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Abstract Let T be a locally finite tree without vertices of degree 1. We show that among the closed

subgroups of Aut(T ) acting with a bounded number of orbits, the Chabauty-closure of the set of
topologically simple groups is the set of groups without proper open subgroup of finite index. Moreover,

if all vertices of T have degree > 3, then the set of isomorphism classes of topologically simple closed

subgroups of Aut(T ) acting doubly transitively on ∂T carries a natural compact Hausdorff topology
inherited from Chabauty. Some of our considerations are valid in the context of automorphism groups

of locally finite connected graphs. Applications to Weyl-transitive automorphism groups of buildings are

also presented.
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1. Introduction

Hêtre c’est mon identité (Jacques
Prévert, Arbres, 1976)

Beyond algebraic groups over local fields, groups acting on trees provide the largest

(and historically the first) known source of examples of non-discrete compactly generated

locally compact groups that are topologically simple, i.e., whose only closed normal

subgroups are the trivial ones. Since the automorphism group of a given locally finite

tree T may host many pairwise non-isomorphic topologically simple closed subgroups,

it is natural to consider those collectively, by viewing them as a subset of the space

Sub(Aut(T )) of all closed subgroups of Aut(T ), endowed with the Chabauty topology,

which is compact. The starting point of this work is the following basic question: what

is the Chabauty-closure of the set of topologically simple closed subgroups of Aut(T )? In

order to stay in the realm of compactly generated groups, we will frequently impose

that the groups under consideration act with a bounded number of orbits. Assuming the

weaker condition that the groups act cocompactly on T is sufficient to guarantee that

they are compactly generated, but that condition is not Chabauty-closed. To facilitate

the statements of our results, we introduce the following notation. For a given number

C > 0, we denote by

Sub(Aut(T ))6C

the set of closed subgroups of Aut(T ) acting with at most C orbits of vertices. It is a

clopen subset of Sub(Aut(T )) (see Proposition 2.6 (3)).

Theorem 1.1. Let T be a locally finite tree all of whose vertices have degree > 2. For any

C > 0, the Chabauty-closure of the set of topologically simple groups in Sub(Aut(T ))6C
is the set of groups in Sub(Aut(T ))6C without proper open subgroup of finite index.

The conclusion of Theorem 1.1 may fail if the tree T is allowed to have vertices of

degree 1, see Lemma 5.14 below.

Following Burger–Mozes [9], it is customary to denote the intersection of all open

subgroups of finite index in a given locally compact group H by H (∞). We also denote by

Mon(H) the monolith of H , i.e., the (possibly trivial) intersection of all non-trivial closed

normal subgroups of H . Notice that H is topologically simple if and only if H = Mon(H).
With these notations at hand, the statement of Theorem 1.1 can be epitomized by the

following equality:

{H ∈ Sub(Aut(T ))6C | H = Mon(H)} = {H ∈ Sub(Aut(T ))6C | H = H (∞)
}.

We remark that if C = 1 then the set {H ∈ Sub(Aut(T ))6C | H = H (∞)
} is empty,

while if C > 2 and T is semi-regular (i.e., Aut(T ) is edge-transitive), that set contains at

least one group, namely the group Aut(T )+ of type-preserving automorphisms, which is

simple by [25]. For a general tree T and an arbitrarily large C , it may be the case that

Sub(Aut(T ))6C contains only discrete, hence virtually free, groups (see [7]), so that the

set {H ∈ Sub(Aut(T ))6C | H = H (∞)
} is also empty in that case.

https://doi.org/10.1017/S1474748018000348 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000348


Chabauty limits of simple groups acting on trees 1095

It is important to note that a Chabauty limit of topologically simple groups need not

be simple. Indeed, explicit examples of non-simple closed subgroups H of Aut(T ) that

are edge-transitive (indeed locally 2-transitive) and satisfy H = H (∞) are provided by

Burger and Mozes in [9, Example 1.2.1] (see also Remark 5.13 below). Thus the set

of topologically simple edge-transitive closed subgroups is not closed in Sub(Aut(T )).
Nevertheless, that situation changes if one considers the subset of groups acting doubly

transitively on the set of ends of a thick tree T (which is automatically contained in

Sub(Aut(T ))62, see [9, Lemma 3.1.1]). Recall that T is thick if all its vertices have degree

> 3, and remark that Sub(Aut(T ))62 is non-empty only when T is semi-regular.

Theorem 1.2. Let T be a locally finite thick semi-regular tree. The set of topologically

simple closed subgroups of Aut(T ) acting 2-transitively on ∂T is Chabauty-closed.

Moreover, the isomorphism relation within that set has closed classes, and the set ST
of isomorphism classes of topologically simple groups acting continuously and properly on

T and 2-transitively on ∂T , endowed with the quotient topology, is compact Hausdorff.

Theorem 1.2 has several consequences. First of all, it can be interpreted as

providing qualitative information on the complexity of the isomorphism relation

within topologically simple boundary-2-transitive closed subgroups of Aut(T ). Indeed,

Theorem 1.2 implies that relation is smooth in the sense of [15, Definition 5.4.1], which

means that it comes at the bottom of the hierarchy of complexity of classification

problems in the formalism established by invariant descriptive set theory (see [15,

Chapter 15]). In fact, it is tantalizing to believe that for a given tree T , the set ST
of isomorphism classes as above can be described exhaustively. This has actually recently

been accomplished by the second-named author for all semi-regular trees whose vertex

degrees are > 6 and such that the only finite 2-transitive groups of those degrees are the

full symmetric or alternating groups, see [22] and Appendix A below. For all those trees,

the set ST happens to be countable. Moreover, the second Cantor–Bendixson derivative

of ST is reduced to the singleton consisting of the isomorphism class of the group Aut(T )+

(see Proposition A.1 and Remark A.3 below). However, the classification problem remains

open for semi-regular trees T whose vertex degrees are the degrees of smaller finite

2-transitive groups, like Lie-type groups or affine groups. In particular, we do not know

whether there exists a tree T such that ST is uncountable. The case of the trivalent tree

is especially intriguing.

The compactness of ST asserted by Theorem 1.2 also fosters less ambitious hope than a

full classification of ST . Indeed, it opens up the possibility to find new isomorphism types

of simple groups by taking limits of known ones. Implementing this idea requires to have

at hand an infinite family of pairwise non-isomorphic topologically simple groups acting

boundary-2-transitively on the same locally finite tree T . Rank one simple algebraic

groups over p-adic fields provide examples of such families. However, in all cases where

it could be verified, any limit of (classes of) such groups in ST happens to be a rank one

simple algebraic groups over a local field of positive characteristic. Indeed, T. Stulemeijer

has proved that if T is the regular tree of degree p+ 1 with p prime, then the set of

isomorphism classes of algebraic groups in ST , denoted by Salg
T , is closed. Moreover the

non-isolated points are precisely the isomorphism classes of the simple algebraic groups
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over local fields of positive characteristic. That set is finite (of cardinality 2) if p > 2 and

infinite if p = 2. We refer to [24] for general results and full details.

Another potential source of examples for the implementation of that idea is the class

of complete Kac–Moody groups of rank two over finite fields. In that class, the tree T
is determined by the finite ground field. Letting the defining generalized Cartan matrix

run over the infinite set of possibilities in rank two, one obtains a countable family of

topologically simple boundary-2-transitive groups in Sub(Aut(T )). The difficulty arising

here is that we do not know whether those groups are pairwise non-isomorphic: we do not

even know whether they form infinitely many isomorphism classes. A discussion of this

rather subtle question, and partial answers, may be found in [19, Theorem F and § 6].

An important tool in the proofs of the results above is provided by the notion of

k-closures recently introduced by Banks–Elder–Willis [3], some of whose properties are

reviewed in § 3 below. We establish a key relation between Chabauty convergence and

k-closures in the general context of automorphism groups of locally finite graphs, see

Proposition 3.2. We deduce the following statement, which is the main intermediate step

in the proof of Theorem 1.1.

Theorem 1.3. Let 3 be a locally finite connected (simple, undirected) graph and 0 6
Aut(3) act cocompactly on 3. Let Hn → H be a converging sequence in Sub(Aut(3)).
Suppose that for each n > 1, there exists τn ∈ Aut(3) such that τn0τ

−1
n 6 Hn. Then we

have

[H : H (∞)
] 6 lim sup

n→∞
[Hn : H (∞)

n ].

In particular, the set

{H ∈ Sub(Aut(3)) | H > 0 and H = H (∞)
}

is Chabauty-closed.

The condition that all groups Hn contain a conjugate of a fixed group 0 acting

cocompactly may be viewed as a strengthening of the condition bounding the number of

orbits, which was imposed in Theorem 1.1. Classical results by Bass [4] and Bass–Kulkarni

[5] ensure that when 3 is a tree, both conditions are equivalent (see § 5.1 below).

Building upon this, we tighten the relation between Chabauty convergence of unimodular

cocompact subgroups of Aut(3) and k-closures (see Corollary 5.6) and deduce that the

algebraic properties of local pro-π-ness and local torsion-freeness are both Chabauty-open

in that context, see Propositions 5.19 and 5.22.

Taking advantage of the rather flexible hypotheses of Theorem 1.3, we include

applications to groups acting on buildings that are not necessarily trees, see Corollary 6.3.

