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ABSTRACT

We propose a stochastic model for claims reserving that captures dependence
along development years within a single triangle. This dependence is based on
a gamma process with a moving average form of order p≥ 0 which is achieved
through the use of poisson latent variables. We carry out Bayesian inference on
model parameters and borrow strength across several triangles, coming from
different lines of businesses or companies, through the use of hierarchical pri-
ors. We carry out a simulation study as well as a real data analysis. Results
show that reserve estimates, for the real data set studied, are more accurate with
our gamma dependence model as compared to the benchmark over-dispersed
poisson that assumes independence.
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1. INTRODUCTION

One of the largest liabilities of an insurance company is its future claims; there-
fore, estimation of adequate reserves for outstanding claims is one of the main
activities of actuaries in insurance and a major topic in actuarial science. The
need to estimate future claims, given available information about the past, has
led to the development of many loss reserving models.

In this paper, we study the problem of claims reserving using several run-off
triangles, each of them coming from different lines of business or from different
companies. For each triangle, we propose a stochastic dependence model of
moving average form of order p≥ 0. Furthermore, we pull strength across lines
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of business/companies by considering a hierarchical prior under a Bayesian
inferential approach.

In the sequel, we discuss a strand of the claims reserving literature related
to this work. For an in-depth introduction to the topic, the reader is referred
to Taylor (2012) or Wuthrich (2019).

The oldest and most widely used technique for reserving is the “chain-
ladder” (CL), which, due to its widespread utilisation and ease of implementa-
tion, is frequently taken as a benchmark. Although the CL has been originally
derived as a purely deterministic algorithm, several stochastic models provide
the same predictions. For instance, Mack (1993) provides a simple “distribu-
tion free” CL model, using just moments assumptions. One of the first models
with distributional assumptions on the claims payments was the over-dispersed
poisson (ODP) model, proposed by Renshaw and Verrall (1998) and popu-
larised by England and Verrall (2002). Among several other techniques, the
ODP model is implemented in the R package ChainLadder (Gesmann et al.,
2018). For a recent formulation of the stochastic CL, see Sriram and Shi
(to appear).

Early Bayesian stochastic formulations of the reserving problem for one
line of business can be found in Verrall (1991), de Alba (2002) and Ntzoufras
and Dellaportas (2002). A Bayesian formulation of the CL model is provided
in Gisler and Wüthrich (2008). More recent examples include Antonio and
Beirlant (2008), de Alba and Nieto-Barajas (2008), Peters et al. (2009), Meyers
(2009), the monograph Meyers (2015), the survey paper Taylor (2015), Gao
and Meng (2018), and the recent book Gao (2018). Going down a differ-
ent route and interpreting the run-off triangles as a spatially organised data
set, Lally and Hartman (2018) use Gaussian process regression techniques to
estimate the reserves.

On the other hand, Pinheiro et al. (2003) showed that in some cases the
gamma model presents a better fit to the observed values than other models
that are used more frequently. Under the Bayesian paradigm, the assump-
tion of conditionally gamma-distributed claims is made by several authors.
For example, de Alba and Nieto-Barajas (2008), Gisler (2006) and Merz and
Wüthrich (2015) propose similar Bayesian gamma models, differing mainly by
their choices of priors.

Over the past few years, several authors proposed Bayesian models for
multivariate loss reserving. One of the first contributions to this literature is
Merz and Wüthrich (2010), where the authors develop a log-normal paid-
incurred chain model. This model is further extended in Peters et al. (2014).
Shi et al. (2012) use a multivariate log-normal model for incremental claims
to examine calendar year effects when multiple triangles are available, while
Merz et al. (2013) assume a log-normal model for the log-link ratios. Zhang
and Dukic (2013) perform full Bayesian inference for models defined through
several combinations of copulas and marginal distributions and Avanzi et al.
(2016) explore a multivariate Tweedie family of models.

Correlation in triangles has been studied by several authors and in dif-
ferent ways. First, we discuss the dependence among accidental years and/or
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TABLE 1

RUN-OFF TRIANGLE OF AVAILABLE DATA FOR BUSINESS k= 1, . . . ,K.

Business k

Year of Development year
origin 1 2 · · · j · · · n− 1 n

1 X1,1,k X1,2,k · · · X1,j,k X1,n−1,k X1,n,k

2 X2,1,k X2,2,k · · · X2,j,k X2,n−1,k

...
...

... · · ·
...

i Xi,1,k Xi,2,k · · · Xi,n+1−i,k
...

