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In this paper, we present a distributed Proportional-Integral (PI) strategy with self-tuning

adaptive gains for reaching asymptotic consensus in networks of non-identical linear agents

under constant disturbances. Alternative adaptive strategies are presented, based on global

or local measures of the agents’ disagreement. The proposed approaches are validated on a

representative numerical example. Preliminary analytical results further confirm the viability

of the self-tuning strategies.
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1 Introduction

The problem of coordinating and controlling the motion of ensembles of interconnected

dynamical units (or agents) has recently attracted intense research effort because of its

application to diverse fields of Science and Engineering [1–3]. Examples include the rendez-

vous problem [4], formation control [5], frequency synchronization in power grids [6],

flocking [7], and platooning problems [8]. In all these applications, a network of dynamical

systems (agents) are required to coordinate their individual motions to perform a common

task or exhibit a desired collective behaviour. Centralized or distributed control strategies

can be used to solve this problem. Unlike centralized control where a central “station”

is required for controlling the whole network, distributed control only requires local

interactions among agents. Therefore, a distributed control strategy is more apt in all those

situations where several constraints are present and cannot be avoided such as limited

resources and energy, short wireless communication ranges, narrow bandwidths, etc [9].

The study of distributed and decentralized strategies to achieve consensus and syn-

chronization has been the subject of much research effort in the literature. A common

assumption which is often taken is that all agents in the ensemble share the same identical

dynamics, but this is hardly the case in many real-world examples such as biochemical

networks [11], power networks [6], or networked cyberphysical systems [12].

When the agents’ dynamics are heterogeneous, proportional diffusive coupling among

the agents (they adjust their behaviour proportionally to the mismatch with that of their
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neighbours) is unable to guarantee convergence towards a common consensus value, unless

specific patterns or symmetries are present [13], or when the heterogeneous nodes share

the same equilibrium point [14]. The consensus problem can be seen as a special instance

within synchronization studies. Particularly, only bounded synchronization (or bounded

consensus) can be achieved when nodes are characterized by non-identical dynamics

and coupled through a (linear or non-linear) proportional communication protocol [15].

Recently, the use of an additional distributed integral action was considered to enhance

the nodes’ ability to converge towards each other. This additional action is an extension

to networks of the classical PI control approach (see [16] for further information) and was

shown in [17] to be effective in coping with agents’ heterogeneity and external disturbances

in networks of linear scalar systems (an extension to n-dimensional linear systems was

later presented in [18]). Specifically, sufficient conditions for admissible consensus were

obtained: conservative threshold values for the proportional and integral coupling gains

were given, depending on the degree of heterogeneity of the agents and their network

topology.

This paper starts from the findings in [17] and aims at overcoming the necessity of an

offline estimation of the control gains proposing a set of adaptive strategies for tuning the

control gains. First, two centralized strategies are presented, where the adaptive control

laws are computed on the basis of a global measure of the nodes’ disagreement. Then, a

decentralized adaptive strategy is discussed, where each pair of nodes updates the strength

(gain) of their mutual coupling on the basis of a local disagreement measure. The novel

self-tuning control strategies are numerically validated on a set of representative examples,

and some preliminary stability results are derived and illustrated.

The use of a distributed PI strategy has been often discussed in the literature but not

always under the assumption of homogeneous node dynamics. For instance, in [19, 20]

distributed integral actions are studied in the case where the agents share the same scalar

dynamics and are affected by constant disturbances, while in [21, 22] the use of integral

actions are discussed for networks with arbitrary homogeneous node dynamics. Previous

work where networks have a certain degree of heterogeneity includes the approach based

on the internal model principle [23, 24]. Moreover, distributed integral actions have been

also used in numerous applications, e.g., [19,25–30]. We wish to emphasize that, in contrast

to existing results, a different approach is proposed in this paper, where, uniquely, the

node dynamics are heterogeneous (possibly unstable) and the control gains self-tune their

states according to centralized or decentralized strategies.

The outline of the manuscript is as follows. A brief overview on control of networks

is given in Section 2, while the notation and some preliminary notions on graph theory

are reported in Section 3. The problem statement is given in Section 4, while in Sections

5 and 6 the centralized and decentralized control strategies are presented and illustrated

via some representative examples. Conclusions are drawn in Section 7.