We are not aware of families of graphs other than trees where analogues of the

aforementioned results by Bass–Kulkarni hold. However, we note that chamber-transitive

buildings whose Weyl group is virtually free all admit a canonical continuous proper

cocompact action on a tree (see Lemma 6.6), so that the condition that the groups under

consideration all contain a conjugate of a fixed group 0 also becomes redundant in that

context, see Corollary 6.8.
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2. The Chabauty space

Given a locally compact group G, we denote by Sub(G) the set of closed subgroups of

G equipped with the Chabauty topology, which is compact Hausdorff (see [8, Chapitre

VIII, § 5, no. 3, Théorème 1]). Recall that a base of neighborhoods of H ∈ Sub(G) in the

Chabauty topology is given by the sets

VK ,U (H) := {J ∈ Sub(G) | J ∩ K ⊆ HU and H ∩ K ⊆ JU },

where K ranges over compact subsets of G and U over non-empty open subsets of G.

Assume that G is second countable. In that case, the compact space Sub(G) is also

second countable, see [18, Lemma 5.16]. In particular Sub(G) is metrizable by Urysohn’s

Metrization Theorem (alternatively, one may directly define a compatible metric on

Sub(G), see [16, Exercise 2]). The locally compact groups appearing in this paper will

mostly be automorphism groups of connected locally finite graphs: endowed with the

compact open topology, those are second countable (totally disconnected) locally compact

groups.

Lemma 2.1. Let G be a second countable locally compact group. A sequence (Hn) in

Sub(G) converges to H ∈ Sub(G) if and only if the two conditions below are satisfied:

(i) Let (Hk(n)) be a subsequence of (Hn) and let (hk(n)) be a sequence in G such that

hk(n) ∈ Hk(n) for each n > 1. If (hk(n)) converges to h ∈ G, then h ∈ H .

(ii) Any h ∈ H is the limit of a sequence (hn) with hn ∈ Hn for each n > 1.

Proof. See [17, Lemma 2].

The following results are then immediate.

Lemma 2.2. Let G be a second countable locally compact group. The conjugation action

of G on Sub(G) is jointly continuous, i.e., if gn → g is a converging sequence in G and

Hn → H is a converging sequence in Sub(G), then gn Hng−1
n → gHg−1.

Proof. This is an easy consequence of Lemma 2.1.

Lemma 2.3. Let G be a second countable locally compact group.

(1) If (Hn) is a descending chain in Sub(G), then Hn →
⋂

i>1 Hi ;

(2) If (Hn) is an ascending chain in Sub(G), then Hn →
⋃

i>1 Hi .

Proof. We prove (1), the proof of (2) being similar. Let us check (i) and (ii) in Lemma 2.1.

Any h ∈
⋂

i>1 Hi is the limit of the constant sequence (h), so (ii) is clear. Now in order

to prove (i), let hk(n)→ h be a converging sequence in G such that hk(n) ∈ Hk(n) for each

n > 1. For each i > 1, the sequence (hk(n))k(n)>i is contained in Hi . Since Hi is closed and

hk(n)→ h, we get h ∈ Hi . This being true for any i > 1, we have h ∈
⋂

i>1 Hi .

We also record the following essential result for the sake of future references.

Theorem 2.4. Let G be a locally compact group. The set Sub(G)0 of unimodular closed

subgroups of G is closed in Sub(G).
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Proof. See [8, Chapitre VIII, § 5, no. 3, Théorème 1].

The next basic lemma plays a key role in the proof of Proposition 2.6.

Lemma 2.5. Let G be a locally compact group and C be a compact open subset of G (e.g.,

C is a coset of a compact open subgroup). Then the set

{H ∈ Sub(G) | H ∩C 6= ∅}
is clopen in Sub(G).
Proof. Since C is compact, we have

⋂
U CU−1

= C , where the intersection is taken over

all open, relatively compact, identity neighborhoods U in G. Since C is also open, it

follows that there exists an open, relatively compact, identity neighborhood U in G such

that CU−1
= C . For any H ∈ Sub(G), we then consider the basic Chabauty-neighborhood

VC,U (H) = {J ∈ Sub(G) | J ∩C ⊆ HU and H ∩C ⊆ JU }

of H . We observe that, for any J ∈ VC,U (H), we have J ∩C 6= ∅ if and only if H ∩C 6= ∅.

Thus the set {H ∈ Sub(G) | H ∩C = ∅} and its complement {H ∈ Sub(G) | H ∩C 6= ∅}
are both open.

In the following proposition, as well as in the rest of the paper, we adopt the

terminology from [4, §1] concerning graphs. Given a graph 3 and a group H 6 Aut(3)
acting without inversion on 3, one can form the quotient graph H\3 and the canonical

projection p : 3→ H\3. We recall from [6, §2.5] that the quotient graph Q = H\3 is an

edge-indexed graph, i.e., it comes equipped with the map i associating to each oriented

edge e of Q (where a geometric edge is seen as a pair of oriented edges) the cardinal

i(e) = #{a ∈ E(3) | p(a) = e and x is the origin of a},

where x is any vertex in 3 such that p(x) is the origin vertex of e. Since H always acts

without inversion on the first barycentric subdivision 3(1) of 3, it follows that any group

H 6 Aut(3) yields a well defined edge-indexed quotient graph H\3(1).
We also need to define a coloring of a graph 3 as a map c : V (3)→ C, where C is any

set. We write 3c for 3 considered with its coloring c and Aut(3c) for the group of all

automorphisms of 3 preserving c.

Proposition 2.6. Let 3 be a locally finite connected graph and (Q, i) be a finite

edge-indexed graph. Then the following assertions hold.

(1) Let c : V (3)→ C and c′ : V (Q)→ C be colorings of the graphs 3 and Q respectively.

For any closed subset H ⊆ Sub(Aut(3c)) consisting of groups acting without

inversion, the set

{H ∈ H | H\3c ∼= (Qc′ , i)}
is clopen in H.

(2) Let c : V (3(1))→ {0, 1} be the coloring of 3(1) defined by setting c(v) = 0 if v is a

vertex of 3 and c(v) = 1 if v the midpoint of a geometric edge of 3. Let c′ : V (Q)→
{0, 1} be any coloring of Q. The set

{H ∈ Sub(Aut(3)) | H\(3(1))c ∼= (Qc′ , i)}

is clopen in Sub(Aut(3)).
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(3) For any C > 0, the set

Sub(Aut(3))6C := {H ∈ Sub(Aut(3)) | #V (H\3) 6 C}

is clopen in Sub(Aut(3)).

Proof. (1). Let F ⊆ V (3)∪ E(3) be a finite set of vertices and edges of 3. We denote

by

Hco-F

the set of those H ∈ H such that HF = V (3)∪ E(3), i.e., those H ∈ H such that F
meets every H -orbit of vertices and every H -orbit of edges in 3.

Claim 1. The set Hco-F is clopen in H.

Proof of the claim. Define F̃ as the set consisting of all vertices that are adjacent to a

vertex in F or incident to an edge in F . Since F is finite and 3 is locally finite, we infer

that F̃ is finite. Define the set

J = {J ∈ H | ∀x ∈ F̃ , ∃ j ∈ J : j (x) ∈ F}.

It is clear that Hco-F ⊆ J , and we claim that Hco-F = J . Indeed, let J ∈ J . Observe

that X = JF is a subset of V (3)∪ E(3) satisfying the property that for any vertex x in

X , all edges of 3 incident to x and all vertices of 3 adjacent to x are also in X . Since 3

is connected, we deduce that X = V (3)∪ E(3) and hence that J ∈ Hco-F .

Now remark that

Hco-F = J =
⋂
x∈F̃

{J ∈ H | J ∩Cx 6= ∅},

where Cx is the compact open subset of Aut(3) consisting of the elements h with h(x) ∈ F .

As F̃ is finite, Lemma 2.5 ensures that Hco-F is clopen in H. �

Claim 2. The set

V(Qc′ ,i),F := {H ∈ Hco-F | H\3c ∼= (Qc′ , i)}

is clopen in H.

Proof of the claim. For each H ∈ Hco-F , the isomorphism type of the edge-indexed

(colored) quotient graph H\3c is completely determined by the following finite subset

of F × (V (3)∪ E(3)):

SH := {(x, y) ∈ F × (V (3)∪ E(3)) | ∃h ∈ H : h(x) = y and d(y,F) 6 1}.

Moreover, it is clear from Lemma 2.1 that if Hn → H in Hco-F then SHn = SH for

sufficiently large n. Consequently, the set V(Qc′ ,i),F is clopen in Hco-F . As Hco-F is itself

clopen in H by Claim 1, the conclusion follows. �

We now finish the proof as follows. We must show that the set V(Qc′ ,i) := {H ∈ H |
H\3c ∼= (Qc′ , i)} is clopen in H. We may assume that it is non-empty. Fix a base vertex

v0 ∈ V (3). For any group H ∈ V(Qc′ ,i), we can find a set of representatives F0 of the

H -orbits of vertices and edges in 3, in such a way that v0 ∈ F0 and that F0 is connected.
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Notice that there are only finitely many connected subsets F ⊆ V (3)∪ E(3) containing

v0 and such that #V (F) = #V (Q) and #E(F) = #E(Q). Let us enumerate all of them,

namely F0,F1, . . . ,Fm . We have V(Qc′ ,i) =
⋃m

j=0 V(Qc′ ,i),F j . Each V(Qc′ ,i),F j is clopen by

Claim 2, hence V(Qc′ ,i) is clopen as well.

(2). We may identify Aut(3) with Aut((3(1))c), which acts without inversion on 3(1). The

desired assertion then follows from (1).