...
...

n− 1 Xn−1,1,k Xn−1,2,k

n Xn,1,k

calendar years. For instance, Avanzi et al. (2020) use generalised linear models;
Wüthrich (2010) proposes a Bayesian CL and Guszcza (2008), Zhang et al.
(2012), Shi and Hartman (2016) and Shi (2017) use hierarchical models. Next,
we highlight some of the articles that introduce dependence among develop-
ment years. For example, Kremer (2005) proposes a first-order autoregressive
model along development years and uses least squares to pool information
across multiple triangles; De Jong (2006) considers lognormal cumulative
claims ratios together with an integrated moving average model; de Alba and
Nieto-Barajas (2008) take gamma distributions for the incremental claims and
introduce order one dependence through a set of latent variables inducing
a Markov process for the claims. Our proposed model, on the other hand,
assumes gamma distributions for the incremental claims and introduces an
order-p dependence through poisson latent variables. We further pull strength
across several triangles through the use of hierarchical priors on the model
parameters.

To formally state the problem, we denote by Yi,j,k the incremental claim
amount arising from year of origin i and paid in development year j; Pi,k is
the net premium received at year i. Index k can refer to either different lines
of business within the same company, or the same line of business across dif-
ferent companies. Furthermore, we define Xi,j,k = g(Yi,j,k), that is a function of
the incremental payments, where g(·) could be a rescaling function or the loss
ratio Yi,j,k/Pi,k. Let us assume that for each k we are in calendar year n and the
available information is given by Dn =⋃K

k=1 Dk
n , where

Dk
n = {

Xi,j,k : i= 1, . . . , n, j= 1, . . . , n− i+ 1
}
.

These available data can be represented in terms of run-off triangles as the one
given in Table 1.

The problem consists in predicting the quantities Xi,j,k (and Yi,j,k), for
i= 2, 3, . . . , n and j= n+ 2− i, n+ 3− i, . . . , n, which correspond to the right-
lower triangle in Table 1. In particular, more than predicting individual
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values Yi,j,k, we are interested in the prediction of outstanding claims and
thus having the necessary information to constitute adequate reserves. Let
Ri,k =∑n

j=n+2−i Yi,j,k the total aggregate outstanding claims for each year of
origin i= 2, . . . , n and business k. Moreover, the total outstanding claims for
business k, considering all years, is Rk =∑n

i=2 Ri,k, and the grand total becomes
R=∑K

k=1 Rk.
Let us assume that the probabilistic model for Xi,j,k is described condi-

tional on some parameter vector θ . Then, for business k, all information on
the outstanding reserves at time n is given by the distribution of Ri,k |Dn:

p(Ri,k |Dn)=
∫
p(Ri,k | θ ,Dn)p(θ |Dn)dθ ,

which is written as an average of the model p(Ri,k | θ ,Dn) over all possible
parameters, weighted by their posterior probability, p(θ |Dn).

Before proceeding, we introduce some notation: Ga(α, β) denotes a gamma
density with mean α/β and variance α/β2; Po(γ ) denotes a poisson density with
mean and variance γ .

2. DEPENDENT GAMMA MODEL

Let X= {Xi,j,k} be the set of variables of interest, for origin year i= 1, . . . , n,
development year j= 1, . . . , n and business k= 1, . . . ,K. For a particular claim
Xi,j,k, we propose a dependence model of moving average nature for the claims
made in the previous p development years, say j− 1, . . . , j− p. To achieve our
objective, we define a set of latent variables Z= {Zi,j,k}, one for each (i, j, k).

Therefore, our model is defined through a two-level hierarchical specifica-
tion of the form:

Xi,j,k |Z∼Ga

(
αi,k +

p∑
l=0

Zi,j−l,k , βj,k +
p∑
l=0

γj−l,k

)
,

Zi,j,k ∼ Po
(
αi,kγj,k

)
(2.1)

independently for i, j= 1, . . . , n and k= 1, . . . ,K, where {αi,k}, {βj,k} and {γj,k}
are all nonnegative parameters, and p≥ 0 is the order of dependence across
development years. We define Zi,j,k = 0 with probability one (w.p.1), and
γj,k ≡ 0, for j ≤ 0. We will refer to (2.1) as dependent gamma model (DGM).

The role of the latent variables Z is to introduce dependence across devel-
opment years. The marginal distribution for the set X is an infinite (discrete)
mixture of gamma distributions with poisson weights, that is:

f (x)=
∞∑

z1,1,1=0

· · ·
∞∑

zn,n,K=0

∏
i,j,k

f (xi,j,k | z)f (zi,j,k)

where f (xi,j,k | z) and f (zi,j,k) are the gamma and poisson distributions given
in (2.1). The discreteness of the poisson random variables does not affect the
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model performance. If γj,k = 0, then Zi,j,k = 0 w.p.1 so the influence (depen-
dence) of that specific development year j with future years is null. If γj,k = 0 for
all j and k, the Xi,j,k become independent. Alternatively, independence across
all development years can be achieved by taking p= 0.