2 Control of networks: a brief overview

In simple terms, a multi-agent system is a collection of dynamical agents (nodes) interacting

with each other over a network of interconnections (links) [9, 10]. The structure of the

interconnections among nodes has been found to play a crucial role on the overall
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network’s behaviour [31], as well as on its propensity to be controlled (or controllability)

[1,32]. When controlling a network, the inputs can affect (a) the individual node dynamics,

(b) the strength (gain) of the coupling among connected agents (network links), and/or

(c) the network topology.

Pinning control [33] is a well-known control method aiming at steering the node

dynamics towards a desired trajectory, which is prescribed by an additional and virtual

node, that is called pinner. Specifically, a control action is only injected on a limited

fraction of nodes. The optimal selection of the set of nodes to be directly controlled is

the subject of much research effort, see for instance [34] and references therein. More

recently, an open-loop approach based on compensatory perturbations applied to each

node has been proposed to steer a network towards the basin of attraction of a desired

target state [35], while in [36] parameters at nodes are manipulated to guarantee the

network reaches a desired state.

Control interventions can also be considered on the gains associated to some links [37].

In this case, those links can be seen as a control input to be designed. Then, adaptive

distributed control techniques can be used for self-tuning the link weights so as to steer

the network onto a common synchronous solution [38, 39].

Finally, control can be implemented through the adaptation of the network structure.

Namely, depending on the time evolution of the node states, links are added or removed

from the network. In particular, a simple dynamical model has been proposed to evolve

the network topology so as to attain network synchronization [40, 41].

An assumption often made in the control strategies mentioned above is that nodes share

the same dynamics (homogeneous nodes). This is crucial when proving global stability

of the overall network dynamics. However, in real networks the nodes do not necessarily

have identical dynamics. For instance, in the electrical power grid, different type of nodes

which represent consumers and multiple power generation sources such as hydroelectric,

eolian, and solar, render the network highly heterogeneous.

Our control strategy affects the individual node dynamics while also adapting the

coupling gains associated to each link. Contrary to previous work reported in the literature,

we address the case of ensembles of heterogeneous agents interacting over a network.

Specifically, we make use of proportional and integral controllers with self-tuning gains.

We show that our control approach is able to adapt its gains so that the networks reaches

consensus despite the presence of heterogeneous nodes and constant disturbances.

3 Notation and mathematical preliminaries

We denote by IN the identity matrix of dimension N ×N, by 0M×N a matrix of zeros of

dimension M×N, and by 1N a N×1 vector with unitary elements. A diagonal matrix, say

D, with diagonal elements d1, . . . , dN is indicated by D = diag{d1, . . . , dN}. The Frobenius

norm is denoted by ‖·‖ while the spectral norm by |||·|||. Given a square symmetric matrix

M, we sort its eigenvalues in ascending order as λ1(M) � · · · � λN(M). Given two vectors

ζ1, ζ2 ∈ �n×1 and a matrix Q ∈ �n×n, straightforward linear algebra implies

2ζT1 QT ζT2 � εζT1 QTQζ1 +
1

ε
ζT2 ζ2, ∀ε > 0. (3.1)
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3.1 Graph theory

An undirected graph G is a pair defined as G = (N,E), where N = {1, 2, . . . , N} is the

set of nodes (vertexes), and E ⊂ N × N is the set containing the P edges connecting the

nodes. We assume each edge has an associated weight denoted wij ∈ �+ for all (i, j) ∈ E.

The weighted Laplacian matrix of the graph G is denoted L(G ) ∈ �N×N , and its ijth

element Lij is defined as

Lij :=

⎧⎨
⎩

N∑
j=1,j�i

wij , i = j

−wij , otherwise

. (3.2)

Definition 3.1 ([42]) We say that an N×N symmetric matrix S = [Sij], i, j ∈ N, belongs

to the set M if it verifies the following properties:

(1) Sij � 0, i� j, and Sii = −
N∑

j=1,j�i
Sij ,

(2) λ1(S) = 0, while λk(S) > 0 for all k ∈ {2, . . . , N}.

The set of matrices M defined above are in fact a special instance of M-matrices as

defined in [43]. Note that the Laplacian matrix L of an undirected graph belongs to the

set M if its associated graph G is connected [44]. Next, we present a decomposition of

the Laplacian matrix that, as suggested in [17], is particularly useful to prove convergence

in the presence of heterogeneous nodes.

