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For steady flows, the Briggs (Electron-Stream Interaction with Plasmas. MIT Press,
1964) method is a well-established approach for classifying disturbances as either
convectively or absolutely unstable. Here, the framework of the Briggs method is
adapted to temporally periodic flows, with Floquet theory utilised to account for the
time periodicity of the Stokes layer. As a consequence of the antiperiodicity of the flow,
symmetry constraints are established that are used to describe the pointwise evolution
of the disturbance, with the behaviour governed by harmonic and subharmonics modes.
On coupling the symmetry constraints with a cusp-map analysis, multiple harmonic and
subharmonic cusps are found for each Reynolds number of the flow. Therefore, linear
disturbances experience subharmonic growth about fixed spatial locations. Moreover,
the growth rate associated with the pointwise development of the disturbance matches
the growth rate of the disturbance maximum. Thus, the onset of the Floquet instability
(Blennerhassett & Bassom, J. Fluid Mech., vol. 464, 2002, pp. 393–410) coincides with
the onset of absolutely unstable behaviour. Stability characteristics are consistent with
the spatio-temporal disturbance development of the family-tree structure that has hitherto
only been observed numerically via simulations of the linearised Navier–Stokes equations
(Thomas et al., J. Fluid Mech., vol. 752, 2014, pp. 543–571; Ramage et al., Phys. Rev.
Fluids, vol. 5, 2020, 103901).

Key words: boundary layer stability, absolute/convective instability

1. Introduction

The Stokes layer is the flow established by the sinusoidal motion of an infinitely long
bounding flat plate beneath an otherwise stationary body of fluid. This unsteady flow

† Email address for correspondence: christian.thomas@mq.edu.au

© The Author(s), 2021. Published by Cambridge University Press 928 A23-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:christian.thomas@mq.edu.au
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.824&domain=pdf
https://doi.org/10.1017/jfm.2021.824


A. Pretty, C. Davies and C. Thomas

yields one of the few known exact solutions to the Navier–Stokes equations, and so is the
archetype model for investigating stability behaviour in temporally periodic flows. Given
the periodicity of the underlying basic state, the stability problem naturally lends itself to
Floquet analysis, whereby the net growth (or decay) of linear disturbances is determined
over each full cycle of wall oscillation.

The Floquet approach accounts for the periodicity of the unsteady flow by assuming that
disturbances are decomposed into modes with a time dependency of the form exp(μt)p(t),
where p is a time-periodic function with the same period as the basic state. The net
growth of the disturbance is then encompassed in the real part of the Floquet exponent
μ. Perturbation equations are derived from the Navier–Stokes equations in a manner
analogous to the derivation of the Orr–Sommerfeld equation (that governs the stability
of steady flows).

1.1. General background
Floquet theory was first formulated for the Stokes layer by Hall (1978), who showed that
the flow is linearly stable for Reynolds numbers Re < 160 – a formal definition for the
Reynolds number Re is given below in (2.3). Following the advancement of computational
technology, Blennerhassett & Bassom (2002) extended the Floquet analysis to significantly
larger values of Re, wherein a section of the neutral stability curve was traced and
it was determined that linearly unstable behaviour emerges for the critical Reynolds
number Rec = 707.84. Equivalent formulations were subsequently used to investigate the
linear stability of related flows, such as the finite Stokes layer in channels and pipes
(Blennerhassett & Bassom 2006; Thomas et al. 2011; Thomas, Bassom & Blennerhassett
2012).

Informed by the results of these earlier studies, Thomas et al. (2014) carried out direct
numerical simulations (DNS) of the linearised Navier–Stokes equations to explore the
impulse response of disturbances in the semi-infinite Stokes layer. Numerical simulations
revealed an intriguing spatio-temporal formation that was described as a family-tree
structure, which involves the successive birthing of distinct wavepackets. Moreover, it was
demonstrated that DNS calculations were in excellent agreement with the Floquet stability
analysis, despite computational restrictions limiting DNS to the first three periods of wall
motion.

Although agreement between linear stability analysis and DNS was demonstrated,
experiments on the Stokes layer generally observe unstable behaviour and transition to
turbulence for Reynolds numbers Re < 300 (Hino, Sawamoto & Takasu 1976; Clamen
& Minton 1977; Akhaven, Kamm & Shapiro 1991; Eckmann & Grotberg 1991), which
is significantly lower than the Floquet predictions (Blennerhassett & Bassom 2002). In
an attempt to address the significant differences between theory and experiments, it was
noted by Thomas et al. (2015) that many experiments report some noise associated with
the mechanical oscillation of the bounding plate. Naturally, it is difficult to retroactively
determine the level of noise in experiments, but many experimentalists quote a noise
amplitude of 1 % of the fundamental oscillation. Based on this observation, Thomas et al.
(2015) undertook a stability investigation of the Stokes layer subject to a low-amplitude,
high-frequency harmonic. It was shown that the introduction of this form of modulation
brought about a dramatic destabilisation of the flow, bringing the critical Reynolds number
Rec for unstable behaviour in line with experimental observations. While the form of these
high-frequency harmonics is not particularly comparable to the supposedly random noise
observed in experiments, the considerable reduction in Rec suggests that the presence of
noise can have a significant effect on the stability of the flow.
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Figure 1. Reproduction of figure 3 from Ramage et al. (2020). Spatio-temporal contour plot of the linear
disturbance in the Stokes layer with Re = 750. Contours are based on the logarithm of the absolute value of the
wall vorticity perturbation.

This investigation follows the recent work by Ramage et al. (2020) in which disturbance
development was successfully simulated for 20 periods of wall motion for both the
classical Stokes layer and several cases where the basic state was modified via a
high-frequency, low-amplitude harmonic. The longer time numerical simulations suggest
that the Stokes layer is subject to an absolute form rather than a convective form of
instability. Convective instability describes an unstable disturbance that propagates along
one direction only, while absolute instability is characterised by growth at every spatial
location.

1.2. Key features of the disturbance development
In order to fully contextualise the present investigation, we describe the key observations
of Ramage et al. (2020) that will be explored further herein.

Figure 1 is a reproduction of figure 3 of Ramage et al. (2020) and displays the
impulse response of the linear disturbance in the Stokes layer at the Reynolds number
Re = 750. Contours are based on the logarithm of the absolute value of the wall vorticity
perturbation. This plot is included here to illustrate the spatio-temporal development of the
family-tree structure, first reported in Thomas et al. (2014), and highlight the key features
of the disturbance evolution. For details on the generation of this plot, the interested reader
is directed to Ramage et al. (2020). Here, it is sufficient to state that the respective contours
indicate the magnitude of the disturbance as a function of the streamwise x-direction
(in which the plate oscillates) and the non-dimensional time τ/2π (the number of plate
oscillations).

At time τ = 0, the initial impulse excites a disturbance wavepacket that convects to the
right. This initial wavepacket is called the mother wavepacket. Within each period of the
wall oscillation, two daughter wavepackets are birthed that propagate to the left and right
of the original mother wavepacket. (In the early stages of the disturbance evolution, these
particular wavepackets develop at magnitudes below the low-amplitude cutoff and do not
appear in the contour plot depicted in figure 1. However, they do become more obvious at
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later times, when the disturbance achieves larger amplitudes.) The daughter wavepackets
then birth granddaughter wavepackets and so on, giving rise to the so-called family-tree
structure shown in figure 1.

It is immediately obvious from figure 1 that the disturbance maximum convects along
those wavepackets located on the right-hand side of the illustration. Moreover, the growth
rate associated with the disturbance maximum was found by Ramage et al. (2020) to match
the growth rate determined via Floquet stability theory (Blennerhassett & Bassom 2002).

Pointwise growth of the disturbance is then observed by selecting a single streamwise
x-location and tracing the disturbance development over time, i.e. a vertical line in figure 1.
Clearly the magnitude of the disturbance, about fixed spatial positions, increases with
increasing time. Though it is not evident from this plot alone, it was reported in Ramage
et al. (2020) that the growth rate associated with a fixed streamwise x-location is equal
to (or at least remarkably close to) the growth rate of the disturbance maximum, for all
Reynolds numbers modelled. This suggests that the Stokes layer is subject to absolutely
unstable behaviour, for which the onset coincides with the critical Reynolds number Rec =
707.84 for linear instability (Blennerhassett & Bassom 2002).

A second observation, drawn by Ramage et al. (2020), is the staggered structure of the
wavepacket formations. With the passing of each period of wall motion (i.e. time τ/2π
is increased by one), the location of each wavepacket is shifted horizontally along the
streamwise x-direction, before returning to their original locations during the next cycle.
Thus, at fixed spatial locations, the disturbance structure reasserts itself every two cycles
of wall motion. Hence, pointwise evolution is characterised by a subharmonic temporal
growth, with a periodicity that is twice that of the basic state.

Ramage et al. (2020) also reported that the spacing Λ between the respective mother
and daughter wavepackets is fixed and related to the Reynolds number Re. Moreover,
due to the staggered nature of the family-tree formation, the distance between two
adjacent wavepackets of commensurate size is twice the wavepacket spacing Λ. Thus,
the family-tree structure has a spatial periodicity of 2Λ.

1.3. Paper objective
Although the numerical investigation by Ramage et al. (2020) strongly suggests that linear
disturbances in the Stokes layer are absolutely unstable for Reynolds numbers Re ≥ Rec,
the existence of such behaviour can only be confirmed and understood by undertaking a
full theoretical study. This is achieved using a modified form of the Briggs (1964) method,
based on the formulation of Brevdo & Bridges (1997).

The Briggs method for locating absolutely unstable behaviour is well established for
steady flows, such as that on a rotating disc (Lingwood 1995, 1997b), while Pier (2003)
and Hwang, Kim & Choi (2013) have coupled this approach with Floquet theory to study
secondary instabilities on a rotating disc and in a two-dimensional wake, respectively.
However, application of these routines to temporally periodic flows has not, to the authors
knowledge, been attempted previously. It will be demonstrated that this analysis provides
confirmation of the disturbance behaviour reported in Ramage et al. (2020). Moreover, we
will:

(i) Determine necessary symmetry constraints for absolute instability, based on the
antiperiodicity of the Stokes layer.

(ii) Provide conclusive evidence for the existence of absolutely unstable behaviour in the
Stokes layer.
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(iii) Determine the mechanisms responsible for establishing absolute instability and
explain why pointwise growth is characterised by subharmonic behaviour.

