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Abstract

Let (Wn(θ))n∈N0 be the Biggins martingale associated with a supercritical branching
random walk, and denote by W∞(θ) its limit. Assuming essentially that the martingale
(Wn(2θ))n∈N0 is uniformly integrable and that var W1(θ) is finite, we prove a functional
central limit theorem for the tail process (W∞(θ) − Wn+r (θ))r∈N0 and a law of the
iterated logarithm for W∞(θ) − Wn(θ) as n → ∞.
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1. Introduction and main results

1.1. Introduction

For several models of spin glasses, it is known that the log-partition function has asymptotic-
ally Gaussian fluctuations in the high-temperature regime. This was shown for the Sherrington–
Kirkpatrick model in [2], for the random energy model and the p-spin model in [12], and for the
generalized random energy model in [22], to give just an incomplete list of examples. We are
interested in the Biggins martingale Wn(θ) associated with a supercritical branching random
walk (BRW), to be defined below. With regard to the strength of its correlations, the BRW is
located between the random energy model and the Sherrington–Kirkpatrick model. Also, it can
be thought of as a limiting case of the generalized random energy model. Since in all the three
aforementioned models the log-partition function exhibits asymptotically Gaussian fluctuations
at high temperatures, it is natural to expect that the BRW behaves similarly. However, in the
high-temperature regime (meaning that θ is small), the Biggins martingale Wn(θ) is, under
appropriate conditions, uniformly integrable and converges almost surely (a.s.) to a limit W∞(θ)

which is non-Gaussian. It follows that we cannot obtain a Gaussian limit distribution whatever
deterministic affine normalization we apply to Wn(θ).

In the present paper we prove a functional central limit theorem (functional CLT) for the
Biggins martingale Wn(θ) and its logarithm under a natural random centering. We also derive
a law of the iterated logarithm which complements the central limit theorem.

Let us recall the definition of the BRW. At time n = 0 consider an individual, the ancestor,
located at the origin of the real line. At time n = 1 the ancestor produces offspring (the first
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A CLT and an LIL for the Biggins martingale 1179

generation) according to a point process Z = ∑J
i=1δXi

on R. The number of offspring, J =
Z(R), is a random variable which is explicitly allowed to be infinite with positive probability.
The first generation produces the second generation, whose displacements with respect to their
mothers are distributed according to independent copies of the same point process Z. The
second generation produces the third generation, and so on. All individuals act independently
of each other.

More formally, let V = ⋃
n∈N0

N
n be the set of all possible individuals. The ancestor

is identified with the empty word ∅ and its position is S(∅) = 0. On some probability
space (�, F , P), let (Z(u))u∈V be a family of independent, identically distributed (i.i.d.)
copies of the point process Z. An individual u = u1 · · · un of the nth generation, whose
position on the real line is denoted by S(u), produces at time n + 1 a random number J (u) of
offspring which are placed at random locations on R given by the positions of the point process∑J (u)

i=1 δS(u)+Xi(u), where Z(u) = ∑J (u)
i=1 δXi(u) and J (u) is the number of points in Z(u). The

offspring of the individual u are enumerated by ui = u1 · · · uni, where i = 1, . . . , J (u) (if
J (u) < ∞) or i = 1, 2, . . . (if J (u) = ∞), and the positions of the offspring are denoted
by S(ui). Note that no assumptions are imposed on the dependence structure of the random
variables J (u), X1(u), X2(u), . . . for fixed u ∈ V. The point process of the positions of the
nth-generation individuals will be denoted by Zn, so that Z0 = δ0 and

Zn+1 =
∑
|u|=n

J (u)∑
i=1

δS(u)+Xi(u),

where, by convention, |u| = n means that the sum is taken over all individuals of the nth
generation rather than over all u ∈ N

n. The sequence of point processes (Zn)n∈N0 is then
called a BRW.

Throughout the paper, we assume that the BRW is supercritical, that is, E J > 1. In this
case, the event S that the population survives has positive probability: P[S] > 0. Note that,
provided that J < ∞ a.s., the sequence (Zn(R))n∈N0 of generation sizes in the BRW forms a
Galton–Watson process.

An important tool in the analysis of the BRW is the Laplace transform of the intensity
measure μ := E Z of the point process Z,

m : R → [0, ∞], θ �→
∫

R

e−θxμ(dx) = E

[∫
R

e−θxZ(dx)

]
.

We make the standing assumption that m(γ ) < ∞ for at least one γ ∈ R, that is,

D(m) := {θ ∈ R : m(θ) < ∞} �= ∅.