Lemma 1 ([17, 18]) A Laplacian matrix L ∈ M of an undirected and connected graph G

can be written in block form as L = RΛR−1. Namely,

L :=

[
L11 L12

L21 L22

]
=

[
1 NRT

21

1N−1 NRT
22

]
Λ

[
r11 R12

R21 R22

]
, (3.3)

where L11 ∈ �, L12 ∈ �1×(N−1), L21 ∈ �(N−1)×1, and L22 ∈ �(N−1)×(N−1). Also,

r11 =
1

N
, R12 =

1

N
1TN−1, (3.4)

and Λ = diag {λ1(L) = 0, λ2(L), . . . , λN(L)}. Moreover, the blocks of appropriate dimen-

sions R21 ∈ �(N−1)×1 and R22 ∈ �(N−1)×(N−1) must fulfill the following conditions:

R21 + R221N−1 = 0(N−1)×1, (3.5)

R21R
T
21 + R22R

T
22 =

1

N
IN−1, (3.6)

r11R
T
21 + R12R

T
22 = 01×(N−1), (3.7)

R21R
T
21 = R221N−11

T
N−1R

T
22, (3.8)
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|||R22||| �
1√
N
, (3.9)

‖R21‖ �
√
N − 1|||R22||| �

√
(N − 1)/N, (3.10)

NRT
22 = (IN−1 + 1N−11

T
N−1)

−1R−1
22 , (3.11)

L22 = NRT
22Λ̄R22, (3.12)

where Λ̄ = diag {λ2(L), . . . , λN(L)}.

4 Problem statement

Let us consider a multi-agent system governed by first-order linear dynamics of the form

dxi

dt
= aixi(t) + bi + ui(t), xi(0) = xi0, i ∈ {1, . . . , N} (4.1)

where xi(t) ∈ � denotes the state of the ith agent with arbitrary initial condition

xi(0) = xi0. ai, bi ∈ � are constant parameters representing the damping and a con-

stant bias for the ith agent, respectively, while ui(t) ∈ � is a control input (or an

external force) representing the exchange of information between neighbouring agents.

Note that each agent is characterized by possibly different parameter values rendering

their dynamics heterogeneous. Accordingly, when the agents are isolated, i.e., there is no

communication between them (ui(t) = 0), their dynamics can be either unstable (ai > 0)

or stable (ai < 0) with possibly different equilibria given by x∗
i = −bi/ai. As stated

in the introduction, we are interested in solving the consensus problem where the aim

is to guarantee convergence of all states xi(t) asymptotically towards each other, i.e.,

limt→∞ x1(t) = x2(t) = · · · = xN(t) = x∗, where x∗ represents the collective decision state

(or consensus) of the heterogeneous multi-agent system.

Definition 4.1 (admissible consensus) [17] The multi-agent system (4.1) is said to achieve

admissible consensus if, for any set of initial conditions xi(0) = xi0, we have

lim
t→∞

xi(t) = x∗, |ui(t)| � W < +∞, ∀t � 0, (4.2)

for all i ∈ {1, . . . , N}, with W being a non-negative constant.

Based on the recent findings in [17], in this paper we make use of a distributed PI

controller to guarantee admissible consensus of network (4.1) despite the presence of

heterogeneities and constant drifts. Namely, we choose

ui(t) = α(t)

N∑
i=1

wij(xj(t) − xi(t)) + β(t)

N∑
i=1

wij

t∫
0

(xj(τ) − xi(τ))dτ, (4.3)

where wij ∈ �+ are positive constant gains, and α(t), β(t) are two time-varying adaptive

control parameters that modulate the relative strength of the proportional and integral

actions, respectively.
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The heterogeneous multi-agent system (4.1), complemented with the distributed control

strategy (4.3), is the closed-loop network that will be the subject of our investigation. This

network is represented by an undirected graph G = (N,E), where the set of nodes N
denotes the index of each agent state xi(t), while an edge (i, j) ∈ E denotes a bidirectional

communication between nodes i and j with an associated edge weight wij for any (i, j) ∈ E.