(iv) Formulate a relationship between the spatial periodicity 2Λ of the family-tree
structure and the decomposition of the linear disturbance wave spectra.

1.4. Paper structure
The remainder of this paper is outlined as follows. The basic state and non-dimensionalisa-
tion are discussed in § 2, followed by the formulation for Floquet stability theory in § 3.
In § 4, the Briggs method is introduced and discussed, with the derivation of an integral
solution in § 4.1, the development of pinch points in § 4.2 and symmetry arguments in
§ 4.3. In § 5, results are discussed for the Stokes layer, demonstrating agreement with the
symmetry constraints and providing insight into the key features described in § 1.2. Finally,
conclusions and suggestions for future work are presented in § 6.

2. Base flow

Although we are primarily interested in the stability of linear disturbances in the
semi-infinite Stokes layer, the subsequent modelling is carried out in a two-dimensional
channel, as it was shown by Blennerhassett & Bassom (2006) that disturbance behaviour
in a sufficiently wide channel is almost identical to that found in the semi-infinite
configuration. Moreover, the finite domain is a more natural setting for the spectral
numerical methods implemented herein.

Consider the two-dimensional flow of a viscous, incompressible fluid that is bounded
between two infinite parallel plates, located a distance 2d apart. Each plate oscillates
sinusoidally along the dimensional x∗-direction with a velocity

Uw = Us cos(ωt), (2.1)

for a frequency of oscillation ω and velocity amplitude Us. The motion of the bounding
plates establishes a uni-directional flow that moves back and forth.

A non-dimensional basic state is obtained by defining the rescaled time τ = ωt, while
units of velocity and length are scaled on Us and the Stokes layer thickness δ = √

2ν/ω,
respectively. Hence, if y denotes the direction normal to the bounding surfaces, the
non-dimensional base flow is given as

U = (UB( y, τ ), 0), (2.2a)

where

UB( y, τ ) = Re
[

cosh((1 + i)y)
cosh((1 + i)h)

eiτ
]

= u1 eiτ + ū1 e−iτ . (2.2b)

Here, h = d/δ is the non-dimensional channel half-width, with h = 16 for the subsequent
investigation (the semi-infinite configuration is well approximated when h > 14,
Blennerhassett & Bassom 2006; Thomas et al. 2015). Additionally, the Reynolds number
of the flow is defined as

Re = Us√
2νω

, (2.3)

where ν denotes the kinematic viscosity of the fluid.
The basic state (2.2) is periodic in time with a period of 2π, i.e. UB( y, τ + 2π) =

UB( y, τ ). Moreover, the flow is antiperiodic, meaning that a time shift of half a period
corresponds to an exact reversal of the flow, i.e. UB( y, τ + π) = −UB( y, τ ).
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3. Floquet theory

As Squire’s theorem has been extended to unsteady flows (Conrad & Criminale 1965;
Von Kerczek & Davis 1974), the following analysis is restricted to the development of
two-dimensional disturbances. Thus, the total velocity field is given as

(u, v) = (UB, 0)+ ε

(
∂Ψ

∂y
,−∂Ψ

∂x

)
, (3.1)

where ε � 1 and Ψ denotes the streamfunction that is decomposed as a Floquet mode

Ψ (x, y, τ ) = ψ( y, τ ) exp(μτ + iαx)+ complex conjugate. (3.2)

Here, ψ( y, τ ) is a 2π-periodic function in time, while α ∈ R and μ ∈ C denote the
wavenumber and Floquet exponent, respectively. The growth or decay of the disturbance
is included in the real part of μ and, since ψ is 2π-periodic, the disturbance is rescaled by
the Floquet multiplier exp(2πμ) after each full period of wall motion.

On substituting (3.1) into the Navier–Stokes equations and linearising in ε, the following
governing equation for ψ is derived

∂

∂τ
Lψ =

[
1
2L − μ− iαReUB

]
Lψ + iαReU′′

Bψ, (3.3a)

with boundary conditions

ψ = ψ ′ = 0 on y = ±h, (3.3b)

where a prime denotes differentiation with respect to y and

L = ∂2

∂y2 − α2. (3.4)

Perturbations ψ are then decomposed into harmonics

ψ( y, τ ) =
∞∑

n=−∞
ψn( y) exp(inτ), (3.5)

so that equating coefficients of harmonics in (3.3) results in an infinite system of equations(
L − α2 − 2 (μ+ in)

)
Lψn = iαRe (u1 (Lψn−1 − 2iψn−1)+ ū1 (Lψn+1 + 2iψn+1)) .

(3.6)

Given the normal mode form (3.2) and Fourier decomposition (3.5), the imaginary part
of the Fourier exponent μ can be restricted to the interval μ ∈ [0, 0.5]. Firstly, if μ is a
solution, then so is μ+ ik for k ∈ Z. Secondly, due to the symmetry of the Stokes layer,
Floquet modes occur as a complex conjugate pair μ = μr ± μi that are matched to left-
and right-travelling waves with equal growth. Moreover, disturbances are stationary in the
instance the imaginary part of the Floquet exponent is zero, i.e. μi = 0.

The system of (3.6) can be solved numerically using the pseudospectral techniques
described by Trefethen (2000). Differential operators (that appear up to fourth order) are
replaced by pseudospectral matrix approximations with each ψn( y) replaced by a vector
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ψn of its function values on a Chebyshev mesh over the interval −h ≤ y ≤ h. Introducing
matrix operators

L → L, L2/2 → V and P = L−1u1(L − 2iI), (3.7a–c)

allows (3.6) to be rearranged as

− iαReP̄ψn+1 + (L−1V − inI)ψn − iαRePψn−1 = μψn, (3.8)

where I is the identity matrix and P̄ is the complex conjugate of P.
A finite system of equations is obtained by truncating the Fourier series (3.5), setting

ψn = 0 for all |n| > N. The system of equations can then be written in a compact form by
the concatenation of ψn into the vector

φT = (
ψT

N,ψ
T
N−1, . . . ,ψ

T
0 , . . . ,ψ

T
−N

)
. (3.9)

In this manner, the problem is reduced to the eigenvalue problem

Aφ = μφ, (3.10)

where A is a block-tridiagonal matrix (with block size defined via the Chebyshev
discretisation).

The number of harmonics N was carefully chosen to ensure that results were unchanged
by further increases in N. In many cases N = 300 harmonics were necessary, while
sufficient resolution along the wall-normal y-direction was achieved by using 100
Chebyshev points, resulting in a prohibitively large system (3.10). However, the least-stable
disturbances are expected to be symmetric about the channel centre (as per Blennerhassett
& Bassom 2006). Thus, the size of the system can be significantly reduced by considering
only even Chebyshev functions. Finally, since the block-tridiagonal matrix contains mostly
zeros, the eigenvalue problem is efficiently solved using the sparse matrix eigenvalue
routine in MATLAB. Further details of the derivation and numerical procedure are given
in Blennerhassett & Bassom (2006) and Ramage (2017).

4. The Briggs method

The Floquet approach, described above, allows us to determine the asymptotic temporal
characteristics of disturbances with a fixed streamwise wavenumber α, when the basic
state is temporally periodic. On the other hand, the leading-order behaviour of the integral
solution, defined below, allows us to classify unstable disturbances as either convectively
unstable (those that decay at each point in space) or absolutely unstable (those that grow
at every spatial location).

In this section, the derivation of the integral solution that describes disturbances in
two-dimensional flows is presented. Subsequently, the method in which the leading-order
behaviour is determined, by locating pinch points in the complex α-plane, is described.
The approach is based upon the method outlined in Brevdo & Bridges (1997) for
temporally periodic media and is reproduced here to demonstrate the applicability to the
time-periodic Stokes layer.

The Navier–Stokes equations are utilised to establish a single governing equation for
the evolution of disturbances in the Stokes layer (2.2). The disturbance equation is again
formulated in terms of a streamfunction ψ , similar to (3.3), except the full streamwise
x and time τ dependence are now retained. The wall-normal y-direction then undergoes
a discretisation, such as the Chebyshev method outlined in § 3. Hence, the y-dependent
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streamfunction ψ is replaced with a vector ψ dependent only on x and τ , while operators
denoting differentiation with respect to y are replaced with matrix approximations. The
discrete approximation to the jth y-derivative will be denoted here by D j. The resulting
disturbance equation is given as

[
∂

∂τ

(
∂2

∂x2 I + D2
)

+ ReU(τ )
∂2

∂x2

(
∂2

∂x2 I + D2
)

− ReU ′′(τ )
∂

∂x
I

−1
2

(
∂2

∂x2 I + D2
)2]

ψ(x, τ ) = g(x, τ ), (4.1)

where I denotes the identity matrix and g = g(x, τ ) describes an impulsive forcing. The
basic state is included in the matrices U(τ ) and U ′′(τ ), which contain the discrete vector
expressions of UB( y, τ ) and U′′

B( y, τ ) along the diagonal.
Equation (4.1) is dependent on the streamwise x-direction and time τ , with coefficients

that are periodic in τ . The initial condition is defined as

ψ(x, 0) = ψ0(x), (4.2)

with

ψ0(x) → 0 as x → ±∞. (4.3)

Furthermore, it is assumed that

ψ(x, τ ) → 0 as x → ±∞ for all τ. (4.4)

4.1. Integral solution
The integral solution to (4.1) is derived following the procedure described by Brevdo &
Bridges (1996) for spatially periodic flows and Brevdo & Bridges (1997) for temporally
oscillating flows. A complete outline of the derivation is included in Ramage (2017),
but for brevity, only the main points are described here, including the definitions for the
Fourier and Laplace transforms, and the integral expression for ψ .