The choice of the poisson distributions for the latent variables is conve-
nient to obtain an appealing interpretation of the model. By taking iterative
expectations in model (2.1), the marginal expected value of each Xi,j,k becomes

μi,j,k =E
(
Xi,j,k

)= αi,k
(
1+∑p

l=0 γj−l,k
)

βj,k +∑p
r=0 γj−r,k

= αi,kπj,k, (2.2)

where πj,k = {
1+∑p

l=0 γj−l,k
}

/
{
βj,k +∑p

r=0 γj−r,k
}
are development year spe-

cific weights. When we take γj,k = 0 for all j and k, these weights become
πj,k = 1/βj,k so μi,j,k = αi,k/βj,k.

Since
∑n

j=1 πj,k �= 1, we propose the following transformations to define
interpretable quantities:

α∗
i,k = αi,k

n∑
j=1

πj,k and π∗
j,k = πj,k∑n

l=1 πl,k
(2.3)

so that Equation (2.2) can be written as μi,j,k = α∗
i,kπ

∗
j,k, where

∑n
j=1 π∗

j,k = 1. In
this case, α∗

i,k =∑n
j=1 μi,j,k can be interpreted as the ultimate total amount for

business k at origination year i, and π∗
j,k can be interpreted as the proportion of

α∗
i,k corresponding to development year j in business k.
The marginal variance for each Xi,j,k can also be computed using iterative

variance results. This has the form:

Var
(
Xi,j,k

)= αi,k
(
1+ 2

∑p
l=0 γj−l,k

)
(
βj,k +∑p

r=0 γj−r,k
)2 . (2.4)

Additionally, as a measure of the dependence induced by our model, we
can compute in closed form the covariance between any two claims for devel-
opment years j and j+ s, with 1≤ s≤ p, for the same origin year i and the same
business k. This becomes

Cov(Xi,j,k,Xi,j+s,k)= αi,k
∑p−s

l=0 γj−l,k(
βj,k +∑p

l=0 γj−l,k
) (

βj+s,k +∑p
l=0 γj+s−l,k

) (2.5)

and takes the value of zero for s> p or if the two claims come from different
origin years (i′s) or different business (k′s).
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Finally, with expressions (2.4) and (2.5), we can easily compute the correla-
tion between Xi,j,k and Xi,j+s,k, for 1≤ s≤ p, which has the form:

Corr(Xi,j,k,Xi,j+s,k)=
∑p−s

l=0 γj−l,k√
1+ 2

∑p
l=0 γj−l,k

√
1+ 2

∑p
l=0 γj+s−l,k

. (2.6)

We note that expression (2.6) does not depend on the parameters αi,k and
βj,k, it is only a function of parameters {γj,k}. Since expression (2.6) does
not depend on the origin year i, we will denote the correlation as ρj,j+s,k for
s≤ p. Specifically, the numerator is a function of the parameters shared by
development years j and j+ s, that is, γl,j for l = j+ s− p, j+ s− p+ 1, . . . , j.
Larger/smaller values of γl,k induce a larger/smaller correlation.

Therefore, the set {γj,k} controls the degree of dependence across develop-
ments years in the business-specific triangle k, for instance, if γj,k = 0 for all
development years j, the correlation becomes zero between any two claims for
that specific business k. In general, for values of γj,k > 0, the dependence (in
terms of correlation), induced by our model (2.1), is positive and takes values
in the whole range, that is ρj,j+s,k ∈ [0, 1], which is useful in the modelling of
trends along development years in a run-off triangle.

3. BAYESIAN INFERENCE

Recall that available data consist of run-off triangles as those depicted
in Table 1, that is, X= {Xi,j,k} for i= 1, . . . , n, j= 1, . . . , n+ 1− i and
k= 1, . . . ,K. To carry out a full Bayesian analysis of the model, we rely on
data augmentation techniques (e.g., Tanner, 1991) to deal with the unobserved
latent variables Z. If we denote by θ = {αi,k, βj,k, γj,k}, the set of all model
parameters, the likelihood, assuming that we have observed the latent vari-
ables, is simply the joint distribution of the observed data as well as the latent
variables, that is,

f (x, z | θ)=
n∏
i=1

n+1−i∏
j=1

K∏
k=1

{
Ga(xi,j,k | αi,k +

p∑
l=0

zi,j−l,k , βj,k +
p∑
l=0

γj−l,k)

× Po
(
zi,j,k | αi,kγj,k

) }
.

To borrow strength across different triangles in the estimation procedure,
we propose a hierarchical prior of the form:

αi,k | aαi, bαi ∼Ga(aαi, bαi) with aαi ∼Ga(aα0, bα0) and bαi ∼Ga(aα0, bα0)

βj,k | aβj, bβj ∼Ga(aβj, bβj) with aβj ∼Ga(aβ0, bβ0) and bβj ∼Ga(aβ0, bβ0)

γj,k | aγ j, bγ j ∼Ga(aγ j, bγ j) with aγ j ∼Ga(aγ 0, bγ 0) and bγ j ∼Ga(aγ 0, bγ 0),
(3.1)
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conditionally independent for k= 1, . . . ,K, with suitable values aα0, bα0, aβ0,
bβ0, aγ 0 and bγ 0. Smaller/larger prior variance on the hyper-parameters allows
for a lower/higher borrowing of strength across k.