The crucial problem becomes now that of selecting how to vary α(t) and β(t) in order

for the closed-loop network to achieve admissible consensus. In the case, where both α(t)

and β(t) are chosen to be constant, sufficient conditions were derived in [17]. Specifically,

the following result was proven

Theorem 4.2 ([17, 45]) Under the distributed adaptive PI control (4.3) with constant gains,

i.e., α(t) = α and β(t) = β, where α, β > 0, the heterogeneous multi-agent system (4.1)

reaches admissible consensus if

â := (1/N)
∑N

k=1
ak < 0, (4.4a)

αλ2N > max
i
ai +

∑N
k=2 (ak − a1)

2

|â| , (4.4b)

β > 0. (4.4c)

Moreover, the consensus value x∗ can be computed as x∗ = −
∑N

k=1 bk/
∑N

k=1 ak .

Note that the conditions for admissible consensus given in Theorem 4.2 are independent

of the gain value β, provided that is positive; therefore, it could be arbitrarily picked by

the control designer, while the gain α should be appropriately tuned based on the node

dynamics (ai) and network structure (λ2). To overcome the need for this off-line tuning of

the control gains α and β, we propose three self-tuning adaptive strategies of increasing

complexity as listed below.

(i) A centralized self-tuning strategy for α(t), with β(t) = β being a positive (and

arbitrary) constant (Adaptive Strategy 1 (AS1), Section 5.1).

(ii) A centralized self-tuning strategy for both control gains α(t) and β(t) (Adaptive

Strategy 2 (AS2), Section 5.2).

(iii) A decentralized self-tuning strategy in which every node adapts its couplings on the

basis of only a local measure of the disagreement with their neighbours (Adaptive

Strategy 3 (AS3), Section 6).

We present each of the above strategies and illustrate their effectiveness via numerical

examples. We give also a proof of convergence of Adaptive Strategy 1. The convergence

analysis of AS2 and AS3 is currently under investigation and will be presented elsewhere.
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5 Centralized self-tuning PI consensus

5.1 Adaptive Strategy 1

From Theorem 4.2, a sufficient condition for guaranteeing admissible consensus is given

and it is independent of the β value. Therefore, based on this observation, our first strategy

only adapts the proportional control gain α(t), while the integral control gain is a positive

kept constant that can be arbitrarily selected, that is, β(t) = β > 0. Specifically, α(t) is

updated according to the following self-adapting rule:

dα

dt
=
κP

N
δT (t)L22δ(t), α(0) = 0, (5.1)

where L22 is the main squared block of the Laplacian matrix associated to the graph G

as shown in (3.3), δ(t) := [x2(t)−x1(t), . . . , xN(t)−x1(t)]
T is the global disagreement vector,

and κP ∈ �+ is an arbitrary constant parameter modulating the rate of growth of α(t). In

what follows, we prove that Adaptive Strategy 1 drives all states xi of the heterogeneous

multi-agent systems towards a common consensus value x∗, which corresponds to the

unique equilibrium of the closed-loop multi-agent system, and that the proportional gain

α(t) asymptotically converges towards a finite steady-state value. Before giving our main

result, we will first compute the consensus value, to then recast the error dynamics using

an appropriate transformation.

Remark 5.1 The stability analysis of the Adaptive Strategy 1 is not influenced by the selec-

tion of the initial conditions α(0), that can be arbitrarily picked. However, we set α(0) = 0

as the most natural choice in adaptive control. Indeed, we exclude negative initial conditions

that might slow down convergence and induce large overshoots. Also, we avoid taking posit-

ive values of α(0) since they may induce unnecessarily large steady-state values and control

effort.

5.1.1 Consensus value

Let us define A := diag{a1, . . . , aN}, B := [b1, . . . , bN]T , let x(t) := [x1(t), . . . , xN(t)]T be the

stack vector of all node states and

z(t) = [z1(t), . . . , zN(t)]T := −βL
∫ t

0

x(τ)dτ, (5.2)

be the stack vector of all integral states. We can recast the overall dynamics of the

closed-loop network (4.1), (4.3) as

[
dx/dt

dz/dt

]
=

[
A − α(t)L IN

−βL 0N×N

] [
x(t)

z(t)

]
+

[
B

0N×1

]
. (5.3)

Proposition 5.1 Given an undirected, weighted, and connected graph G , the network of het-

erogeneous agents (5.3) has an equilibrium (x∗, z∗, α∗), where

x∗ := x∗1N, z∗ := −(x∗A1N + B), α∗ = αc, (5.4)
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with αc being a positive constant, and

x∗ := −
∑N

k=1 bk∑N
k=1 ak

, (5.5)

being the collective decision of the network.

