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Cross-language priming is a widely used experimental paradigm in psycholinguistics to study how bilinguals’ two languages
are represented and organized. Researchers have observed a number of interesting patterns from the priming effects of both
translation equivalents and semantically related word pairs across languages. In this study, we implement a self-organizing
neural network model, DevLex–II, to simulate these two types of priming effects across Chinese and English. Specifically, our
model incorporates a computational mechanism for simulating spreading activation based on the distance between bilingual
words in the semantic space. The model also considers additional factors that modulate priming effects, such as the initial
activation level of the prime words and the degree to which the target word can be recognized. Our model reveals differences
with respect to the priming effects as a function of bilingual type (early versus late L2 learners), directions of priming (L1 to
L2 versus L2 to L1), and types of priming (translation versus semantic priming). These simulated differences are compared
with empirical findings from previous studies and discussed in the light of interactive and developmental theories of bilingual
lexical representation.
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Cross-language priming is a widely used experimental
paradigm in psycholinguistics to study how bilinguals’
two languages are represented and organized. In such
a paradigm, cross-language word pairs (e.g., translation
equivalents, or semantically related word pairs) are usually
presented to participants sequentially in a reaction-time
based task (such as lexical decision or word naming). The
paradigm is designed to test if bilinguals show response
time differences to pairs of prime–target words that differ
in their relatedness. A faster reaction time to related pairs
as compared to unrelated pairs across languages (e.g.,
prime from the first language and target from the second
language) is usually interpreted as a facilitation effect due
to the implicit spreading of activation from the prime word
to the target word in the bilingual’s mental lexicon, and
a strong facilitation is often taken as an indicator of the
shared or common conceptual memory representations of
the two lexicons (cf. Pavlenko, 2009).
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1 In some studies translation priming has also been referred to as
repetition priming (Forster & Davis, 1984).
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Many cross-language priming experiments have been
conducted in the past decades (see a detailed review
in Altarriba & Basnight-Brown, 2007). By and large,
these experiments have shown effects of both translation
priming1and semantic priming across languages, and have
observed at least the following two interesting patterns:
(i) facilitation for translation equivalents is usually larger
than that for semantically related words (Basnight-Brown
& Altarriba, 2007); and (ii) priming effects in the L1–L2
direction (from first language primes to second language
targets) are often larger than those in the L2–L1 direction,
and this pattern has been referred to as the PRIMING

ASYMMETRY (Dimitropoulou, Duñabeitia & Carreiras,
2011; Jiang, 1999; Jiang & Forster, 2001).

Although it is widely accepted that cross-language
priming effects are real, the exact nature of this
phenomenon has not been studied systematically against
important bilingual factors such as the participant’s
L2 learning history and language use habits, age
of acquisition, and similarity distances between the
bilingual’s two languages, among other methodological
issues discussed in Altarriba and Basnight-Brown (2007).
As Grosjean (1998) has argued, in studying bilingual
representation and the interaction between L1 and L2,
researchers need to consider carefully factors such as
the nature of the bilingual participant including bilingual
proficiency, learning history, the nature of experimental
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tasks such as task characteristics (e.g., bilingual speech
mode) and modality of testing (comprehension vs.
production), and stimulus properties such as word length,
frequency, and type (e.g. cognates vs. noncognates,
abstract vs. concrete words; Van Hell & De Groot, 1998).

Computational models offer particular advantages
in dealing with the complex interactions between
variables by systematically bringing target variables
under experimental control while holding other variables
constant (McClelland, 2009). Although the vigor of
experimental research lies in systematic control of
variables, in natural language learning situations,
especially in the bilingual case, it is often difficult
to directly manipulate bilinguals’ learning environment
in parametric ways such as their L2 learning history.
Given the flexibility of computational simulations in
orthogonally manipulating variables of interest and
relating to experimental hypotheses, in this study we test a
computational model of cross-language bilingual priming.

A number of theoretical frameworks of the bilingual
mental lexicon have been proposed in the literature,
including the Bilingual Dual-Coding theory (Pavio &
Desrochers, 1980), the Distributed Feature model (De
Groot, 1992), the Revised Hierarchical model (Kroll
& Stewart, 1994), and more recently, the Sense model
(Finkbeiner, Foster, Nicol & Nakamura, 2004; see also
Segalowitz & de Almeida, 2002). Most of these models
have been designed to account for bilingual lexical
processing at a conceptual level although they are
based on specific experimental findings from a variety
of paradigms including priming. In recent years, there
has also been interest in building models that can be
computationally implemented or verified (see Li & Farkas,
2002; Thomas & Van Heuven, 2005, for reviews). The
Bilingual Interactive Activation (BIA) model (Dijkstra
& Van Heuven, 1998, 2002) is one excellent example in
computational modeling of bilingual language processing.
However, the BIA model belongs to a class of “permanent”
or “stationary” models because mechanisms of learning
and adaptation for representation are missing in these
models. Learning mechanisms are crucial, for example,
in accounting for cross-language priming effects from
bilinguals with different levels of L2 proficiency or
different histories of learning, and such mechanisms have
been incorporated into several models in the past (Jacquet
& French, 2002; Li & Farkas, 2002; Zhao & Li, 2010;
see Li, 2002, and Thomas & Van Heuven, 2005, for
discussion).

In this study, we applied DevLex–II, a dynamic
computational model that considers mechanisms of
learning, to the study of bilingual lexical representation.
DevLex–II is an unsupervised neural network model that
learns lexical representations over time, and was originally
used to simulate first language acquisition (Li, Zhao
& MacWhinney, 2007). Here we apply it to simulate

translation and semantic priming across two languages
(Chinese and English) under two different learning
situations, early versus late L2 learning. In addition,
the model incorporated a computational mechanism for
simulating spreading activation based on the distance
of bilingual words in the semantic space. We examined
the priming effects under the two learning situations
with detailed statistical analyses of the simulation data.
Our simulation data were largely consistent with the
results from previous empirical studies of cross-language
priming, including our own data in Zhao, Li, Liu, Fang
and Shu (2011b). The simulations reported in this paper
demonstrate the ability of computational methods to
quantitatively capture the empirically observed patterns in
cross-language priming and to motivate future empirical
research in this domain.