(3). Let c : V (3(1))→ {0, 1} be the coloring of 3(1) as defined in (2). For any C > 0,

there are finitely many edge-indexed (colored) graphs (Qc′ , i) that can be isomorphic

to H\(3(1))c for some H ∈ Sub(Aut(3))6C . Moreover, given such a (Qc′ , i), if H ′ ∈
Sub(Aut(3)) satisfies H ′\(3(1))c ∼= (Qc′ , i) then #V (H ′\3) = #V (H\3) 6 C . Indeed,

#V (H ′\3) is equal to the number of vertices v of Q with c′(v) = 0. The conclusion

then follows from (2).

3. The k-closure of a graph automorphism group

Let 3 be a locally finite connected graph. We define the k-closure
k

J of an automorphism

group J 6 Aut(3) by

k
J = {g ∈ Aut(3) | ∀v ∈ V (3), ∃h ∈ J : g|B(v,k) = h|B(v,k)},

where B(v, k) is the ball centered at v and of radius k in 3. That notion was first

introduced and studied by Banks–Elder–Willis in [3], in the case where 3 is a tree, even

though they used the notation J (k) instead of
k

J .

It is clear from the definition that
k

J ⊇
`
J ⊇ J for any k 6 `. Other basic properties

of k-closures, due to Banks–Elder–Willis, are collected in the following lemma.

Lemma 3.1. Let 3 be a locally finite connected graph. For any k > 0 and J 6 Aut(3),
k

J
is a closed subgroup of Aut(3). Moreover we have

J =
⋂
k>0

k
J .

Proof. The proofs when 3 is a locally finite tree are given in [3, Proposition 3.4], but

they are independent from the tree structure and thus also work for any locally finite

connected graph 3.

In view of Lemma 2.3 (1), the previous lemma implies that
k

J → J in Sub(Aut(3)).
The next result is then a key tool for the proof of Theorem 1.3. In order to facilitate its

statement, we introduce the following notation. Given a group 0 6 Aut(3), we write

Sub(Aut(3))>0 = {H ∈ Sub(Aut(3)) | H > τ0τ−1 for some τ ∈ Aut(3)}.

Observe that if the normalizer of 0 in Aut(3) is cocompact, then Sub(Aut(3))>0 is

Chabauty-closed. Given a group H 6 Aut(3), a vertex v ∈ V (3) and an integer r > 0,

we also write H [r ]v for the pointwise stabilizer of the ball B(v, r) in H .
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Proposition 3.2. Let 3 be a locally finite connected graph, 0 6 Aut(3) act cocompactly

on 3 and H ∈ Sub(Aut(3))>0. Fix v0 ∈ V (3). Then for each k > 0, the set

Vk := {J ∈ Sub(Aut(3))>0 | σ Jσ−1 6
k

H for some σ ∈ Aut(3)[k]v0
}

is a neighborhood of H in Sub(Aut(3))>0.

Proof. Consider a sequence Hn → H in Sub(Aut(3))>0 and let us show that Hn ∈ Vk
for sufficiently large n. Let X ⊂ 3 be a compact fundamental domain for the action of

0 on 3. For each n, let τn ∈ Aut(3) be such that Hn > τn0τ
−1
n . We may assume, up to

precomposing τn with an adequate element of 0, that τn sends v0 to a vertex in X . Since

X is compact, the sequence (τn) is bounded and we can further assume (by passing to a

subsequence) that (τn) converges to some τ ∈ Aut(3). Define σn := ττ
−1
n for each n > 1

so that σn → id. In this way, we have

0′ := τ0τ−1 6 ττ−1
n Hnτnτ

−1
= σn Hnσ

−1
n =: H ′n for each n > 1,

where 0′ also acts cocompactly on 3 with X ′ := τ(X) as a fundamental domain.

Moreover, as σn → id, we have H ′n → H by Lemma 2.2 and in particular 0′ 6 H .

In order to conclude, it suffices to find N > 1 such that H ′n 6
k

H for each n > N . Let

D be the diameter of X ′ and set

K := {g ∈ Aut(3) | d(g(v0), v0) 6 2D}

and

U := Aut(3)[k+D]
v0

.

The set K is compact and the set U is open, so there exists N > 1 such that H ′n ∈ VK ,U (H)
for each n > N . In particular, we have H ′n ∩ K ⊆ HU for each n > N . This exactly means

that, for any g ∈ H ′n (with n > N) satisfying d(g(v0), v0) 6 2D, there exists h ∈ H such

that g|B(v0,k+D) = h|B(v0,k+D).

We need to show that H ′n 6
k

H for each n > N . In order to do so, consider g ∈ H ′n
with n > N and v ∈ V (3). Let γ1 ∈ 0

′ be such that d(γ1g(v), v0) 6 D and γ2 ∈ 0
′ be

such that d(γ2(v0), v) 6 D. Those elements exist because D is the diameter of the

fundamental domain X ′ for the action of 0′. The two previous inequalities imply that

d(γ1gγ2(v0), v0) 6 2D. Hence, by definition of N there exists h ∈ H with

γ1gγ2|B(v0,k+D) = h|B(v0,k+D),

which is equivalent to saying that

g|B(γ2(v0),k+D) = γ
−1
1 hγ−1

2 |B(γ2(v0),k+D).

But d(γ2(v0), v) 6 D, so B(γ2(v0), k+ D) ⊇ B(v, k) and

g|B(v,k) = γ−1
1 hγ−1

2 |B(v,k),

which is sufficient to conclude since γ−1
1 hγ−1

2 ∈ H .

The following observation describes a local algebraic property that is preserved when

taking the k-closure (with a sufficiently large k).

https://doi.org/10.1017/S1474748018000348 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000348


1102 P.-E. Caprace and N. Radu

Proposition 3.3. Let 3 be a locally finite connected graph and H ∈ Sub(Aut(3)). Let also

π be a set of primes and r > 0. Suppose that H [r ]v is a pro-π group for all v ∈ V (3).
Then for each k > r + 1, the group (

k
H)[r ]v is a pro-π group for all v ∈ V (3).

In particular, if H acts cocompactly on 3 and has an open pro-π subgroup, then so

does
k

H for all sufficiently large k.

Proof. Since
k

H 6
`
H for all k > ` and since a closed subgroup of a pro-π group is pro-π ,

it suffices to consider G =
r+1

H . We show that for each n > r and each v ∈ V (3), the

finite group G[n]v
/

G[n+1]
v

is a π -group. This assertion implies the required conclusion.

Fix n > r and v ∈ V (3) and assume for a contradiction that G[n]v
/

G[n+1]
v

is not a

π -group. Then it contains an element g of prime order p, with p 6∈ π . There exists a

vertex z with d(v, z) = n such that the restriction g|B(z,1) contains a p-cycle. Let x be a

vertex on a geodesic path from v to z such that d(x, z) = r . Thus g fixes B(x, r) ⊆ B(v, n)
pointwise. Since g ∈ G =

r+1
H , there is h ∈ H such that g|B(x,r+1) = h|B(x,r+1). Hence h

belongs to H [r ]x and the image of h modulo H [r+1]
x is of order p 6∈ π . This contradicts the

hypothesis that H [r ]x is pro-π .

Now suppose H acts cocompactly on 3 and has an open pro-π subgroup U . Since U
is open, there exists v0 ∈ V (3) and r > 0 such that H [r ]v0 ⊆ U . Let X 3 v0 be a compact

fundamental domain for the action of H on 3, and denote by D its diameter. For each

vertex x ∈ X , we have

H [r+D]
x ⊆ H [r ]v0

⊆ U,

so H [r+D]
x is a pro-π group. Since X is a fundamental domain for the action of H on 3,

we even have that H [r+D]
v is a pro-π group for all v ∈ V (3). By the previous assertion,

this implies that
k

H has an open pro-π subgroup for each k > r + D+ 1.

Applying the previous proposition in the case of the empty set of primes, we obtain

the following corollary for discrete groups.

Corollary 3.4. Let 3 be a locally finite connected graph and H be a discrete subgroup of

Aut(3) acting cocompactly on 3. Then H =
k

H for all sufficiently large k.

Proof. Applying Proposition 3.3 to the empty set π = ∅, we obtain that
k

H is discrete

for each sufficiently large k. Since H acts cocompactly on 3, so does
k

H for any k.

Fixing k0 such that
k0 H is discrete, we deduce that the index of H in

k0 H is finite. Since

H 6
k+1

H 6
k

H 6
k0 H for each k > k0, the conclusion follows from Lemma 3.1.

4. Finite quotients of groups acting on graphs

The goal of this section is to prove Theorem 1.3.

We first recall that, for a topological group G, the symbol G(∞) denotes the intersection

of all open subgroups of finite index of G. The following lemma is classical. The notation

P 6ofi G means that P is an open subgroup of finite index of G.
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Lemma 4.1. Let G be a topological group and P 6ofi G. There exists R 6 P such that

R �ofi G. In particular, G(∞) coincides with the intersection of all open normal subgroups

of finite index of G.

Proof. It suffices to take for R the kernel of the natural action of G on G/P.

The next result shows, in the context of automorphism groups of graphs, how k-closures

preserve open subgroups of finite index.

Lemma 4.2. Let 3 be a locally finite connected graph and H ∈ Sub(Aut(3)) act

cocompactly on 3. If P 6ofi H , then [
k

H :
k

P] 6 [H : P] for all sufficiently large k.

Proof. Fix v0 ∈ V (3) and let m = [H : P]. We can write

H =
m⊔

i=1

hi P

for some h1, . . . , hm ∈ H . Since H acts cocompactly on 3, the action of P on 3 is also

cocompact. Let X ⊆ 3 be a compact fundamental domain for the action of P and denote

by D the diameter of X .

The fact that P is an open subgroup of H implies that there exists R > 0 with

H [R]v0
⊆ P.