First, a Fourier transform is applied to the streamwise x-direction

w(α) =
∫ ∞

−∞
w(x) e−iαx dx and w(x) = 1

2π

∫ ∞

−∞
w(α) eiαx dα, (4.5a,b)

where α again denotes the streamwise wavenumber that is now allowed to be complex.
Following the application of Floquet theory, a Laplace transform is utilised, which is

where the current approach differs from that presented in Brevdo & Bridges (1996, 1997).
The frequencyω used in Brevdo & Bridges (1997) is replaced here by the Floquet exponent
μ. One reason for the change in notation is for consistency with the Floquet method
presented in § 3. A second reason is that for Floquet modes (3.2), the term ‘frequency’ is
imprecise since each Floquet mode contains a range of harmonic frequencies. The notation
used here can be reconciled with that of Brevdo & Bridges (1997) by setting ω = −iμ,
so that the subsequent analysis in the complex μ-plane is a 90◦ rotation of the complex
ω-plane.
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The Laplace transform used here has the form

w(μ) =
∫ ∞

0
w(τ ) e−μτ dτ and w(τ ) = 1

2π

∫ σ+i∞

σ−i∞
w(μ) eμτ dμ, (4.6a,b)

where σ in the integral limits of (4.6b) is selected so that the inversion contour lies to the
right of all poles of the integrand in the complex μ-plane. (In the subsequent discussion it
will be demonstrated that this ensures causality is satisfied.)

Following the application of the inverse Fourier and Laplace transforms, the integral
solution for ψ is given as

ψ(x, τ ) = 1
4π2

∫
F

Q(α, τ )
∫

L

G(α, μ)

D(α, μ)
exp(μτ + iαx) dμ dα, (4.7)

where the inversion contours for the Fourier and Laplace transforms are denoted by
F = (−∞,∞) and L = (σ − i∞, σ + i∞), respectively. The periodicity of the problem
manifests in the function Q, which is periodic in time τ with the same period as the basic
state (2.2). Moreover, Q and G are non-singular (Brevdo & Bridges 1996, 1997). Thus,
the integrand of (4.7) only has poles when the dispersion relation D(α, μ) = 0. When
this condition is satisfied, the Floquet exponent μ represents an eigenvalue of (3.3) for a
given wavenumber α. Therefore, the solution to the stability equation (3.3) is equivalent
to finding the set of complex-valued μ that satisfy the dispersion relation D(α, μ) = 0 for
fixed α.

The integral solution (4.7) can be used to describe two particular features of linear
disturbances in the Stokes layer:

(i) The temporal evolution of the disturbance maximum.
(ii) The behaviour about fixed streamwise x-locations.

Thus, it is possible to classify the impulse response as stable, convectively unstable or
absolutely unstable.

4.2. Pinch points
Consider a solution to the disturbance equation (4.1) for an impulsive forcing g that is
localised in both the spatial x-direction and in time τ , with g set to zero for τ < 0. The
corresponding solution is referred to as the impulse response, and is classified as stable if
it decays in the asymptotic limit, whereby the total flow returns to the unperturbed basic
state (2.2). On the other hand, if the solution grows it is unstable. An unstable solution
can be further classified as convective or absolute, depending on the behaviour about fixed
spatial x-locations. Unstable disturbances that decay at each x-position and convect away
from the region of interest are convectively unstable, whereas a disturbance that grows
about every x-location is absolutely unstable. While it might be concluded that the overall
growth or decay of the solution to (4.1) is matched to the least-stable Floquet mode (3.2),
the classification of the impulse response as being convective or absolute requires further
consideration using the Briggs (1964) method.

The application of the Briggs method to the stability of steady shear flows is well
documented (Gaster 1968; Lingwood 1997a; Schmid & Henningson 2001; Huerre 2002)
and for temporally periodic flows the process remains broadly unchanged, provided the
time dependence of the term Q in (4.7) is treated appropriately. However, a significant
result of the subsequent investigation is the manner in which the existence of absolute
instability is constrained by antiperiodicity. Moreover, the symmetry arguments used here
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αr

αi

α–(L)

α+(L)

F

x > 0

x < 0 μr

μi
μ(F )

L

τ > 0 τ < 0

(a) (b)

Figure 2. Sketches illustrating the initial set-up for Briggs’ method. (a) Complex α-plane. (b) Complex
μ-plane.

to demonstrate this behaviour rely on an in-depth understanding of Briggs’ method. Thus,
an overview of the procedure outlined by Brevdo & Bridges (1997), that differs from the
Briggs (1964) method through the inclusion of the time-periodic term Q, is presented
below in order to contextualise the subsequent analysis.

The approach for characterising unstable disturbances is equivalent to that presented by
Brevdo & Bridges (1997) with the exception of the rotation in the complex frequency plane
that arises as a consequence of the differing representations of the temporal component of
the perturbation. Equation (4.7) is evaluated for contours F and L in the respective complex
α- and μ-planes, which are indicated by the respective horizontal and vertical red lines
in figure 2. Closure of the two contours, F and L, is then achieved by adding a contour
that connects the respective endpoints. Since the integrand is zero along this closure, the
integral solution (4.7) along the straight-line open contour is equivalent to that obtained
over the closed contour. Thus, by Cauchy’s residue theorem, the integral is the sum of the
residues of the poles contained within the closed contour.

In the complex α-plane, depicted in figure 2(a), the integrand in (4.7) decays as αi → ∞
for x > 0. Thus, the horizontal F contour can be closed by a semi-circular contour
of infinite radius in the upper half-plane. Hence, when x > 0, the integral along F is
determined by summing the residues of poles in the upper half-plane. Similarly, if x < 0,
closure is achieved by a semi-circular contour in the lower half-plane and the integral along
F is given by summing the residues of poles in the lower half-plane.

For each α ∈ F there are μ-roots to the dispersion relation D(α, μ) = 0 that correspond
to poles of the integrand in (4.7). Taking the loci of these poles for all α ∈ F establishes
μ(F) curves in the complex μ-plane. The μ(F) curve located furthest to the right in the
complex μ-plane is illustrated by the solid purple curve in figure 2(b). The vertical L
contour is then chosen to lie to the right of this curve by selecting the real part as

σ > max {μr | D(α, μ) = 0, ∀ α ∈ R} . (4.8)

Similar to the approach implemented for the F contour, closure of the L contour in the
complex μ-plane is achieved via the addition of semi-circular contours to the left or right.
The integrand in (4.7) decays as μr → ∞ for time τ < 0. Thus, provided there are no
poles to the right of the L contour, the integral must be zero. Hence, the disturbance is
zero for all points in time prior to the application of the impulsive forcing g. Therefore, it
is necessary that σ is given by (4.8) to satisfy causality. For time τ > 0, closure is achieved
by a semi-circular contour to the left of the L contour. This closed contour then contains
all poles of the integrand in (4.7).

For Floquet exponents μ ∈ L, α±(L) curves in the complex α-plane satisfy the
dispersion relation D(α, μ) = 0 and describe poles of the integrand in (4.7), as depicted by
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Absolutely unstable behaviour in the Stokes layer

the solid purple curves in figure 2(a). Initially, all poles are associated with spatial decay,
while α±(L) represent those curves that exhibit the slowest decay along the positive and
negative valued x-directions.

The Fourier integral (4.5) in (4.7) is computed first, which is given as

ψ(x±, μ) = 1
2π

∮
C±

F

Q (α, τ )
G (α, μ)

D (α, μ)
exp(iαx±) dα, (4.9)

for some μ, where x+ and x− are shorthand for x > 0 and x < 0, respectively. Similarly,
C±

F denotes the closed contour for a particular x value. Due to the adoption of this compact
notation, two expressions are represented by (4.9). A single expression for all x is given by

ψ(x, μ) = H(x)ψ(x+, μ)+ H(−x)ψ(x−, μ), (4.10)

where H(x) is the Heaviside function. Furthermore, by Cauchy’s residue theorem

ψ(x±, μ) = ±i
∞∑

k=1

Q
(
α±

k (μ) , τ
) G

(
α±

k (μ) , μ
)

∂D
∂α

(
α±

k (μ) , μ
) exp(iα±

k (μ) x±), (4.11)

where α+
k (μ) and α−

k (μ) are the roots of the dispersion relation D(α, μ) = 0 in the upper
and lower halves of the complex α-plane, respectively.

On solving the Fourier integral (4.9), the Laplace integration (4.6) is carried out. This is
achieved by deforming the L contour to the left in the complex μ-plane. To illustrate this
behaviour, we consider one particular μ value on L with a fixed imaginary part μi. The
corresponding real part, μr, is then reduced. The problem then simplifies to tracing the
behaviour of poles in the complex α-plane as the real part of μ is shifted horizontally to
the left. Figure 3 demonstrates both the behaviour about a fixed μi value and the overall
deformation of the contours and curves when all μi are considered. The leftwards shift of
a fixed μ value and the corresponding movement of the α-roots are illustrated by arrows
in the respective μ- and α-planes; figure 3(a,b). The deformation of the L contour in the
μ-plane and that of the corresponding F contour in the α-plane are made more obvious by
the inclusion of the initial set-up (represented by dashed purple and red lines).

As the real part of the Floquet exponent is reduced, the resulting path will eventually
cross the μ(F) curve, which describes the μ-roots of the dispersion relation D(α, μ) = 0
for α ∈ R; dashed purple curve in figure 3(b). Thus, at least one α-root of D lies along
the real α-axis. Moving μ beyond the μ(F) curve allows one α-root to cross over the F
contour and pass from one half of the complex α-plane to the other; as demonstrated by
the arrow originating in the upper right quadrant in figure 3(a). Since a pole has shifted
from one half of the complex α-plane to the other, there is a discontinuity in (4.11) for ψ ,
with the jump being the size of the residue of this particular pole. However, an analytic
continuation of ψ is achieved by deforming the F contour, as shown in figure 3(a), to
ensure that all α-roots remain on their respective sides of F. The modification of the F
contour results in a corresponding deformation of the μ(F) curve in figure 3(b).

By allowing for the deformation of the F contour, the horizontal shifting of the Floquet
exponent μ can be extended to smaller valued μr. However, in general, this procedure
cannot be continued indefinitely. Once an α-root has crossed into the opposite half-plane,
the leftwards shift to some μ = μ0 is accompanied by the coalescence at α0 of two poles
originating in different halves of the complex α-plane, as demonstrated in figure 3(c,d).
The F contour becomes pinched and passes through the pole at α0, but cannot be
deformed further without introducing discontinuities in ψ . Thus, a further reduction in μr
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αr

αi α+(L)

α–(L)

F

μr

μi

L

μ(F )

αr

αi α+(L)

α–(L)

F
α0 μr

μi

L

μ(F )

μ0

(a) (b)

(c) (d )

Figure 3. Sketches illustrating the pinching of the F contour in the complex α-plane as the contour L is shifted
horizontally to the left in the complex μ-plane. Arrows indicate the behaviour brought about by the horizontal
movement of a fixed Floquet exponent μ, dashed lines indicate the original contours and pole loci (as per
figure 2), while solid curves demonstrate the deformations due to the leftward movement of the L contour;
(a,b) μ is reduced until one α-root crosses the real α-axis, (c,d) μ = μ0 corresponds to a collision of poles at
α0.

is not possible. Note that a coalescence of α-roots originating within the same half-plane
does not pinch the F contour.