Proof By setting the left-hand side of (5.3) to zero, and from the fact that L ∈ M, it

follows that the equilibrium (x∗, z∗, α∗) of system (5.1)–(5.3) must satisfy the following

conditions:

x∗ = p1N, z∗ = − (aA1N + B) , α∗ = αc,

where p ∈ �. From the definition of z(t) in (5.2), we also have 1TNz(t) = 0 ⇒ 1TNz∗ = 0,

yielding

p = −1TNB/1TNA1N = −
(∑N

k=1
bk

) (∑N

k=1
ak

)−1

= x∗.

�

Now, shifting the state-space origin via the transformation y(t) := z(t) + B, one has

[
dx/dt

dy/dt

]
=

[
A − α(t)L IN

−βL 0N×N

] [
x(t)

y(t)

]
. (5.6)

5.1.2 Error dynamics

Assuming the graph G to be connected, from Lemma 1, we can write L = RΛR−1.

Next, we define the error dynamics given by the state transformation e(t) =

[e1, . . . , eN] = R−1x(t); therefore, using the block representation of R−1 and letting

ē(t) = [e2(t), . . . , eN(t)]T , x̄(t) = [x2(t), . . . , xN(t)]T , we obtain

e1(t) = r11x1(t) + R12x̄(t), (5.7a)

ē(t) = R21x1(t) + R22x̄(t). (5.7b)

From (3.5), we can express R21 = −R221N−1 and substituting in (5.7b) yields

ē(t) = R22 (x̄(t) − x1(t)1N−1) . (5.8)

Hence, ē(t) = 0 if and only if x̄(t) − x1(t)1N−1 = 0 since the matrix R22 is full rank [17].

Then, admissible consensus is achieved if limt→∞ ē(t) = 0 and ‖y(t)‖ � W < +∞, |α(t)| �
ᾱ < +∞, ∀t > 0.

Transforming the state vector y, we can now recast (5.6) in the new coordinates e(t)

and w(t) as

de/dt =

(
Ψ −

[
0 01×N

0N×1 α(t)Λ̄

])
e(t) +

[
0

w̄(t)

]
,

dw̄/dt = −βΛ̄ē(t),

(5.9)
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where w̄(t) := [w2(t), . . . , wN(t)]T . Note that the equation for w1(t) can be neglected as

it has trivial dynamics with null initial conditions and represents an uncontrollable and

unobservable state. Moreover, it is important to note that matrix Ψ is a block matrix

defined as [17]

Ψ := R−1AR =

[
ψ11 Ψ12

Ψ21 Ψ22

]

= R−1

[
a1 01×(N−1)

0(N−1)×1 Ā

]
R

, (5.10)

with Ā := diag {a2, . . . , aN}. Now, using properties (3.4)–(3.7), we can write [17]

ψ11 := â, (5.11)

Ψ12 := ρ̄TRT
22, (5.12)

Ψ21 := R22ρ̄, (5.13)

Ψ22 := NR22

(
Ā + a11N−11

T
N−1

)
RT

22, (5.14)

where

ρ̄ := [a2 − a1, . . . , aN − a1]
T . (5.15)

5.1.3 Proof of convergence

We can now state our main stability result.

Theorem 5.1 The heterogeneous multi-agent system (4.1), (4.3), with α(t) varying according

to the Adaptive Strategy 1 (5.1) and β(t) = β > 0, achieves admissible consensus on the

consensus value x∗ given in (5.5), i.e., limt→∞ xi(t) = x∗ with limt→∞ui(t) = u∗
i := −(aix

∗ +

bi), i ∈ N, if â = (1/N)
∑N

k=1 ak < 0. Moreover, the gain α(t) asymptotically converges to a

positive finite value.

Proof Consider the Lyapunov candidate function (in what follows we omit the time

dependence of the state variables e1(t), ē(t), and w̄(t) to simplify the notation)

V =
1

2

(
e21 + ēT ē +

1

β
w̄T Λ̄

−1
w̄+

1

κP
(α(t) − c)2

)
, (5.16)

where Λ̄
−1

:= diag{1/λ2, . . . , 1/λN} is a positive definite matrix and c is an arbitrary

positive constant. From the hypotheses, κP and β are both positive; therefore, V is a

positive definite and radially unbounded function. Next, calculating the time derivative of

V along trajectories of (5.9) yields

dV

dt
= e1

de1

dt
+ ēT

dē

dt
+

1

β

(
w̄T Λ̄

−1 dw̄

dt

)
+

1

κP
(α(t) − c)

dα

dt
.
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By using property (3.12) and from (5.1), we have

dα

dt
=
κP

N
δT (t)NRT

22Λ̄R22δ(t).