Posterior distribution is characterised through the full conditional distribu-
tions of all model parameters θ plus the conditional distributions for the latent
variables Z, as well as the conditional distributions of the hyper-parameters
of the hierarchical prior specification, which are given in the Appendix. Since
these distributions do not have standard form, posterior inference would
require the implementation of a Gibbs sampler (Smith and Roberts, 1993)
with Metropolis-Hastings steps (Tierney, 1994). Alternatively, since all model
and prior distributions involved are of standard form, Markov Chain Monte
Carlo (MCMC) procedures can also be implemented in the R package rjags
(Plummer, 2018).

4. RESULTS

4.1. Simulated data

Before presenting a detailed application of the proposed DGM on a real data
set, we briefly discuss its performance on a simulation study.

For this example, we fix the number of lines of business K = 2 and assume
the claims are fully developed after n= 4 years. We then generate a data set
from the model described in (2.1), with the following specifications: p= 1;
αi,1 = 1 and αi,2 = 2 for i= 1, . . . , 4; βj,k = 1 ∀j, k; and {γj,k, j= 1, . . . , 4} =
{1, 4, 6, 2}, for k= 1, 2. In this case, α∗

i,1 = 4 and α∗
i,2 = 8 for i= 1, . . . , 4; and

π∗
j,k = 1/4 ∀j, k. Additionally, ρ1,2,k = 0.174, ρ2,3,k = 0.263 and ρ3,4,k = 0.317,

for k= 1, 2. Since we are only changing the value of αi,k for k= 1, 2, the
proportions and correlations across development years remain the same in
both triangles.

To perform inference on this model, we run two independent Markov
chains, both with priors as discussed in Section 3 and hyper-parameters aα0 = 2,
bα0 = 1, aβ0 = 2, bβ0 = 2, and aγ 0 = 3, bγ 0 = 1. The burn-in was set to 10, 000
samples and 10, 000 samples were kept for each chain.

The assessment of the convergence of the Markov chains is made visually,
through their trace plots, as show in Figure 1. Mixing of the chains is appro-
priate and shows no trend and the estimated densities are smooth. The other
parameters perform similarly.

The 90% high posterior density (HPD) intervals using the samples from
both chains are shown in Figure 2. The plot is divided in three panels, where
each point in the horizontal axis denote one of the unknown (identifiable)
parameters: α∗

i,k, ρj,j+s,k and π∗
j,k, respectively.

From Figure 2, we can see that almost all parameters (apart from α∗
2,2) lie

within their respective 90% HPD interval (red bar) and most of the point esti-
mates (red dots) are very close to the real values (black dots). The reason why
α∗
2,2 lies away from its HPD interval is because we are using a single replicate of

the data.
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FIGURE 1: Trace-plots of some parameters for the Markov Chains (left) and posterior density (right) for the
simulated data.
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TABLE 2

GROUP CODES AND NAMES FOR THE 10 COMPANIES ANALYSED. THESE CORRESPOND
TO THE LARGEST COMPANIES BASED ON THEIR POSTED RESERVES IN 1997.

k Group codes Group name

1 1767 State Farm Mut Grp
2 2003 United Services Automobile Asn Grp
3 7080 New Jersey Manufacturers Grp
4 4839 FL Farm Bureau Grp
5 388 Federal Ins Co Grp
6 1090 Kentucky Farm Bureau Mut Ins Grp
7 3240 NC Farm Bureau Ins Grp
8 6947 Tenn Farmers Mut
9 620 Employers Mut Co Of Des Moines
10 692 Wawanesa Ins Grp

5
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FIGURE 2: Parameter estimates for simulated data.� 90% HPD intervals, • posterior median and • true
parameters.

4.2. Real data

The data used in this section consist of incremental paid losses for personal
auto insurance in the US, a data set compiled by Meyers and Shi (2011). In
order to fit the proposed DGM, we only used information up to 1997, which
leaves 10 years for testing. Based on the subset of insurers selected (Meyers,
2015, Appendix A), we selected the 10 largest insurers (by posted reserves
in 1997) to perform our analysis on. The group codes for these insures are
presented in the first column of Table 2 (in decreasing order of their 1997
reserves).

Before fitting any model, we compute the average (over accident years)
sample auto-correlation function (ACF) of the incremental payments across
development years. More precisely, for each company k= 1, . . . ,K and for
each accident year i= 1, . . . , I − 1, we computed the ACF across development
years, that is, the ACF of {{Yi,j,k}}Jj=1. Then, for each lag of the ACF, we took
the average over possible accident years. Note that for the �-th lag in the ACF,
we computed J − � values, one for each accident year. In Figure 3, we plot
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FIGURE 3: Average auto-correlation function for upper triangle of incremental payments with lags on the
development year. Average across accident years.

these average ACFs for each one of the selected companies. From the figure,
we can see a clear pattern: the average ACF is positive and assumes its largest
value for lag 1. For all other lags, the average ACF is negative with comparably
smaller absolute values.

