
Trypanosoma cruzi–Trypanosoma rangeli co-infection
ameliorates negative effects of single trypanosome infections
in experimentally infected Rhodnius prolixus

JENNIFER K. PETERSON1*, ANDREA L. GRAHAM1, RYAN J. ELLIOTT1, ANDREW
P. DOBSON1 and OMAR TRIANA CHÁVEZ2

1Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA
2Grupo BCEI, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia

(Received 12 February 2016; revised 10 March 2016; accepted 15 March 2016; first published online 13 May 2016)

SUMMARY

Trypanosoma cruzi, causative agent of Chagas disease, co-infects its triatomine vector with its sister species Trypanosoma
rangeli, which shares 60% of its antigens withT. cruzi. Additionally,T. rangeli has been observed to be pathogenic in some
of its vector species. Although T. cruzi–T. rangeli co-infections are common, their effect on the vector has rarely been
investigated. Therefore, we measured the fitness (survival and reproduction) of triatomine species Rhodnius prolixus
infected with just T. cruzi, just T. rangeli, or both T. cruzi and T. rangeli. We found that survival (as estimated by survival
probability and hazard ratios) was significantly different between treatments, with the T. cruzi treatment group having
lower survival than the co-infected treatment. Reproduction and total fitness estimates in the T. cruzi and T. rangeli treat-
ments were significantly lower than in the co-infected and control groups. The T. cruzi and T. rangeli treatment group
fitness estimates were not significantly different from each other. Additionally, co-infected insects appeared to tolerate
higher doses of parasites than insects with single-species infections. Our results suggest that T. cruzi–T. rangeli co-infection
could ameliorate negative effects of single infections of either parasite on R. prolixus and potentially help it to tolerate higher
parasite doses.

Key words: Trypanosoma cruzi, Trypanosoma rangeli, Rhodnius prolixus, T. cruzi–T. rangeli co-infection, Chagas disease,
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INTRODUCTION

Upon infection of its insect vector, the parasite
Trypanosoma cruzi, aetiological agent of Chagas
disease, joins a diverse microbial community
(Eichler and Schaub, 2002; Espino et al. 2009;
Vallejo et al. 2009), consisting of up to eight species
of bacteria (Vallejo et al. 2009), six genera of fungi
(De Moraes et al. 2001, 2004; Luz et al. 2004), four
other trypanosomatid species (Schaub, 1992) and at
least one virus (Marti et al. 2015). These taxa can
interact indirectly via resource competition,
immune modulation, competition for immune-free
space (Dobson, 1985; Cox, 2001; Pedersen and
Fenton, 2007) and even sometimes directly through
physical attack (Azambuja et al. 2004; Castro et al.
2007), all of which have potential consequences for
the survival and reproduction of the insect.
One species of particular interest is Trypanosoma

rangeli, a T. cruzi congeneric that infects several of
the same mammal and triatomine species as
T. cruzi. Trypanosoma rangeli is of interest in the
study of Chagas disease because it shares at least
60% of its antigens with T. cruzi (Guhl and

Marinkelle, 1982; Saldaña and Sousa, 1996; Guhl
and Vallejo, 2003). These antigenic similarities can
lead to cross-reactions in immunogenic diagnostic
tests, which can result in erroneous Chagas disease
diagnoses (Guhl et al. 1987) and in turn interfere
with the ability to predict and describe Chagas
disease distribution in Chagas-endemic regions.
Trypanosoma cruzi and T. rangeli are often found
co-infecting together in field-caught triatomine
bugs of the genus Rhodnius (Fig. 1), some of which
are considered key vectors of T. cruzi to humans
(Gorla and Noireau, 2010).
Although not pathogenic in mammals (Herbig-