We claim that [
k

H :
k

P] 6 m for each k > R+ D+ 1. To prove the claim, we fix k >
R+ D+ 1 and show that

k
H =

m⋃
i=1

hi
k

P.

Take g ∈
k

H and v ∈ V (3). There exists i ∈ {1, . . . ,m} and x ∈ P such that g|B(v,k) =
hi x |B(v,k), which is equivalent to saying that h−1

i g|B(v,k) = x |B(v,k). If we prove that i is

independent of the choice of v, then we will get h−1
i g ∈

k
P which will end the proof. Since

3 is connected, it suffices to show that the value of i is the same for any two adjacent

vertices. Fix v and v′ two neighboring vertices of 3 and suppose that

g|B(v,k) = hi x |B(v,k) and g|B(v′,k) = h j y|B(v′,k)

for some x, y ∈ P and some i, j ∈ {1, . . . ,m}. It follows that

hi x |B(v,k−1) = h j y|B(v,k−1)

or equivalently that

h−1
j hi xy−1

|B(y(v),k−1) = id |B(y(v),k−1).

The element e := h−1
j hi xy−1 is thus such that e ∈ H [k−1]

y(v) . As X is a fundamental domain

(with diameter D) for the action of P on 3, there exists p ∈ P such that p(y(v)) ∈
B(v0, D). Hence, the element pep−1 satisfies

pep−1
∈ H [k−1]

p(y(v)) ⊆ H [k−1−D]
v0

⊆ H [R]v0
⊆ P.

We get h−1
j hi xy−1

= e ∈ P and thus h−1
j hi ∈ P, which implies that i = j as desired.
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Before proving Theorem 1.3, we still need a technical lemma.

Lemma 4.3. Let 3 be a locally finite connected graph and Hn → H , Ln → L be two

converging sequences in Sub(Aut(3)) such that Ln 6 Hn for each n > 1. Assume that

there exists C > 0 such that Hn ∈ Sub(Aut(3))6C for each n > 1. Suppose also that there

exists S > 1 such that [Hn : Ln] 6 S for each n > 1. Then L 6 H and [H : L] 6 S.

Proof. The fact that L 6 H is clear. For each n > 1, let Fn ⊆ Aut(3) be such that Hn =

Ln Fn and |Fn| 6 S. We directly get that Ln ∈ Sub(Aut(3))6C S for each n > 1. If v0 ∈

V (3) is a fixed vertex, for each n > 1 and f ∈ Fn we can thus assume that d( f (v0), v0) 6
C S. By adding elements to Fn if necessary, we can also suppose that |Fn| = S and write

Fn = { f (n)1 , . . . , f (n)S }. Since the set {g ∈ Aut(3) | d(g(v0), v0) 6 C S} is compact, we can

finally assume by passing to subsequences that ( f (n)i ) converges to some fi ∈ Aut(3)
for each i ∈ {1, . . . , S}. Define F := { f1, . . . , fS}. It is clear that F ⊆ H and we claim

that H = L F . Take h ∈ H . By Lemma 2.1, there exists a converging sequence hn → h
with hn ∈ Hn for each n > 1. As Hn = Ln Fn , we can write hn = `n f (n)in

with `n ∈ Ln
and in ∈ {1, . . . , S}. There is a subsequence (ik(n)) of (in) which is constant, say equal to

j ∈ {1, . . . , S}. Then hk(n) = `k(n) f (n)j and hence `k(n) = hk(n)( f (n)j )−1
→ h f −1

j . This limit

belongs to L, so h f −1
j = ` ∈ L and h = ` f j .

The proof of Theorem 1.3 is now an easy combination of the previous results.

Proof of Theorem 1.3. Let S = lim supn→∞ [Hn : H (∞)
n ]. Without loss of generality, we

may assume that [Hn : H (∞)
n ] 6 S for each n > 1. By Proposition 3.2, we may further

assume that for each k > 0, there exists N (k) > 1 such that Hn 6
k

H for each n > N (k).
In order to prove that [H : H (∞)

] 6 S, it suffices to prove that [H : P] 6 S for each

P 6ofi H . By Lemma 4.2, there exists K > 0 such that
k

P 6ofi
k

H for any k > K . Let us

temporarily fix k > K . For each n > N (k), we have Hn 6
k

H and hence
k

P ∩ Hn 6ofi Hn .

By hypothesis, this means that [Hn :
k

P ∩ Hn] 6 S. Letting n tend to infinity, we obtain

with Lemma 4.3 that [H :
k

P ∩ H ] 6 S for each k > K . Now letting k tend to infinity and

because
k

P → P (see Lemmas 2.3 (1) and 3.1), we get [H : P] 6 S. An open subgroup

is always closed, so P = P and the conclusion follows.

5. Trees

5.1. Existence and conjugation of tree lattices

When 3 is a locally finite tree, Propositions 5.1 and 5.3 below (which come from [5]

and [4], respectively) can be used to drop the hypothesis about 0 in Theorem 1.3.

Proposition 5.1. Let T be a locally finite tree. Let H 6 Aut(T ) act cocompactly on T and

suppose that H is unimodular. Then H contains a free uniform lattice, i.e., there exists

a discrete subgroup 0 6 H acting freely and cocompactly on T .

Proof. See [5, Existence Theorem].
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Given a tree T and two groups H, H ′ 6 Aut(T ) acting without inversion on T , we write

the equality

H\T = H ′\T

whenever H and H ′ have the same orbits on T . The latter condition, which means that

the canonical projections p : T → H\T and p′ : T → H ′\T coincide, implies in particular

that the quotient graphs H\T and H ′\T are isomorphic as edge-indexed graphs, since the

edge-indexing function of the quotient graph is completely determined by the projection

map. The following basic fact clarifies the difference between isomorphism and equality

of quotients.

Lemma 5.2. Let T be a tree and H, H ′ 6 Aut(T ) act without inversion on T . If H\T
and H ′\T are isomorphic as edge-indexed graphs, then there exists g ∈ Aut(T ) such that

H\T = H ′′\T , where H ′′ = gH ′g−1.

Proof. This is a particular case of [21, Lemma 13 (1)].

Proposition 5.3. Let T be a tree and H, H ′ 6 Aut(T ) act without inversion on T . Suppose

that H\T = H ′\T . If 0 6 H acts freely on T , then there exists τ ∈ Aut(T ) such that

τ0τ−1 6 H ′.

Proof. See [4, Corollary 5.3].

Corollary 5.4. Let T be a locally finite tree and H ∈ Sub(Aut(T )). Suppose that H
is unimodular and acts cocompactly on T (these conditions hold, for instance, if H
is edge-transitive and type-preserving). Then H has a subgroup 0 acting freely and

cocompactly on T such that Sub(Aut(T ))>0 is a neighborhood of H in Sub(Aut(T )).

Proof. Upon replacing T by its first barycentric subdivision, we may assume that H acts

without inversion. By Proposition 5.1, there exists 0 6 H acting cocompactly and freely

on T . Consider a converging sequence Hn → H in Sub(Aut(T )). By Proposition 2.6 (3)

Hn acts with at most C orbits of vertices for all sufficiently large n, where C = #V (H\T ).
We may then deduce from Lemma 2.5 that Hn acts without inversion for all sufficiently

large n because H does. Moreover Proposition 2.6 (1) ensures that, for sufficiently large

n, the quotient graphs Hn\T and H\T are isomorphic as edge-indexed graphs. Hence,

by Lemma 5.2 and Proposition 5.3, for sufficiently large n, there exists τn ∈ Aut(T ) such

that τn0τ
−1
n 6 Hn , i.e., Hn ∈ Sub(Aut(T ))>0.

We record the following result for its own interest. It shows that, in Corollary 5.4, the

choice of 0 can be made uniform, i.e., independent of the choice of H . In order to make

this precise, we define

Sub(Aut(T ))06C := {H ∈ Sub(Aut(T ))6C | H is unimodular}.

Corollary 5.5. Let T be a locally finite tree. For each C > 0, the set Sub(Aut(T ))06C is

clopen in Sub(Aut(T )). Moreover there exists a subgroup 0 6 Aut(T ) acting freely and

cocompactly on T such that

Sub(Aut(T ))06C ⊆ Sub(Aut(T ))>0.
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Proof. We already know by Proposition 2.6 (3) that Sub(Aut(T ))6C is a clopen subset

of Sub(Aut(T )). Moreover the set Sub(Aut(T ))0 of unimodular subgroups is closed by

Theorem 2.4. In particular Sub(Aut(T ))06C is closed.

For each H ∈ Sub(Aut(T ))06C , Corollary 5.4 yields a discrete cocompact group 0 such

that Sub(Aut(T ))>0 is a neighborhood of H . Since every locally compact group containing

a lattice is unimodular, this implies that Sub(Aut(T ))06C is also open.

Let us now partition the set Sub(Aut(T ))06C into subsets V1, . . . ,Vm in such a way

that H, H ′ ∈ Vi if and only if H\T ∼= H ′\T as edge-indexed graphs. By Lemma 5.2 and

Proposition 5.3, for each i there exists a discrete cocompact group 0i such that Vi ⊆

Sub(Aut(T ))>0i . In particular

Sub(Aut(T ))06C ⊆

m⋃
i=1

Sub(Aut(T ))>0i .

By [5, Commensurability Theorem], upon replacing each 0i by a conjugate, we may

assume that they are pairwise commensurate, i.e., the index of 0i ∩0 j is of finite index

in 0i for all i and j . It follows that 0 =
⋂m

i=1 0i is itself a cocompact lattice in Aut(T ).
The required assertion follows since

Sub(Aut(T ))>0i ⊆ Sub(Aut(T ))>0

for all i .