Method

The model

DevLex–II is a multi-layer self-organizing neural network
model, which includes three basic levels for the
representation and organization of linguistic information
as shown by the diagram in Figure 1. The core of
the model is a connectionist network called a feature
map that handles semantic/conceptual representations. A
feature map is a self-organizing network that identifies
input similarities in a high-dimensional space and
projects these similarities on a two-dimensional space
through a typography-preserving algorithm as discussed
below (SOM; Kohonen 2001). This semantic feature
map is connected to two other feature maps, one for
input (auditory) phonology, and another for articulatory
sequence of output phonology. Different from the BIA
model, DevLex–II is a learning model with adaptable
weights of connections among units in the network.
Upon training, the linguistic information of a word is
presented to the network, and on each map an area
of nodes will become activated (the “activity bubbles”)
and the maximally active node (the Best Matching Unit
or BMU) is taken to represent the input. As training
progresses, representational patterns of activation become
clearer and more focused on each layer. Meanwhile,
the strength of certain links between layers becomes
increasingly stronger since they connect co-activated
units that represent linguistic contents (e.g., meaning and
sound) of the same words (see Zhao & Li, 2007, 2010, for
details of the DevLex–II model).

In our simulations reported below, the network
learned Chinese as the first language (L1) and English
as the second language (L2). We used here as our
basis the vocabulary from CDI, the MacArthur-Bates
Communicative Development Inventories (Dale & Fenson
1996). Each lexicon included 500 words chosen from
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Figure 1. The architecture of the DevLex–II model (Figure from Zhao & Li, 2010; Reproduced with permission from Taylor
and Francis). Each of the three self-organizing maps (SOM) takes input from the lexicon and organizes phonology,
semantics, and phonemic sequence information of the vocabulary, respectively. The number of nodes in each map is
indicated in parentheses. The dimension of the input vector for each map is indicated by “d = ” in parentheses next to the
input representation symbols. The maps are connected via associative links updated by Hebbian learning. SARDNET is a
type of temporal or sequential SOM network (James & Miikkulainen, 1995; see details in Li et al., 2007, for its incorporation
in DevLex–II). See text for further explanation of the model.

the Toddler List of the corresponding CDI. The
English lexicon was identical to that of Li, Farkas
and MacWhinney (2004), and the Chinese lexicon was
derived from the Chinese version of the CDI (Tardif,
Gelman & Xu 1999; Wu 1997). Use of the CDI has
the advantage of deriving representations of frequently
used words in the two languages, since CDIs reflect
children’s earliest vocabularies. We coded the linguistic
information of the 500 words from each language as
follows.

The sound pattern and phonemic makeup of a word
was coded as the basic phonological input to the model
according to PatPho, a generic phonological pattern
generator for neural networks (Li & MacWhinney 2002;
Zhao & Li, 2009; and see Zhao & Li, 2010, for
how we made the phonological input from the two
languages comparable). The semantic information of
words was coded in the following two ways: (i) We
used WCD, a special recurrent neural network that
learns the lexical co-occurrence constraints of words, to
read a stream of input sentences one word at a time,
and learn the adjacent transitional probabilities between
words which it represents as a matrix of weights. WCD
computes two vectors that correspond to the left and
the right context, respectively; it then transforms these
probabilities into normalized vector representations for

word meanings (Li et al., 2004, pp. 1348–1349). (ii)
The second set of semantic representations was generated
from word associations, synonym and hypernym relations
as represented in computational thesauruses available
for each of the two languages. For Chinese, it was
derived from a Chinese computational database called
HowNet (http://www.keenage.com). Through a program
that calculates the similarity of Chinese words in the
database (Liu & Li, 2002), we derived a matrix that
represents the similarity of all the 500 Chinese words. For
English, as in Li et al. (2004), we used a feature generation
system developed by Harm (2002) to derive semantic
features from the WordNet database (Miller, 1990), and
the similarity of the 500 English words were further
calculated according to these features. Finally, a Random
Mapping (Kohonen, 2001) method was used to reduce the
size of each set of the semantic representations to a lower
dimension (from d = 500 to d = 100), and the two sets
were then combined together to form each word’s semantic
vector. By combining the two methods described above,
our model allows for a lexical representation with both
syntactic and semantic information, which has the ability
to introduce certain LANGUAGE-SPECIFIC INFORMATION

into our representation (see Zhao, Li & Kohonen, 2011a,
for a review of the advantages and disadvantages of
semantic representation models).
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L2 learning (training in the model)

To simulate different L2 learning history and L2
proficiency, the 1000 words in the training lexicon were
presented to the network according to two scenarios,
early L2 learning versus late L2 learning. Specifically,
we manipulated the onset time of lexical learning of
L2: for early learning, the onset time of L2 was slightly
delayed relative to that of L1, and for late learning, the
onset time of L2 lagged significantly behind that of L1
(see details below). In the case of early L2 learning, the
network was first trained on 100 L1 words (Chinese). Then
the L2 words (English) were presented to the network
stage by stage (each stage with 50 more new L2 words)
along with the corresponding increment of L1 words.
The training would end 10 stages later, when the entire
set of 500 L2 words was seen by the network. Here,
a training stage included 10 epochs, which means that
each available word (including its meaning, sound, and
articulatory sequence of output phonology) was presented
to the network 10 times at each stage. In the case of
late learning, L2 words began to join the training session
only after 400 L1 words had been presented to the
network during the first four stages. Then the training
continued for another 10 stages until all the 500 L2 words
were seen by the network, so that the total exposure
to L2 words in both the early and late scenario was
10 stages.

To better simulate the interactions between the two
lexicons, we introduced a new type of associative
connections within each layer in DevLex–II. Here, nodes
on a map are fully connected with each other via lateral
connections, and their weights are trained via Hebbian
learning. Lateral connections within layers have been
previously applied in the simulation of the primary visual
cortex, particularly to simulate the long-range connections
between areas that respond to similar visual features (e.g.,
neurons with the same line orientation preference, see
Sirosh & Miikkulainen, 1994). In this study, we used
lateral connections to specifically simulate the process
of increased connections that develop between lexical
items in the two languages during L2 learning. Through
this mechanism, we wanted to simulate the effects
of Long-Term Potentiation (LTP), a neural mechanism
that instantiates the consolidation of long-term memory
(Munakata & Pfaffly, 2004). In particular, we assumed
that, after a new L2 (English) word is presented, its L1
translation equivalent (a Chinese word) is also activated
in the system. Consequently, the map representations of
the two words (including the BMUs and their neighbors)
are activated and the lateral connections among them are
strengthened via a Hebbian learning rule according to
Equation (1):

�wkl = β.αk.αl (1)

Here, wkl is the unidirectional associative weight going
from node k to node l, αk and αl are the associated
node activations corresponding to the input to the map,
and β is a constant learning rate (which was set as 0.1
to be consistent with the learning rate between layers).
To avoid uncontrolled weight growth, the associative
weight vectors are then normalized to ensure that the
largest possible lateral connection weight is no more than
one.

