the class

A =

{
U ∈ W 1,2

loc (R; Rn) : ∃x1 < x2 such that
|A(U(x) − ξ1)| � � for x � x1,

|A(U(x) − ξ2)| � � for x � x2,

}

where � < �0. Thus, it is a local minimum of the action. The proof is similar to the
one in [2] and is omitted. We take for definiteness � = 1

2�0 and we choose c0 such
that F (ξ) � c0 for ξ ∈ R

n \B(ξ1,
1
4β′)∪B(ξ2,

1
4β′). Let L∗

0 = E(U0)/c0 and assume
without loss of generality that L∗

0 > L0. Simplifying the notation of proposition 2.1,
we set ZL = Z−

L,�(ξ1) ∩ Z+
L,�(ξ2) and we observe the following. If L1 < L2, then

ZL1 ⊂ ZL2 ⊂ A, and hence

inf
A

E(U) � inf
ZL2

E(U) � inf
ZL1

E(U).

For L > L∗
0 (and � = 1

2�0), theorem 4.1 implies that the solution Uα of the con-
strained problem in ZL cannot touch the rim of both cylinders. Thus, it renders a
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solution U12 of (1.1) and hence a minimizer of E in A. Hence, for each δ > 0, we
have

E(U12) = inf
ZL+δ

E(U) = inf
A

E(U).

A reading of the equality above is that, as L increases, the solution of the con-
strained problem is stabilized, and hence for L sufficiently large it becomes inde-
pendent of L.

Corollary 4.3. Let F be a C2(Rn) potential function with three equal minima at
ξ1, ξ2 and ξ3 satisfying the conditions (H1), (H2) and (H3′). Let U12 be a solution
of the constrained problem joining ξ1 and ξ2, and assume that there exists ε1 > 0
so that U12 does not intersect B(ξ3, ε1) for sufficiently large L. There then exists a
connection between ξ1 and ξ2.

Proof. This follows from the proof of theorem 4.1 and is omitted.

5. An application

In this section we discuss a model example proposed in [6] to study the structure
of interface boundaries in crystals. The potential F = F (X, Y, Z), where X, Y ,
Z are order parameters, represents the bulk free energy, and hence respects the
symmetries of the crystal. In particular, it is invariant under any permutation of
the variables. It is a fourth degree polynomial (F (X, Y, Z) = 2(X2 + Y 2 + Z2) −
12XY Z + (X4 + Y 4 + Z4) + (X2Y 2 + Y 2Z2 + Z2X2)) with global minima at
ξ1 = (0, 0, 0), ξ2 = (1, 1, 1), ξ3 = (−1,−1, 1), ξ4 = (1,−1,−1) and ξ5 = (−1, 1,−1).
In our analysis we do not use the particular form of F ; however, we keep and use the
symmetries of the potential that are, at any rate, dictated by the underline lattice.
These symmetries are described by F (Sξ) = F (ξ), where S is an orthogonal matrix
belonging to the group G = G1G2, where

G1 = {S : S ∈ SO3 and S is diagonal},

G2 = {S : S is a permutation matrix of order 3}.

}
(5.1)

In this model the matrix A2 is written as

A2 =

⎡
⎣n2

1 0 0
0 n2

2 0
0 0 n2

3

⎤
⎦ + λ2

⎡
⎣n2

2 + n2
3 0 0

0 n2
1 + n2

3 0
0 0 n2

1 + n2
2

⎤
⎦ ,

where n = (n1, n2, n3) is the unit normal to the interface separating an ordered
from a disordered phase, and λ is the anisotropy parameter. The isotropic case is
the one in which the coefficients in the resulting system are independent of the
orientation of n. This occurs if and only if λ2 = 1 (see also (5.3), below), leading
to A2 = I.

5.1. The two-dimensional case

Certain simplifications compatible with the symmetries of the potential may
reduce the dimension by 1. Taking, for example, n2 = n3, the symmetry Y = Z is
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preserved through the transition and the corresponding profile is restricted to the
plane Y = Z [4]. Thus, for n = (cos ε, sin ε/21/2, sin ε/21/2), 0 � ε � π, and

f(u, v) = F

(
u,

v√
2
,

v√
2

)
(5.2)

with u = X, v =
√

2Y =
√

2Z, the system (1.1), (5.2) is reduced to

(cos2 ε + λ2 sin2 ε)u′′ = fu(u, v),

(λ2 cos2 ε + (1 + λ2)/2 sin2 ε)v′′ = fv(u, v).