To avoid numerical problems we rescaled the data, first dividing all
claims by 1000 and then taking its square root, that is, Xi,j,k = g(Yi,j,k)=√
Yi,j,k/1000 . Then played with different specifications of the prior distribu-

tions. Specifically, we took p ∈ {0, . . . , 5}, aα0 = bα0 ∈ {1, 10}, aβ0 = bβ0 ∈ {1, 10}
and aγ 0 = bγ 0 = 10. The combinations of these values lead to 24 models which
are summarised in Table 3. Note that aβ0 = bβ0 = 1 (or 10) induce a larger (or
smaller) prior variance on aβj and bβj which in turn implies a higher (or lower)
borrowing of strength across βjk. The same applies to αik. For γjk, our hier-
archical prior choice allows for a low borrowing since the dependence among
development years might be different across triangles.

To show the proposed hierarchical priors (3.1) do have an effect of borrow-
ing strength across triangles, we also fitted our model with independent priors
of the form:

αi,k ∼Ga(aα, bα) βj,k ∼Ga(aβ , bβ) and γj,k ∼Ga(aγ , bγ ) (4.1)

with aα = bα = aβ = bβ = aγ = bγ = 1. The hyper-parameters here are set as
their expected values of the hierarchical prior (3.1) for all models of Table 3.

For all models, we ran Gibbs samplers with two parallel chains, each one
with 10,000 iterations after a burn-in of 100,000 iterations and keeping one of
every 10th to compute posterior estimates. Trace plots for the model parame-
ters with hierarchical priors behave similarly to those in Figure 1, which show
a satisfactory convergence.
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TABLE 3

PRIOR SPECIFICATION FOR THE 24 MODELS. THE TABLE IS SORTED
(IN ASCENDING ORDER) BY p, THEN aα0 AND FINALLY BY bβ0.

Model p aα0 = bα0 aβ0 = bβ0

1 0 1 1
2 1 1 1
...

...
...

...
6 5 1 1

7 0 10 1
...

...
...

...
12 5 10 1

13 0 1 10
...

...
...

...
18 5 1 10

19 0 10 10
...

...
...

...
24 5 10 10

The best model was selected based on two goodness-of-fit measures: the
deviance information criterion (DIC) (Spiegelhalter et al., 2002), which is
a model selection criterion that penalises for model complexity; and the
L-measure (Ibrahim and Laud, 1994) based on the posterior predictive density
and defined as:

L(ν)= 1
M

K∑
k=1

n∑
i=2

n∑
j=n−i+2

Var(XF
i,j,k | x)+ ν

M

K∑
k=1

n∑
i=2

n∑
j=n−i+2

{E(XF
i,j,k | x)− xi,j,k}2,

whereXF
i,j,k and xi,j,k are the predictive and observed values ofXi,j,k, respectively,

ν ∈ [0, 1] is a weighting term which determines a trade-off between variance and
bias, andM =Kn(n− 1)/2 is the number of unknowns.

Figure 4 presents the DIC values obtained for each of the 24 models. Values
are shown in four blocks of six models, each block has the same prior specifi-
cations but with varying p. In the four blocks, the best fitting is obtained with
p= 1, with a shorter difference in the third block for p= 2, 3. Across blocks,
it seems that there is an increasing trend in the DIC values. Overall the best
fitting is achieved by model 2, which corresponds to p= 1, aα0 = bα0 = 1 and
aβ0 = bβ0 = 1.

On the other hand, Figure 5 includes the L-measure with ν = 1/2 for in-
sample data (left panel) and out-of-sample data (right panel). Again results are
reported in four blocks of six models as in Figure 4. The qualitative behaviour
of the measures in- and out-of-sample is very similar and also similar to what is
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FIGURE 4: Deviance Information Criterion (DIC) for the 24 models of Table 3. Vertical dotted lines divide
the models in four blocks of six models.
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FIGURE 5: L-measure with ν = 1/2 for the 24 models of Table 3. In sample measures (left) and out of sample
measures (right). Vertical dotted lines divide the models in four blocks of six models.

observed with the DIC in Figure 4. However, the increasing trend of the DIC
is not shown with the L-measures. The third block has lower values than the
second and fourth blocks. Again, the best fit is achieved by model 2.

Moreover, the goodness-of-fit measures, DIC and L-measure, for the six
model specifications with independence priors (4.1) and for p ∈ {0, . . . , 5} are
reported in Table 4. These values are a lot higher than then ones we obtain
with the four different specifications of the hierarchical prior.