For γ ∈ D(m), define

Wn(γ ) := 1

(m(γ ))n

∫
R

e−γ xZn(dx) = 1

(m(γ ))n

∑
|u|=n

(Yu)
γ , n ∈ N0,

where Yu := e−S(u), recalling that S(u) is the position of the individual u ∈ V. Let F n be
the σ -field generated by the first n generations of the BRW, i.e. F n = σ {Z(u) : |u| < n},
where |u| < n means that u ∈ N

k for some k < n. It is well known and easy to check that,
for every γ ∈ D(m), the sequence (Wn(γ ))n∈N0 forms a nonnegative martingale with respect
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to the filtration (F n)n∈N0 and, thus, converges a.s. to a random variable which is denoted by
W∞(γ ) and satisfies E W∞(γ ) ≤ 1. This martingale is called the Biggins martingale or the
intrinsic martingale in the BRW. Possibly after the transformation Xi �→ γXi + log m(γ ), it
is no loss of generality to assume that γ = 1 and that

m(1) = E

[∫
R

e−xZ(dx)

]
= E

[ J∑
i=1

e−Xi

]
= 1.

1.2. Central limit theorem

Let R
∞ be the space of infinite sequences x = (x0, x1, x2, . . .) with xj ∈ R for all j ∈ N0.

Endow R
∞ with a complete, separable metric

ρ(x, y) =
∞∑

j=0

2−j |xj − yj |
1 + |xj − yj | , x, y ∈ R

∞,

which metrizes the pointwise convergence.

Theorem 1.1. Suppose that m(1) = 1, σ 2 := var W1(1) < ∞, and m(2) < 1. Then
(

W∞(1) − Wn+r (1)

(m(2))(n+r)/2

)
r∈N0

w−→ (
√

v2W∞(2)Ur)r∈N0 as n → ∞ (1.1)

weakly on R
∞, where v2 := var W∞(1) = σ 2(1 − m(2))−1, and (Ur)r∈N0 is a stationary

zero-mean Gaussian sequence which is independent of W∞(2) and has the covariance function

cov(Ur, Us) = (m(2))|r−s|/2, r, s ∈ N0.

Note that (Ur)r∈N0 can be viewed as an AR(1) process or as an Ornstein–Uhlenbeck process
sampled at nonnegative integer times. In the case when the martingale (Wn(2))n∈N0 is not
uniformly integrable (and, hence, W∞(2) = 0), Theorem 1.1 is still valid, but the limiting
process in (1.1) is trivial. Specifying Theorem 1.1 to r = 0, we obtain the following central
limit theorem for the tail of the Biggins martingale.

Corollary 1.1. Suppose that m(1) = 1, var W1(1) < ∞, and m(2) < 1. Then

W∞(1) − Wn(1)

(m(2))n/2
d−→ N(0, v2W∞(2)) as n → ∞,

where the limiting distribution is a scale mixture of normals with randomized variance
v2W∞(2).

In fact, we shall prove a result with a mode of convergence stronger than in Theorem 1.1.
Let ξ : � → E be a random variable on (�, F , P) with values in a Polish space E, and let
G ⊂ F be a σ -field. Denote by M(E) the space of probability measures on E endowed with
the topology of weak convergence. A random variable of the form L : � → M(E) is called a
Markov kernel or a probability transition kernel. The conditional law of ξ given G is defined as
a G-measurable mapping L : � → M(E) such that, for every random event A ∈ G and every
bounded Borel function f : E → R, we have

E[f (ξ) 1A] =
∫

A

(∫
E

f (x)L(ω; dx)

)
P(dω).
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It is known that L is defined uniquely up to sets of probability 0. A sequence of Markov kernels
Ln : � → M(E) converges to a Markov kernel L∞ : � → M(E) in the almost surely weak
(a.s.w.) sense if the set of ω ∈ � for which the probability measure Ln(ω) converges to L∞(ω)

weakly on E has probability 1. We refer the reader to [14] for the basic properties of the a.s.w.
convergence and its relations to other modes of convergence (including the weak and the stable
convergence).

Theorem 1.2. Suppose that m(1) = 1, var W1(1) < ∞, and m(2) < 1. Denote by Ln : � →
M(R∞) the conditional law of the process

(
W∞(1) − Wn+r (1)

(m(2))(n+r)/2

)
r∈N0

,

given the σ -field F n and viewed as a random variable on (�, F , P) with values in M(R∞).
Then Ln converges a.s.w. to the Markov kernel

L∞ : � → M(R∞), ω �→ L{(
√

v2W∞(2; ω)Ur)r∈N0},
where L{·} denotes the probability law of a process, and (Ur)r∈N0 is a discrete-time Ornstein–
Uhlenbeck process as in Theorem 1.1, but defined on some probability space other than
(�, F , P).

It follows from Proposition 4.6 and Remark 4.7 of [14] that the weak convergence in
Theorem 1.1 is a consequence of the a.s.w. convergence in Theorem 1.2. Hence, we only
need to prove Theorem 1.2. This will be done in Section 2. Specifying Theorem 1.2 to r = 0
we obtain the following a.s.w. version of Corollary 1.1.

Corollary 1.2. Suppose that m(1) = 1, var W1(1) < ∞, and m(2) < 1. Then we have the
following a.s.w. convergence of Markov kernels from � to M(R):

L

{
W∞(1) − Wn(1)

(m(2))n/2

∣∣∣∣ F n

}
a.s.w−−→ {ω �→ N(0, v2W∞(2; ω))} as n → ∞. (1.2)

We can also derive a central limit theorem for the ‘log-partition function’ log Wn(1).