The coalescence of two simple poles at α0 results in a second-order pole. Therefore, in
addition to satisfying the dispersion relation

D(α0, μ0) = 0, (4.12a)

it must also hold that
∂D
∂α
(α0, μ0) = 0. (4.12b)

Thus, such collisions manifest as saddle points of the dispersion relation in the complex
α-plane. Moreover, by inverting this relationship it becomes evident that the formation of
a saddle point at α0 is accompanied by the formation of a cusp at μ0 (Kupfer, Bers & Ram
1987), as illustrated by the solid purple curve in figure 3(d).

In (3.3), which is equivalent to the dispersion relation D(α, μ) = 0, the wavenumber α
appears to the fourth order, while the Floquet exponent μ is linear. Since the matrices
in the eigenvalue problem (3.10) are very large, it was computationally impossible to
determine α for a given μ using the currently available computational resources. Hence, it
was not feasible to locate saddle points of the dispersion relation in the complex α-plane.
Nevertheless, utilising existing methods for computing μ for a given α, the corresponding
cusps of the dispersion relation in the complex μ-plane may be located.

Using a Taylor series expansion for ψ about α0, it may be shown that if α0 is formed
by the collision of two poles originating in the opposite halves of the α-plane, then
it contributes to the expressions (4.9)–(4.11) for both positive and negative valued x.
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Absolutely unstable behaviour in the Stokes layer

Hence, the parameter set (α0, μ0) contributes to the pointwise asymptotic behaviour of
the disturbance. A similar argument can be used to demonstrate that if α0 represents the
collision of two poles originating in the same half-plane, there is a cancellation effect and
the collision does not contribute to the asymptotic behaviour (Huerre 2002). The condition
that the collision occurs between poles originating in opposite half-planes is known as the
collision criterion (Brevdo & Bridges 1997).

Finally, the Laplace integration in (4.7) is carried out along a contour that lies to the
right of every μ0; there can be multiple such branch points, potentially a continuum, due
to the continuous choice of μi at the start of the procedure. For a collision that satisfies the
collision criterion, the leading-order behaviour is then described by

ψ(x, τ ) ∼ −iQ(α0, τ )G (α0, μ0)√
2πτ

∂D
∂μ

(α0, μ0)
∂2D
∂α2 (α0, μ0)

exp (iα0x + μ0τ) , (4.13)

where α0 is the location of the pinch-type saddle point in the complex α-plane and μ0
is the corresponding cusp location. While there are notionally multiple such values, the
leading-order behaviour of (4.13) is described by the pair (α0, μ0) for which μ0 has the
greatest real part. It is possible to account for lower-order behaviour by considering a
superposition of similar expressions for further (α0, μ0) pairs.

The expression for the streamfunction ψ , as given in (4.13), matches the Floquet mode
decomposition given in (3.2), up to a multiplication by a factor 1/

√
τ . Pointwise temporal

growth occurs if Re{μ0} > 0, while Re{μ0} < 0 corresponds to pointwise decay. In the
former instance, the disturbance is classified as absolutely unstable, while in the latter
case the disturbance is either convectively unstable or stable (depending on the growth or
decay of the disturbance maximum).

4.3. Symmetry constraints
In addition to being periodic with a period 2π, the temporal variation of the basic state
(2.2) is antiperiodic with an antiperiod π; i.e. UB( y, τ + π) = −UB( y, τ ). Thus, the
distinction between the upstream and downstream x-directions is blurred, and the location
of the roots of the dispersion relation D(α0, μ0) = 0 are constrained. This behaviour is
illustrated by considering the governing perturbation equation (3.3), that is equivalent
to the dispersion relation, whereby the solution is characterised by the complex-valued
wavenumber α, Floquet exponent μ, and eigenfunction ψ :

(α, μ,ψ ( y, τ )) . (4.14a)

On taking the complex conjugate of (3.3), the governing perturbation equation remains
unchanged but the solution is now characterised as(−ᾱ, μ̄, ψ̄ ( y, τ )

)
, (4.14b)

where z̄ denotes the complex conjugate of z. The existence of the solution (4.14a) implies
the existence of the solution (4.14b), and this relationship holds irrespective of the
antiperiodicity of the flow. Returning to (3.3) and applying a time shift of half a period,
τ → τ + π, the sign of the basic state is reversed and the asymptotic behaviour for large
time τ is unchanged. Thus, the solution is given as

(−α,μ,ψ ( y, τ + π)) . (4.14c)

The existence of the solution (4.14a) implies the existence of the solution (4.14c) when
antiperiodicity holds. Applying both complex conjugation and a time shift of half a period
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to (3.3), the solution is characterised as(
ᾱ, μ̄, ψ̄ ( y, τ + π)

)
. (4.14d)

It follows from the related solutions (4.14) that for any given pair (α, μ) that satisfy (3.3),

D(α, μ) = 0 =⇒
⎧⎨
⎩

D(ᾱ, μ̄) = 0,
D(−α,μ) = 0,
D(−ᾱ, μ̄) = 0,

(4.15)

for any antiperiodic flow.
In the instance α ∈ R, such that ᾱ = α, the set of relationships (4.15) reduce to

D(α, μ) = 0 =⇒
⎧⎨
⎩

D(α, μ̄) = 0,
D(−α,μ) = 0,
D(−α, μ̄) = 0.

(4.16)

Hence, for any α ∈ R, the μ-roots of the dispersion relation D(α0, μ0) = 0, appear in
complex conjugate pairs. In terms of Briggs’ method, this implies that the μ(F) curve,
plotted in figure 2(b), is symmetric about the real μ-axis.

A similar argument can be established for Floquet exponents μ, once the harmonic
decomposition ofμ in (3.5) has been taken into account. The imaginary part of the Floquet
exponent, μi, is only given modulo one, since an integer shift is equivalent to a relabelling
of the harmonics. Thus,

D(α, μ) = 0 =⇒ D(α, μ+ ik) = 0, (4.17)

for all integers k. Moreover, in the instance that μi is a multiple of 1/2, complex
conjugation is equivalent to an integer shift in μi. Therefore,

D(α, μ) = 0 =⇒ D(α, μ̄) = 0, (4.18)

where, restricting our interest to the interval μi ∈ [0, 1) gives

μ = μr + i
{

0, 1
2

}
for μr ∈ R. (4.19)

On applying the above symmetries, it follows that, for all μ of the form (4.19), the set of
relationships (4.15) reduces to

D(α, μ) = 0 =⇒
⎧⎨
⎩

D(ᾱ, μ) = 0,
D(−α,μ) = 0,
D(−ᾱ, μ) = 0.

(4.20)

In the pinch-point analysis described above, the imaginary part of μ is fixed and the
α-roots of the dispersion relation D(α, μ) = 0 are traced as the real part of μ is shifted
horizontally to the left (recall § 4.2). When the imaginary part of μ is fixed such that
μi = {0, 1/2}, the movement of the α-roots is constrained by the symmetries of the base
flow (2.2) and hence (4.20) holds. In particular, if the wavenumber α is a root of the
dispersion relation D(α, μ) = 0, then so are the wavenumbers ᾱ, −α and −ᾱ. Thus,
once μ comes into contact with the μ(F) curve and an α-root touches the real axis, the
corresponding ᾱ-root must also touch the real axis. Similarly for −α and −ᾱ. Hence, the
F contour is pinched along the real α-axis and no contour deformation is necessary. This
behaviour is demonstrated in figure 4 for μi = 1/2. Since the F contour is not deformed,
neither is the μ(F) curve, though the existence of the saddle point at α0 ∈ R (and −α0)
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αr

αi α+(L)

α–(L)

F

α0

–α0

μr

μi

L

μi =
1
2

μ(F )

μ0

(a) (b)

Figure 4. Sketches illustrating the pinching of the F contour along the real α-axis, when μ = μr + i/2.
(a) Complex α-plane. (b) Complex μ-plane. For the horizontal line extending from the L contour to the μ(F)
curve, there is a matching symmetric movement of the α-roots that form collisions along the real α-axis about
±α0.

indicates a cusp at μ0, as illustrated in figure 4(b). Moreover, there is a cusp indicated for
μi = 0, by the same argument. Note that the α±(L) curves are not symmetric, even though
the movement of the α-roots associated with μi = {0, 1/2} are symmetric along both
axes.

The existence of these pinch points is assured by the process outlined in § 4.2, when
the μ(F) curve is well defined for μi = {0, 1/2}. The L contour in figure 2(b) contains
all possible values of μi, including 0 and 1/2, while the μ(F) curve (corresponding to
α ∈ R) must lie to the left of the L contour to satisfy causality. Furthermore, as μ is
shifted to the left for μi = {0, 1/2}, the μ(F) curve is eventually reached. Hence, by the
symmetry arguments described above, a collision of complex conjugate α-roots occurs.
There is a possibility that in some antiperiodic flows the μ(F) curve is not well defined for
μi = {0, 1/2}, i.e. there are no real α corresponding to these particularμi values. However,
this was not the case for the Stokes layer studied herein and so is not discussed any further,
but is highlighted as a potential factor in other antiperiodic flows.

The above analysis indicates that saddle points of the dispersion relation D(α, μ) = 0,
satisfying the collision criteria, occur whenever α ∈ R and μi = {0, 1/2}; collisions
emerge between complex conjugate α-roots. Moreover, for these particular μi values, the
collision of two α-roots originating within the same half-plane onto the real axis will
be accompanied by the collision of their respective complex conjugates in a four-way
collision. Thus, all saddle points of the dispersion relation with these characteristics must
satisfy the collision criteria.

Further collisions may occur for μi /={0, 0.5} (as μ crosses the μ(F) curve) that bring
about greater pointwise growth than that found for μi = {0, 1/2}. In such instances, this
may necessitate a deformation of the F contour and establish a pinch point with the Re{μ0}
greater than that found using the symmetry arguments. However, while such behaviour
may be significant for other flows, this was not found for the Stokes layer: the rightmost
point of the μ(F) curve was matched to a cusp with α ∈ R and μi = 0 in every case
considered.