Therefore, results from the winning model 2 of Table 3 will be discussed
in the sequel. Figure 6 shows the point estimates, based on the 50% quantile,
for α∗

i,k (left panel) and π∗
j,k (right panel). One can clearly see that the values

of α∗
i,k (the ultimate total amount for business k with origin at year i) decrease

along the columns, that is, when k increases. This is expected, as the businesses
are ordered in a decreasing way based on their size (posted reserves in 1997).
Although less pronounced, it is also possible to see the origin year effect, rep-
resented by the fact that α∗

i,k is (slightly) increasing in i (across rows). On the
other hand, a clear pattern also emerges from the estimates of π∗

j,k, where one
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TABLE 4

GOODNESS-OF-FIT MEASURES WITH INDEPENDENCE PRIORS (4.1) FOR p ∈ {0, 1, 2, 3, 4, 5}. DIC AND
L-MEASURE (IN AND OUT OF SAMPLE) WITH ν = 1/2.

Measure/p 0 1 2 3 4 5

DIC 1.89e+03 1.72e+03 1.65e+03 1.63e+03 1.67e+03 1.71e+03
L-measure (in) 9.83e+11 9.19e+11 9.22e+11 9.02e+11 1.00e+12 1.02e+12
L-measure (out) 4.01e+10 3.14e+10 3.44e+10 3.33e+10 2.98e+10 3.04e+10
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FIGURE 6: Posterior estimates (medians) for α∗
i,k (left) and π∗

j,k (right) for the real data obtained with the best
fitting model with hierarchical priors.

can observe a decrease in their values when the development year j increases
(across rows). The intuition for this result is that the further we are from the
first development years j, the smaller is the proportion of the ultimate total
claim amount α∗

i,k expected in development year j.
Since for the best fitting model p= 1, there are only nine correlation coef-

ficients ρj,j+1,k, as in (2.6), for j= 1, . . . , 9 and for each company k= 1, . . . , 10.
Posterior densities of these coefficients are presented in Figure 7. From these
plots we can see that, for most development years j, all companies have simi-
lar correlation distributions. One particularly different case is for development
year j= 5 (centre panel), where almost all posterior distributions are left-
skewed, apart from two, which are right-skewed and concentrated on smaller
values. A similar situation occurs for development year j= 7, when only one
company’s posterior distribution stands out as left-skewed. In general, all cor-
relations are likely to be smaller than 0.5. An interesting fact is that correlations
tend to be larger (around 0.5) and with low dispersion for odd years j= 1, j= 3
and j= 5; be very small (less than 0.2) for years j= 2 and j= 4; and with a
range between 0 and 0.4 for years j= 6, 7, 8, 9. This could provide a degree of
importance for each development year in the whole triangle.
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FIGURE 7: Posterior densities of the correlation coefficients ρj,j+1,k, j= 1, . . . , 9 obtained by the best fitting
model with hierarchical priors. Darker colours denote larger companies while lighter colours denote smaller

companies.

We compute posterior predictive distributions for Yi,j,k in the lower-right
triangle, that is for i= 2, . . . , n, j= n+ 2− i, . . . , n and n= 10. We rescaled
back the values with the inverse function g−1(·) and present the median (dark
red) together with the 95% credibility intervals (light red), for two companies:
k= 1, which corresponds to the largest company, State Farm Mut Grp (code
1767), in Figure 8; and k= 10, which corresponds to the smallest company,
Wawanesa Ins Grp (code 692), in Figure 9. For each accident year, the light
grey dots represent the observed loss data (upper triangle) and the dark grey
dots are observations not provided to the model (lower triangle).

For the largest company (Figure 8), the model is able to fit the in-sample
data perfectly well, and it produces very precise predictions. For the smallest
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FIGURE 8: Largest company in the sample (code 1767). Posterior predictions of incremental paid losses per
development year i, for all accident years j obtained with the best fitting model with hierarchical priors.
• Observed claims (upper triangle), • Non-observed claims (lower triangle),� 95% credibility interval,
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FIGURE 9: Smallest company in the sample (code 692). Posterior predictions of incremental paid losses per
development year i, for all accident years j obtained with the best fitting model with hierarchical priors.
• Observed claims (upper triangle), • non-observed claims (lower triangle),� 95% credibility interval,
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company (Figure 9), the model also performs well, even being able to fit the
hump at development year 2 in all accident years. The credible intervals are,
perhaps, a little wider than those for the largest company (k= 1).

To see the advantage of our modelling with respect to standard methods,
we provide a comparison between the proposed DGM, which considers depen-
dence across development years and pulls strength across the 10 companies,
with the ODP. We fitted 10 independent ODP models using the R-package
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ChainLadder (Gesmann et al., 2018). For the comparison, we show the
reserves per accident year i as well as the aggregated reserves for the 10
companies.