Sandreuter, 1957), in triatomine bugs, T. rangeli
has been observed to negatively affect the survival
and development of the triatomine species
Rhodnius prolixus when experimentally infected
with the parasite (Grewal, 1957; Tobie, 1965;
Gómez, 1967; Watkins, 1971; Añez, 1984; Añez
et al. 1987). Until recently, T. cruzi was not believed
to have negative consequences for its invertebrate
hosts (Schaub, 1989a, 1992, 1994), although this
has now been shown to be variable (Elliot et al.
2015; Peterson et al. 2015). Little is known about
the consequences of T. cruzi–T. rangeli co-infection
for the triatomine bug, and to our knowledge, has
been investigated just once (Añez et al. 1992); that
study reported delayed nymphal development and
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increased mortality inR. prolixus co-infected withT.
cruzi and T. rangeli compared with singly-infected
insects. However, the sustained effects of such co-in-
fection on triatomines (e.g. on their reproduction or
overall fitness) have never been investigated. In
mammals, it was found that T. rangeli exposure in
vertebrates prior to T. cruzi infection modulated
the host immune response to T. cruzi, resulting in
reduced disease severity in both acute and chronic
T. cruzi infections (Basso et al. 1991, 2007, 2008,
2014; Marini et al. 2011; Basso, 2013). These
studies suggest that T. cruzi–T. rangeli co-infection
could affect triatomine fitness differently than
single-species infections.
Here, we compared the fitness of triatomine bugs

(R. prolixus) experimentally co-infected with T. cruzi
and T. rangeli with the fitness of bugs with single-
species infections of T. cruzi or T. rangeli. We
defined fitness as the net contribution to future gen-
erations of each insect. We aimed to determine if
there is a difference in fitness between bugs with
different infection types, as we propose that the
extent to which T. cruzi–T. rangeli co-infection
alters the impact of each infection on individual
vector fitness may in turn alter the transmission po-
tential of the parasites. This, in turn, could have
implications for vector control and Chagas disease
prevention strategies.

MATERIALS AND METHODS

Experimental design

We infected 100 R. prolixus fifth instar females with
just T. cruzi, just T. rangeli, or T. cruzi and T.
rangeli (Table 1). A total of 33 additional uninfected
insects were used as controls, for a total of 133 insects
used in the experiment. After moulting into the

adult stage, each female was mated with an uninfect-
ed male, and survival and reproduction were mea-
sured for up to 96–140 days. All experiments were
carried out in the laboratory of the Grupo de la
Biología y Control de Enfermedades Infecciosas
[Biology and Control of Infectious Diseases Group
(BCEI)], University of Antioquia, Medellín,
Colombia.

Triatomines

All R. prolixus used in the experiment were from
laboratory colonies reared in the BCEI insectary,
where triatomine colonies are kept under
semi-controlled climate conditions (∼27 ± 1 °C and
65 ± 15% RH) and a 12 h photoperiod, and given
the opportunity to feed twice weekly on hens accord-
ing to the animal ethics committee regulations of the
Sede de Investigación Universitaria [University
Investigation Headquarters (SIU)] of the
University of Antioquia. Insects used in the experi-
ment were fed on hens once per oviposition cycle,
described below. Colonies were founded by R. pro-
lixus eggs collected in Colombia between 2000 and
2009. All insects used in the experiment were 5th
instar nymphs at the time of infection. Nymphs
were collected manually from the colonies, and sex
was subsequently determined (prior to infection)

Fig. 1. Reported co-infection prevalence in field-caught Rhodnius triatomines (Carcavallo et al. 1975; Vallejo et al. 1988;
Pavia et al. 2007; Pineda et al. 2008; Grijalva et al. 2012).

Table 1. Treatment groups

Treatment group

T. cruzi (Gal61 strain) 24
T. rangeli (Choachí strain) 33
T. cruzi–T. rangeli co-infection 43
Control 33
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by examining the two concentric terminal segments
around the anus on the insect’s ventral side under
a dissecting microscope, as described in Chiang
et al. (2013) and Gillet (1935).