4.4. Development of the disturbance maximum
In addition to determining the disturbance development about fixed spatial locations (via
the Briggs method), the integral solution (4.7) provides insight into the leading-order
behaviour of the disturbance maximum. The stability of a disturbance ψ to an impulse
g can be determined by generalising the problem to consider the leading-order behaviour
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along an arbitrary spatio-temporal ray

x/τ = V, (4.21)

where V is constant.
In this setting, the leading-order pointwise behaviour (deduced by the Briggs method)

corresponds to V = 0. On the other hand, the temporal growth associated with the
disturbance maximum is matched to the spatio-temporal ray V = Vmax. The growth rate
along this particular ray is of interest as Ramage et al. (2020) report that the temporal
growth about fixed spatial locations matches that of the disturbance maximum.

Similar to the arguments used for steady flows, the Floquet mode (3.2) that contributes
towards the growth (or decay) of the disturbance along the ray Vmax corresponds to α ∈ R

and
∂μr

∂α
= 0. (4.22)

This particular result is derived by solving the integral equation (4.7) along a
spatio-temporal ray by the method of steepest descent (refer to Ramage (2017), for details).
It follows that the asymptotic temporal growth of the disturbance maximum can be
determined by plotting the real part of the Floquet exponent μ as a function of the real
wavenumber α, and selecting the maximum.

For antiperiodic flows, such as (2.2), the asymptotic temporal growth of the disturbance
maximum and the asymptotic pointwise growth correspond to α ∈ R. Hence, the growth
rate along the ray Vmax and the pointwise growth rate along V = 0 can be equivalent,
provided the collision location along the real α-axis corresponds to a local maximum of
μr.

5. Results

The impulse response of linear disturbances in the Stokes layer was first investigated by
Thomas et al. (2014) and then subsequently by Ramage et al. (2020) via DNS. It was
revealed that the family-tree structure develops (as depicted in figure 1), which consists
of a mother wavepacket giving birth to two daughter wavepackets during each period of
wall motion. One wavepacket propagates to the left, while the second convects to the
right. These two daughter wavepackets birth granddaughter wavepackets and so on, giving
rise to the so-called family-tree formation. It was observed that the disturbance maximum
propagates along successive wavepackets in the direction dictated by the phase of the wall
motion at the time at which the impulsive forcing was applied (to the right in figure 1).
Additionally, the spatial distance between adjacent wavepackets is fixed by the Reynolds
number Re, and so granddaughter wavepackets manifest in the same streamwise x-location
as the mother wavepacket, resulting in an increase in the disturbance magnitude every two
periods of wall motion. Thus, subharmonic growth occurs about fixed spatial positions, i.e.
pointwise growth with a periodicity twice that of the basic state. Furthermore, the temporal
growth about fixed spatial locations was found to match the growth of the disturbance
maximum. Hence, DNS results suggest that the Stokes layer is subject to an absolute
form of instability. However, such behaviour can only be confirmed theoretically via the
application of the Briggs criteria.

Harmonic and subharmonic behaviour can be associated with the imaginary part of the
Floquet exponent μ in (4.19) that was highlighted as being significant in the symmetry
arguments described above; recall μi = {0, 1/2}. In the instance μi = 0, a stationary
Floquet mode of the form (3.2) has the same periodicity as the basic state (2.2), with
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Absolutely unstable behaviour in the Stokes layer

behaviour described as harmonic. On the other hand, whenμi = 1/2, the imaginary part of
the Floquet exponent can be absorbed into the periodic streamfunctionψ in (3.2), resulting
in a period twice that of the basic state. This behaviour is subharmonic and describes
the pointwise behaviour observed in the earlier DNS computations. These two particular
cases are distinct from the more general Floquet mode form, in which the disturbance
amplification is accompanied by a phase shift.

5.1. Floquet analysis

5.1.1. Eigenspectra
Before we undertake an investigation of absolute instability in the Stokes layer, a linear
stability analysis is performed to validate the numerical scheme and to report on the
complex stability characteristics first presented by Blennerhassett & Bassom (2002, 2006).
Figure 5 displays a subset of the eigenvalues of (3.10) in the complex μ-plane, for the
Reynolds number Re = 750 and wavenumbers α = 0.25, 0.35 and 0.3747. Open red
circular markers represent centre modes that were first reported in Von Kerczek & Davis
(1974) and subsequently by Blennerhassett & Bassom (2006) for oscillatory flow in a
channel. Multiple decaying centre modes γ (with a negative real component and a zero
imaginary component) are found along the real μ-axis and then at μ = γ + ik for all
integers k. These particular perturbations are associated with disturbance development
in the channel centre and are always linearly stable for the range of Reynolds numbers
modelled in this study. Solid blue circular markers correspond to the Stokes mode that is
of primary interest here. For each Floquet exponent μ there is a corresponding complex
conjugate μ̄. This complex conjugate pair are then matched to left- and right-travelling
waves with equal growth. Additionally, there are equivalent Floquet exponents μ+ ik for
all integers k. Hence, the imaginary part of the Floquet exponent can be restricted to the
interval μi ∈ [0, 0.5] for the remainder of this study.

For the wavenumber α = 0.25, the Floquet exponentμ has a negative real part, i.e.μr <
0. Thus, the disturbance is linearly stable for this particular wavenumber. However, as α
increases to 0.35 and 0.3747, the Floquet exponent crosses the μr = 0 axis and becomes
positive, leading to linearly unstable behaviour. Interestingly, for α = 0.3747, the left- and
right-travelling waves (given by the complex conjugate pair μ and μ̄) coalesce to form two
stationary waves but with marginally different growth rates. This particular phenomenon
was first discovered by Blennerhassett & Bassom (2002) and leads to the formation of
finger-like structures along the neutral stability curve.

5.1.2. Neutral stability curve
Neutral points (α,Re) for linear instability were determined (i.e. μr = 0), with sections
of the neutral stability curve plotted in figure 6. In figure 6(a), the neutral curve is plotted
over a large α-domain and appears smooth. Here (and for the remainder of this study)
the analysis has been restricted to wavenumbers α ≤ 0.52, as following Blennerhassett &
Bassom (2002), linearly unstable behaviour is not expected for larger valued α. The critical
Reynolds number Rec corresponds to the lowest point along this curve, below which all
disturbances are linearly stable. In figure 6(b), the neutral curve is plotted over a reduced
α-range, localised about the critical conditions for linear instability. The critical Reynolds
number Rec = 707.84 is located about the tip of one of the finger-like protrusions that
extend vertically downwards from the main body of the neutral stability curve. As reported
in Blennerhassett & Bassom (2002), these finger-like features occur at regular wavenumber
intervals and are matched to stationary disturbances, i.e. μi = 0.
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Figure 5. Floquet exponents μ in the complex μ-plane for the Reynolds number Re = 750 and wavenumbers
(a) α = 0.25, (b) α = 0.35 and (c) α = 0.3747. Solid blue circles are matched to the Stokes mode, while open
red circles are matched to centre modes.

Figure 7 depicts the variation of the real (solid line) and imaginary (dashed line) parts
of the Floquet mode μ as a function of the wavenumber α, for the Reynolds number Re =
708. Results are plotted about the region where linearly unstable stationary modes develop
and corresponds to a horizontal cut through the leftmost finger in figure 6(b). There is
a small wavenumber interval about 0.37445 < α < 0.37455 that μi is zero, leading to
the emergence of stationary waves. Outside of this interval, μi is non-zero. (Note that for
consistency with the presentation of figure 1 of Blennerhassett & Bassom (2002), when the
Floquet exponent μ is complex, only eigenvalues corresponding to μi > 0 are plotted in
figure 7; the complex conjugate μ̄ has been omitted.) At the left end point of this interval,
stable left- and right-travelling waves (corresponding to μ and μ̄) coalesce to form two
stationary waves. Significantly, the two stationary waves have very different growth rates
over this interval, with one becoming marginally unstable. This behaviour is consistent
with the formation of the leftmost finger-like protrusion in figure 6(b). As the wavenumber
α increases, the two stationary waves re-establish the two stable travelling waves with
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Figure 6. Neutral curve for linear instability in the (α,Re)-plane. (a) Large α-domain. (b) Reduced α-domain
about the critical conditions for instability.

equal growth μr but opposite sign μi. This particular stability feature of the Stokes layer
is not restricted to Floquet modes along the neutral stability curve, but is found throughout
the (α,Re) parameter space.

5.1.3. Temporal growth of the disturbance maximum
Floquet calculations for the growth rate μr are compared against the DNS computations
of Ramage et al. (2020), who numerically determined the growth rate of the disturbance
maximum. Figure 8 depicts the variation of the Floquet growth rate μr, for Reynolds
numbers Re = 700 and Re = 750, over the wavenumber interval α ∈ [0, 0.5]. The local
maximum that satisfies condition (4.22) is indicated by a red cross marker. Within each
subplot, magnified insets highlight those modes with the largest growth rate μr. In both
instances, the local maximum is located about the tip of a finger-like protrusion and are
comparable to those structures found along the neutral stability curve in figure 6 that are
brought about by the appearance of stationary waves. In figure 8(a), larger (less negative)
growth rates are observed for wavenumbers α near zero but correspond to the centre modes
γ and have been disregarded as they do not satisfy the local maximum condition (4.22).

928 A23-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.824


A. Pretty, C. Davies and C. Thomas

0.3744 0.3745 0.3746

–0.010

–0.005

0

0.005

0.010

0.015

α

μr, μi

Figure 7. Variation of the real and imaginary parts of the Floquet exponent μ as a function of the wavenumber
α in a region that μi = 0. Here the Reynolds number Re = 708; solid and dashed lines depict the real μr and
imaginary μi components.

Table 1 compares those Floquet growth rates μr that achieve a maximum in figure 8
against the equivalent DNS computations obtained by Ramage et al. (2020). Growth rates
agree to two decimal places, which is excellent given that the DNS calculations were
based on measurements taken after a finite time interval. Thus, small differences are to be
expected.

In both illustrations shown in figure 8, maximum growth rates are located at the tip
of finger-like protrusions. Since these protruding features correspond to stationary waves
with both μi = 0 and αi = 0, which was highlighted in § 4.3 as implying the location of
pinch points in antiperiodic flows, this is an appropriate starting point for the search of
absolutely unstable behaviour.