Figure 10 presents the reserves estimates from the DGM (red) and the ODP
model (blue) for each accident year i= 1, . . . , 10, for the largest company k= 1
(code 1767) and the smallest company k= 10 (code 692). For the DGM, pos-
terior predictive estimates are given by the median and the quantiles to form a
95% CI. For the ODP, predictions are based on maximum likelihood estimates
and bootstrap 95% CI. For comparison, we also include the true observed
claims (grey). For both companies, estimates produced by both models, DGM
and ODP, are very precise for the first seven accident years (i= 1, . . . , 7), but
for the last three accident years (i= 8, 9, 10) interval estimates of DGM are
wider than those of the ODP showing more dispersion. However, for these last
3 years, DGM point estimates show less bias than those from ODP model.

To further analyse the prediction performance, we aggregate the reserves
for all 10 companies and compute the predictive distribution of the aggregated
reserve, which is shown in Figure 11 as a probability histogram. As postulated,
the DGM (red) has larger variance and smaller bias than the ODP (blue). The
pink area corresponds to the intersection of both histograms. Additionally, we
can see that the predictive distribution of the ODP lies away from the true
observed reserve (grey vertical line), whereas the predictive distribution of the
DGM captures well the true reserve.

As expected from the goodness-of-fit measures presented, the reserves com-
puted based on the model with independent priors is far from the results
achieved by the DGMwith hierarchical priors and the ODP and for this reason
are not included in the plots. For the sake of comparison, for the best perform-
ing model with independent priors, p= 3, the best estimate for the reserves is
around 1.0× 107. Another expected result from the goodness-of-fit measures
is the fact that the models with p= 0 and p= 1 would have similar predictive
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FIGURE 11: Predictive distributions of the aggregated reserves for all 10 companies obtained with the best
fitting model with hierarchical priors. – True claims;� DGM; � ODP (Bootstrap).

power, since both their DICs and L-measures are similar. This is, indeed, the
case with some advantage for the model with p= 1 over the model with p= 0.

It is important to notice that this exercise was performed to showcase the
ability of the proposed DGM to perform accurate forecasts of future claims
payments. For this task, point estimates were chosen as the 50% quantile
(median), and the 95% credibility intervals were determined by the 2.5% and
97.5% quantiles of the posterior distributions. In practice, modern solvency
regulations, such as Solvency II (ECB, 2009) and the Swiss Solvency Test
(FINMA, 2007), require reserves to be computed in a much more conservative
fashion. For example, the first requires reserves to be computed based on the
99.5%-quantile or value at risk (VaR) of the distribution of the losses, while the
latter uses the expected shortfall (also called conditional VaR) at the level 99%
of the same distribution. Both quantities, and their related credibility inter-
vals, can be easily computed from the model’s outputs, as the Markov Chain
Monte Carlo algorithm returns samples of the required posterior (predictive)
distributions.

Lastly, as an alternative procedure, we also adjusted our model to the
loss ratios Xi,j,k = g(Yi,j,k)=Yi,j,k/Pi,k. We fitted the 24 model specifications of
Table 3. The qualitative behaviour of the DIC and L-measures was roughly
the same as when using the scaling transformation. In both set-ups, the best
model is found to be model 2, with p= 1, and the posterior predictive distribu-
tions for the reserves are very similar. Nevertheless, it is worth mentioning that
the reserves for the other 23 models are more precise when using the scaling
transformation squared root of incremental payment divided by 1000.

Additionally, given that the size of the 10 companies is different, we test
the need of hierarchical priors for the accident year effects αi,k. For that we
adjusted a model with independent priors for the α parameters and hierarchical
priors for β and γ . The hyper-parameters used were the same as above. Here,
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TABLE 5

POSTERIOR QUANTILES FOR THE RESERVES UNDER DIFFERENT MODELS. H: HIERARCHICAL
PRIORS FOR ALL PARAMETERS, I: INDEPENDENT PRIORS FOR ALL PARAMETERS, HI: INDEPENDENT
PRIORS FOR α’S AND HIERARCHICAL PRIORS FOR β’S AND γ ’S, LR: LOSS RATIO WITH HIERARCHICAL

PRIORS FOR ALL PARAMETERS, T: TRUE RESERVES.

q2.5% q50% q97.5%

H 14,215,629 15,861,776 17,547,465
I 6,514,440 10,839,046 23,304,484
HI 4,193,141 7,373,883 16,627,489
LR 14,309,830 16,008,333 18,104,569
T 14,676,308

the results for the best model (p= 1 with aβ0 = bβ0 = 1) are as bad as in the
independent case (see Table 4).

We also summarise the performance of the different analysis, in terms of the
predicted reserves, in Table 5. The best performance is when we use hierarchical
priors for all parameters, with similar numbers for the analysis made using the
loss ratio.