In the simulations reported in this paper, the input
phonology map and the semantic map each consisted of
70 × 60 nodes, and the output sequence map included
25 × 20 nodes. During training, the learning rate of SOMs
and that of Hebbian learning (β) were kept constant
(0.25 and 0.1, respectively). The radii of a winner’s
neighborhood on each map were changed automatically
according to the self-adjustable neighborhood function
introduced in Zhao and Li (2007). The initial radius on
the SOM layer was set to be 20 and that on the SARDNET
was 10. These numbers were chosen to be large enough
to discriminate among the words and phonemes in the
lexicon while keeping the computation process tractable.

Simulating spreading activation

The goal of our computational modeling is to capture
mechanisms for cross-language priming. To make our
model psychologically plausible, a spreading activation
algorithm was incorporated into the model. Spreading
activation has been the backbone theory underlying
priming studies (Collins & Loftus, 1975; McNamara,
2005). The basic idea is that the activation of a
concept (e.g., as represented in a prime word) implicitly
spreads over to other related concepts in the mental
representation and the residual activation of the concept
of the prime word may facilitate its subsequent retrieval
depending on how large the activation is. In cross-
language priming, then, the residual activation of a
concept in one language can spread over to the other
language, causing similar or related concepts encoded in
words of the other language to become active. Although
priming effects can be obtained in several domains
(phonological, orthographic, and semantic), in the current
study we focused on simulating semantic priming using
the spreading activation mechanism.2 Specifically, the
BMU of a target word could receive spreading activations
from the BMU of a prime word via two paths, one

2 Given the significant differences between Chinese phonology/
orthography and English phonology/orthography, cross-language
priming effects in these domains are less meaningful. Our model
can be extended to the simulation of other language pairs where
phonological and orthographic similarities are stronger. It has also
been used previously in the study of orthographic processing, such as
the simulation of children’s learning of Chinese characters (see Xing,
Shu & Li, 2004, 2007).

https://doi.org/10.1017/S1366728912000624 Published online by Cambridge University Press

https://doi.org/10.1017/S1366728912000624


292 Xiaowei Zhao and Ping Li

Figure 2. (Color online) An illustration of the two paths of
activation spreading from the prime word to the target word.
A shaded dot on the map represents the BMU of a word.
The dashed arrows indicate the spreading activation via the
lateral connections and the solid arrows the spreading
activation within the semantic map. Both translation
priming [ – dog] and semantic priming [ – cat] are
depicted here (NB: Chinese = English “dog”). The lateral
connection between semantically related cross-language
word pairs is weaker (narrower) than that between
translation equivalents, and such pattern was gradually
developed as a function of learning/training in the model.

through their lateral connection (see earlier discussion)
and one within the semantic map. An illustration of the two
paths for both translational priming and cross-language
semantic priming can be found in Figure 2.

The spreading activation from each path was defined
as the product of the initial activation of the prime word
and a Gaussian-like function:

Spread = Activation(prime) × e
− (a∗Dist)2

2b2 (2)

Here, a = 0.2 and b = 2, which define the shape of the
activation function.3 Dist was a measure of the closeness
between a prime’s and a target’s semantic representations.
For the path via lateral associative connection, it was
defined as the reciprocal of the weight; for the path within
the semantic map, it was simply the Euclidean distance
between the BMUs of the word pairs on the map. Similar,
though not identical, Gaussian-like functions have been
also used in previous computational studies to simulate
spreading activations in semantic networks (Silberman,
Bentin & Miikkulainen, 2007; Spitzer, 1999). Figure 3
presents the shape of this Gaussian function.

3 Values of these free parameters in Equations (2) and (3) were set
to control the range (a and b) and magnitude (c) of the activation
functions so that (i) the range would not be too wide or too narrow
compared with the size of the network, and (ii) the magnitude would
not be too large.

Capturing time in lexical decision

Time is a critical variable that is controlled and measured
in priming experiments. First and foremost, participants’
reaction times to the target words need to be recorded so
that the priming effect can be quantitatively measured.
Second, a prime word needs to be displayed to the partic-
ipants for a certain amount of time before the target word
is shown (the Stimulus Onset Asynchrony, SOA) so that
enough activation can be generated based on participants’
semantic representation; at the same time the SOA should
be brief enough to prevent participants from developing
top–down strategies (e.g., expectancies from primes)
during the experiment. SOAs were usually designed to
be shorter than 200 milliseconds, and in some recent
studies using the masked-priming paradigm, it can be as
short as 50 milliseconds (see discussion in McNamara,
2005, p. 72; and Altarriba & Basnight-Brown, 2007). Our
simulations are designed to both capture the reaction times
and represent the SOAs from real lexical decision tasks.

It is crucial for our purposes to simulate the change
of a target word’s activation level in order to compare
simulated priming effects to reaction times from real
experiments. To achieve this, we defined a recognition
threshold T = 2 for each node. We assumed that in a task
like lexical decision, a target word can only be recognized
when its representing node’s activation level reaches the
threshold. In addition, we defined how much the activation
level of the target word’s representing node increases as a
function of the unit of elapsed time during the recognition
phase of the target word:

δ = c × e
− (a∗Density)2

2b2 (3)

Here the free parameters are c = 0.003, b = 2 and a =
1. The increment of δ was also a Gaussian-like function,
which changes with density – a variable representing how
many neighboring words that the target word has on the
semantic map. Specifically, we defined density as the
number of words in its neighborhood (with radius of 1)
divided by the total number of units of its neighborhood,
which is usually nine, but could be six or four, depending
on whether the tested word was on the border or at the
corner of the map. The value of this density measure
ranged from 1/9 when only the word itself is in the
neighborhood, to 1.0 when all neighboring units of a word
are occupied by other words. The larger the density is,
the more interference there is among words, and the more
difficult it is for the target word to be recognized due
to the smaller increment of δ. Therefore, considering the
residual/persisting activation spreading from the prime
word, the total time units needed for the recognition of the
target word (i.e. Reaction Time) is

RT = (2 − Spread)/δ (4)
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Figure 3. (Color online) The shape of spreading activation defined by Equation (2). The basic mechanism supporting
priming effects is also depicted here: after the node nurse on the semantic map is activated, the node corresponding to
“doctor”, which is closer to nurse than “box” in the semantic representation, receives more activation and thus is more
readily accessible from memory. The X axis indicates the Euclidean distance from different nodes to the node nurse on the
semantic map. The Y axis indicates activation level on a scale from zero to one.