Parasites

We used the parasite strains ‘Gal61’ (T. cruzi) and
‘Choachí’ (T. rangeli). Gal61 was originally isolated
from a mouse in Galeras, Colombia, and belongs to
the T. cruzi discrete typing unit (DTU) group I
(Rojas et al. 2007; Falla et al. 2009). Choachí was ori-
ginally isolated from an R. prolixus individual col-
lected in Cundinamarca, Colombia (Grisard et al.
1999; Vargas et al. 2000; Urrea et al. 2011), and
belongs to the KP1(+) kDNA (kinetoplastid deoxyr-
ibonucelic acid) group (Vallejo et al. 2002), which is
associated with the Prolixus complex of Rhodnius
(Urrea et al. 2005).
Trypanosoma cruzi parasites were cultured and

maintained as described in Peterson et al. (2015).
Briefly, epimastigotes were cultured at 28 °C in a
RPMI-1640 liquid medium (Sigma-Aldrich,
St. Louis, MO) supplemented with 10% fetal
bovine serum (FBS). Epimastigotes of the T.
rangeli Choachí strain were supplied by Professor
Gustavo Vallejo of the University of Tolima,
where they were cultured at 28 °C in NNN
medium and supplemented with 10% FBS.
Infectivity was maintained by cyclic R. prolixus–
mouse passages every 3 months.

Insect infection

We prepared the parasites (epimastigote stage) and
infected the insects as described in Peterson et al.
(2015). Briefly, parasites were counted in a
Neubauer chamber, washed through centrifugation
and resuspended in 1 mL of sterile phosphate-
buffered saline. Insects were starved for about 2
weeks before the infection, upon which each bug
was marked with a small dot of non-toxic water-
based paint at the top of the pronotum, and then
weighed before and after feeding to estimate the
number of parasites ingested. Only females were
fed infected blood, while the females from the
control group and all males were fed uninfected
blood. A total of 5–10 insects were grouped in
small jars, which were then placed under a mem-
brane feeder containing defibrinated, de-comple-
mented human blood (heated to 37·5 °C)
supplemented with inactivated FBS with an esti-
mated concentration of 3·3–3·5 × 106 parasites/mL.
This concentration falls within (a) the range of
peak parasitaemias observed in mice and guinea
pigs experimentally infected with T. cruzi (Bice
and Zeledon, 1970; Urdaneta-Morales and Rueda,
1977; Perlowagora-Szumlewicz and Muller, 1982;
Schaub and Losch, 1989a; Schaub et al. 1989;

Kollien et al. 1998) and T. rangeli (Urdaneta-
Morales and Tejero, 1986; Zuñiga et al. 1997a, b),
and oral infectious doses used in prior published
studies of T. cruzi and T. rangeli infection in triato-
mines (Garcia et al. 1994, 2004; Mello et al. 1996;
Ratcliffe et al. 1996; Whitten et al. 2001; Borges
et al. 2006; Araújo et al. 2007, 2014; Nogueira et al.
2007; Mejía-Jaramillo et al. 2009; Ferreira et al.
2010; Castro et al. 2012, 2014; Fellet et al. 2014).
Trypanosoma cruzi–T. rangeli co-infections were
carried out at a similar total parasite concentration,
consisting of equal concentrations of each species
(i.e. 1·65 × 106 of each parasite species/mL of blood,
for a total of 3·8 × 106 parasites/mL of blood).

Insect reproduction

After moulting into the adult stage, we paired each
female with a recently fed adult male (Buxton,
1930; Davey, 1965). Males were paired with females
of just one treatment group throughout the experi-
ment to avoid cross-contamination. Copulation was
determined 1 day after insects were paired from the
presence of the spermatophore casing in the jar,
ejected by the female (Ruegg and Davey, 1979). If
we did not find the spermatophore casing after the
first night, then 2–3 additional males were placed in
the jar with the female, and left for another night
(G. Chiang, personal Communication, 2013). If
copulation did not occur after three nights with
several males, then we recorded the female as
unmated for that oviposition cycle. Unmated indivi-
duals from the first oviposition cycle were given a
second opportunity tomate for the second oviposition
cycle. After mating, females were fed on hens (males
were fed 3–4 days prior to copulation for sperm pro-
duction). We marked each female with a small col-
oured dot of non-toxic, water-based paint on the
pronotum (Mac Cord et al. 1983; Henriques et al.
2012), weighing it before and after feeding to calcu-
late the volume of blood ingested. We recorded ovi-
position and eclosion 3–4 times per week until the
second oviposition cycle, 31–38 days later.
We measured reproduction as fecundity (egg pro-