5.2. Absolute instability

5.2.1. Approach I: α ∈ C

As discussed in § 4, those modes that contribute to the asymptotic pointwise growth of
the impulse response and classify the disturbance as convectively or absolutely unstable
can be determined by locating cusps of the dispersion relation D(α, μ) = 0 in the
complex μ-plane. This is achieved by numerically solving the eigenvalue problem (3.3)
and mapping solutions from the complex α-plane onto the complex μ-plane. Given the
symmetry arguments outlined above for antiperiodic flows, cusps matched to αi = 0 and
μi = {0, 1/2} satisfy the collision criteria and hence establish absolute instability.

The emergence of cusps in the complex μ-plane and absolutely unstable behaviour
will be demonstrated first (and in the most detail) for the Reynolds number Re = 750,
which corresponds to a strongly unstable disturbance, as illustrated by the positive Floquet
growth rate μr in figure 8(b) and table 1. Figure 9 depicts the two types of cusps that
emerge, in which the imaginary part of the Floquet exponent μ is zero and a half,
respectively. The two cusp formations were constructed by first locating regions within
the stability parameter space that for α ∈ R establish the least-stable Floquet mode μ,
with the imaginary part μi = 0 or μi = 1/2. The complex α-plane was then divided
into a rectangular mesh grid about this point, as indicated by the horizontal and vertical
black lines in figure 9(a,c). A very fine resolution was implemented, with step sizes
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Figure 8. Floquet growth rate μr as a function of the real wavenumber α for (a) Re = 700 and (b) Re = 750.
The largest growth rate that satisfies (4.22) is indicated by red cross markers; (α, μr) = (0.3727,−0.0374) for
Re = 700 and (α, μr) = (0.3747, 0.2009) for Re = 750.

Δαr = 10−7 and Δαi = 10−8 along the respective horizontal and vertical directions. As
shown in figure 9(b,d), each grid point was then mapped via the solution to (3.10) onto
the complex μ-plane. Those grid lines nearest to the cusps (in the complex μ-plane) are
indicated by the red lines, with the cusp locations marked by the circular blue markers. The
corresponding grid lines in the complex α-plane are given by the vertical red lines. In both
instances, the cusp is matched to a real-valued wavenumber α (circular blue markers in
figure 9a,c), while the real part of the Floquet exponent μ is positive, i.e. μr > 0. Hence,
by the symmetry arguments of § 4.3, pointwise growth occurs, which demonstrates that
the Stokes layer is absolutely unstable for Re = 750.

The cusp depicted in figure 9(b) corresponds to the tip of a finger-like protrusion in
figure 8(b), where μi = 0. For visual clarity this is re-plotted over a reduced wavenumber
α-range in figure 10(a). This particular mode exhibits the greatest Floquet growth rate
for the given Reynolds number: μr = 0.2009 and α = 0.3747. Hence, as μi = 0 and
μr > 0, harmonic growth occurs for this particular parameter set. Further harmonic cusps,
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Re 700 750

μr (Floquet) −0.0374 0.2009
DNS −0.0416 0.1982

Table 1. Floquet growth rate μr for the least-stable mode with α ∈ R (see figure 8), compared against the
DNS computations of Ramage et al. (2020).
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Figure 9. Rectangular mesh grids in the complex α-plane (a,c) are mapped via the dispersion relation
D(α0, μ0) = 0 onto the complex μ-plane (b,d), revealing cusp formations. The cusp in (b) corresponds to
μi = 0 and the tip of a finger-like protrusion (as indicated in figure 10), while the cusp in (d) corresponds to
μi = 1/2 and is located about the mid-point between two adjacent fingers.

with αi = μi = 0, were located about the tips of other finger-like protrusions, as
demonstrated in figure 10(a) (red circular markers).

The illustration in figure 9(d) displays a cusp with μi ≈ 1/2 and is associated with
subharmonic growth. Here μr = 0.1973 and α = 0.3714. Several additional subharmonic
modes are indicated by yellow diamond markers along the curve in figure 10(a).
Furthermore, these particular modes are located about the mid-point between adjacent
finger-like protrusions. Hence, the pointwise growth of the disturbance, established for the
Reynolds number Re = 750, is characterised by a set of both harmonic and subharmonic
absolutely unstable modes. The location of all cusps found by the construction of the
cusp-map diagrams, similar to figure 9, are reported in table 2. (Note that the cusp

928 A23-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.824


Absolutely unstable behaviour in the Stokes layer
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Figure 10. (a) Floquet growth rate μr as a function of the wavenumber α ∈ R for the Reynolds number
Re = 750. Same as figure 8(b) but over a reduced α-range. (b) Path of the least-stable mode in the complex
μ-plane, for α ∈ [0.374, 0.379]. (Arrows indicate the direction of increasing α.) Red circular and yellow
diamond markers indicate those locations matched to absolutely unstable harmonic and subharmonic modes,
where μi = 0 and 1/2, respectively.

αr μr μi

0.3680 0.1965 0.0000
0.3714 0.1973 0.4975
0.3747 0.2009 0.0000
0.3781 0.1991 0.4975
0.3815 0.1999 0.0000
0.3848 0.1953 0.4975

Table 2. Real part of the wavenumber α (with αi = 0) and Floquet exponents μ = μr + iμi, associated with
cusps for Re = 750. Cusps are indicated in figure 10 by circular and diamond markers.

associated with the subharmonic mode, μi ≈ 1/2, is not found at exactly μi = 1/2.
Further discussion on this particular observation is included in § 5.4.)

The four harmonic (red circles) and three subharmonic (yellow diamond) modes marked
in figure 10(a) are the only absolutely unstable modes found using the cusp-map method
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for the given range of wavenumbers α. Further cusps that establish absolute instability
were located for smaller and larger valued α, at regular α-steps, but at smaller growth
rates μr. All remaining modes depicted along the blue curve in figure 10(a) are matched
to convectively unstable behaviour characterised by disturbances that propagate to the left
or right only.

The distinction between convectively and absolutely unstable behaviour in the context
of the time-periodic Stokes layer is made by comparing the development of the
disturbance streamfunction ψ . In figure 11, contours of the real part of ψ are plotted
in the (τ/2π, y)-plane, for four successive wavenumbers α = 0.3731, 0.3747, 0.3764 and
0.3781, with the imaginary part of the Floquet exponent μi = 0.25, 0, 0.25 and 0.4975,
respectively. In each instance, the real part of the Floquet exponent is positive, leading to
strong temporal growth. Additionally, each solution has been normalised on its respective
maximum complex-valued amplitude |ψ |, while red and blue contours are matched to
positive and negative valued ψr, respectively. Moreover, the corresponding solutions for
the complex conjugate (with μi < 0) bring about a time shift of π along the time axis.

All four plots share several common characteristics, consistent with the observations
first made by Blennerhassett & Bassom (2002) and subsequently by Thomas (2020, 2021).
For the four parameter settings considered, perturbations first appear within the boundary
layer about either π/4 ≤ τ1 ≤ π/2 or 5π/4 ≤ τ2 ≤ 3π/2. (The subscript 1 and 2
notation in τ has been introduced here to indicate the first or second time interval that
disturbances emerge during the periodic cycle.) Initially, each disturbance evolves with a
high-frequency oscillation and grows along lines of constant τ − y. A maximum amplitude
is then realised near the boundary layer edge, about either the mid-point or endpoint of the
cycle that are matched to the wall velocity (2.1) achieving either a minimum or maximum.
Further away from the wall, the disturbance diminishes and the frequency of oscillation
decreases.

As noted by Blennerhassett & Bassom (2002), the upper bound on the time intervals
τ1 and τ2 coincides with the velocity (2.1) of the bounding plate being zero. Moreover, it
was shown by Thomas et al. (2014) that perturbations grow rapidly when the wall shear
stress U′

B(0, τ ) changes sign (see figure 1 of their paper). A negative to positive change
in U′

B(0, τ ) occurs at τ = π/4 and coincides with a disturbance propagating to the right,
while a left-travelling disturbance appears at τ = 5π/4 when U′

B(0, τ ) reverses from a
positive to a negative value. Hence, given these observations, disturbances for α = 0.3731
and α = 0.3764, plotted in figures 11(a) and 11(c), are found to propagate to the right
and left, respectively. Thus, these particular travelling modes display convectively unstable
characteristics, as they propagate in one direction only. (This is true for all modes with 0 <
μi � 0.5.) On the other hand, for the harmonic (α, μi) = (0.3747, 0) and subharmonic
(α, μi) = (0.3781, 0.4975) modes plotted in figures 11(b) and 11(d), perturbations emerge
about both time intervals τ1 and τ2, establishing disturbance development along both
the left and right x-directions. Thus, the streamfunction ψ further demonstrates the
significance of these particular modes in establishing absolutely unstable behaviour in
the Stokes layer. Note that the behaviour of these two modes is still classified as harmonic
and subharmonic when the full normal mode structure (3.2) has been accounted for, i.e.
solutions in figure 11 are scaled by exp(μτ).

The time interval that travelling modes 0 < μi � 0.5 develop and the associated
propagation direction is found to reverse as the wavenumber α increases. About the
harmonic modes, the time interval changes from τ1 to τ2, leading to disturbances
reversing direction and propagating from right to left. The opposite behaviour occurs
near the subharmonic modes, with a τ2 to τ1 and left to right reversal taking
place.
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Figure 11. Contours of the real part of the disturbance streamfunction ψ over one period, for the Reynolds
number Re = 750; (a) α = 0.3731 and μ = 0.1976 + i0.2500, (b) α = 0.3747 and μ = 0.2009, (c) α = 0.3764
and μ = 0.1988 + i0.2500 and (d) α = 0.3781 and μ = 0.1991 + i0.4975. Each disturbance is normalised on
its respective maximum complex-valued amplitude.