Obviously, the smaller the residual activation a target
word receives from the prime word and the denser the
target word’s neighbourhood is, the longer the reaction
time will be in the model.

Similarly, we assumed that the activation level of
the prime word’s representing node tends to accumulate
during the SOA period. As a function of units of elapsed
time, only a limited amount of activation is added, and
the increment also follows the Gaussian-like function of
density as shown in Equation (3) with a slight adjustment
of the free parameter a to be 4. The basic rationale of
such a mechanism is again to reflect the interference
from neighboring words. The prime words from the less
fluent language may be less activated than those from the
dominant language in a brief display. In the current study,
we ran our simulations under two SOA conditions: one
with 150 elapsed time units and another with 50 time
units.4 The purpose of our design was to examine the
potential impact of SOA differences on priming effects,
and we used the two SOA conditions based on the SOAs
used in previous lexical decision tasks (e.g. 150 ms in Zhao

4 We also ran additional SOA conditions, as reported in Figure 5. These
additional SOA conditions were entered into the ANOVA analyses but
due to space limitation, are not reported here.

et al., 2011b, and 50 ms in other studies based on masked
priming paradigm; see review in Altarriba & Basnight-
Brown, 2007). In our simulation one time unit roughly
represents one millisecond in a real experiment.

Test material and testing procedure

As described in section “L2 learning (training in the
model)” above, we trained our model to simulate two
scenarios: early L2 learning and late L2 learning. For each
scenario, five networks were created and served as the
basis for our further tests described below. Conceptually,
each trained network could be likened to a proficient
bilingual learner in realistic situations. The learner has
acquired the two languages through a slow learning pro-
cess over an extended period of time (corresponding to the
training of our model; see the above section on L2 learn-
ing); the learner is then brought to the laboratory so that
researchers can probe his or her mental representation in a
fast testing procedure to identify cross-language priming
effects (corresponding to the testing phase in our model).

From the 1000 words (500 words each in Chinese and
English) in the training lexicon of our network, we chose
for our test material a list of 32 translation equivalents
(e.g., sock and “sock”) and a list of 32 semantically
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Table 1. Mean reaction times from the late L2 learning experiment with SOA of 150 units.

Target language TR TU Priming effects SR SU Priming effects

English (L1–L2) 544.84 712.41 680.08 720.14
+167.56 +40.06

(30.00) (22.77) (27.20) (39.01)

Chinese (L2–L1) 595.36 671.89 647.37 667.45
+76.54 +20.07

(18.60) (7.00) (9.74) (6.24)

Priming asymmetry +91.02 +19.99

TR = Translation equivalents, TU = Translation unrelated, SR = Semantically related, SU = Semantically unrelated. Same for Tables 2–4.
Note: Average results based on 20 simulation runs. Numbers in parentheses represent standard deviations. Same for Tables 2–4.

related word pairs (e.g., “doctor” and nurse). A
complete list of these word pairs is given in the Appendix.
In addition, we created two more lists of unrelated word
pairs that are matched with related words by shuffling
the words in the two related lists, so that unrelated words
are put into a pair. From these words, four versions of
the experimental material were further constructed, each
including 16 translation equivalents (TR), 16 unrelated
translation pairs (TU), 16 semantically related cross-
language pairs (SR), and 16 unrelated semantic pairs (SU).
A Latin Square method was applied to ensure that no two
versions of the experimental material shared the same
word pairs and no words were repeated twice in a single
version of the material. In each category, half of the pairs
had English words (L2) as the target words, and the other
half had Chinese words (L1) as the target words. This
setup ensured that we could study the priming effects for
both the L1-to-L2 direction and the L2-to-L1 direction.

For each SOA condition (150 or 50 elapsed units,
respectively), each trained network was tested in four
simulations, resulting in 20 simulations for each learning
scenario. During testing, a version of the experimental
material (with 64 prime–target word pairs) was presented
to the trained network. Here, the presentation of a prime–
target word pair is roughly comparable to a trial in a
real lexical decision experiment. For each pair, the prime
word was first presented to the trained network for a
certain amount of time (SOA), and the target word was
then presented to the network for recognition. Based
on our spreading activation mechanism discussed above,
the residual activation that the target word received was
calculated, and the reaction time for the target word to be
recognized was calculated based on Equation (4) above.
Considering all the 64 target words in a single simulation,
the priming effects were calculated by subtracting the
mean RT of related word pairs from that of the matched
unrelated word pairs.

Results

In this section we report simulation results based on the
modified DevLex–II model as discussed in the Methods

section. Under each SOA condition, our focus is on
comparing the priming effects based on the two L2
learning scenarios and on comparing our modeling results
with empirical findings from previous studies.

SOA of 150 elapsed time units

Late L2 learning
The mean reaction times and the priming data for the
late L2 learning scenario averaged across 20 individual
simulations are presented in Table 1. A participant-based
2 (Direction: L1–L2 vs. L2–L1) by 2 (Type: semantic pairs
vs. translation equivalents) by 2 (Relatedness: related vs.
unrelated) factorial ANOVA was conducted. Significant
main effects were found for all three factors. The main
effect of Direction [F(1,19) = 41.99, MSE = 338,
p < .001, partial η2 = .69] suggested that over all our
network responded significantly faster to Chinese targets
(L1: 645.52 time units) than to English targets (L2: 664.37
time units). The main effect of Type [F(1,19) = 145.99,
MSE = 621, p < .001, partial η2 = .89] showed that
our network recognized targets in the translation group
(631.13) faster than those in the semantic group (678.76).
Finally, the main effect of Relatedness [F(1,19) = 494.23,
MSE = 468, p < .001, partial η2 = .96] indicated that
our network was significantly faster in responding to the
related word pairs than to unrelated pairs (616.91 vs.
692.97; i.e., a priming effect).