duction) and the percentage of oviposited eggs that
hatched. Fecundity in R. prolixus is correlated with
the quantity of blood ingested and weight before
feeding (Friend et al. 1965), and the standard
index used when comparing fecundity in R. prolixus
is the E value (Ruegg and Davey, 1979). The E value
is calculated as the total number of eggs produced by
a given individual divided by the product of the
blood meal volume multiplied by its pre-feeding
weight. This represents the efficiency with which
the insect converts nutrition (blood) into food,
while normalizing for blood and insect mass, allow-
ing for comparison across feedings. The E value is
independent of the timing of the oviposition cycle
in an insect’s lifetime. In analysing the E values,
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we did not include insects that died before an ovipos-
ition cycle began (i.e. resulting in an E value of 0), in
order to compare E value independent of mortality
rate. In addition to these measurements, time-de-
pendent reproductive values were also generated
for each individual in our fitness analyses, described
below.

Infection confirmation

After insect death, we extracted total DNA from
each insect using Qiagen DNeasy blood and tissue
kit. Additionally, we extracted DNA from pooled
males and pooled offspring to check for horizontal
and vertical transfer of parasites. We amplified
DNA in an RT–PCR (StepOnePlus Real-Time
PCR System, Applied Biosystems), with the T.
cruzi primer pair [TcZ1/2 (Cummings and
Tarleton, 2003)] and R. prolixus reference gene
primer (RP18S, Paim et al. 2012). To obtain a
T. rangeli-specific primer of the optimal size [<150
base pairs (bp)] that did not cross-amplify T. cruzi,
we designed a primer denoted as ‘PEEL5’ −F (5′-
TGCTTTCGTAGTTGGCACTG-3′) and −R
(5′-ACGCACCTCCTCCTCTCTCT-3′), which
amplifies a 93 bp fragment of T. rangeli telomeric
DNA. We designed this primer from the T. rangeli
clone TrTel 10 telomeric sequence (GenBank ID:
AF426020·1), using the Primer3 plus software
(Untergasser et al. 2007).

Statistical analyses

We carried out all statistical analyses using the R
statistical computing environment software version
3.03 (R Core Team, 2014) using non-parametric
tests to avoid normality assumptions. We tested for
differences between treatments in the amount of
parasites or blood ingested per unit of insect mass
using the Kruskal–Wallis rank sum tests. We
tested for differences in the amount of parasites or
blood ingested per unit of body weight using
Wilcoxon Rank Sum tests. We applied the ‘krus-
kalmc’ function from the ‘pgirmess’ package
(Giraudoux, 2013) to carry out multiple compari-
sons and control for family wise error when a differ-
ence was found in Kruskal–Wallis tests. This
function implements comparisons between treat-
ments, and one- and two-tailed comparisons vs
control. We accepted P-values under 0·05 as statis-
tically significant.
We analysed survival function for each treatment

group using the Kaplan–Meier (K–M) method in
the R ‘survival’ package (Therneau and Grambsch,
2000; Therneau, 2015). We compared survival func-
tion (the probability of total time until failure)
between treatment groups using the ‘survdiff ’ func-
tion in the ‘survival’ package, a two-tailed test for
censored data that implements the G–ρ family of

tests (Harrington and Fleming, 1982), where
deaths at various times are weighted by a factor of
S(t)^ρ (S =K–M estimate; t = time), and ρ is a
scalar parameter that determines the type of test
used. When set at 0, all deaths are weighted
equally across time and a log-rank test is used.
When set at 1, deaths at the beginning of the time
period are more heavily weighted, and the Peto
and Peto test (Peto and Peto, 1972) is employed.
We set ρ at 1, to offset insect death events related
to senescence. We carried out pairwise comparisons
between K–M survival curves with Chi-squared
(χ2) distribution tests and adjusted P-values to
control for the familywise error rate using the
Holm–Bonferroni correction method (Holm, 1979).
We used Cox proportional hazards (PH) models