}
(5.3)

The choices ε = 0 and ε = 1
2π lead, after rescaling, respectively to the systems

u′′ = fu(u, v), λ2v′′ = fv(u, v),

and

v′′ = fv(u, v), λ2u′′ = fu(u, v),

which were actually the departure point for this work. In this setting, the minima
of f are attained at (0, 0) and (1,±21/2). At this point we note that the cases
above correspond to planar cuts of the crystal in the normal directions n = (1, 0, 0)
and n = (0, 1/21/2, 1/21/2), respectively. For λ � 1, the extreme anisotropic case,
existence of connections for both systems is established in [4, 5, 10, 11] via singular
perturbation techniques. Motivated by these two examples we consider the 2-system

A2U ′′ − ∇f(U) = 0, (5.4)

where A2 is a diagonal matrix with positive entries, and the function f : R
2 → R

satisfies hypotheses (H1), (H2) and (H3′), with minima at z1 = (0, 0), z2 = (r0, s0)
and z3 = (r0,−s0), r0 > 0, s0 > 0, and additionally satisfies the following symmetry
condition.

(H4) f(r, s) = f(r, −s) for all r, s ∈ R.

If U = (u1, u2)T, we write its reflection as Ū = (u1,−u2)T. Via (H4) and the
form of A2 it follows that if U is a solution of (5.4), then Ū is also a solution, and
E(U) = E(Ū).

Proposition 5.1. Let f be as above and let z2 and z3 be the symmetric minima
of f . There then exists a connection between z1 and z2, and hence, by symmetry,
also between z1 and z3.

Proof. Let UL
12 be a minimizer of the constrained problem. By corollary 4.3 it

is sufficient to show that UL
12 stays bounded away from z3 for sufficiently large

L, that is, there exists ε1 > 0 so that UL
12(x) stays outside B(z3, ε1). Dropping

the superscripts, we proceed by contradiction, so we assume that U12 intersects
B(z3, ε), where ε is arbitrarily small. We may take ε so that B(z3, ε‖A‖) is con-
tained in the lower open half-plane. Let x2 be such that |A(U12(x2) − z3)| = ε‖A‖,
and |A(U12(x) − z3)| > ε‖A‖, whenever x > x2. Similarly, let x3 be such that
|A(U12(x3) − z2)| = ε‖A‖, and |A(U12(x) − z2)| < ε‖A‖, whenever x > x3. Then
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x2 < x3. By continuity of U12 there exists a point x0 ∈ (x2, x3) such that U12(x0)
is on the r-axis. By symmetry of f it follows that U12(x0) = Ū12(x0). Defining

Ũ12(x) =

{
Ū12(x) if x � x0,

U12(x) if x � x0,
(5.5)

we see that Ũ12 joins z1 to z2 and satisfies the constraints and, moreover, that
E(U12) = E(Ũ12). Next, modifying Ũ12 in [x2, x3], as in lemma 3.6, we obtain a
W 1,2

loc (R) function Û12 satisfying E(Û12) < E(Ũ12). This contradicts the condition
that U12 is a minimizer. Therefore, U12 stays bounded away from z3. The proof of
the proposition is complete.

Remark 5.2. The existence of the connection between the symmetric minima z2
and z3 is not guaranteed. In [3] an example is given where a three-well potential f
is symmetric with respect to the s-axis. The symmetric minima are at z2 = 1 and
z3 = −1, while the third, z1, is on the s-axis. The connection between z2 and z3
exists if and only if |z1 − z2| > [2(31/2 − 1)]1/2. This phenomenon is analysed in
detail in [2].

Remark 5.3. Let S be the transformation S : (r, s) → (r, −s). Then, by identifying
U12 with a curve γ joining z1 to z2, we may write γ = γ+ + γ−, where γ− is in the
lower half-plane. Then, referring to the proof of proposition 5.1, we may instead
take the curve γ̃ = γ+ + Sγ−. Hence, γ̃ is contained in the upper half-plane and
satisfies E(γ) = E(γ̃). We then modify γ̃ to obtain γ̂ with E(γ̂) < E(γ̃).

Remark 5.4. For general dimension N , if S is an orthogonal matrix satisfying
f(SU) = f(U) and AS = SA, then the following hold.

(i) E(U) = E(SU), since |ASU ′| = |SAU ′| = |AU ′|.

(ii) If U is a solution of (1.1) joining the minima ξk and ξl, with ξk �= ξl, then SU
is a solution of the same equation joining the minima Sξk and Sξl. Indeed,

A2U ′′ = ∇UF (U) = ST∇SUF (SU) =⇒ SA2U ′′ = A2(SU)′′ = ∇SUF (SU).

In the two-dimensional case, the only orthogonal matrices that commute with the
diagonal matrix A are the following:

S1 = I2 =
[
1 0
0 1

]
, S2 =

[
1 0
0 −1

]
, S3 =

[
−1 0
0 1

]
, S4 =

[
−1 0
0 −1

]
.

Thus, the result of proposition 5.1 holds if the matrix S2, which is the case there,
is replaced by S3 or S4 provided that f(Siz) = f(z), i = 3, 4.