Significant interactions were also observed in our data.
The interaction between Type and Relatedness [F(1,19)
= 96.76, p < .001, MSE = 874, partial η2 = .84] clearly
showed that the magnitudes of priming effects were not
equal for the translation equivalents and the semantic
related word pairs, reflected in that the translation priming
effects (+122.05, p < .001) were larger than the semantic
priming effects (30.07, p = .001). The interaction between
Direction and Relatedness [F(1,19) = 55.62, p < .001,
MSE = 553, partial η2 = .75] showed that the magnitudes
of priming effects were not equal for the L1–L2 and L2–
L1 directions, in that priming from L1 to L2 was larger
(103.82) than priming from L2 to L1 (48.31), though
both priming effects were significant (p < .001). Finally,
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Table 2. Mean reaction times for the early L2 learning experiment with SOA of 150 units.

Target language TR TU Priming effects SR SU Priming effects

English (L1–L2) 542.87 689.61 677.92 686.87
+146.77 +8.96

(16.18) (10.58) (11.81) (16.55)

Chinese (L2–L1) 569.53 668.54 664.23 667.79
+99.01 +3.36

(18.23) (4.47) (8.71) (10.36)

Priming asymmetry +47.76 +5.6

the significant interaction between Direction and Type
[F(1,19) = 51.45, p < .001, MSE = 442, partial η2 =
.73] showed that, when the target words were from L2,
the difference between semantic priming and translation
priming (71.48, p < .001) was larger as compared with
that when the target words were from L1 (23.78, p < .001).

The three-way interaction among Direction, Type and
Relatedness was also significant [F(1,19) = 29.38, MSE
= 429, p < .001, partial η2 = .61]. To better understand
this interaction, we conducted a series of pair-wise
comparisons to study individual priming effects, using
Bonferroni adjustments to control for the overall Type I
error. As can be seen on the columns of “Priming effects”
in Table 1, the results showed significant translation-
priming effects and semantic priming effects for both
Chinese (L1) and English (L2) targets. There were
significant translation-priming effects of +167.56 for
English (L2) targets [t(19) = 40.48, p < .001] and +76.54
for Chinese (L1) targets [t(19) = 16.61, p < .001]. With
regard to semantic priming, there were significant effects
of +40.06 for English targets [t(19) = 2.93, p = .009]
and +20.07 for Chinese targets [t(19) = 7.30, p < .001].
Critically, for both types, the priming obtained in L1 to
L2 direction was larger than the one obtained in L2 to
L1 direction, revealing a clear “priming asymmetry”. In
addition, the asymmetry for translation priming was much
larger than that for semantic priming (91.02 vs. 19.99; see
last row of Table 1).

Early L2 learning
While our results from the late L2 learning scenario
confirmed a number of classic priming effects in the
literature, including the priming asymmetry patterns, one
could hypothesize that a different pattern of priming
effects may be obtained with the early L2 learning
scenario, since early L2 learning generally leads to high
L2 proficiency. Our simulation data from the early L2
learning scenario are presented in Table 2, showing the
mean reaction times and priming data under SOA of 150
averaged across 20 individual simulations. As with the late
L2 learning situation, we performed a participant-based
2 × 2 × 2 factorial ANOVA on the data. Significant main
effects were also found for Direction [F(1,19) = 10.20,
MSE = 183, p = .005, partial η2 = .35], for Type [F(1,19)

= 808.89, MSE = 158, p < .001, partial η2 = .98], and
for Relatedness [F(1,19) = 739.27, MSE = 225, p < .001,
partial η2 = .98].

Again, significant interactions were observed under the
early L2 learning scenario. The interaction between Type
and Relatedness [F(1,19) = 478.05, p < .001, MSE = 285
and partial η2 = .96] showed larger translation priming
effect (122.89, p < .001) than semantic priming effects
(6.16, p = .097). The interaction between Direction and
Relatedness [F(1,19) = 67.19, p < .001, MSE = 106,
partial η2 = .78] revealed larger priming from L1 to L2
(77.87, p < .001) than from L2 to L1 (51.18, p < .001),
again a “priming asymmetry”. Finally, the significant
interaction between Direction and Type [F(1,19) = 26.92,
p < .001, MSE = 138, partial η2 = .59] showed that, when
the target words were from L2, the difference between
semantic priming and translation priming (66.17, p <

.001) was larger as compared with that when the target
words were from L1 (46.87, p < .001).

For the early L2 learning scenario, there was also a
significant three-way interaction among Direction, Type
and Relatedness [F(1,19) = 27.83, MSE = 160, p <

.001, partial η2 = .60]. As with the late L2 learning
scenario, we performed a series of subsequent pair-wise
comparisons to study individual priming effects, using
Bonferroni adjustments. As can be seen on the columns
of “Priming effects” in Table 2, significant translation-
priming effects of +146.77 were obtained for English
targets [t(19) = 29.20, p < .001] and +99.01 for Chinese
targets [t(19) = 22.71, p < .001]. Although this is also a
“priming asymmetry”, the magnitude of this asymmetry
(47.76) was much smaller than that in the late L2
learning situation (91.02). With regard to the semantic
priming effects, a priming of +8.96 was found for English
targets [t(19) = 1.98, p = .063] and +3.36 for Chinese
targets [t(19) = 0.94, p = .361]. Thus, although there
was a “priming asymmetry” trend, unlike with the late
learning scenario, neither the L1 nor L2 targets produced
statistically significant semantic priming.

SOA of 50 elapsed time units

As discussed above, in the current empirical literature
of priming research, many researchers have used a very
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Table 3. Mean reaction times from the late L2 learning experiment with a shorter SOA of 50 units.

Target language TR TU Priming effects SR SU Priming effects

English (L1–L2) 663.39 719.25 718.14 731.49
+55.85 +13.35

(22.16) (20.56) (31.73) (36.44)

Chinese (L2–L1) 649.58 675.09 665.37 672.06
+25.51 +6.69

(8.74) (7.02) (5.02) (4.48)

Priming asymmetry +30.34 +6.66

Table 4. Mean reaction times for the early L2 learning experiment with a shorter SOA of 50 units.

Target language TR TU Priming effects SR SU Priming effects

English (L1–L2) 643.11 692.04 688.38 691.37
+48.93 +2.99

(10.93) (9.83) (10.59) (12.54)

Chinese (L2–L1) 637.34 670.34 670.01 671.13
+33.00 +1.12

(7.48) (3.58) (7.02) (7.39)

Priming asymmetry +15.93 +1.87

short SOA (e.g., as short as 50 milliseconds), along with
the masked priming paradigm, to maximally reduce the
influence of potential top–down processing strategies such
as effects due to expectancy of upcoming targets. It is
worth noting again in this context that the advantage of
computational modeling is the tight control/elimination of
potential confounds that are commonly found in empirical
studies. Our model does not include a component for top–
down processing and therefore even when the SOA is
150 units the model will not have performance due to
expectancy effects. Nevertheless, we wanted to investigate
if varying SOAs can indeed influence cross-language
priming, given that our model does simulate the time
needed in making lexical decisions. As with simulations
presented before, for each learning scenario, the reported
results are based on 20 simulations.