(Cox, 1972) to examine the main effects and two-
way interactions of parasite treatment, parasite
dose and blood ingested on treatment hazard rates
(the instantaneous rate of failure at any given time,
given that the individual has survived up until that
time). The PH assumption, (i.e. hazards were pro-
portional over time) was tested with the Coxph func-
tion in the ‘survival’ package. We selected model
covariates using Akaike’s Information Criterion
(AIC) with the stepAIC function in the ‘MASS’
package (Venables and Ripley, 2002), and manual
one-variable-at-a-time reduction.
We log2 transformed parasite dose data, and

centred them on the log2 transformation of 5·0 × 105

parasites, the round number closest to the mean. We
used the Predict function from the ‘rms’ package
(Harrell, 2014) to estimate log relative hazards and
their 95% confidence intervals based on 1000 simula-
tions of the model.
We ran the Cox model with three variations. In

the first variation, we investigated the interaction
between treatment and blood:weight ratio, and com-
pared the parasite treatment group hazards with the
control hazard. In the second and third variations,
we included only parasite treatment groups to inves-
tigate relative hazard. To control for a possible effect
of absolute number of parasites vs relative number of
each parasite species in the mixed parasite species
dose, we ran the model with data for the absolute
number of parasites ingested by the mixed group
in the second variation. In the third variation, we
ran data for the mixed group as the relative
number of each parasite species ingested. This does
not change the power of the model or the summary
statistics; the change was reflected only in effect
size. Cox PH model outputs are in Tables S1–S3
in the Supplementary Materials.

Fitness estimates

We used individual survival and reproduction data
to construct an age-classified population projection
matrix for each insect (McGraw and Caswell, 1996;
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Twombly et al. 1998). Each matrix was 3 × 3, with
age-specific survival (Pi) on the sub-diagonal
[always 0 or 1 in individual matrices (McGraw and
Caswell, 1996)], and age-specific realized reproduct-
ive output (Fi) in the first row. All other matrix ele-
ments were zeros. Each time step (ti) in the matrix
represented one month (with t0 being the day of
insect infection). The model for each individual A
was constructed as:

0 F2 F3

A= 1 0 0
0 1 0

The dominant eigenvalue (λ) of each matrix is a
maximum-likelihood estimate of individual fitness,
with values above one indicating population growth,
and values belowone indicating population shrinkage.
The dominant left eigenvector of each matrix is an es-
timate of individual reproductive valuevi for each time
step. We calculated dominant eigenvalues (λ) using
the eigenfunction in the R base package, and repro-
duction values were calculated by hand based on
these values, as in McGraw and Caswell (McGraw
andCaswell, 1996; based onFisher, 1930).The repro-
ductive value for t1 (v1) is scaled to one, and other
values are given relative to v1. In an individual popula-
tion projectionmodel whereF1 is equal to 0, v2 is equal
to lambda.Themodel assumes a closedpopulationwith
unlimited resources, no genetic structure, and does not
account for effects of population density.

RESULTS

Parasites ingested

Insects ingested between 30·1 and 337·9 mg of blood
(mean 214·8 mg), and an estimated 62 000–1 079 000
total parasites (mean 708 000). The ratio of the
volume of blood ingested to insect pre-feeding
weight ranged from 0·99 to 14·25 (mean 8·23), and
the ratio of the estimated number of parasites
ingested per mg of insect biomass ranged from
2000 to 48 000 parasites (mean 28 000). There were
no differences between treatments in the absolute
parasites dose, nor were there any linear relation-
ships between the parasite dose and death day, E
value, reproductive value or estimate of total
fitness. There was a significant difference between
treatments in the ratio of the volume of blood
ingested per mg of insect biomass (Kruskal–Wallis,
blood: P= 1·67 × 10−4; parasites: P= 0·01), with
the mixed group ingesting significantly more blood
than the T. cruzi or control groups (Fig. 2;
KruskalMC, P< 0·05 for comparisons).