Note that, from (5.8), we have ē = R22δ, and therefore

dα

dt
= κP ēT Λ̄ē. (5.17)

Moreover, (5.12) and (5.13) imply Ψ12=Ψ
T
21, and then one gets

dV

dt
= ψ11e

2
1 + 2e1Ψ12ē + ēTΨ22ē − c

κP
ēT Λ̄ē. (5.18)

Now, using (3.1), one has

2e1ē
TR22ρ̄ � εēTR22R

T
22ē +

1

ε
ρ̄T ρ̄e21,

where ε is an arbitrary positive scalar. Then, we can rewrite (5.18) as

dV

dt
� (ψ11 +

1

ε
ρ̄T ρ̄)e21 + ēTΨ22ē − c

κP
ēT Λ̄ē + εēTR22R

T
22ē. (5.19)

From linear algebra it is possible to obtain an upper-bound for each term of (5.19).

Thus, by definition we know that Ψ = R−1AR is a symmetric matrix with eigenvalues

ai, ∀i ∈ N, and λmax(Ψ22) � λmax(Ψ ) = maxi ai (see Theorem 8.4.5 in [46]). Furthermore,

−cēT Λ̄ē � −cλ2(L)ēT ē. Therefore, following similar algebraic steps as reported in [18],

we find

dV

dt
� g(e) := (ψ11 +

1

ε
ρ̄T ρ̄)e21 +

(
max
i
ai + ε|||R22|||2 − c

κP
λ2(L)

)
ēT ē. (5.20)

Next, using property (3.9) we have that |||R22|||2 � 1/N; therefore, dV/dt � 0 if ξ1 :=

ψ11 + 1/ερ̄T ρ̄ < 0 and ξ2 := maxi ai + ε/N − cλ2(L) < 0. From the hypotheses, we have

â = ψ11 < 0. Therefore, by setting ε = ε̄ > ρ̄T ρ̄/|ψ11|, and c > κP (maxi ρi + ε̄/N)/λ2(L),

one has ξ1, ξ2 < 0. Hence, we can conclude that dV/dt � g(e) � 0, which implies the

boundedness of e, w̄, and α(t). Moreover, as g(e) = 0 ⇐⇒ e = 0, from the Krasovskii–

LaSalle invariance principle [47] follows that limt→∞ e(t) = 0. Together with (5.1), this

also implies that limt→∞ dα(t)/dt = 0. Therefore, in the original variables the equilibrium

(x∗, z∗, α∗) in (5.4) is globally asymptotically stable. Finally, from (4.3) and (5.2), we can

write

u∗ := [u∗
1, . . . , u

∗
N] = −α(t)Lx∗ + z∗ = z∗,

yielding u∗ = −(x∗A1N + B), which completes the proof. �
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Figure 1. Numerical example: agents’ own dynamics and network topology.

Figure 2. Time evolution of an heterogeneous network controlled by distributed PI with constant

control gains α = 6.5 and β = 2. The blue dashed lines represent the steady-state values.

5.1.4 Example

Consider the heterogeneous network of five agents shown in Figure 1. For the sake of

simplicity, we consider all link weights to be unitary (wij = 1 for all (i, j) ∈ E). The initial

conditions are chosen to be x(0) = [0.8, 0.9, 1, 1.1, 1.2]T .

We first consider the case when the control parameters α(t) and β(t) are assumed to be

constant; this is, α(t) = α and β(t) = β. From Theorem 4.2, as â = −0.6 < 0, we have that

admissible consensus is guaranteed if α > 6.42 and β > 0 onto x∗ =
∑N

k=1 bk/
∑N

k=1 ak = 1

as shown in Figure 2. Next, we consider the case where the control parameter α(t) self-tunes

its value according to Adaptive Strategy 1 with κP = 0.9. From Theorem 5.1, admissible

consensus is expected on x∗ = 1, while the control action asymptotically converges to

u∗ = [u∗
1, u

∗
2, u

∗
3, u

∗
4, u

∗
5] = −(Ax∗ + D) = [0, 2,−1,−1, 0]T . This is confirmed in Figure 3.