Late L2 learning
The mean reaction times and the priming data for this
scenario are presented in Table 3. A participant-based
2 × 2 × 2 factorial ANOVA was conducted, as with the
SOA of 150 units condition. Significant main effects were
found for Direction [F(1,19) = 348.35, MSE = 207, p <

.001, partial η2 = .95], for Type [F(1,19) = 36.85, MSE
= 431, p < .001, partial η2 = .66], and for Relatedness
[F(1,19) = 64.87, MSE = 396, p < .001, partial η2 = .77].

Again, significant interactions were observed under
the late L2 learning scenario when SOA was 50 units.
The interaction between Type and Relatedness [F(1,19) =
12.93, p = .002, MSE = 727.43, partial η2 = .41] showed
larger overall translation priming effects (40.68, p < .001)
than semantic priming effects (10.02, p = .183). The

interaction between Direction and Relatedness [F(1,19)
= 6.27, p = .022, MSE = 546, partial η2 = .25] revealed
larger overall priming from L1 to L2 (34.6, p < .001)
than from L2 to L1 (16.10, p < .001), again a “priming
asymmetry” though in a smaller amount compared with
that the previous situation with a SOA of 150 units.
Finally, the interaction between Direction and Type was
also significant [F(1,19) = 18.99, p < .001, MSE = 387,
partial η2 = .5] and showed that, when the target words
were from L2, the difference between semantic priming
and translation priming (33.49, p < .001) was larger as
compared with that when the target words were from
L1 (6.25, p < .001). Unlike the SOA with 150 units
condition, the three-way interaction among Direction,
Type and Relatedness was not significant [F(1,19) = 2.94,
MSE = 477, p = .103, partial η2 = .13]. The magnitude
of the individual priming effects can be found in Table 3.
For both translation priming and semantic priming, the
priming obtained in the L1-to-L2 direction was larger
than the one obtained in the L2-to-L1 direction, revealing
a “priming asymmetry” again. In addition, the asymmetry
for translation priming was larger than that for semantic
priming (30.34 vs. 6.66; see last row of Table 3).

Early L2 learning
With 50 units as the SOA, the mean reaction times
and priming data for the early L2 learning scenario
are presented in Table 4 and we similarly performed a
participant-based 2 × 2 × 2 factorial ANOVA on the
data. Significant main effects were found for Direction
[F(1,19) = 96.04, MSE = 113, p < .001, partial η2 =
.84], for Type [F(1,19) = 242.36, MSE = 62.88, p < .001,
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partial η2 = .93], and for Relatedness [F(1,19) = 235.93,
MSE = 78, p < .001, partial η2 = .93].

Significant interactions were also observed under the
early L2 learning scenario. The interaction between Type
and Relatedness [F(1,19) = 84.96, p < .001, MSE = 178,
partial η2 = .82] showed larger translation priming effect
(40.96, p < .001) than semantic priming effects (2.05,
p = .466). The interaction between Direction and
Relatedness [F(1,19) = 19.92, p < .001, MSE = 40, partial
η2 = .51] revealed larger priming from L1 to L2 (25.96,
p < .001) than from L2 to L1 (17.06, p < .001), again a
“priming asymmetry”. Finally, the significant interaction
between Direction and Type [F(1,19) = 5.36, p = .032,
MSE = 58, partial η2 = .22] showed that, when the target
words were from the L2, the difference between semantic
priming and translation priming (22.31, p < .001) was
larger as compared with that when the target words were
from L1 (16.73, p < .001).

There was a significant three-way interaction among
Direction, Type and Relatedness, [F(1,19) = 8.38, MSE
= 58.91, p = .009, partial η2 = .31]. We again conducted
a series of pair-wise comparisons to study individual
priming effects, using Bonferroni adjustments. As can
be seen in the columns of “Priming effects” in Table 4,
significant translation-priming effects of +48.93 were
obtained for English targets [t(19) = 13.63, p < .001]
and +33.00 for Chinese targets [t(19) = 17.16, p < .001].
This is a clear “priming asymmetry”, with a magnitude of
15.93 in difference. With regard to the semantic priming
effects, no significant effect was found for either English
targets (+2.99) or Chinese targets (+1.11) at the α = .05
level. Given such small magnitudes of semantic priming,
the “priming asymmetry” is not salient for the early L2
learning scenario under the SOA of 50 units condition.

Discussion

In this study we have implemented a self-organizing
connectionist network to study bilingual priming. Our
study is a first systematic attempt to use computational
models to specifically simulate the developmental patterns
in cross-language semantic priming and translation
priming. Models of this type allow us to parametrically
control a number of variables that are thought to affect
bilingual lexical representation, including age of L2
acquisition and directions of interaction among L1 and L2.
Our simulation results across the varying conditions are
summarized and presented in Figure 4. From this figure,
along with the statistical analyses reported above, we see
that our model has successfully captured several important
patterns found in previous empirical studies:

1. Bilinguals on average respond faster to target words
in their first language than in their second language,

Figure 4. Priming effects from our simulations. (a) Late L2
learning. (b) Early L2 learning. Regardless of SOA (150 or
50 elapsed time units), translation priming is always
stronger than semantic priming. Priming effects are
calculated by subtracting the RTs of related word pairs from
the RTs of unrelated word pairs. The priming effects from
L1 (Chinese) to L2 (English) are always larger than those
from L2 to L1. This priming asymmetry is also larger in the
late L2 learning situation than in the early L2 learning
situation. As SOA decreases, the priming effects become
smaller and the priming asymmetry also reduces (see also
Figure 5). The p-values indicate the significance level of the
priming asymmetry under the different conditions
(paired-samples t-test of the 20 simulations under each
condition: ∗∗ = significant priming asymmetry; n.s. = not
significant).

as reflected in the significant main effect of Direction
in our simulations.

2. The main effect of Relatedness shows clearly
significant cross-language priming effects.
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3. The main effect of Type and the Type × Relatedness
interaction indicate that translation priming effects
are always stronger than semantic priming effects (as
observed in the empirical results of Basnight-Brown
& Altarriba, 2007, and Zhao et al., 2011b).