5.2.2. Approach II: α ∈ R

By constructing cusp-map diagrams, we have confirmed the existence of cusps in locations
predicted by the symmetry arguments of § 4.3, for the Reynolds number Re = 750.
However, extending the cusp analysis to other Reynolds numbers is computationally
demanding, as (3.10) must be solved many times in order to fully resolve curves in
the complex μ-plane. (Recall that step sizes Δαr = 10−7 and Δαi = 10−8 were used
to construct the mesh grid in figure 9(a,c).) Nevertheless, an alternative approach was
implemented that allowed cusp locations to be determined more efficiently. Given the
arguments presented in § 4.3 and those solutions tabulated in table 2, we restrict the cusp
analysis to αi = 0, with real wavenumber step sizes Δαr = 2 × 10−5; cusp locations are
determined for α ∈ R only. For instance, figure 10(b) depicts the path of Floquet modes
in the complex μ-plane for wavenumbers α ∈ [0.374, 0.379], with arrows indicating the
direction that α increases. The location of the most unstable harmonic and subharmonic
cusps are then highlighted by circular and diamond markers, respectively. A smaller
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αr μr μi

Re = 750 0.3680 0.1962 0.0000
0.3714 0.1973 0.4972
0.3747 0.2006 0.0000
0.3781 0.1991 0.4975
0.3815 0.1999 0.0000
0.3848 0.1953 0.4974
0.3882 0.1933 0.0000

Re = 708 0.3673 −0.0041 0.0000
0.3709 −0.0044 0.4952
0.3745 0.0009 0.0000
0.3781 −0.0022 0.4954
0.3817 0.0001 0.0000
0.3853 −0.0058 0.4954
0.3888 −0.0064 0.0000

Re = 700 0.3654 −0.0438 0.0000
0.3691 −0.0438 0.4947
0.3727 −0.0374 0.0000
0.3763 −0.0401 0.4948
0.3800 −0.0367 0.0000
0.3836 −0.0423 0.4948
0.3872 −0.0419 0.0000

Table 3. Location of cusps, as determined via the faster approach, whereby all cusps are assumed to be
matched to α ∈ R, i.e. αi = 0. Calculations for Re = 750 are in excellent agreement with results presented
in table 2 that were based on the slower approach for locating cusps, i.e. wavenumbers α were allowed to be
complex. Cusp locations are indicated by circular and diamond markers in figures 10 and 12.

wavenumber step size Δαr = 10−8 was implemented for the inset plot in figure 10(b),
to fully resolve the behaviour near μi = 0. This approach was used to locate the rightmost
harmonic cusp in figure 10(a), which was not reported in table 2 using the cusp-map
approach. The cusps found using this faster approach are given in table 3, with calculations
in excellent agreement with those results presented in table 2.

The pointwise growth of the linear disturbance with Re = 750 is characterised by those
harmonic and subharmonic modes marked in figure 10(a) and tabulated in tables 2 and
3. Although the leading-order behaviour, for large time τ , is governed by the single
least-stable mode, we do not expect this mode to dominate over a finite time period, as
the harmonic and subharmonic modes develop with growth rates μr of commensurate
size. Thus, for small time τ pointwise growth is described by a linear superposition of the
multiple harmonic and subharmonic absolutely unstable modes. Since the superposition
of harmonic and subharmonic modes is itself subharmonic, pointwise growth of the linear
disturbance is subharmonic. This behaviour is consistent with the DNS computations
presented in Ramage et al. (2020) for the spatio-temporal disturbance development; during
at least the first 10–20 periods of wall motion the disturbance amplitude, about fixed spatial
x-locations, grows every two cycles of wall motion. In their study, Ramage et al. (2020)
found that subharmonic pointwise growth was brought about by the coalescence of two
distinct wavepackets, the mother and granddaughter, in the spatio-temporal plane.

The harmonic modes depicted in figure 10 coincide with the local maxima of the Floquet
growth ratesμr. In particular, the most unstable of these harmonic modes lies on the global
maximum that characterises the growth of the disturbance maximum (recall table 1).
Thus, the pointwise growth of the disturbance, for large time τ , is equal to the growth
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of the disturbance maximum. This particular observation is a key result from the earlier
DNS investigation by Ramage et al. (2020) (see figure 5 of their paper). Although such
behaviour might be expected of a flow with no distinct upstream/downstream directions,
it may appear somewhat at odds with the DNS computations reported in Thomas et al.
(2014). In their study, that was limited to the first three periods of wall motion, Thomas
and co-workers observed asymmetric behaviour that favoured the direction dictated by the
time at which the impulsive forcing was applied. However, the longer time simulations
generated by Ramage et al. (2020) revealed that eventually the disturbance develops
in a manner such that the pointwise growth is equivalent to that along the disturbance
maximum.

Having shown that absolutely unstable behaviour arises for the Reynolds number Re =
750, and that cusp locations of the dispersion relation D(α, μ) = 0 are consistent with the
DNS results of Ramage et al. (2020), we undertake an equivalent study for Re = 700 and
Re = 708. The former case, Re = 700, is matched to a disturbance that is linearly stable
for all wavenumbers α, as demonstrated by the negative valued Floquet growth rates μr
in figure 8(a). In figure 12(a), the growth rate μr is plotted over a reduced range of α,
near the local maximum growth rate (cross marker in figure 8a). Once again the Floquet
growth rate μr is characterised by regular finger-like protrusions, with harmonic cusps
(μi = 0) located at the tips of each finger and subharmonic cusps (μi = 0.5) located about
the mid-point between adjacent fingers. All cusps were located using the faster approach,
whereby Floquet growth rates were traced in the complex μ-plane for real-valued α, as
demonstrated in figure 12(b) for the least-stable cusps (both harmonic and subharmonic)
and reported in table 3.

Unsurprisingly, all modes contributing to the pointwise development of the disturbance
at Re = 700 are stable, i.e. μi < 0. However, since the behaviour is analogous to that
described above for the Reynolds number Re = 750, we note that: pointwise evolution
is dictated by a superposition of harmonic and subharmonic modes with comparable
growth rates μr. Thus, initially, the pointwise development is subharmonic. Additionally,
the location of the least-stable cusp is matched to the local maximum that dictates the
growth of the disturbance maximum. Hence, the pointwise growth and the growth along
the disturbance maximum are identical. These observations are again consistent with the
disturbance characteristics reported in Ramage et al. (2020).

Given the above observations for both a strongly unstable (Re = 750) and stable
disturbance (Re = 700), where the pointwise growth is found to be equal to the growth
along the disturbance maximum, it would be natural to assume that the onset of instability
coincides with the onset of absolutely unstable behaviour. In order to demonstrate the
veracity of this conjecture we consider the disturbance established for the marginally
unstable Reynolds number Re = 708. In figure 12(c), a small section of the Floquet
growth rate μr curve is plotted, with two unstable harmonic modes found about the tips
of two protruding fingers (marked by red circles). These particular modes are matched
to those finger-like protrusions found along the neutral stability curve in figure 6(b). As
before, cusp locations and their stability characteristics were determined by tracing Floquet
modes in the complex μ-plane for real wavenumbers α; demonstrated in figure 12(d)
for the most unstable mode, with cusp locations tabulated in table 3. The pointwise
evolution is governed by two marginally unstable harmonic modes and several marginally
stable harmonic and subharmonic modes. Thus, the initial pointwise evolution of the
impulse response will again be subharmonic. Moreover, pointwise growth about fixed
spatial locations is again equal to that found along the disturbance maximum; the
local maximum growth rate μr is again found about the tip of a finger-like protrusion.
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Figure 12. Equivalent to figure 10 but for (a,b) Re = 700 and (c,d) Re = 708. Floquet growth rate μr as a
function of the real wavenumber α in (a,c). Paths of the most unstable Floquet modes μ in the complex μ-plane
in (b,d). Arrows indicate direction of increasing α. Red circular and yellow diamond markers indicate those
locations matched to harmonic (μi = 0) and subharmonic modes (μi = 1/2), respectively.

Hence, the disturbance, for the marginally unstable Reynolds number Re = 708, is
absolutely unstable.

5.3. Spatial periodicity due to multiple absolutely unstable modes
At fixed streamwise x-locations, the finite-time impulse response is a superposition of
harmonic and subharmonic modes that satisfy the collision criteria. All such modes
reported in table 3, for each given Reynolds number Re, are evenly spaced with respect
to the wavenumber α. This then imposes a spatial periodicity on the solution, which
suggests that the spacing between absolutely unstable modes is related to the fixed spatial
spacing observed numerically between distinct wavepackets of the family-tree formation
(recall figure 1 and the observations of Thomas et al. 2014; Ramage et al. 2020). Using
DNS, Ramage et al. (2020) determined that the spatial spacing Λ between neighbouring
(mother and daughter) wavepackets was governed by the Reynolds number Re (see figure 2
of the aforementioned paper). Furthermore, Ramage and co-workers observed a staggered
wavepacket pattern in the family-tree structure, whereby a 2Λ spatial periodicity develops
between wavepackets of comparable magnitude (see figures 3 and 4 of their paper, the
former reproduced here in figure 1).

The relationship between the spatial periodicity Λ of individual wavepackets (as
determined via DNS) and the wavenumber spacing between harmonic/subharmonic
modes is investigated here by measuring the latter for a range of Reynolds numbers
Re. These measurements are then compared with the Λ calculations presented by
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Figure 13. Spatial distance Λ between neighbouring wavepackets of the family-tree formation, as reported
in Ramage et al. (2020) (circle markers), and spatial distance 2π/Δα f (cross markers) determined from the
wavenumber distance Δα f between finger-like protrusions along the real wavenumber α-axis.

Ramage et al. (2020). Given the above observations for Re = 700, 708 and 750, we
assume that all harmonic/subharmonic modes are evenly spaced along the wavenumber
α-axis. Moreover, each mode alternates between harmonic behaviour at the finger tips
and subharmonic behaviour at the mid-point between adjacent fingers. The wavenumber
spacing Δα f between finger protrusions is then readily computed for each Reynolds
number Re, without the construction of the numerically expensive cusp diagrams or the
significant numerical resolution required to observe the cusp behaviour in the complex
μ-plane. The distance between harmonic and subharmonic modes is then assumed to
be half the distance between two adjacent fingers: Δα f /2. Since the evolution at fixed
spatial locations consists of a discrete set of evenly spaced modes, we anticipate a spatial
periodicity of 4π/Δα f between wavepackets of comparable magnitude. Thus, given the
observation by Ramage et al. (2020) that wavepackets of similar size are separated by a
streamwise distance 2Λ, the following relationship between Λ and Δα f is formulated

2Λ = 4π

Δα f ⇒ Λ = 2π

Δα f . (5.1)

Hence, the streamwise distance Λ between each distinct wavepacket of the family-tree
structure (i.e. between mother and daughter) is determined by the periodicity of the
harmonic modes found at the tip of the finger-like protrusions.