We then deduce the following corollary from Proposition 3.2.

Corollary 5.6. Let T be a locally finite tree and H ∈ Sub(Aut(T )). Suppose that H is

unimodular and acts cocompactly on T . Fix v0 ∈ V (T ). Then for each k > 0, the set

{J ∈ Sub(Aut(T )) | σ Jσ−1 6
k

H for some σ ∈ Aut(T )[k]v0
}

is a neighborhood of H in Sub(Aut(T )).

Proof. This is the combination of Corollary 5.4 and Proposition 3.2.

Arguing similarly, we obtain the following consequence of Theorem 1.3.

Corollary 5.7. Let T be a locally finite tree and Hn → H be a converging sequence in

Sub(Aut(T )). Suppose that H is unimodular and acts cocompactly on T . Then we have

[H : H (∞)
] 6 lim sup

n→∞
[Hn : H (∞)

n ].

In particular, if Hn has no proper open subgroup of finite index for each n > 1 then H
has no proper open subgroup of finite index.

Proof. Let 0 be the subgroup of H given by Corollary 5.4. It acts cocompactly on T and

is such that Sub(Aut(T ))>0 is a neighborhood of H . We thus have Hn ∈ Sub(Aut(T ))>0
for all sufficiently large n, and the conclusion follows from Theorem 1.3.
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5.2. Limits of simple groups acting on trees

The goal of this section is to prove a strengthening of Theorem 1.1, where abstractly

simple groups are used instead of topologically simple groups.

Theorem 5.8. Let T be a locally finite tree all of whose vertices have degree > 2. For any

C > 0, the Chabauty-closure of the set of abstractly simple groups in Sub(Aut(T ))6C is

the set of groups in Sub(Aut(T ))6C without proper open subgroup of finite index.

We start by proving the following.

Proposition 5.9. Let T be a locally finite tree and let C > 0. The set

Sub(Aut(T ))(∞)6C := {H ∈ Sub(Aut(T ))6C | H = H (∞)
}

is closed in Sub(Aut(T )).

Proof. Let Hn → H be a converging sequence in Sub(Aut(T )) with Hn ∈ Sub(Aut(T ))(∞)6C
for each n. We already know by Proposition 2.6 (3) that H ∈ Sub(Aut(T ))6C . For each

n > 1, Hn acts cocompactly on T and is thus compactly generated. Therefore, the image of

the modular character of Hn is a finitely generated subgroup of R, which is thus residually

finite. In particular, the condition that Hn = H (∞)
n implies that Hn is unimodular. By

Theorem 2.4, H is also unimodular and we can apply Corollary 5.7 to get H = H (∞), as

required. This confirms that Sub(Aut(T ))(∞)6C is closed.

There remains to show that any group in Sub(Aut(T ))(∞)6C is a limit of abstractly simple

groups in that same set. Before proving this we need two more technical results.

Lemma 5.10. Let T be a locally finite tree all of whose vertices have degree > 2 and H 6
Aut(T ) be a closed subgroup without any infinite cyclic discrete quotient (e.g., H = H (∞)).

If H acts cocompactly on T , then it does not preserve any proper non-empty subtree and

does not fix any end of T .

Proof. Since all vertices of T have degree > 2 and H acts cocompactly on T , we deduce

from [25, Lemme 4.1] that H does not preserve any non-empty subtree of T .

Suppose now for a contradiction that H fixes some end b ∈ ∂T . Let (vn) be the

sequence of vertices on a ray in T toward b. Then the map φ : H → Z defined by

φ(h) := limn→∞ d(h(vn), vn) is a group homomorphism and has infinite image (because H
acts cocompactly on T ), which contradicts the fact that H has no infinite cyclic discrete

quotient.

In the following proposition and as in [3], given J 6 Aut(T ) and k > 0, the symbol J+k

denotes the subgroup of J generated by the pointwise stabilizers of (k− 1)-balls around

edges of T .

Proposition 5.11. Let T be a locally finite tree and G 6 Aut(T ) be a non-discrete group

which acts cocompactly on T , does not preserve any proper non-empty subtree and does

not fix any end of T . Suppose that G =
k
G for some k > 0. Then G+k is abstractly simple

and G/G+k is virtually free.
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Proof. From [3, Theorem 7.3] we know that G+k is abstractly simple or trivial. Also,

it is clear from the definition that G+k is an open normal subgroup of G. Since G is

non-discrete, G+k is non-discrete and in particular non-trivial (hence simple).

The discrete quotient group G/G+k acts cocompactly on the quotient graph G+k\T .

Bass–Serre theory ensures that G+k is the fundamental group of a graph of groups, whose

underlying graph is nothing but G+k\T (see [23, §I.5.4, Théorème 13]). By definition

G+k is generated by pointwise stabilizers of edges. In particular it is generated by vertex

stabilizers. It then follows that the quotient graph G+k\T is a tree (see [23, § I.5.4,

Corollaire 1]). We next observe that the G/G+k -action on the tree G+k\T is proper.

Indeed, a coset gG+k stabilizes a vertex in G+k\T if and only if gv ∈ G+kv for some

v ∈ V (T ). This is equivalent to the requirement that g ∈ G+k U , where U is the stabilizer

of v in G, which is compact. This confirms that the stabilizer of a vertex of G+k\T in

the discrete quotient group G/G+k is indeed compact, hence finite. Therefore G/G+k is

a discrete group acting properly and cocompactly on a tree. It is thus virtually free.

Proposition 5.12. Let T be a locally finite tree all of whose vertices have degree > 2 and

let C > 0. In Sub(Aut(T ))(∞)6C , the subset consisting of the abstractly simple groups is

dense.

Proof. Pick any H ∈ Sub(Aut(T ))(∞)6C . We must show that H is a limit of abstractly simple

groups contained in Sub(Aut(T ))(∞)6C . For each k > 0, set Hk = (
k

H)+k . First note that H
is not discrete, otherwise it would be virtually free, hence residually finite, contradicting

H = H (∞). We can therefore invoke Lemma 5.10 and Proposition 5.11 (applied to
k

H)

to get that Hk is abstractly simple and
k

H/Hk is virtually free.

Since
k

H/Hk is virtually free, it is residually finite. Recalling now that H has no finite

discrete quotient other than the trivial one, we infer that H has trivial image in
k

H/Hk ,

so that H 6 Hk 6
k

H . Since
k

H → H (by Lemma 3.1 and Lemma 2.3 (1)), we also get

that Hk → H , thereby completing the proof.

Proof of Theorem 5.8. Follows by assembling Propositions 5.9 and 5.12.

Remark 5.13. It is important to note that the set

{H ∈ Sub(Aut(T )) | H is locally 2-transitive and H = H (∞)
}

(in the terminology of [9]) may contain groups that are not topologically simple. Explicit

examples of such H are constructed in [9, Example 1.2.1], where T is regular of degree

p2
+ p+ 1 (p being an arbitrary prime). In particular, the set of topologically simple

locally 2-transitive closed subgroups of Aut(T ) is generally not Chabauty-closed.

The following result shows that the conclusion of Theorem 1.1 may fail if the tree T is

allowed to have vertices of degree 1.

Lemma 5.14. Let T be the universal covering tree of the graph on 7 vertices depicted in

the figure below. Let V1, V3 and V8 denote the set of vertices of T of degree 1, 3 and 8
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respectively. Let X be the subtree of T which is the convex hull of V3. Thus X is isomorphic

to the trivalent tree. Its vertex set is V3 ∪ V8, and those two sets V3 and V8 are the two

parts in the canonical bipartition of X . The following assertions hold.

(1) Aut(T ) has a closed subgroup H isomorphic to( ∏
v∈V8

Alt(5)
)
oAut(X)+.

(2) H = H (∞).

(3) H is not a Chabauty limit of topologically simple closed subgroups of Aut(T ).

Proof. (1) The subtree X is Aut(T )-invariant. Thus we have a canonical continuous

homomorphism Aut(T )→ Aut(X). Its kernel is compact and isomorphic to∏
v∈V8

Sym(5). It contains a characteristic subgroup K isomorphic to
∏
v∈V8

Alt(5).
Moreover Aut(T ) has a closed subgroup S isomorphic to Aut(X)+. The requested

subgroup H can be defined as H = K S.

(2) Let N be an open normal subgroup of finite index in H = K S. Then N ∩ K is

an open normal subgroup of K , and thus contains all but finitely many factors

of
∏
v∈V8

Alt(5) (i.e., N ∩ K ⊇
∏
v∈I Alt(5) for some cofinite set I ⊆ V8). Since the

conjugation action of H is transitive on those factors, we infer that N contains them

all. Hence K 6 N . Thus the quotient map H → H/N factors through H/K ∼= S,

which is simple by [25]. Hence H/N is trivial, which confirms that H = H (∞).

(3) Any infinite topologically simple subgroup of Aut(T ) acts faithfully on X . On the

other hand, the group H contains an element h fixing a vertex v ∈ V8 and permuting

cyclically the 5 neighbors of v with degree 1. Any closed subgroup J of Aut(T )
which is sufficiently close to H in the Chabauty topology also contains elements

fixing v with the same action on its neighbors. In particular the stabilizer Jv has a

non-trivial 5-Sylow subgroup. Since every vertex stabilizer in Aut(X)+ is a pro-{2, 3}
group, we deduce that J does not act faithfully on X and is thus not topologically

simple.
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5.3. Boundary-2-transitive automorphism groups of trees

Recall that the monolith Mon(G) of a topological group G is defined to be the (possibly

trivial) intersection of all its non-trivial closed normal subgroups. It is clear from

Lemma 4.1 that, when G is infinite, Mon(G) 6 G(∞) (because an open subgroup is always

closed). If moreover G is totally disconnected and locally compact, then it appears that

Mon(G) = G(∞) as soon as Mon(G) is cocompact in G.