Corollary 1.3. Suppose that m(1) = 1, σ 2 = var W1(1) < ∞, m(2) < 1, and that the survival
event S has probability 1. Then we have the following a.s.w. convergence of Markov kernels
from � to M(R):

L

{
log W∞(1) − log Wn(1)

(m(2))n/2

∣∣∣∣ F n

}
a.s.w−−→

{
ω �→ N

(
0, v2 W∞(2; ω)

W 2∞(1; ω)

)}
as n → ∞. (1.3)

Proof. Dividing the Markov kernels on both sides of (1.2) by Wn(1) (which is F n-measur-
able) and using the fact that limn→∞ Wn(1) = W∞(1) > 0 a.s. on S (for the positivity, see the
implication (ii) ⇒ (i) on page 218 of [24]) together with the Slutsky lemma, we obtain

L

{
1

(m(2))n/2

(
W∞(1)

Wn(1)
− 1

) ∣∣∣∣ F n

}
a.s.w−−→

{
ω �→ N

(
0, v2 W∞(2; ω)

W 2∞(1; ω)

)}
as n → ∞.

(1.4)
It is easy to check that if (ξn)n∈N0 is a sequence of random variables such that a−1

n ξn converges in
distribution to some ξ as n →∞, where an →0 is a deterministic sequence, then a−1

n log(1+ξn)

converges in distribution to the same limit ξ . Applying this to (1.4) pointwise yields (1.3). �
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A CLT for the tail martingale of a Galton–Watson process was obtained by Athreya [7] (who
considered multitype branching processes) and Heyde [16] (who also treated the case when
the limit is α-stable in [17]). This CLT can also be found on page 55 of the book [8]. In the
more general setting of multitype branching processes, related CLTs were obtained in [6], [7],
and [23]. A functional CLT for the tail martingale was obtained by Heyde and Brown [18]. By
considering a BRW with trivial displacements (see the proof of Corollary 1.4 below for more
details), the results of Section 1.2 can be used to recover most of the results obtained in [13],
[16], and [18]. Linear statistics of branching diffusion processes and superprocesses are objects
of current active studies; see, e.g. [1] and [26]. Although the Biggins martingale is a special
case of linear statistics, the conditions imposed in [1] and [26] exclude test functions of the
form x �→ e−x . In the setting of weighted branching processes (which includes the BRW as a
special case), a CLT was obtained in [27]; however, the moment conditions of [27] are slightly
more restrictive than ours. Also, we provide a functional CLT and a stronger (a.s.w.) mode of
convergence. Recently, CLTs for tail martingales associated with random trees (and related to
the derivative of the Biggins martingale at 0) were proved in [14], [25], and [28].

1.3. Law of the iterated logarithm

The law of the iterated logarithm given next complements the CLT given in Corollary 1.1.

Theorem 1.3. Assume that m(1) = 1, σ 2 = var W1(1) < ∞, E W1(2) log+ W1(2) < ∞, and
that the function r → (m(r))1/r is finite and decreasing on [1, 2] with

− log m(2)

2
< −m′(2)

m(2)
, (1.5)

where m′ denotes the left derivative. Then W∞(1) and W∞(2) are positive a.s. on the survival
set S, and

lim sup
n→∞

W∞(1) − Wn(1)√
(m(2))n log n

=
√

2v2W∞(2), (1.6)

lim inf
n→∞

W∞(1) − Wn(1)√
(m(2))n log n

= −
√

2v2W∞(2), (1.7)

a.s., where v2 = var W∞(1) = σ 2(1 − m(2))−1 < ∞.

Remark 1.1. It is well known (see Theorem A of [9], [24, p. 218], or Theorem 1.3 of [3]) that
conditions E W1(2) log+ W1(2)<∞ and (1.5) ensure the uniform integrability of (Wn(2))n∈N0 ,

which particularly implies that W∞(2) is a.s. positive on S.

Remark 1.2. Actually, under the assumptions that m(1) = 1 and m(2) < +∞, the condi-
tions E W1(2) log+ W1(2) < ∞ and (1.5) are also necessary for the uniform integrability of
(Wn(2))n∈N0 . Indeed, the function m(θ) is convex on the interval [1, 2]; hence, it has left
derivative m′(2) ∈ (−∞, +∞]. With this at hand, the uniform integrability implies (1.5) by
Theorem 1.3 of [3]. It is not possible that m′(2) = +∞ because, together with m(2) < ∞, this
would contradict (1.5). Hence, m′(2) is finite. Under this condition, the uniform integrability
of (Wn(2))n∈N0 implies that E W1(2) log+ W1(2) < ∞ by Theorem 1.3 of [3].

Remark 1.3. It will be shown in (2.5) that

var[W∞(1) − Wn(1)] = v2(m(2))n.
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In (1.6) and (1.7) it is possible to replace log n by the asymptotically equivalent expression
log log(v2(m(2))n), thereby justifying the use of the term ‘law of the iterated logarithm’.
Therefore, the normalization in (1.6) and (1.7) is very similar to that in the classical law of
the iterated logarithm, but it should be stressed that unlike in the classical case, the limits
in (1.6) and (1.7) are random.