5. CONCLUDING REMARKS

We presented an easily interpretable stochastic model for claims reserving,
the DGM, that captures dependence across development years within a single
triangle and combines information from multiple triangles through a judi-
cious choice of prior distributions. Dependence is of any order p≥ 0 of past
developments years, with a very appealing parametrisation that can be easily
interpreted.

Posterior inference of our model can easily be obtained through a MCMC
procedure implemented in rjags. Code is available upon request from the
second author.

Our examples, using the National Association of Insurance Commissioners
data set, show that our method works well for both small and large com-
panies, with more accurate predictions than the benchmark model (ODP).
Moreover, dependence is summarised through correlation coefficients across
different development years within the same company (ρj,j+s,k) and the other
interpretable parameters (α∗

i,k and π∗
j,k) provide some insight of the ultimate

total claims per accident year i and how it is divided into the development
years j, respectively, for each triangle k.

Due to the simple hierarchical structure of the DGM, it may be possible (at
least numerically) to study further quantities, such as the claims development
result – the difference between (a) the reserves predicted at time t and (b) the
reserves predicted at time t+ 1 plus the payments made at time t+ 1. For more
information on this “one-year risk,” see Ohlsson and Lauzeningks (2009) or
Merz and Wüthrich (2015).
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Our DGM construction (2.1) is very flexible and can also be adapted to
seasonal dependence. That is, if the seasonality of the data is s, then the model
would be Xi,j,k |Z∼Ga(αi,k +∑p

l=0 Zi,j−sl,k, βj,k +∑p
l=0 γj−sl,k). For instance, if

the data were available in a monthly basis, we can assume a seasonality of
order s= 12 so that the incremental claims made in January of the current year
can depend on the January claims of the previous p years. On the other hand,
our DGM does not currently consider negative dependence. These and other
generalisations are worth studying in the future.
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APPENDIX

Posterior conditional distributions of model parameters θ and the hyper-
parameters, for i, j= 1, . . . , n, k= 1, . . . ,K, are

(i) Full conditional of αi,k

f (αi,k | rest)∝
⎧⎨
⎩e−(bαi+∑n+1−i

j=1 γj,k)
n+i−1∏
j=1

(βj,k +
p∑
l=0

γj−l,k)xi,j,k

⎫⎬
⎭

αk,i

α
aαi+∑n+1−i

j=1 zi,j,k−1

i,k

× 1∏n+1−i
j=1 	(αi,k +∑p

l=0 zi,j−l,k)
I(αi,k > 0)

(ii) Full conditional of βj,k

f (βj,k | rest)∝
(

βj,k +
p∑
l=0

γj−l,k

)∑n+1−j
i=1 (αi,k+∑p

l=0 zi,j−l,k)

e−βj,k(bβj+∑n+1−j
i=1 xi,j,k)

× β
aβj−1
j,k I(βj,k > 0)
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(iii) Full conditional of γj,k

f (γj,k | rest)∝
⎧⎨
⎩

p∏
r=0

(
βj+r,k +

p∑
l=0

γj+r−l,k

)∑n+1−j
i=1 (αi,k+∑p

l=0 zi,j+r−l,k)
⎫⎬
⎭

× e−γj,k

(
bγ j+∑p

r=0
∑n+1−j

i=1 xi,j+r,k+∑n+1−j
i=1 αi,k

)
γ
aγ j+∑n+1−j

i=1 zi,j,k−1
j,k I(γj,k > 0)

(iv) Full conditional of zi,j,k

f (zi,j,k | rest)∝
{

αi,kγj,k

p∏
r=0

(βj+r,k +
p∑
l=0

γj+r−l,k)xi,j+r,k

}zi,j,k

× 	−1(zi,j,k + 1)

{
p∏
r=0

	−1(αi,k +
p∑
l=0

zi,j+r−l,k)

}
I{0,1,...}(zi,j,k)

(v) Full conditionals of aαi and bαi

f (aαi | rest)∝ (bv)Kaαi

	K (aαi)

(
K∏
k=1

αi,k

)aαi

Ga(aαi | aα0, bα0) and

f (bαi | rest)∝ (bαi)Kaαi e−bαi
∑K

k=1 αi,kGa(bαi | aα0, bα0)

(vi) Full conditionals of aβj and bβj

f (aβj | rest)∝ (bβj)Kaβj

	K (aβj)

(
K∏
k=1

βj,k

)aβj

Ga(aβj | aβ0, bβ0) and

f (bβj | rest)∝ (bβj)Kaβj e−bβj
∑K

k=1 βj,kGa(bβj | aβ0, bβ0)

(vii) Full conditionals of aγ j and bγ j

f (aγ j | rest)∝ (bγ j)Kaγ j

	K (aγ j)

(
K∏
k=1

γj,k

)aγ j

Ga(aγ j | aγ 0, bγ 0) and

f (bγ j | rest)∝ (bγ j)Kaγ j e−bγ j
∑K

k=1 γj,kGa(bγ j | aγ 0, bγ 0)
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