Reproduction

87·8–97·6% of insects in each group laid eggs, and
there was no significant difference between

treatment groups in this respect. The E values
were significantly different between treatments in
both the first and second oviposition cycles
(Kruskal–Wallis; cycle 1: P = 8·98 × 10−8; cycle 2:
P= 3·24 × 10−4, Fig. 3A and B). In both cycles, E
values for the T. cruzi or T. rangeli treatments
were significantly lower than the co-infected treat-
ment E values (Kruskalmc, P< 0·05). The T. cruzi
treatment had a significantly lower E value than
the control group in cycle 1 only (Kruskalmc, P<
0·05). The mean percentage of oviposited eggs that
hatched ranged between 79·4 and 84·3% for cycle
1; 62·4–81·8% for cycle 2; and 77·6–83·7% overall.
The percentage of eggs that hatched was not signifi-
cantly different between treatments. Additionally,
there was no association between E value and
per cent of eggs hatched.

Survival function

K–M survival curves (representing survival func-
tion, i.e. the probability of total time until failure),
were significantly different from each other (χ2 =
8·4, 3 df, P= 0·03, Fig. 4). The T. cruzi treatment
group had a significantly shorter time to failure
than the mixed treatment group (χ2 distribution
comparisons, P< 0·05).

Hazards analysis

The Coxmodel variation investigating the interaction
of treatment with blood:weight ratio was significant
(Likelihood ratio test, 24·67, 7 df, P= 8·67 × 10−4;
Supplementary Materials Table S1), suggesting
hazard (i.e. instantaneous risk of death) was not the
same between treatment groups even when blood
meal and body size were taken into account.
Investigating the blood:weight ratio allowed us to
control for differences in insect size by measuring
the effect of the quantity of blood (and also therefore,

Fig. 2. The distribution of the ratio of the volume of
blood consumed in the infective blood meal to mg of insect
biomass, across treatments. The mixed group blood:
weight ratio was significantly higher than that of the T.
cruzi and control groups.
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number of parasites for infected groups) per unit of
body mass. Quantity of blood was used in the calcula-
tion rather than parasite dose to be able to include the
control group. The main effects of T. cruzi treatment
were significant, with a hazard 2·17 times that of the
control group (eβ= 2·17, P= 4·33–04). The control
and mixed treatments interacted significantly with
the blood:weight ratio, but in opposite directions;
the control group hazard increased as the blood:
weight ratio increased, while the mixed group hazard
decreased with increases in the blood:weight ratio
(control: eβ= 1·26, P= 1·55 × 10−3; mixed: eβ= 0·74,
P= 5·64–03, Fig. 5).
The Cox model investigating the main and inter-

action effects of parasite dose was also significant
(Likelihood ratio test, 29·63, 5 df, P = 1·74 × 10−5).
The patterns and significant effects were the same
in both variants of the model (examining the effect

of absolute vs relative parasite dose), with effects
being slightly larger in the model investigating abso-
lute parasite dose. In both model variations there
were no differences in the main effects of treatment
on hazard. Main effects of parasite dose were signifi-
cant for T. rangeli and marginally significant for T.
cruzi, with a 3-fold increase in hazard at a dose of 1
million parasites from the hazard at 500 000 parasites
(T. rangeli: eβ= 3·27, P= 4·33–04; T. cruzi: eβ =
3·07, P= 6·5 × 10−2). Effects of the interaction
between treatment and parasite dose were significant
for the mixed group in both model variations (abso-
lute and relative parasite doses of the mixed group).
At 250 000 parasites, the mixed group hazard was

Fig. 3. E value distributions in each treatment group for oviposition cycle 1 (left) and oviposition cycle 2 (right). In both
cycles, the mixed group E values were significantly higher than the T. cruzi and T. rangeli treatment group E values. The
control group E values were significantly higher than the T. cruzi and T. rangeli treatments in cycle 1. In cycle 2, the
control group is higher than just the T. rangeli treatment.

Fig. 4. K–M survival curves for each treatment group.
The T. cruzi treatment survival function was significantly
different than that of the mixed group.