As an immediate consequence of Theorem 1.3, we derive a previously known result (see
[19] and Theorem 3.1(ii) of [5, p. 28]) concerning the Galton–Watson process.

Corollary 1.4. Consider a Galton–Watson process (Yn)n∈N0 with m := E Y1 ∈ (1, ∞) and
s2 := var Y1 < ∞. Then, for the martingale Wn := Yn/mn and its almost-sure limit W∞, we
have

lim sup
n→∞

mn/2(W∞ − Wn)√
log n

=
√

2v2W∞, lim inf
n→∞

mn/2(W∞ − Wn)√
log n

= −
√

2v2W∞,

a.s., where v2 := var W∞ = s2(m(m − 1))−1.

Proof. Consider a BRW in which the genealogical structure is the same as in (Yn)n∈N0 , and
the displacements of all individuals are deterministic and equal to log m. That is, e−Xi = m−1

for i = 1, . . . , Y1 and we have, for γ > 0,

m(γ ) = m1−γ and Wn(γ ) = Yn

mn
= Wn, n ∈ N0.

Hence, m(1) = 1, W∞ = W∞(2), var W1 = m−2s2, and var W∞ = (m(m − 1))−1s2. The
assumptions of Theorem 1.3 are easy to verify, whence the result. �

Plainly, Theorem 1.3 is a result on the rate of the almost-sure convergence of Wn(1) to its
limit. There have already been several works that investigated how fast Wn(1) approaches
W∞(1) in various senses; see [20] and [21] for the rate of almost-sure convergence, and [4]
for the rate of Lp-convergence. Laws of the iterated logarithm for martingales related to path
length of random trees were obtained in [28]. We also refer the reader to [15] for general
CLTs and laws of the iterated logarithm for martingales not necessarily related to branching
processes.

2. Proof of Theorem 1.2

Throughout the rest of the paper, we shall use Wn and W∞ as shorthands for Wn(1) and
W∞(1). Note that Wn(2) and W∞(2) retain their meaning.

For any u ∈ V, let W
(u)
r and W

(u)∞ , r ∈ N0, be the analogues of Wr and W∞, r ∈ N0, but
based on the progeny of individual u rather than the progeny of the initial ancestor ∅. That is,

W(u)
r =

∑
|v|=r

e−(S(uv)−S(u)), r ∈ N0, and W(u)∞ = lim
r→∞ W(u)

r a.s.

Recall the notation Yu = e−S(u). We shall frequently use the decomposition

Wn+r =
∑
|u|=n

YuW
(u)
r , r ∈ N0 ∪ {∞}.

Observe that, for |u| = n, the Yu are Fn-measurable, whereas the W
(u)
r are independent of Fn.

We need two results on the covariance structure of the martingale (Wn)n∈N0 .
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Proposition 2.1. Under the assumptions that m(2) < 1 and σ 2 = var W1 < ∞, we have

var Wr = σ 2(1 + m(2) + · · · + (m(2))r−1), r ∈ N. (2.1)

Furthermore, the martingale (Wn)n∈N0 converges in L2 (and a.s.) to W∞, which satisfies

var W∞ = σ 2

1 − m(2)
.

In particular, (Wn)n∈N0 is uniformly integrable and W∞ > 0 a.s. on S.

Proof. We shall check (2.1) by using mathematical induction. The formula holds for r = 1
because var W1 = σ 2. Suppose that (2.1) holds for some r ∈ N. Then

var Wr+1 = E

[( ∑
|u|=r

YuW
(u)
1

)2]
− 1

= E

[ ∑
|u|=r

Y 2
u (W

(u)
1 )2

]
+ E

[
E

[ ∑
|u|=|v|=r, u�=v

YuYvW
(u)
1 W

(v)
1

∣∣∣∣ Fr

]]
− 1

= (m(2))r (σ 2 + 1) + E

[ ∑
|u|=|v|=r, u�=v

YuYv

]
− 1

= σ 2(m(2))r + var Wr,

because

E

[ ∑
|u|=|v|=r, u�=v

YuYv

]
− 1 = E

[( ∑
|u|=r

Yu

)2]
− 1 − E

[ ∑
|u|=r

Y 2
u

]
= var Wr − (m(2))r .

This completes the induction and proves (2.1). Since m(2) < 1, the martingale (Wn)n∈N0

is bounded in L2 and, hence, converges in L2 to W∞. In particular, (Wn)n∈N0 is uniformly
integrable and W∞ > 0 a.s. on S. Letting r in (2.1) tend to ∞ we infer var W∞ = σ 2(1 −
m(2))−1. �
Corollary 2.1. The random variables Wr+1 − Wr, r ∈ N0, are uncorrelated and

var[Wr+1 − Wr ] = σ 2(m(2))r . (2.2)

Proof. The increments Wr+1 − Wr, r ∈ N0, are uncorrelated just because (Wn)n∈N0 is a
martingale. We thank the referee for this observation that enabled us to simplify our original
argument. Furthermore, we have, for r < s,

E[(Ws − Wr)
2] = E

[( ∑
|u|=r

Yu(W
(u)
s−r − 1)

)2]
= (m(2))r var Ws−r = σ 2

s−1∑
k=r

(m(2))k.