4. There was a clear “priming asymmetry” in our
model as revealed by the Direction × Relatedness
interaction, the three-way interaction and the post-hoc
pair-wise comparisons. The average priming effect
from Chinese primes (L1) to English targets (L2)
was always larger than that of the opposite direction,
as presented in Figure 4. This asymmetry pattern is
consistent with existing evidence in the literature on
cross-language priming (see Table 1 in Dimitropoulou
et al., 2011).

Effects of SOA

An interesting pattern from our data is that cross-language
priming effects decrease as the SOA of the testing
procedure reduces from 150 to 50 time units. A tentative
explanation of such a pattern is that a brief exposure
of the prime word (shorter SOA) may only trigger a
small amount of initial activation, which in turn leads
to smaller amount of spreading activation to the target
word, thus a less salient or non-existing priming effect.
To further explore how the priming effects may change as
a function of SOA, we conducted additional simulations
based on two other SOA situations (SOA = 10 and 100
elapsed time units, respectively).5 Results from these
simulations are reported in Figure 5, in combination with
the results from the two SOA conditions as discussed in the
Results section. The line graphs show a clear decreasing
tendency of priming effects as SOA decreases from 150
to 10. To extrapolate from this figure, we can consider
an extreme case in which the SOA is zero where there is
no exposure to the prime word, and in this case we will
find no priming effects in either our simulations or in real
experiments.

In addition, the extent of the priming asymmetry
seems also to decrease as SOA decreases. For example,
comparing the significance levels of asymmetry of
semantic priming under two SOA conditions shown
on Figure 4, we found that although both are non-
significant, the t-values for the shorter SOA are smaller
(less significant) than those for the longer SOA. The cause
of such decrement of priming asymmetry might be a floor
effect related to the relatively smaller priming effects at
both priming directions with a shorter SOA. We cannot
yet fully evaluate these findings against empirical data

5 We also conducted ANOVA analyses on the simulation results of these
two SOA situations, but due to the length limitation of the paper, we
do not report them here.

Figure 5. Priming effects as a function of SOA (from 10 to
150 elapsed time units). (a) Late L2 learning. (b) Early L2
learning. Error bars indicate the standard errors based on 20
simulations under each condition. The figure shows that, as
SOA decreases, the priming effects and the priming
asymmetry both reduce in our simulations.

as few previous empirical cross-language priming studies
have been done conducted to systematically investigate the
effect of varying SOAs. One exception was Schoonbaert,
Duyck, Brysbaert and Hartsuiker (2009), who conducted
a series of masked-priming experiments with Dutch–
English bilinguals, and their data are largely consistent
with our simulation results showing that cross-language
priming effects are smaller when SOA is shorter (100 ms
vs. 250 ms in the longer SOA).

Role of L2 age of acquisition

Other than capturing main empirical data with regard to
SOA, our model provides insights into how priming effects
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may differ as a function of different learning history of the
bilingual individual and therefore inspire future empirical
work. For example, the most salient priming asymmetry
in our simulations was found in translation priming for
the late L2 group, but the size of this priming asymmetry
in the early L2 group was much smaller (for translation
priming) or non-existent (for semantic priming). Such
early versus late learning differences suggest that the
direction of cross-language priming may become less
salient for bilinguals who acquire their L2 early in life.
In other words, early learners may have reached a level
of proficiency for both languages, such that priming from
one language to the other is more or less equal, regardless
of direction, due to equal amount of spreading activation
across languages.

Given the significant debate on the role of age
of acquisition (AoA) versus that of proficiency in L2
language representation and processing (see Hernandez
& Li, 2007, for review), our study cannot yet distinguish
whether the priming asymmetry differences are truly due
to AoA or due to proficiency as these two variables
are often correlated and as we have not independently
manipulated proficiency in this study. There is already
preliminary evidence that proficiency in L1 versus L2
might contribute to priming asymmetry. For example,
in a study based on Spanish–English bilinguals, Kiran
and Lebel (2007) found that the bilinguals less fluent
in L2 had overall larger priming effects and larger
priming asymmetry than those who were more balanced
in L1 and L2, although the differences were not
statistically significant partly due to the relatively small
sample size of the unbalanced bilinguals in their study
(n = 4). In another work, Dimitropoulou et al. (2011)
showed clear asymmetry patterns of translation priming
in Greek–English bilinguals, but the magnitudes of the
priming and of the asymmetry did not decrease as the
participants’ L2 proficiency level increased. The authors
indicated that this puzzling result might be due to the
fact that their participants were all late L2 learners,
and suggested that the asymmetry could change when
the AoA of the bilingual speakers had been taken into
consideration.

An important feature of the DevLex–II model in
accounting for bilingual lexical memory is its dynamic
semantic representation of the two lexicons. We believe
that this feature plays a significant role in allowing for
cross-language priming effects to occur in our model. In
Zhao and Li (2007, 2010) we showed that the lexical
representation structure differs significantly as a function
of early versus late L2 learning. Analyses of the network’s
semantic representation revealed that words from the
two learning situations are not evenly distributed in
the semantic map. Figure 6 shows an example based
on Zhao and Li’s (2010) simulation data, indicating
that for early L2 learning (Figure 6a), clearly separated

representations emerge in the semantic map, while for
late L2 learning, a disjointed and more compressed L2
representation pattern (Figure 6b) has occurred. When
the L2 words are densely represented, the competition
between them is stronger, resulting in higher confusion
rates and retrieval errors. In the late learning situation, the
L2 words, compared to L1 words, occupied only small
and fragmented regions, and were interspersed with L1
regions. This is a situation to which we refer as parasitic L2
lexicon (see also Hernandez, Li & MacWhinney, 2005),
because the representation of L2 words is dependent
on the established L1 lexical structure. These modeling
results point to the effects that the structural consolidation
of the L1 lexicon can have on the representation and
processing of L2 words, depending on whether L2
learning occurs early (leading to representation less
dependent on L1) or late (leading to a parasitic L2
representation).

Role of semantic representation in priming

Our model further highlights the development of
the richness of semantic representation in the L1
versus L2 contexts, which in turn contributes to the
development to priming effects. Our interpretation
of cross-language priming patterns is conceptually
consistent with previous theoretical frameworks such as
the Distributed Feature model (De Groot, 1992) and
the Sense model (Finkbeiner et al., 2004), and we
provide a computational implementation of the effects.
The previous theoretical frameworks propose that the
existence of cross-language priming effects depends on
the amount of shared semantic features (or senses)
between the prime word and target word. The translation
priming effect is often larger than semantic priming effect
because the translation equivalents share more features
than cross-languages semantically related pairs, which
in turn have more common features than unrelated word
pairs.