Notice that the adaptive gain α(t) converges onto a value of approximately 0.66 at steady

state which is considerably lower than the conservative estimate given by Theorem 4.2

when α is set to be constant.

Without loss of generality, we set κP = γ with γ taking values in the open interval

]0, 1[. Then, the evolution of α(t) is computed for four different values of γ as shown
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Figure 3. Heterogeneous network controlled by distributed PI control with AS1 (κP = 0.9 and

β = 2): time evolution of the state x (a), the control input u (b), and the proportional gain α (c).

The blue dashed lines in panels (a) and (b) represent the convergence values x∗ and u∗, respectively.
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Figure 4. Heterogeneous network controlled by distributed PI with AS1: Time evolution of the

coupling gain α(t) (a), and disagreement dynamics (b) for different values of κP = γ.

in Figure 4(a), where the initial conditions are set to x(0) = [2, 1.5, 1, 0.5, 0]T . We also

compute the network disagreement dynamics denoted by d(t), and defined as

d(t) :=
∥∥x(t) − (1/N)

(
1N1

T
N

)
x(t)

∥∥ , (5.21)

where d(t) = 0 indicates that all the states xi(t), for all i ∈ N coincide at time t. The

time evolution of d(t) for different values of γ is shown in Figure 4(b). Note that higher

asymptotic values of α(t) are reached when the sensitivity parameter γ increases (see

Figure 4(a)). We observe that the steady-state values of α(t) are far below the bound 6.42

computed for the case of constant control parameters. Also, note that when γ decreases,

the convergence time onto admissible consensus increases. This can be clearly seen in

Figure 4(b), where admissible consensus is attained in 20 s when γ = 0.2, while the

convergence time reduces to 10 s when γ = 0.9. This indicates a trade-off between the

rate of convergence and lower asymptotic values of α(t) when γ varies.
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Figure 5. Heterogeneous network controlled by distributed PI control with AS1: (a) Two-

dimensional stability diagram in the control parameter space (α, β): the blue and red areas represent

the stable and unstable regions, respectively, the α(t) trajectories for different values of β are repres-

ented by the four coloured lines, while the green dashed line represent the stability threshold given

by Theorem 4.2; (b) Time evolution of disagreement dynamics d(t) for different values of β.

Moreover, to further emphasize the differences among the adaptive and static design of

the gain α, in Figure 5(a) we report the numerical two-dimensional stability diagram in

the control parameter space (α, β), where both α(t) = α and β(t) = β are assumed to be

two positive constants.

To obtain the diagram, at each point in the (α, β) space, we computed the maximum

eigenvalue of the error system dynamics (5.9), depicting in blue those points where

the eigenvalue is negative (consensus is achieved) and in red those where it is positive

(convergence is not attained). The region where convergence is guaranteed independently

from β (α > 6.42 from Theorem 4.2) is to the right of the green dashed line. On the

same plot, we reported the trajectory of the gain α(t) under AS1 with different values of

β, and we observed that its asymptotic values are in the stability region, but are much

lower than the value of 6.42 computed from the sufficient condition for the static gain

case.

Next, we compute the time evolution of the network disagreement dynamics d(t), for

different values of β as shown in Figure 5(b). Note that the selection of a larger value of β

corresponds to a faster convergence, an increase of oscillations at transient state (Figure

5(b)), and a lower steady-state value for α(t) (Figure 5(a)).

5.2 Adaptive Strategy 2

Differently from the adaptive strategy (5.1), here we explore the case when the integral

gain β(t) also self-tune its value; so that, the evolution of both gains contribute to the

control action.
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Figure 6. Heterogeneous network controlled by distributed PI with AS2: Time evolution of the

heterogeneous network controlled by distributed PI control with AS2, κP = 0.15 and κI = 0.85.

The blue dot-dashed lines represent the convergence values x∗ and u∗. The initial conditions were

chosen as x(0) = [2, 1.5, 1, 0.5, 0]T .
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Figure 7. (a) Two-dimensional stability diagram in the control parameter space (α, β), the α(t) and

β(t) trajectories are represented by the four coloured lines with their respective steady-state points.

(b) Time evolution of disagreement dynamics d(t).