This proves (2.2) by taking s = r + 1. �
Proof of Theorem 1.2. The conditional law Ln can be explicitly described as follows. On

some probability space (�̃, F̃ , P̃) (which is different from the probability space (�, F , P) on
which the BRW is defined) we construct a family (W̃

(u)
n )n∈N0∪{∞}, u ∈ V, of independent (for
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different u) distributional copies of the stochastic process (Wn(1))n∈N0∪{∞}. For every ω ∈ �,

let Un,r (ω) be random variables on the space (�̃, F̃ , P̃) defined by

Un,r (ω) :=
∑

|u|=n Yu(ω)(W̃
(u)∞ − W̃

(u)
r )

(m(2))(n+r)/2
, n, r ∈ N0. (2.3)

With this notation, the conditional law Ln : � → M(R∞) is the Markov kernel

Ln(ω) = L{(Un,r (ω))r∈N0},

where L is the law taken with respect to the probability distribution P̃. Recall also that the
Markov kernel L∞ : � → M(R∞) is defined by

L∞(ω) = L{(
√

v2W∞(2; ω)Ur)r∈N0}.

Weak convergence of probability measures on R
∞ is equivalent to the weak convergence

of their finite-dimensional distributions. So, we need to prove that, for P-almost everywhere
(P-a.e.) ω ∈ �, we have Ln(ω) → L∞(ω) in the sense of finite-dimensional distributions. We
take any r1, . . . , rd ∈ N0 and show that, for P-a.e. ω ∈ �,

(Un,r1(ω), . . . , Un,rd (ω))
d−→

√
v2W∞(2; ω)(Ur1 , . . . , Urd ) as n → ∞. (2.4)

This is done by verifying the conditions of the d-dimensional Lindeberg CLT. Clearly, (2.3)
provides a representation of the vector (Un,r1(ω), . . . , Un,rd (ω)) as a sum of independent, but
not identically distributed random vectors. (Note that the Yu(ω) are treated as constants.) For
every r, n ∈ N0 and ω ∈ �, we have E[Un,r (ω)] = 0 and

E[Un,r (ω)Un,s(ω)] = 1

(m(2))n+(r+s)/2

∑
|u|=|v|=n

Yu(ω)Yv(ω) cov(W̃ (u)∞ − W̃ (u)
r , W̃ (v)∞ − W̃ (v)

s )

= 1

(m(2))n+(r+s)/2

∑
|u|=n

Y 2
u (ω) cov(W∞ − Wr, W∞ − Ws)

= v2

(m(2))n

( ∑
|u|=n

Y 2
u (ω)

)
(m(2))|r−s|/2,

where we used the fact that W̃
(u)
r and W̃

(v)
s are independent for u �= v and the formula

cov(W∞ − Wr, W∞ − Ws) = σ 2

1 − m(2)
(m(2))max{r,s}, (2.5)

which follows from Corollary 2.2. By letting n → ∞, it follows that, for P-a.e. ω ∈ �,

lim
n→∞ E[Un,r (ω)Un,s(ω)] = v2W∞(2; ω)(m(2))|r−s|/2 = v2W∞(2; ω) cov(Ur, Us).

This verifies the convergence of covariances in (2.4). It remains to check the Lindeberg condition
for P-a.e. ω ∈ �. This can be done individually for each component of the vectors in (2.4).
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For every ε > 0, we have

Ln(ε) :=
∑
|u|=n

E

[
Y 2

u (ω)(W̃
(u)∞ − W̃

(u)∞ )2

(m(2))n+r
1

{
Y 2

u (ω)(W̃
(u)∞ − W̃

(u)∞ )2

(m(2))n+r
> ε2

}]

= 1

(m(2))n+r

∑
|u|=n

Y 2
u (ω) E

[
(W∞ − Wr)

2 1
{

(W∞ − Wr)
2

(m(2))r
>

ε2

Y 2
u (ω)/(m(2))n

}]

≤ 1

(m(2))n+r

( ∑
|u|=n

Y 2
u (ω)

)
Gr

(
ε2

sup|u|=n Y 2
u (ω)/(m(2))n

)
,

where

Gr(A) = E

[
(W∞ − Wr)

2 1
{

(W∞ − Wr)
2

(m(2))r
> A

}]
, A > 0.

Since the second moment of W∞ −Wr is finite, we have limA→+∞ Gr(A) = 0. By Theorem 3
of [10], the assumption that m(2) < ∞ ensures that

lim
n→∞

1

(m(2))n
sup
|u|=n

Y 2
u (ω) = 0 for P-a.e. ω ∈ �.