Lemma 5.15. Let G be a totally disconnected locally compact group. If G/Mon(G) is

compact, then G(∞) 6 Mon(G).

Proof. By Lemma 4.1, we have

G(∞)
=

⋂
N�ofiG

N .

The group G/Mon(G) is compact by hypothesis and totally disconnected (as a quotient

of a totally disconnected locally compact group by a closed subgroup), so it is profinite.

In particular, the open (and hence finite index) normal subgroups of G/Mon(G) form

a base of neighborhood of the identity. Their intersection is thus trivial, which implies

that the intersection of all open normal subgroups of finite index of G is contained in

Mon(G).

The previous lemma can be applied when G is a boundary-2-transitive automorphism

group of a tree, as the following result (due to M. Burger and S. Mozes) shows.

Proposition 5.16. Let T be a locally finite thick semi-regular tree and H ∈ Sub(Aut(T ))
act 2-transitively on ∂T . Then H/Mon(H) is compact and Mon(H) is topologically simple.

In particular Mon(H) = H (∞).

Proof. This follows from [9, Propositions 1.2.1 and 3.1.2, Lemma 3.1.1] (see also

Proposition 6.2 below).

Corollary 5.17. Let T be a locally finite thick semi-regular tree and Hn → H be a

converging sequence in Sub(Aut(T )) whose limit H acts 2-transitively on ∂T . Then we

have

[H : Mon(H)] 6 lim sup
n→∞

[Hn : H (∞)
n ].

In particular, if Hn has no proper open subgroup of finite index for each n > 1 then H
is topologically simple.

Proof. This follows by assembling Corollary 5.7 and Proposition 5.16.

Corollary 5.18. Let T be a locally finite thick semi-regular tree. The set of topologically

simple closed subgroups of Aut(T ) acting 2-transitively on ∂T is closed in Sub(Aut(T )).

Proof. It follows easily from [9, Lemma 3.1.1] that the set of boundary-2-transitive groups

is closed in Sub(Aut(T )) (and is contained in Sub(Aut(T ))62). Within that set, the subset

of topologically simple groups is closed in view of Corollary 5.17.
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Recall that, for a locally finite thick tree T , we defined the space ST by

ST := {H ∈ Sub(Aut(T )) | H is topologically simple and 2-transitive on ∂T }
/
∼= ,

where ∼= is the relation of topological isomorphism. In our context, it actually appears

that two groups are topologically isomorphic if and only if they are conjugate in Aut(T )
(see [22, Proposition A.1]). This equivalence enables us to show Theorem 1.2.

Proof of Theorem 1.2. Let

C = {H ∈ Sub(Aut(T )) | H is topologically simple and 2-transitive on ∂T }.

By Corollary 5.18, the set C is closed in Sub(Aut(T )) and hence compact Hausdorff.

The set C
/
∼= endowed with the quotient topology is then also compact. In order to show

that this space is Hausdorff, we can simply prove that the quotient map q : C → C /∼= is

open and that the set

D = {(H, H ′) ∈ C× C | H ∼= H ′}

is closed in C× C.

By [22, Proposition A.1], we have H ∼= H ′ with H, H ′ ∈ C if and only if H and H ′ are

conjugate in Aut(T ). Let U be an open subset of C. We first need to show that q(U ) is

open, i.e., that q−1(q(U )) is open. We have

q−1(q(U )) =
⋃

σ∈Aut(T )

σUσ−1,

and σUσ−1 is clearly open for each σ ∈ Aut(T ), so q is an open map as wanted. Now

consider two sequences Hn → H and H ′n → H ′ in C with Hn ∼= H ′n for all n > 1, i.e.,

H ′n = σn Hnσ
−1
n for some σn ∈ Aut(T ). As Hn is edge-transitive, we can assume that σn

sends a fixed vertex v0 to a vertex at distance 6 1 for all n > 1. Hence, (σn) subconverges

to some σ ∈ Aut(T ) and H ′ = σHσ−1 by Lemma 2.2. So D is closed in C× C.

Finally, the fact that D is closed in C× C also implies that ∼= has closed classes.

5.4. Local prime content and local torsion-freeness

Let T be a locally finite tree. In this section, we provide applications of Corollary 5.6 by

highlighting two algebraic properties that define open subsets of the space

Sub(Aut(T ))06C := {H ∈ Sub(Aut(T ))6C | H is unimodular}.

Let π be a set of primes. A totally disconnected locally compact group is called locally

pro-π if it has an open pro-π subgroup. If G is the full automorphism group of a regular

rooted tree, then the set of locally pro-π subgroups is generally neither open nor closed

in the Chabauty space Sub(G). The following result shows that this situation changes if

one considers closed subgroups with a bounded number of orbits in Aut(T ).

Proposition 5.19. Let T be a locally finite tree all of whose vertices have degree > 2
and let C > 0. Then for any set of primes π , the set of locally pro-π groups is open in

Sub(Aut(T ))06C . In particular the set of discrete subgroups is open in Sub(Aut(T ))06C .
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Proof. Let H be a locally pro-π group in Sub(Aut(T ))06C . By Proposition 3.3, there exists

K > 0 such that
K

H is also locally pro-π . We also know from Corollary 5.6 that the set

{J ∈ Sub(Aut(T )) | σ Jσ−1 6
K

H for some σ ∈ Aut(T )}

is a neighborhood of H in Sub(Aut(T )). This set only contains locally pro-π groups, so

the conclusion follows.

Remark 5.20. We emphasize that the set of locally pro-π groups in Sub(Aut(T ))06C need

not be closed in general. In order to see that, let T be the d-regular tree, with d > 3.

By [5, Theorem 7.1 (a)], the group Aut(T ) contains a properly ascending chain of

cocompact lattices 01 < 02 < . . . . Denoting by C the number of 01-orbits of vertices,

we have 0i ∈ Sub(Aut(T ))06C for all i . Let H =
⋃

i>1 0i . Since 01 is a lattice in H , it

follows that H is unimodular, so that H ∈ Sub(Aut(T ))06C . If H were discrete, it would

be a cocompact lattice in Aut(T ), and the chain of inclusions 01 6 H 6 Aut(T ) would

force the index [H : 01] to be finite, contradicting the properly ascending property of

the chain 01 < 02 < . . . . We infer that H is non-discrete. In particular H is not locally

pro-∅. On the other hand, we have H = limi→∞ 0i by Lemma 2.3 (2). Hence we have

constructed a converging sequence of locally pro-∅ groups in Sub(Aut(T ))06C , whose limit

is not locally pro-∅. This confirms that the set of locally pro-π groups in Sub(Aut(T ))06C
is not closed in general.

A totally disconnected locally compact group is called locally torsion-free if it has an

open torsion-free subgroup. Typical examples are provided by p-adic analytic groups (see

[14, Theorems 4.5 and 8.1]).

We shall need the following basic fact.

Lemma 5.21. Let U be a torsion-free profinite group and U = U0 > U1 > . . . be a

descending chain of open subgroups of U with trivial intersection. Let also p be a positive

integer. For each m > 0, there exists M such that for all u ∈ U , if u p
∈ UM then u ∈ Um .

Proof. Suppose the contrary. Then there exist m > 0, a sequence of integers (kn) tending

to infinity with n, and a sequence (un) in U such that u p
n ∈ Ukn and un 6∈ Um . Upon

extracting, we may assume without loss of generality that (un) converges to some u ∈ U .

Since Um is open and un 6∈ Um for all n, we also have u 6∈ Um . In particular u 6= 1. On

the other hand, we have u p
n ∈ Ukn , so that u p

= (limn un)
p
= limn u p

n = 1. Hence u is a

non-trivial torsion element of U , a contradiction.

Proposition 5.22. Let T be a locally finite tree all of whose vertices have degree > 2 and

let C > 0. Then the set of locally torsion-free groups is open in Sub(Aut(T ))06C .

Proof. We can suppose that Sub(Aut(T ))06C is non-empty. It follows that T is of bounded

degree. We define the finite set of primes π = {p prime | p 6 deg(v) ∀v ∈ V (T )} and

observe that the stabilizer Aut(T )v of any vertex v ∈ V (T ) is a pro-π group.

Let H ∈ Sub(Aut(T ))06C be locally torsion-free. We must show that H has a

neighborhood in Sub(Aut(T ))06C that consists of locally torsion-free groups.
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Claim 1. There exist integers M > n > 0 such that for all v ∈ V (T ), p ∈ π and h ∈ H [n]v ,

if h p
∈ H [M]v then h ∈ H [n+1]

v .

Proof of the claim. Since H is locally torsion-free, there exists n0 > 0 and v0 ∈ V (T ) such

that H [n0]
v0 is torsion-free. As H acts cocompactly on T , there exists n > n0 such that H [n]v

is torsion-free for all v ∈ V (T ).
Let us now fix a prime p ∈ π and a vertex v ∈ V (T ) and let us apply Lemma 5.21 to the

torsion-free profinite groups Uk = H [n+k]
v and the integer m = 1. This yields a constant

M(p, v) > n such that for all h ∈ H [n]v , if h p
∈ H [M(p,v)]v then h ∈ H [n+1]

v .

We next define M as the supremum of M(p, v) taken over all p ∈ π and all vertices v in

a (necessarily finite) fundamental domain for the H -action on V (T ). Then the required

property holds (and we can assume that M > n). �

Claim 2. Let M > n be the constants afforded by Claim 1 and let G =
M

H . Then the

group G[n]v is torsion-free for all v ∈ V (T ). In particular G is locally torsion-free.