5.2. The three-dimensional case

Let A2 be a diagonal matrix with positive entries and let f : R
3 → R be a poten-

tial function satisfying the conditions (H1), (H2) and (H3′), with minima at the
points ξ1 = (0, 0, 0), . . . , ξ5, and also satisfying the following symmetry condition.

(H4) f(Sξ) = f(ξ).
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Here S is an orthogonal matrix belonging to the group G = G1G2, defined in (5.1).
We note at this point that only the elements of G1 commute with A2.

It turns out that in this case there are at least four connections, namely the Oξ2,
Oξ3, Oξ4 and Oξ5, where O = ξ1 is the origin. First we prove a general result.

Lemma 5.5. Let f : R
N → R be a C2 potential with three equal minima at ξ1, ξ2

and ξ3 satisfying the conditions (H1), (H2) and (H3′) in addition to the symmetry
condition f(SU) = f(U), where S is an orthogonal matrix that commutes with A
and satisfies Sξ1 = ξ1. There then exist heteroclinic connections joining ξ1 to ξ2
and ξ1 to ξ3.

Proof. We show that a connection between ξ1 and ξ2 exists. Let U12 be a minimizer
of the constrained problem. We claim, as before, that U12 stays bounded away from
ξ3. We argue by contradiction, so we assume that for ε > 0 and arbitrarily small,
U12 intersects B(ξ3, ε). We fix δ with 0 < δ < |ξ2 − ξ3| and we take ε � δ. Let x0
be such that

|U12(x0) − ξ3| = min{|U12(x) − ξ3| : U12(x) ∈ B̄(ξ3, δ)}.

Then |U12(x0) − ξ3| < ε. We may assume without loss of generality that U12(x0) �=
ξ3. (If U12(x0) = ξ3, then x0 < L, since U12(x) is close to ξ2 for x � L. Defining

Ũ12(x) =

{
SU12(x) if x � x0,

ξ2 if x � x0,

we have

E(Ũ12) =
∫ x0

−∞
{|ASU ′

12|2 + f(SU12)} dx =
∫ x0

−∞
{|AU ′

12|2 + f(U12)} dx < E(U12),

by symmetry. But this contradicts the fact that U12 is a minimizer.) We set ξ0 =
SU12(x0) and observe that |ξ2 − ξ0| = |Sξ3 − SU12(x0)| = |ξ3 − U12(x0)| < ε. Then
we define the function

Ũ12(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

SU12(x) if x � x0,

ξ2
x − x0

ε1
+ ξ0

x0 − x + ε1

ε1
if x0 < x < x0 + ε1,

ξ2 if x � x0 + ε1,

where ε1 > 0 is to be chosen later. For x0 < x < x0 + ε1 we compute

|AŨ ′
12(x)| = |A(ξ2 − ξ0)/ε1|

� ‖A‖ε/ε1, (5.6)

since ξ0 ∈ B(ξ2, ε). Let M = max{F (ξ) : |ξ − ξ2| � δ}. Since δ > ε, we have

∫ x0+ε1

x0

{|AŨ ′
12(x)|2 + F (Ũ12)} dx � ‖A‖2ε2/ε1 + Mε1; (5.7)
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hence,

E(Ũ12) =
∫ x0

−∞
{|AŨ ′

12(x)|2 + F (Ũ12)} dx +
∫ x0+ε1

x0

{|AŨ ′
12(x)|2 + F (Ũ12)} dx

�
∫ x0

−∞
{|AU ′

12(x)|2 + F (U12)} dx + ‖A‖2ε2/ε1 + Mε1. (5.8)

Next we show that ε1 can be chosen so that

‖A‖2ε2/ε1 + Mε1 <

∫ ∞

x0

{|AU ′
12(x)|2 + F (U12)} dx := M1, (5.9)

where M1 > 0, by the choice of δ, or, equivalently, that Mε2
1 − M1ε1 + ‖A‖2ε2 < 0.

Since ε is arbitrarily small, the discriminant of the binomial is positive, so (5.9) is
achieved by choosing ε1 between the positive zeros [M1±(M2

1 −4M‖A‖2ε2)1/2]/2M .
Combining (5.8) and (5.9), we arrive at E(Ũ12) < E(U12), which is a contradiction
since U12 is a minimizer. Thus, U12 stays bounded away from ξ3. The result then
follows by corollary 4.3.

Proposition 5.6. Let f : R
3 → R be a C2 potential with equal minima at ξ1 =

(0, 0, 0), ξ2, . . . , ξ5 satisfying hypotheses (H1), (H2) and (H3′) and the symmetry
conditions f(SU) = f(U), where S is an orthogonal matrix in the group G1 defined
in (5.1). There then exist heteroclinic connections joining ξ1 to ξk, k = 2, . . . , 5.