Also, for P-a.e. ω ∈ �,

lim
n→∞

1

(m(2))n+r

∑
|u|=n

Y 2
u (ω) = 1

(m(2))r
W∞(2; ω).

It follows that
lim

n→∞Ln(ε) = 0 for P-a.e. ω ∈ �.

An application of the multidimensional Lindeberg CLT completes the proof of (2.4). �

3. Proof of Theorem 1.3

Since relations (1.6) and (1.7) trivially hold on Sc, we have to prove that these hold a.s. on S.
We start by recalling that, according to Remark 1.1, W∞(2) > 0 a.s. on S. The proof

follows the pattern of the proof of Theorem 3.1 of [5, p. 28]. Recall the notation Wn = Wn(1)

and W∞ = W∞(1). We only treat the upper limit. Investigating Wn − W∞ rather than
W∞ −Wn immediately gives the result for the lower limit. Also, without loss of generality, we
assume in what follows that P[S] = 1 (otherwise, we have to use Lemma 3.2 below with the
probability measure P replaced with P(· | S) and write ‘a.s. on the survival set S’ rather than
‘a.s.’ throughout). This assumption ensures that W∞ and W∞(2) are positive a.s. rather than
with positive probability.

We shall use the representations

W∞ − Wn =
∑
|u|=n

Yu(W
(u)∞ − 1) and Wn+r − Wn =

∑
|u|=n

Yu(W
(u)
r − 1) (3.1)

for r ∈ N. By the reasons that will become clear in a while we first consider the sums as above
with truncated summands. It will be convenient to write ea for m(2)−1/2. For u ∈ V with
|u| = n ∈ N0 and r ∈ N∞ := N ∪ {∞}, set

Z(u)
n,r := Yu(W

(u)
r − 1) 1 {eanYu|W(u)

r − 1| ≤ 1}
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and then
Vn,r =

∑
|u|=n

(Z(u)
n,r − E[Z(u)

n,r | Fn]). (3.2)

Lemma 3.1. For r ∈ N∞,

lim
n→∞e2an var[Vn,r | Fn] = W∞(2) var Wr a.s. (3.3)

Proof. Conditionally on F n, the random variables Z
(u)
n,r , |u| = n, are independent (but not

identically distributed). By the definition of Vn,r , we have

var[Vn,r | Fn] =
∑
|u|=n

E[(Z(u)
n,r )

2 | F n] −
∑
|u|=n

(E[Z(u)
n,r | F n])2 =: T ′

n,r − T ′′
n,r .

To verify (3.3), we will show that

lim
n→∞e2anT ′

n,r = W∞(2) var Wr a.s., (3.4)

lim
n→∞e2anT ′′

n,r = 0 a.s. (3.5)

Proof of (3.4). Let Fr(x) := P[|Wr − 1| ≤ x], x ≥ 0, be the distribution function of
|Wr − 1|. With this notation, we have

T ′
n,r :=

∑
|u|=n

E[(Z(u)
n,r )

2 | F n] =
∑
|u|=n

(
Y 2

u

∫
[0,e−anY−1

u ]
x2dFr(x)

)
,

and thereupon( ∑
|u|=n

Y 2
u

) ∫
[

0,(ean sup
|u|=n

Yu)−1
] x2 dFr(x) ≤ T ′

n,r ≤
( ∑

|u|=n

Y 2
u

)
var Wr. (3.6)

By Theorem 3 of [10], the assumption that m(2) < ∞ alone ensures that

lim
n→∞ean sup

|u|=n

Yu = 0 a.s. (3.7)

Thus, the integral in the lower estimate in (3.6) converges a.s. to var Wr . To complete the proof
of (3.4), we recall that

lim
n→∞e2an

∑
|u|=n

Y 2
u = W∞(2) a.s. (3.8)

Proof of (3.5). Since E[W(u)
r − 1] = 0,

T ′′
n,r =

∑
|u|=n

Y 2
u (E[(W(u)

r − 1) 1 {eanYu|W(u)
r − 1| ≤ 1}])2

=
∑
|u|=n

Y 2
u (E[(W(u)

r − 1) 1 {eanYu|W(u)
r − 1| > 1}])2.

Using W
(u)
r − 1 ≤ |W(u)

r − 1| gives

T ′′
n,r ≤

∑
|u|=n

(
Y 2

u

(∫ ∞

e−anY−1
u

x dFr(x)

)2)
≤

( ∑
|u|=n

Y 2
u

)(∫ ∞(
ean sup

|u|=n

Yu

)−1 x dFr(x)

)2

.

Since
∫ ∞

0 x dFr(x) is finite, the integral on the right-hand side converges a.s. to 0 as n → ∞
by (3.7). Recalling (3.8), we arrive at (3.5). Taken together, (3.4) and (3.5) yield (3.3). �
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The main tool in the proof of Theorem 1.3 is the following lemma; see Proposition 7.2 of
[5, p. 436].