With regard to our model, on the semantic map
the closeness of the BMUs of different words reflect
their overlap in terms of semantic features since our
SOM-based model has the ability to capture, on a two-
dimensional map, semantic similarity in a distributed high
dimensional space (e.g., each dimension representing a
semantic feature) (Figure 5). Specifically, close overlap of
two lexicons in semantic representation allows spreading
activation to occur more easily from words in one language
to their semantically related words in the other language,
in turn leading to overall large cross-language priming
effects. Since there is more overlap in meaning between
translation equivalents than between semantically related
words across two languages, translation equivalents
are often located close to each other in the map’s
representation, and therefore translation priming is often
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Figure 6. (Color online) An example of bilingual lexical representation on the semantic map, as a function of (a) early versus
(b) late L2 learning. Shaded areas correspond to L2 words (English). Similar results have been observed with Chinese as the
L2. See Zhao and Li (2007, 2010) for further discussion.
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larger than semantic priming. Moreover, the lateral
connections that gradually develop among nodes within
the map also contribute to the cross-language priming
patterns seen in our simulations. As learning progresses,
the connections between translation equivalents become
increasingly stronger. When a prime word is activated
on the map, the activation can quickly spread to the
node corresponding to its translation equivalent via the
strong lateral connection, causing the node to be more
readily accessible in the semantic space. The effect of
these “short paths” among translation equivalents could
also contribute to the larger magnitude of translation
priming than semantic priming shown in our model, which
could be useful in accounting for patterns in empirical
data.

In terms of priming asymmetry patterns, previous
theoretical frameworks often assume a less rich semantic
representation of L2 than L1 (i.e., fewer semantic
features/senses of L2 words that are understood by
bilinguals). Therefore the same amount of activated
features/senses will cause a larger priming of L2 targets
than L1 targets since relatively larger proportion of the
senses of a target is activated when it belongs to L2.
For example, consider an L1 word and its L2 translation
that share three common features: it is possible that
the three features are all that a bilingual understands
about the L2 word but the bilingual speaker may
know more than three features (e.g., six) about the
corresponding L1 word. Under this situation, priming
from L1 to L2 will cause 100% features of the L2 target
word to become activated but only 50% features of the
L1 target word activated when L2 to L1 priming occurs.
This is how priming asymmetry occurs according to some
accounts (e.g., see Figure 2 in Schoonbaert et al., 2009,
and discussions in Wang & Foster, 2010). As discussed
elsewhere, our model highlights the role of lexical
competition and lexical confusion among bilinguals. In
our view, the richness of semantic representation and
the potential lexical competition are inversely related:
the richer or better understanding a bilingual has for
a word, the less confusion or competition he or she
may experience between the word and other lexical
items. Consequently, depending on a bilingual’s L2
level, more lexical competitions or confusions may exist
among L2 words than among L1 words (see Zhao &
Li, 2010). Such a difference may contribute greatly
to the “priming asymmetry” (see further discussion
below).

The above discussion suggests two important points:
(i) L2 items are represented in more densely populated
neighborhoods and hence have increased lexical
competition from their nearby lexical items. When they
serve as primes, a very brief exposure (SOA) to them may
not trigger initial activations strong enough to spread to the
target L1 items not directly adjacent in the representation.

In contrast, activations of L1 items could be much stronger
given that they are more sparsely represented (thus having
less competition). Indeed, some recent Event-Related
Potential (ERP) studies of bilingual translation priming
show that late L2 learners often “were slower and less
efficient in processing L2 primes” (see a recent review
by Van Hell & Kroll, in press). In other words, an early
asymmetry exists even when the initial activations are
generated by the prime words, which could in turn cause
the priming asymmetry to occur. (ii) When L2 words
serve as the targets, their dense distribution and the
strong competitions among them result in the difficulty of
lexical retrieval and subsequent word naming, leading to
slower reaction times for L2 than for L1 words in lexical
decision tasks (which is the main effect of Direction in
our simulations). In a recent ERP study of noncognate
translation priming, Schoonbaert, Holcomb, Grainger and
Hartsuiker (2011) found a 100 ms processing delay for
L2 targets on ERP compared with L1 targets, and this
delay has been associated with the asymmetric priming
pattern shown in behavioral data. In short, the above
two points could explain why priming asymmetry was
more salient for late L2 learning than for early L2
learning.

To conclude, in this study we have attempted to
provide a computational account for cross-language
priming effects by extending the DevLex–II model to
simulate the Chinese–English bilingual priming. The aim
was to investigate how two lexicons are organized in
semantic representation and how they interact with each
other from a developmental perspective. The consistency
between our simulation results and previous empirical
findings suggests that the nature of bilingual conceptual
representation is the result of a highly dynamic process
shaped by the interactions between the learning of L1
and L2. Our model differs from previous bilingual
computational models by using learning algorithms based
on developmental and neurally plausible mechanisms
such as Hebbian learning, unsupervised learning, and
spreading activation to account for cross-language
bilingual priming. Future computational and empirical
studies should be conducted to verify the role of
AoA and proficiency in cross-language priming, and to
understand more generally the nature of cross-language
interaction and its impact on bilingual representation and
processing.

Appendix. Test material

(A) The 32 pairs of cross-language translation equivalents
used in our study.
(B) The 32 cross-language semantically related word pairs
used in our study.
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(A) (B)

Sock Bear (lion)

Ant Juice (milk)

Pillow Sidewalk (road)

Bug Apple (strawberry)

Star Toe (finger)

Cup Moon (sun)

Ear Kitchen (room)

Hair Bench (table)

Spoon Mouth (tooth)

Monkey Kitty (puppy)

Bird Egg (food)

Button Pen (pencil)

Train Bus (car)

Bottle Towel (soap)

Coat Banana (orange)

Nail Brother (sister)

Duck Shovel (hammer)

Rock Lady (man)

Hat Basket (box)

Tongue Uncle (aunt)

Mouse Pants (belt)

Toy Goose (penguin)

Basket Bread (cake)

Flower Boat (plane)

Sky Jacket (shirt)

Sweater Teacher (child)

Shoe Roof (window)

Animal Leg (arm)

Drawer Nurse (doctor)

Tiger Bowl (plate)

Corn Hen (cock)

Nose Sofa (chair)
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