Fig. 5. Interaction of treatment with the blood:weight
ratio of the infective blood meal. Hazards were predicted
after 1000 simulations of the model. Figures are centred on
the mean ratio, 8·23. Grey shading indicates 95%
confidence intervals. Just the interactions in the bottom
row (the control and mixed treatment groups) were
significant.
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significantly higher than either single-species infec-
tion treatment, while at 1 million parasites the
mixed group hazard was significantly lower (mixed
vs T. cruzi: P= 0·025; Mixed vs T. rangeli, P=
0·00006; full summary in Supplementary
Materials, Tables S2 and S3). Interaction effects
were not significant when comparing the T. cruzi
treatment with the T. rangeli treatment, suggesting
their hazards were not significantly different from
each other at any parasite dose.

Fitness

Fitness estimates (λ) and reproductive values v2 and
v3 (corresponding to 60 and 90 days) were signifi-
cantly different between treatments (Kruskal–
Wallace; λ and v2: P = 1·69 × 10−7; v3: P= 1·42 ×
10−2), with T. cruzi and T. rangeli treatment
groups having significantly lower λ and v2 values
than the mixed and control groups (KruskalMC,
P< 0·01, Fig. 6). The reproductive value at 90
days (v3) was significantly different between the T.
cruzi and mixed group, with T. cruzi being lower
(KruskalMC, P< 0·05). The T cruzi and T. rangeli
treatment group fitness estimates and reproductive
values were not significantly different from each
other at any time point.

Infection status at death

The difference between treatment groups in the pro-
portion of samples that amplified in the qPCR was
marginally non-significant (Fisher’s Exact Test for
Count Data, P = 0·09), although there were no sign-
ificant differences after performing individual com-
parisons between each treatment and adjusting the
P-values for multiple comparisons. 90% of T. cruzi
treatment group samples amplified; 76·92% of T.
rangeli samples amplified; 61·53% of samples from
the mixed treatment group amplified T. cruzi; and
84·61% amplified T. rangeli. There was no parasite

DNA amplification for the pooled male and
offspring groups.

DISCUSSION

Co-infection: advantageous for the host and parasite?

We observed that insects co-infected with T. cruzi
and T. rangeli had higher survival, reproduction
and overall fitness, suggesting that T. Cruzi–T.
rangeli co-infection could reduce negative life
history consequences of a single infection with T.
cruzi or T. rangeli for R. prolixus. This could in
turn, lead to increases in the transmission potential
of T. cruzi and/or T. rangeli. Additionally, this
could be a way that virulent strains persist, especially
T. rangeli, which, as mentioned, is known to be
pathogenic to R. prolixus. Reported prevalences of
T. cruzi–T. rangeli co-infection in field-caught tria-
tomines have been found to be higher than single
infections of T. rangeli in R. prolixus (Groot, 1951;
Vallejo et al. 1988), R. pallescens (Pineda et al.
2008; Calzada et al. 2010; Gottdenker et al. 2016);
and R. colombiensis (Pavia et al. 2007), which
would support the idea of a co-infection advantage
for T. rangeli (Fig. 1). However, more data on
fitness in trypanosome-infected field-caught triato-
mines are needed to support this result.
Additionally, we found a threshold parasite dose

below which insects infected with a single species in-
fection had a lower instantaneous hazard rate (i.e.
risk of death) and above which co-infected insects
had a lower risk. This might increase the transmis-
sion potential of the parasites if the parasite dose in
the blood meal were associated with higher
numbers of parasites transmitted by the bugs.
However, T. cruzi infective dose does not correlate
with the number of parasites excreted (Wood,
1954; Urdaneta-Morales and Rueda, 1977;
Chowdury and Fistein, 1986; Azambuja et al.
2004, 2005), and the total trypanosome population
size and composition (proportion of each form
present) within a triatomine will fluctuate with
feeding status; significant decreases in parasite
numbers can occur within 4 h after feeding by as
much as 50% in some parts of the bug (Schaub and
Lösch, 1988; Schaub, 1989b; Kollien and Schaub,
1998a). Thus, it seems unlikely that the higher in-
fective doses tolerated by co-infected insects increase
the parasites’ transmission potential, aside from in-
creasing the transmission probability by keeping
the insect alive longer.