Lemma 3.2. Let (Gn)n∈N0 be an increasing sequence ofσ -fields, and let (Tn)n∈N0 be a sequence
of random variables such that

∑
n≥0

sup
y∈R

| P[Tn ≤ y | Gn] − �(y)| < ∞ a.s., (3.9)

where �(y) = (1/
√

2π)
∫ y

−∞ e−x2/2 dx, y ∈ R. Then

lim sup
n→∞

Tn√
2 log n

≤ 1 a.s.

If, furthermore, there is a k ∈ N such that Tn is Gn+k-measurable for each n ∈ N0, then

lim sup
n→∞

Tn√
2 log n

= 1 a.s.

Let r ∈ N∞ be fixed. We will verify condition (3.9) for the random variables

Tn := Vn,r√
var[Vn,r | Fn]

.

Conditionally given Fn, Vn,r is a weighted sum of i.i.d. random variables to which the Berry–
Esseen inequality (see Lemma A.2 below) applies:

�n,r := sup
y∈R

∣∣∣∣ P

[
Vn,r√

var[Vn,r |Fn]
≤ y

∣∣∣∣ Fn

]
− �(y)

∣∣∣∣

≤ C

∑
|u|=n E[|Z(u)

n,r − E[Z(u)
n,r | Fn]|3 | Fn]

(var[Vn,r | Fn])3/2

≤ 8C

∑
|u|=n E[|Z(u)

n,r |3 | Fn]
(var[Vn,r | Fn])3/2 .

Here C > 0 is a finite absolute constant. Now we work towards proving that
∑
n≥0

�n,r < ∞ a.s., (3.10)

which would verify condition (3.9). Equation (3.3) reveals that (3.10) would hold provided we
could prove that B < ∞ a.s., where

B :=
∑
n≥0

e3an
∑
|u|=n

E[|Z(u)
n,r |3 | Fn] =

∑
n≥0

e3an
∑
|u|=n

Y 3
u

∫
[0,∞)

x3 1 {e−anY−1
u ≥ x} dFr(x).

(3.11)
To proceed, we need to define the random walk associated with the BRW. Consider the

following probability measures on R:

�n := E

[ ∑
|u|=n

YuδS(u)

]
, n ∈ N.
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The associated random walk (Sn)n∈N0 is a zero-delayed random walk with increment distribu-
tion �1. It is clear that, for any measurable f : R → [0, ∞),

E f (Sn) = E

[ ∑
|u|=n

Yuf (S(u))

]
, n ∈ N. (3.12)

Passing to expectations in (3.11) and using (3.12), we obtain

E B =
∫

[0,∞)

x3
(∑

n≥0

ean
E[e−2(Sn−an) 1 {eSn−an > x}]

)
dFr(x)

=
∫

[0,∞)

x3
(∫ ∞

x

y−2 dV (y)

)
dFr(x),

where
V (x) :=

∑
n≥0

ean
P[Sn − an ≤ log x], x > 0. (3.13)

By Lemma A.1, V (x) < ∞ for all x > 0. Since the function x �→ ∫ ∞
x

y−2 dV (y) is
nonincreasing, we conclude, again by LemmaA.1, that

∫ ∞
x

y−2 dV (y) ≤ c/x for some constant
c > 0 and large enough x. Hence,

∫
(b,∞)

x3
∫ ∞
x

y−2 dV (y) dFr(x) < ∞ for any b > 0 in
view of

var Wr =
∫

[0,∞)

x2 dFr(x) < ∞. (3.14)

We also have
∫
[0,b] x

3
∫ ∞
x

y−2 dV (y) dFr(x) < ∞ because limx→0+x3
∫ ∞
x

y−2 dV (y) = 0.
To verify the latter relation, integrate by parts and apply l’Hôspital’s rule. This proves that
B < ∞ a.s. and thereupon (3.10).

An appeal to Lemma 3.2 with Tn = Vn,r/
√

var[Vn,r | Fn] in combination with (3.3) leads
to the conclusion that, for fixed r ∈ N,

lim sup
n→∞

eanVn,r√
2 log n

= √
W∞(2) var Wr a.s., (3.15)

because Vn,r is Fn+r -measurable; whereas

lim sup
n→∞

eanVn,∞√
2 log n

≤ √
W∞(2) var W∞ a.s. (3.16)

Comparing formulae (3.1) and (3.2) we conclude that in order to show that (3.15) and (3.16)
imply that

lim sup
n→∞

ean(Wn+r − Wn)√
2 log n

= √
W∞(2) var Wr a.s. (3.17)

and

lim sup
n→∞

ean(W∞ − Wn)√
2 log n

≤ √
W∞(2) var W∞ a.s., (3.18)

it suffices to prove that, for r ∈ N∞,

lim
n→∞ean

∑
|u|=n

Yu|W(u)
r − 1| 1 {eanYu|W(u)

r − 1| > 1} = 0 a.s. (3.19)
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and
lim

n→∞ean
∑
|u|=n

| E[Z(u)
n,r | Fn]| = 0 a.s. (3.20)

Since E[W(u)
r − 1] = 0 and Yu is F n-measurable for |u| = n, we have

∣∣ E[Z(u)
n,r | Fn]

∣∣ = | E[Yu(W
(u)
r − 1) 1 {eanYu|W(u)

r − 1| ≤ 1} | Fn]|
= | E[Yu(W

(u)
r − 1) 1 {eanYu|W(u)

r − 1| > 1} | Fn]|
≤ E[Yu|W(u)

r − 1| 1 {eanYu|W(u)
r − 1| > 1} | Fn].