Proof of the claim. Suppose for a contradiction that for some v ∈ V (T ), there exists

a non-trivial torsion element in G[n]v . By the definition of π , every non-trivial torsion

element of Aut(T ) has a power which is a non-trivial element of order p for some p ∈ π .

We may thus assume that G[n]v contains a non-trivial element g of prime order p ∈ π . Let

then k > n be the largest integer such that g ∈ G[k]v . Then there exists a vertex x ∈ B(v, k)
fixed by g, such that g does not fix B(x, 1) pointwise. It follows that there exists a vertex

y on the geodesic segment joining v to x such that g ∈ G[n]y and g 6∈ G[n+1]
y .

Since G =
M

H , there exists h ∈ H such that g|B(y,M) = h|B(y,M). The properties that

g ∈ G[n]y , that g p
= 1 and that g 6∈ G[n+1]

y respectively imply that h ∈ H [n]y , that h p
∈

H [M]y and that h 6∈ H [n+1]
y . This contradicts Claim 1. �

From Claim 2 we know that
M

H is locally torsion-free. Hence, the set

{J ∈ Sub(Aut(T )) | σ Jσ−1 6
M

H for some σ ∈ Aut(T )},

which is a neighborhood of H in Sub(Aut(T )) by Corollary 5.6, only contains locally

torsion-free groups

Remark 5.23. We emphasize that the set of locally torsion-free groups in Sub(Aut(T ))06C
need not be closed in general. An excellent illustration of that fact is provided by the

main results of [24], showing that some simple algebraic groups over local fields of positive

characteristic (which are not locally torsion-free) are Chabauty limits of simple algebraic

groups over p-adic fields (which are p-adic analytic, hence locally torsion-free).

6. Buildings

6.1. Weyl-transitive automorphism groups of buildings

Let 1 be a locally finite thick building. A subgroup H of Aut(1) is said to be

Weyl-transitive if, for all w ∈ W , the action of H on the ordered pairs (c1, c2) of chambers

such that δ(c1, c2) = w is transitive, where δ : Ch(1)×Ch(1)→ W is the Weyl distance.
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Remark 6.1. If H 6 Aut(1) is strongly transitive on 1 (i.e., transitive on pairs (A, c)
consisting of an apartment A and a chamber c ∈ A), then it is Weyl-transitive. The

converse holds if 1 is spherical, but not in general; see [1, Proposition 6.14]. If 1 is of

affine type (e.g., 1 is a tree) and H is closed, it may be seen that if H is Weyl-transitive,

then it is strongly transitive on the spherical building at infinity of 1; hence strongly

transitive on 1 by [10, Theorem 1.1]. For 1 arbitrary (e.g., hyperbolic), the existence of

Weyl-transitive but non-strongly transitive closed subgroups H 6 Aut(1) is likely, but

currently we do not know explicit examples.

The following result, which is a straightforward adaptation of [11, Corollary 3.1]

dealing with strongly transitive actions, shows that monolithic groups naturally appear

in the context of Weyl-transitive automorphism groups of buildings. It may be seen as a

generalization of Proposition 5.16.

Proposition 6.2. Let 1 be an infinite irreducible locally finite thick building and H ∈
Sub(Aut(1)) be Weyl-transitive. Then Mon(H) is topologically simple and transitive on

the set of chambers of 1. In particular, H/Mon(H) is compact and Mon(H) = H (∞).

Proof. We follow the proof of [11, Corollary 3.1]. In generalizing from strongly transitive

to Weyl-transitive actions, the point requiring a supplementary check is that Tits’

transitivity lemma, which was originally stated for strongly transitive actions, holds

more generally for Weyl-transitive action. This is indeed the case by [1, Lemma 6.61].

We are thus ensured that any non-trivial normal subgroup of H is transitive on the set

of chambers of 1. Therefore any non-trivial closed normal subgroup of H is cocompact.

Since H is Weyl-transitive on 1, it is chamber-transitive, hence compactly generated.

We may then invoke [11, Theorem E], and conclude the proof word by word as in

[11, Corollary 3.1]. The argument can be summarized as follows. We know from [11,

Theorem E] that the monolith of H is a quasi-product of topologically simple groups.

However, there can be only one simple factor using that the building 1 has locally

compact CAT(0) metric realization. The desired assertions follow.

The next corollary is then a direct consequence of Theorem 1.3.

Corollary 6.3. Let 1 be an infinite irreducible locally finite thick building and 0 6 Aut(1)
act cocompactly on 1. Let Hn → H be a converging sequence in Sub(Aut(1)) whose limit

H is Weyl-transitive. Suppose that for each n > 1, there exists τn ∈ Aut(1) such that

τn0τ
−1
n 6 Hn. Then we have

[H : Mon(H)] 6 lim sup
n→∞

[Hn : H (∞)
n ].

In particular, if Hn has no proper open subgroup of finite index for each n > 1 then H is

topologically simple.

Proof. This follows from Proposition 6.2 and Theorem 1.3, since a locally finite building

can be seen as a locally finite connected graph whose vertices are the chambers and whose
edges are the pairs of adjacent chambers.
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Remark 6.4. If 1 is a tree, then a closed Weyl-transitive subgroup of Aut(1) is

2-transitive on the set of ends ∂1. Thus Corollary 5.17 can be deduced from Corollary 6.3.

Remark 6.5. If 1 is a locally finite Euclidean building of dimension > 2, it can be

seen that there is a unique topologically simple closed subgroup of Aut(1) acting

Weyl-transitively: namely the simple algebraic group to which 1 is associated via

Bruhat–Tits theory. This is of course not the case for trees. For higher-dimensional more

exotic buildings (e.g., Bourdon buildings), there can be a much larger collection of simple

groups acting Weyl-transitively, whose variety might potentially be comparable to one

encountered in the case of trees (see [13]).

6.2. Buildings of virtually free type

We have seen in § 5.1 that, for trees, the condition about the common cocompact group 0

was always fulfilled. It appears that, more generally, it is possible to drop the hypothesis

about 0 in the context of buildings whose associated Coxeter group is virtually free. The

reason is the existence of a strong relation between such buildings and trees.

Lemma 6.6. Let 1 be an infinite irreducible locally finite thick building whose Weyl group

W is virtually free. Suppose that Aut(1) is chamber-transitive. Then there exists a locally

finite tree T on which Aut(1) acts continuously, properly, faithfully and cocompactly.

Proof. By [12, Proposition 8.8.5], W is virtually free if and only if W has a tree of groups

decomposition where each vertex group is a spherical special subgroup. If X is the tree

of groups, then we write X for the underlying tree and denote W = π1(X ).
Since Aut(1) is chamber-transitive, we have by [26, Proposition 2] that Aut(1) =

π1(X0) where X0 has the same underlying tree X as X and has adequate residue stabilizers

as vertex groups and edge groups. By [23, § I.4.5, Théorème 9], we deduce that Aut(1)
acts on a locally finite tree T in such a way that Aut(1)\T = X . Moreover, the stabilizer

of a vertex of T in Aut(1) corresponds to a stabilizer of a spherical residue of 1 and

hence is compact and open. This implies that the action of Aut(1) on T is continuous

and proper. Finally, the kernel K 6 Aut(1) of this action on T stabilizes all residues of 1

of a fixed spherical type. Since 1 is infinite and irreducible, this implies that K is trivial

(see [2, Main Theorem]). The action is thus faithful.

Remark 6.7. The tree of group decomposition of W is generally not unique. In particular,

the tree T and the Aut(1)-action on T afforded by Lemma 6.6 are not canonical.

Corollary 6.8. Let 1 be an infinite irreducible locally finite thick building of virtually

free type W . Let Hn → H be a converging sequence in Sub(Aut(1)) whose limit H is

Weyl-transitive. Then we have

[H : Mon(H)] 6 lim sup
n→∞

[Hn : H (∞)
n ].

In particular, if Hn has no proper open subgroup of finite index for each n > 1 then H
is topologically simple.
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Proof. Let T be the locally finite tree given by Lemma 6.6. The fact that Aut(1) acts

continuously, properly and faithfully on T means that there is a map i : Aut(1)→ Aut(T )
which is an isomorphism onto its image, the latter being closed in Aut(T ). We thus have

the converging sequence i(Hn)→ i(H) in Sub(Aut(T )), such that i(H) acts cocompactly

on T and is unimodular (because it is generated by compact subgroups). The conclusion

then follows from Corollary 5.7, since Mon(H) = H (∞) (see Proposition 6.2).

Acknowledgement. We thank the anonymous referee for constructive comments and

suggestions.

A. The clopen subset SAlt
T ⊆ ST

Let T be a locally finite thick semi-regular tree. As before, we denote by ST the set

of isomorphism classes of groups in Sub(Aut(T )) which are topologically simple and

2-transitive on ∂T . By Theorem 1.2, this set carries a compact Hausdorff topology induced

from the Chabauty topology on Sub(Aut(T )). The goal of this appendix is to provide

supplementary information on that compact space.

First recall that, when H ∈ Sub(Aut(T )) is 2-transitive on ∂T , the action of the

stabilizer Hv of a vertex v ∈ V (T ) in H is 2-transitive on the set of neighbors of v (see

[9, Lemma 3.1.1]). In particular, H must be edge-transitive.