Insect reproduction: quality vs quantity

While the efficiency of egg production seemed to be
affected by parasite treatment, the per cent of ovi-
posited eggs that hatched was not. It is known that
the processes of egg growth and oviposition are

Fig. 6. Distribution of fitness estimates in each treatment
group. The control and mixed groups had significantly
higher fitness estimates than the T. cruzi and T. rangeli
groups.
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controlled separately in R. prolixus (Mundall, 1978).
Oviposition of badly formed eggs, which has been
observed in Cimex species, is rare, even in cases of
insect malnutrition (Buxton, 1930). This investment
in egg quality over quantity could be a mechanism
of insecticide resistance, which has been observed in
T. infestans eggs (Toloza et al. 2008), and could be
one factor that explains residual populations in
human homes after insecticidal spraying.

T. cruzi vs T. rangeli virulence

As mentioned, T. rangeli is considered to be patho-
genic to triatomines of the genus Rhodnius, while
T. cruzi has been described in several publications
as ‘subpathogenic’ (Schaub, 1989a, 1990, 1992;
Schaub and Losch, 1989a), i.e. pathogenic only in
the presence of external stress. In this light, it is sur-
prising that the fitness of the treatment group
infected with T. cruzi was not significantly higher
than the fitness of the T. rangeli treatment group.
However, the majority of studies supporting the
subpathogenic theory of T. cruzi in triatomines
have been carried out in the species T. infestans
(Schaub, 1988a, b; Schaub and Lösch, 1988;
Schaub and Losch, 1989a, b; Kollien and Schaub,
1998a, b; Kollien et al. 1998). Most studies investi-
gating effect of T. cruzi on R. prolixus life history
have found a mild effect (D’Alessandro and
Mandel, 1969; Neves and Peres, 1975; Fellet et al.
2014), and effects have also been observed in
Panstrongylus megistus (Lima et al. 1992) and
Mepraia spinolai (Botto-Mahan, 2009).
Additionally, Añez et al. (1992) also found no sign-
ificant difference in development or mortality
between insects infected with T. cruzi and insects
infected with T. rangeli. Moreover, recent studies
have found that T. cruzi can negatively affect R. pro-
lixus life history outcomes, depending on tempera-
ture (Fellet et al. 2014; Elliot et al. 2015) and
parasite strain (Peterson et al. 2015). This could be
due to increased parasite replication rates at higher
temperatures (Wood, 1954; Asin and Catalá, 1995).
However, the insects in this study were reared
under climate conditions similar to those found in
R. prolixus-endemic areas of Colombia (Hoyos
et al. 2007; Gutierrez et al. 2013), thus, if tempera-
ture were an underlying factor in T. cruzi virulence,
it would suggest that T. cruzimay also be virulent to
free-living Colombian R. prolixus.
Our survival results are not in agreement with the

other published study of R. prolixus survival when
co-infected with T. cruzi and T. rangeli, which
found that insects with mixed infections had
higher mortality (Añez et al. 1992). This could be
due to differences in temperature between the
studies (ours was carried out at higher tempera-
tures), insect stage and/or parasite strains.
Considering the high degree of polymorphism

found within both the T. cruzi and T. rangeli
species, it seems possible that the outcome of triato-
mine infection with either or both trypanosomes
could lie in a wide range of outcomes from mildly
virulent to positive. In our work, we have observed
a wide range of survival in insects infected with
different T. cruzi DTU I strains (Peterson et al.
2015).

Concluding remarks

Due to the inherent limitations of laboratory experi-
ments, the extrapolation of effects observed in the la-
boratory to their meaning in the natural system must
be carried out cautiously. That said, our findings
suggest that some T. Rangeli–T. cruzi co-infections
could ameliorate the negative effects of single-
species infections, allowing more virulent strains to
persist and potentially increasing the transmission
potential of both parasites. Further research into
T. cruzi–T. rangeli co-infections in other triatomine
systems and in field-caught bugs will provide more
insight into this topic.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be
found at http://dx.doi.org/10.1017/
S0031182016000615.
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