In particular, under Adaptive Strategy 2, the proportional gain α(t) is updated according

to (5.1), while β(t) evolves according to

dβ

dt
=
κI

N
δ(t)L22δ(t), β(0) = 0. (5.22)

Note that dβ/dt is a strictly positive function and its derivative dβ/dt = 0 when admissible

consensus is achieved. As an illustrative example, we consider again the ring network

of heterogeneous agents described in Section 5.1.4. In the following simulations, the

proportional and integral gains are updated according to AS2, with κP = 0.15 and

κI = 0.85. The time evolution of the heterogeneous network with self-tuning gains is

depicted in Figure 6 where, consensus is achieved on x∗ = 1. Note also that the control

parameters α(t) and β(t) converge to the constant values 0.83 and 4.76, respectively. We

find these values to be dependent on the value of the constant gain κI as can be seen from

Figure 7, where, without loss of generality, we set κP = γ and κI = (1 − γ) with γ ∈]0, 1[.

In this particular case, we assumed both constants to be linearly related, so that changing
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γ varies the share of the control effort taken by the proportional and the integral terms

in the control strategy (5.1) and (5.22).

Note that with our self-tuning strategy, and by choosing different values for the gain

γ, we can explore the (α, β) parameter space and obtain different solutions as can be seen

in Figure 7(a). These variations also affect the rate of convergence of the agents in the

network onto the consensus value. This point is illustrated in Figure 7(b), where d(t) is the

disagreement index defined in (5.21). Note that for γ = 0.2 and γ = 0.3 the rate of conver-

gence is approximately 12s, while for γ = 0.6 and γ = 0.9 is about 15s and 27s, respectively.

6 Decentralized self-tuning PI consensus

In this section, we consider the case in which the global disagreement vector is not

available to each agent. Specifically, we assume that each agent can only measure a local

disagreement, which is defined as the following function of the state of all its neighbours:

δli (t) = xi(t) − x̂i(t), x̂i(t) :=
1

|Di|

N∑
i∈Di

xj(t), i = 1, . . . , N,

where Di is the set of neighbours of the ith vertex, while |Di| represents its cardinality.

In this case, we propose the use of Adaptive Strategy 3, where the proportional as well

as the integral control gains self-tune their values in a distributed manner. Namely, we

choose

ui(t) = αi(t)

N∑
i=1

wij(xj(t) − xi(t)) + βi(t)

N∑
i=1

wij

t∫
0

(xj(τ) − xi(τ))dτ, (6.1)

where αi(t) and βi(t) are the distributed control gains that need to be determined for

reaching admissible consensus. The control gains are assumed to be different at each node

i and their evolution is given by

dαi/dt = κP
∣∣δli (t)∣∣ , αi(0) = 0

dβi/dt = κI
∣∣δli (t)∣∣ , βi(0) = 0

(6.2)

where κP and κI are arbitrary positive constants, modulating the rate of growth for

the proportional and integral gains, respectively. Note that the ith control gains are

updated according to the difference of the node state xi(t) and the average state x̂i of its

neighbouring nodes.

Differently from the Adaptive Strategy 2 (5.1)–(5.22), where a complete knowledge of

the network is required, here each αi(t) and βi(t) evolves by only considering relative

information based on the states of their neighbours.

To illustrate the effectiveness of AS3, we consider again the ring network of Figure 1

controlled now by the distributed PI control strategy (6.1), where the control gains evolve

according to (6.2) for all i ∈ N with κP = γ and κI = 1 − γ, γ ∈]0, 1[. The time evolution

of the node states, control inputs, and control gains is shown in Figure 8, where admissible

consensus is achieved and the control gains asymptotically converge to constant positive

values.
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Figure 8. Time evolution of the heterogeneous network under distributed adaptation of the

control gain with γ = 0.2.

7 Conclusions and future work

In this paper, we presented novel self-tuning PI strategies for consensus of heterogeneous

linear multi-agent systems. Our approach starts from the findings in [17], and is based

on the dynamic adaptation of the proportional and integral gains characterizing the dis-

tributed PI strategy of interest. In particular, both centralized and decentralized adaptive

laws are considered. Adaptive Strategies 1 and 2 assume that the gains are updated on the

basis of a global disagreement measure available to all nodes, while Adaptive Strategy 3

makes each node able to independently tune the strength of the proportional and integral

gains characterizing the interconnections with its neighbouring nodes on the basis of their

local disagreement. The effectiveness of the approaches was illustrated on a representative

example of 5 agents and complemented with a rigorous proof of convergence for Adaptive

Strategy 1. A complete stability analysis of all the proposed approaches is currently under

investigation and will be presented elsewhere.
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