Recall also that ST contains the isomorphism class of Aut(T )+ (which is simple by

[25]). In [22], the second-named author restricted his attention to the groups H which

locally contain the full alternating group, i.e., such that the action of Hv on its set of

d neighbors contains Alt(d) for each v ∈ V (T ). Let us denote by SAlt
T the subset of ST

consisting of the isomorphism classes of all those groups. An exhaustive description of

the set SAlt
T when the vertices of T have degree > 6 is given in [22]. Below we summarize

some of its properties.

Proposition A.1. Let T be the (d0, d1)-semi-regular tree. Then SAlt
T is a closed open subset

of ST containing the isomorphism class of Aut(T )+.
Moreover, if d0, d1 > 6, then the compact space SAlt

T is countably infinite and its second
Cantor–Bendixson derivative is {[Aut(T )+]}.

Proof. The first assertion is clear. In order to prove the second one, we freely use the
terminology and notation from [22] without repeating all the definitions in full details.
In that paper, a legal coloring i of T is fixed and, given two possibly empty finite
subsets Y0, Y1 ⊂ Z>0, a group G+(i)(Y0, Y1) is defined. Let us describe their properties

which will be needed here. We assume henceforth that d0, d1 > 6. The group G+(i)(∅,∅)
is exactly Aut(T )+, while G+(i)({0}, {0}) is the semi-regular analogue of the universal locally

alternating group of Burger–Mozes [9]. We call it U+(i)(Alt). For all Y0 and Y1 we have

U+(i)(Alt) 6 G+(i)(Y0, Y1) 6 Aut(T )+. The groups G+(i)(Y0, Y1) locally contain the alternating

group (since they contain U+(i)(Alt) which does), are boundary-2-transitive and abstractly

simple (see [22, Theorem A (i), (ii)]) and, up to conjugation, these are the only such groups
(see [22, Theorem B (ii)]). If [G] denotes the isomorphism class of G ∈ Sub(Aut(T )), then
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this means that
SAlt

T = {[G
+

(i)(Y0, Y1)] | Y0, Y1 ⊂ Z>0 are finite}.

In fact, the groups G+(i)(Y0, Y1) are not pairwise distinct, but this is not important for
the following discussion. We now give some other properties of these groups. In order to
shorten the statements, we adopt the convention max(∅) := +∞.

Fact 1. If (X (n)) is a sequence of finite subsets of Z>0 such that max X (n)→+∞ and if Y
is a finite subset of Z>0, then G+(i)(X

(n), Y )→ G+(i)(∅, Y ) and G+(i)(Y, X (n))→ G+(i)(Y,∅).
Proof of the fact. When X is a non-empty finite subset of Z>0 and Y is a finite subset

of Z>0, we have G+(i)(X, Y ) 6 G+(i)(∅, Y ) 6
(max X)

G+(i)(X, Y ) (see [22, § 4.1]). If (X (n))
is a sequence such that max X (n)→+∞, then we can deduce that G+(i)(X

(n), Y )→
G+(i)(∅, Y ) with Lemma 2.1. Indeed, (i) is clear and (ii) can be obtained as follows. Fix

h ∈ G+(i)(∅, Y ) and v0 ∈ V (T ). For each n > 1, since G+(i)(∅, Y ) 6
(max X (n))

G+(i)(X
(n), Y )

(we can assume that X (n) is non-empty), there exists hn ∈ G+(i)(X
(n), Y ) such that

h|B(v0,max X (n)) = hn|B(v0,max X (n)). Then hn → h because max X (n)→+∞, which proves

(ii). The reasoning is exactly the same to obtain that G+(i)(Y, X (n))→ G+(i)(Y,∅). �

Fact 2. If σG+(i)(Z0, Z1)σ
−1 6 G+(i)(Y0, Y1) for some finite subsets Y0, Y1, Z0, Z1 ⊂

Z>0 and some σ ∈ Aut(T ), then either G+(i)(Z0, Z1) 6 G+(i)(Y0, Y1) or G+(i)(Z1, Z0) 6

G+(i)(Y0, Y1).

Proof of the fact. If σ ∈ Aut(T )+ then G+(i)(Z0, Z1) 6 G+(i)(Y0, Y1) by [22, Lemma 4.10

(i)]. If σ ∈ Aut(T ) \Aut(T )+, then there exists a particular element ν ∈ Aut(T ) \Aut(T )+

such that νG+(i)(Z0, Z1)ν
−1
= G+(i)(Z1, Z0) and the conclusion follows. �

Fact 3. If G+(i)(Z0, Z1) 6 G+(i)(Y0, Y1) for some finite subsets Y0, Y1, Z0, Z1 ⊂ Z>0, then
max Z0 6 max Y0 and max Z1 6 max Y1.

Proof of the fact. In [22, §5.3], two invariants K ′H (0), K ′H (1) ∈ Z>0 ∪{+∞} are associated
to any closed subgroup H 6 Aut(T ) containing U+(i)(Alt). These invariants have

the property that if H 6 H ′ then K ′H (0) 6 K ′H ′(0) and K ′H (1) 6 K ′H ′(1). For H =
G+(i)(Y0, Y1), we have K ′H (0) = max Y0 and K ′H (1) = max Y1 (see [22, Table 1]), which
suffices to conclude. �

Fact 4. For all finite subsets Y0, Y1 ⊂ Z>0, there exists an integer K > 0 such that
K

G+(i)(Y0, Y1) = G+(i)(Y0, Y1).

Proof of the fact. See [22, Theorem H]. �

Let us now compute the Cantor–Bendixson derivatives of SAlt
T . In SAlt

T , the points
[G+(i)(Y,∅)] and [G+(i)(∅, Y )] are not isolated. Indeed, [G+(i)(Y, {n})] → [G

+

(i)(Y,∅)] when

n→+∞ by Fact 1, and [G+(i)(Y, {n})] 6= [G
+

(i)(Y,∅)] for each n > 0 (Facts 2 and 3). We

claim that the points [G+(i)(Y0, Y1)] with Y0 and Y1 non-empty are isolated. Suppose for
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a contradiction that there exist sequences (Y (n)0 ), (Y (n)1 ) and (τn) with τn ∈ Aut(T ) such

that τnG+(i)(Y
(n)
0 , Y (n)1 )τ−1

n → G+(i)(Y0, Y1) and with [G+(i)(Y
(n)
0 , Y (n)1 )] 6= [G+(i)(Y0, Y1)] for

each n > 1. Then, by Fact 4 and Corollary 5.6, there exists (σn) with σn ∈ Aut(T ) such that
σnG+(i)(Y

(n)
0 , Y (n)1 )σ−1

n 6 G+(i)(Y0, Y1) for sufficiently large n. From Fact 2, we deduce that

G+(i)(Y
(n)
0 , Y (n)1 ) 6 G+(i)(Y0, Y1) or G+(i)(Y

(n)
1 , Y (n)0 ) 6 G+(i)(Y0, Y1) for all sufficiently large n.

But there are only finitely many Z0, Z1 ⊂ Z>0 such that G+(i)(Z0, Z1) 6 G+(i)(Y0, Y1) (see

Fact 3), so we cannot have the supposed convergence. We just proved that the first
Cantor–Bendixson derivative of SAlt

T is

(SAlt
T )′ = {[G+(i)(Y,∅)], [G

+

(i)(∅, Y )] | Y ⊂ Z>0 is finite}.

With the exact same reasoning, we then obtain that

(SAlt
T )′′ = {[G+(i)(∅,∅)]} = {[Aut(T )+]}.

Remark A.2. Proposition A.1 implies (see [20, Théorème 1]) that SAlt
T is homeomorphic

to the space Ẑ
2
, where Ẑ is the one-point compactification of the discrete space Z (which

is homeomorphic to the compact subset {1, 1
2 ,

1
3 , . . . , 0} of the real line).

Remark A.3. If the degrees d0 and d1 of the vertices of T are such that each 2-transitive
subgroup of Sym(dt ) contains Alt(dt ) (for each t ∈ {0, 1}), then ST = SAlt

T . For example,
this is the case for d0 = d1 = 3. If in addition d0, d1 > 6, then the classification theorem
from [22] applies, and therefore yields a complete description of ST . One should note that
the set of natural numbers d such that each 2-transitive subgroup of Sym(d) contains
Alt(d) is asymptotically dense in Z>0 (see [22, Corollary B.2]).

Remark A.4. It is actually a direct consequence of [22, Theorem A (i), (ii) and Theorem B
(i)] that the space SAlt

T (and hence also ST ) is infinite when d0, d1 > 4. The case where

d0 = 3 or d1 = 3 is not explicitly dealt with in [22], but one can show that SAlt
T is infinite

also in that case. Indeed, the definition of the groups G+(i)(Y0, Y1) (where Y0, Y1 are finite

subsets of Z>0) from loc. cit. makes sense for all d0, d1 > 3. For these groups to be
boundary-2-transitive, one however needs to require Y0 6= {0} (resp. Y1 6= {0}) when d0 = 3
(resp. d1 = 3). Under the latter hypothesis, it is then possible to adapt the ideas from [22,
§ 4] and show that these groups are abstractly simple and that they represent infinitely
many isomorphism classes. In the specific case of the trivalent tree T3, the infiniteness
of ST3 can alternatively be established using rank one simple algebraic groups over local
fields with residue field of order 2. An exhaustive description of the subset of ST3 consisting
of (isomorphism classes of) algebraic groups may be found in [24].
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topics (Mémoires dédiés à Georges de Rham), pp. 188–211 (Springer, New York, 1970).
(French).

26. J. Tits, Buildings and group amalgamations, in Proceedings of groups—St. Andrews 1985,
London Mathematical Society Lecture Note Series, Volume 121, pp. 110–127 (Cambridge
University Press, Cambridge, 1986).

https://doi.org/10.1017/S1474748018000348 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000348