Hence, both relations (3.19) and (3.20) follow if we can show that

I := E

[∑
n≥0

ean
∑
|u|=n

Yu|W(u)
r − 1| 1 {eanYu|W(u)

r − 1| > 1}
]

< ∞.

Since V is nondecreasing, an application of Lemma A.1 yields V (x) ≤ cx for some constant
c > 0 and large enough x. Using this, we infer that

I = E

[∑
n≥0

ean
∑
|u|=n

Yu

∫
[0,∞)

x 1 {e−anY−1
u ≤ x} dFr(x)

]
=

∫
[0,∞)

xV (x) dFr(x) < ∞,

in view of (3.14). The proof of (3.17) and (3.18) is complete.
It remains to show that ‘≤’ can be replaced by ‘=’ in (3.18). As has already been remarked

at the beginning of the proof, once we have proved (3.18) we also have

lim inf
n→∞

ean(W∞ − Wn)√
2 log n

≥ −√
W∞(2) var W∞ a.s. (3.21)

For any r ∈ N, the following equality holds:

ean(W∞ − Wn)√
log n

= ea(n+r)(W∞ − Wn+r )√
log(n + r)

√
log(n + r)√

log n
e−ar + ean(Wn+r − Wn)√

log n
.

Using now (3.17) and (3.21), we infer that

lim sup
n→∞

ean(W∞ − Wn)√
log n

≥ lim inf
n→∞

ea(n+r)(W∞ − Wn+r )√
log(n + r)

√
log(n + r)√

log n
e−ar + lim sup

n→∞
ean(Wn+r − Wn)√

log n

≥ −√
2W∞(2) var W∞e−ar + √

2W∞(2) var Wr.

Letting r → ∞ we arrive at

lim sup
n→∞

ean(W∞ − Wn)√
log n

≥ √
2W∞(2) var W∞.

This completes the proof of Theorem 1.3.
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Appendix A

The following result is concerned with the asymptotics of V (x) defined in (3.13). This is a
slightly extended specialization of Lemma 3.1 of [21].

Lemma A.1. Suppose that the function r → (m(r))1/r decreases on [1, 2] and that (1.5)
holds. Then V (x) < ∞ for all x > 0. If, furthermore, the associated random walk (Sn)n∈N0 is
nonarithmetic then, as x → ∞,

V (x) ∼ cax, (A.1)

where ca := (e2a(−m′(2)) − a)−1 ∈ (0, ∞), and∫
(x,∞)

y−2 dV (y) ∼ cax
−1. (A.2)

If (Sn − an)n∈N0 is arithmetic with span λa > 0 then, analogously, as n → ∞,

V (eλan) ∼ daeλan, (A.3)

where da := λa((1 − e−λa )(e2a(−m′(2)) − a))−1 ∈ (0, ∞), and∫
[eλan,∞)

y−2 dV (y) ∼ dae−λan. (A.4)

Proof. Formulae (A.1) and (A.3) are borrowed from Lemma 3.1 of [21]. Relation (A.2)
follows from (A.1) by integration by parts and subsequent application of Proposition 1.5.10 of
[11]. Relation (A.4) can be obtained with the help of elementary calculations in combination
with V (eλan) − V (eλa(n−1)) ∼ da(1 − e−λa )eλan, which is a consequence of (A.3). �

Since we consider a BRW in which particles are allowed to have an infinite number of
offspring with positive probability, we need a version of the Berry–Esseen inequality for sums
with a possibly infinite number of summands.

Lemma A.2. Let X1, X2, . . . be independent (but not identically distributed) random variables
with E Xi = 0, σ 2

i := var Xi, and ρi := E |Xi |3, i ∈ N. If
∑

i≥1σ
2
i < ∞ then, for an absolute

constant C,

sup
y∈R

∣∣∣∣ P

[ ∑
i≥1 Xi

(
∑

i≥1 σ 2
i )1/2

≤ y

]
− 1√

2π

∫ y

−∞
e−x2/2 dx

∣∣∣∣ ≤ C

∑
i≥1 ρi

(
∑

i≥1 σ 2
i )3/2

. (A.5)

Proof. According to the classical Berry–Esseen inequality, (A.5) is valid if all infinite sums
are replaced by finite sums over i = 1, . . . , n with arbitrary n ∈ N. By letting in the classical
inequality n → ∞ and noting that ηn := ∑n

i=1 Xi/(
∑n

i=1 σ 2
i )1/2 converges to its infinite

version η∞ a.s. (and, hence, in distribution), we find that (A.5) holds for all y which are
continuity points of η∞. Since any y ∈ R can be approximated by continuity points from the
right and since the distribution function is right continuous, we find that (A.5) holds for all
y ∈ R. �
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