Proof. We show that a connection between ξ1 and ξ2 exists. The proof for the
other cases is similar. Let U12 be a minimizer of the constrained problem. We claim
that U12 stays bounded away from ξi, i = 3, 4, 5. We argue by contradiction, so
let ξp ∈ {ξ3, ξ4, ξ5} be the first point so that U12 intersects B(ξp, ε), where ε is
arbitrarily small. Let S ∈ G1 be such that Sξp = ξ1. Then, as in lemma 5.5,
we construct a function Ũ12 satisfying E(Ũ12) < E(U12), contradicting the fact
that U12 is a minimizer. Hence, there exists ε1 > 0 so that U12 does not intersect⋃5

i=3 B(zi, ε1). The proof then is concluded by using corollary 4.3.

6. The general case for three minima

In the previous section, the symmetry of the potential played an important role in
establishing existence of connections in the case of three or more minima. In this
section, however, we obtain a quite general sufficient condition for such an existence
for general F with three minima. As mentioned in § 1, a condition of this type, with
N = 2, is also considered in [1] for symmetric potentials and in [2] for geodesic
distances defined by the Jacobi functional. In [2] it is proved that for a certain class
of potentials this condition is also necessary.

Theorem 6.1. Let F : R
N → R be a C2 potential with three equal minima at ξ1, ξ2

and ξ3, satisfying the conditions (H1), (H2) and (H3′). Denote by epq the minimum
of the constraint problem (2.2), p, q ∈ {1, 2, 3}. If

epq < epr + erq, (6.1)

for sufficiently large L, then there exists a connection between ξp and ξq.
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Proof. Assume for definiteness that p = 1 and q = 2. Then, by hypothesis, there
exists δ > 0 such that

e12 < e13 + e32 − δ. (6.2)

Assume, also that e12 is realized by U12, then e12 = E(U12). We claim that U12 stays
bounded away from ξ3. We argue by contradiction, so we assume that for ε > 0 and
small (there exists L such that) U12 intersects B(ξ3, ε). We may assume that ε � δ
and that 0 < δ < min{|ξ3 − ξ1|, |ξ3 − ξ2|}. Let x0 be such that |U12(x0) − ξ3| < ε.
We set ξ0 = U12(x0) and define the function

Ũ13(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U12(x) if x � x0,

ξ3
x − x0

ε1
+ ξ0

x0 − x + ε1

ε1
if x0 < x < x0 + ε1,

ξ3 if x � x0 + ε1,

where ε1 > 0 is to be chosen later. For x0 < x < x0 + ε1, as in (5.6) and (5.7), we
compute

|AŨ ′
13(x)| � ‖A‖ε/ε1,∫ x0+ε1

x0

{|AŨ ′
13(x)|2 + F (Ũ13)} dx � ‖A‖2ε2/ε1 + Mε1,

where, as before, M = max{F (ξ) : |ξ − ξ3| � δ}. Then

E(Ũ13) � E(U12; x � x0) + (‖A‖2ε2/ε2
1 + M)ε1. (6.3)

Defining, in a similar fashion,

Ũ32(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξ3 if x � x0 − ε1,

ξ3
x0 − x

ε1
+ ξ0

x − x0 + ε1

ε1
if x0 − ε1 < x < x0,

U12(x) if x � x0,

we also get
E(Ũ32) � E(U12; x � x0) + (‖A‖2ε2/ε2

1 + M)ε1. (6.4)

By the definition of the eij , (6.3) and (6.4), we have

e12 = E(U12) = E(U12; x � x0) + E(U12; x � x0)

� e13 + e32 − 2(‖A‖2ε2/ε2
1 + M)ε1. (6.5)

Combining (6.2) and (6.5), we obtain

2Mε2
1 − δε1 + 2‖A‖2ε2 > 0. (6.6)

However, the choice of

ε <
δ

4‖A‖
√

M

and ε1 between the positive zeros of the binomial above leads to a contradiction
of (6.6). Thus, U12 stays bounded away from ξ3. The conclusion of the theorem
then follows by corollary 4.3.
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What follows is actually lemma 5.5, the proof of which is significantly simplified
when the sufficient condition discussed is used.

Corollary 6.2. Let F : R
N → R be a C3 potential with three equal minima at

ξ1, ξ2 and ξ3 satisfying the conditions (H1), (H2) and (H3′) in addition to the
symmetry condition F (SU) = F (U), where S is an orthogonal matrix satisfying
SA = AS and Sξ1 = ξ1. There then exist at least two heteroclinic connections.

Proof. By symmetry, e12 = e13. On the other hand, e32 is realized by a continuous
function joining different states, and hence e32 > 0. Therefore, e12 < e13 + e32 and
e13 < e12 + e23, and the conclusion follows from theorem 6.1.
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