The wavenumber spacing Δα f between neighbouring finger protrusions is computed
for several Reynolds numbers Re, and in each instance, Δα f is found to be constant. Black
cross markers in figure 13 depict the corresponding spatial distance 2π/Δα f as a function
of Re, with the equivalent wavepacket spacingΛ (determined using DNS by Ramage et al.
2020) plotted using red circles. The solid blue line depicts the line of best fit. Excellent
agreement is achieved between the two independent calculations for all cases considered.
A small difference, equivalent to 0.2 % ofΛ, emerges for the Reynolds numbers Re ≥ 800.
However, this minor discrepancy is due to the approach in approximating Δα f for these
larger valued Reynolds numbers.
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5.4. Discussion
Results presented in figures 9–12 and tables 2–3 suggest that there is a numerical
inconsistency between where we expect the subharmonic cusps to occur and where they
actually appear. The symmetry constraints, presented in § 4.3, indicate that subharmonic
cusps correspond to μi = 0.5. However, the above cusp analysis found them at a
marginally smaller value near μi = 0.497. In an attempt to address this particular issue,
the least-stable subharmonic cusp, for the Reynolds number Re = 750, was reproduced
with an increasingly finer numerical resolution, with convergence to μi = 0.5 anticipated.
However, reducing the step size Δα by several orders of magnitude had a negligible
effect on those Floquet growth rates μi reported in tables 2 and 3. Further validation
checks were carried out for both larger harmonics N and the number of Chebyshev points
along the wall-normal y-direction, but the cusp analysis remained unchanged. (Note that
the corresponding harmonic cusps were always found for μi = 0, below any numerical
tolerance.)

While this apparent inconsistency remains largely unexplained, it is important to
emphasise that the location of these subharmonic cusps is consistent with the disturbance
development reported by Ramage et al. (2020). Hence, these cusps satisfy the collision
criteria and are associated with the development of absolutely unstable behaviour.

6. Conclusions

The classification of linearly unstable behaviour in the time-periodic Stokes layer, as being
convective or absolute, has been investigated using a modified form of the Briggs (1964)
method. The approach used herein was adapted from that implemented by Brevdo &
Bridges (1997) for temporally oscillating flows, with Floquet theory utilised to account for
the periodicity of the flow. Given the antiperiodicity of the Stokes layer (2.2), symmetry
constraints were derived that establish conditions for classifying linear disturbances as
either convectively unstable or absolutely unstable. It was determined that the impulse
response and pointwise development of the linear disturbances was dominated by those
collisions that arose for wavenumbers α ∈ R and Floquet exponents μ = μr + ik/2, with
k = 0 and k = 1. Harmonic and subharmonic behaviour was then matched to those modes
with k = 0 and k = 1, respectively.

Symmetry arguments were coupled to the cusp-map method, developed by Kupfer
et al. (1987), and used to locate absolutely unstable modes in the Stokes layer when the
streamwise wavenumber α ∈ C. The analysis was applied to the unstable disturbance that
develops for the Reynolds number Re = 750, with 6 cusps located in the complex Floquet
exponent μ-plane. In each instance, the wavenumber α was real valued only. Three of
these cusps were found about the tips of fingers that protrude from the growth-rate curves
and correspond to μi = 0, i.e. stationary waves. The remaining three cusps were located
about the mid-point between adjacent fingers, with μi ≈ 1/2. Thus, cusp locations were
matched to both harmonic and subharmonic behaviour. Hence, the pointwise growth of
linear disturbances is characterised by subharmonic behaviour, which is consistent with the
DNS computations presented by Ramage et al. (2020); about fixed streamwise positions,
the disturbance grows every two full periods of wall oscillation. Moreover, as the real part
of the Floquet exponent μ was positive for each of these 6 cusps, the linear disturbance for
Re = 750 is classified as absolutely unstable.

Cusps in the complex μ-plane were only found for real-valued streamwise wavenumbers
α. The analysis was therefore extended to the respective stable and marginally
unstable Reynolds numbers Re = 700 and Re = 708, with α ∈ R. Thus, the significant
computational requirements in generating cusp-map diagrams was no longer necessary.
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As with the larger valued Reynolds number (Re = 750), linear disturbances were
again characterised by both harmonic and subharmonic modes. Furthermore, it was
demonstrated that the Floquet mode with the largest growth rate, that dictates the growth
of the disturbance maximum, coincides with the mode that dictates the pointwise growth
of the disturbance. Thus, the growth rate about fixed spatial locations is identical to
the growth rate of the disturbance maximum, which is consistent with the earlier DNS
observations of Ramage et al. (2020): the onset of linear instability in the Stokes layer,
with the critical Reynolds number Rec = 707.84 (as first observed by Blennerhassett &
Bassom 2002), coincides with the onset of absolutely unstable behaviour.

Finally, it was shown that the spatial periodicity imposed by the regular spacing of cusps
with respect to the wavenumber α is consistent with the periodic spatial spacing between
wavepackets of the family-tree structure simulated numerically by Ramage et al. (2020).

6.1. Future work
Following the earlier studies by Thomas et al. (2015) and Ramage et al. (2020), a natural
next step would be to extend the analysis to the family of flows established when the wall
motion is modified via a low-amplitude, high-frequency noise. This family of flows would
be of particular interest because, depending on the harmonic frequency of the noise-like
modulation, it is possible to construct a flow that is not antiperiodic. In fact, it was reported
by Ramage et al. (2020) that for these non-antiperiodic flows, the pointwise growth rate is
no longer equal to the growth rate of the disturbance maximum. Moreover, the disturbance
develops a spatially asymmetric structure, while still exhibiting pointwise growth. The
present framework would provide a solid theoretical foundation for these flows and for the
reported breakdown of the family-tree structure, so long as a suitable method for testing
the collision criteria is introduced for cases where the symmetry arguments are no longer
valid (some preliminary results are outlined in Ramage 2017).

Acknowledgements. The authors wish to acknowledge the contributions of Dr P. Blennerhassett and
Professor A. Bassom at the outset of this work. We are grateful to the referees for several suggestions which
have led to a much improved paper.

Funding. This work was supported by the Engineering and Physical Sciences Research Council (EPSRC).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Alexander Pretty https://orcid.org/0000-0003-4152-5746;
Christopher Davies https://orcid.org/0000-0002-5592-9541;
Christian Thomas https://orcid.org/0000-0003-4324-530X.

REFERENCES

AKHAVEN, R., KAMM, R.D. & SHAPIRO, A.H. 1991 An investigation of transition to turbulence in bounded
oscillatory flows. Part 1. Experiments. J. Fluid Mech. 225, 395–422.

BLENNERHASSETT, P.J. & BASSOM, A.P. 2002 The linear stability of flat Stokes layers. J. Fluid Mech. 464,
393–410.

BLENNERHASSETT, P.J. & BASSOM, A.P. 2006 The linear stability of high-frequency oscillatory flow in a
channel. J. Fluid Mech. 556, 1–25.

BREVDO, L. & BRIDGES, T.J. 1996 Absolute and convective instabilities of spatially periodic flows. Phil.
Trans. R. Soc. A 354, 1027–1064.

BREVDO, L. & BRIDGES, T.J. 1997 Absolute and convective instabilities of temporally oscillating flows.
Z. Angew. Math. Phys. 48, 290–309.

BRIGGS, R.J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.

928 A23-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-4152-5746
https://orcid.org/0000-0003-4152-5746
https://orcid.org/0000-0002-5592-9541
https://orcid.org/0000-0002-5592-9541
https://orcid.org/0000-0003-4324-530X
https://orcid.org/0000-0003-4324-530X
https://doi.org/10.1017/jfm.2021.824


A. Pretty, C. Davies and C. Thomas

CLAMEN, M. & MINTON, P. 1977 An experimental investigation of flow in an oscillating pipe. J. Fluid Mech.
81, 421–431.

CONRAD, P.W. & CRIMINALE, W.O. 1965 The stability of time-dependent laminar flow: parallel flows.
Z. Angew. Math. Phys. 16, 233–254.

ECKMANN, D.M. & GROTBERG, J.B. 1991 Experiments on transition to turbulence in oscillatory pipe flow.
J. Fluid Mech. 222, 329–350.

GASTER, M. 1968 Growth of disturbances in both space and time. Phys. Fluids 11, 723–727.
HALL, P. 1978 The linear stability of flat Stokes layers. Proc. R. Soc. A 359, 151–166.
HINO, M., SAWAMOTO, M. & TAKASU, S. 1976 Experiments on transition to turbulence in an oscillatory

pipe flow. J. Fluid Mech. 75, 193–207.
HUERRE, P. 2002 Open shear flow instabilities. In Perspectives in Fluid Dynamics (ed. M.G. Worster,

G.K. Batchelor, & H.K. Moffatt), chap. 4, pp. 159–229. Cambridge University Press.
HWANG, Y., KIM, J. & CHOI, H. 2013 Stabilization of absolute instability in spanwise wavy two-dimensional

wakes. J. Fluid Mech. 727, 346–378.
KUPFER, K., BERS, A. & RAM, A.K. 1987 The cusp map in the complex-frequency plane for absolute

instabilities. Phys. Fluids 30, 3075–3082.
LINGWOOD, R.J. 1995 Absolute instability of the boundary layer on a rotating disk. J. Fluid Mech. 299, 17–33.
LINGWOOD, R.J. 1997a On the applications of the Briggs’ and steepest-descent methods to a boundary-layer

flow. Stud. Appl. Maths 98, 213–254.
LINGWOOD, R.J. 1997b On the effects of suction and injection on the absolute instability of the rotating-disk

boundary layer. Phys. Fluids 9, 1317–1328.
PIER, B. 2003 Finite-amplitude crossflow vortices, secondary instability and transition in the rotating-disk

boundary layer. J. Fluid Mech. 487, 315–343.
RAMAGE, A. 2017 Linear disturbance evolution in the semi-infinite Stokes layer and related flows. PhD thesis,

School of Mathematics, Cardiff University.
RAMAGE, A., DAVIES, C., THOMAS, C. & TOGNERI, M. 2020 Numerical simulation of the spatio-temporal

development of linear disturbances in Stokes layers: absolute instability and the effects of high frequency
harmonics. Phys. Rev. Fluids 5, 103901.

SCHMID, P.J. & HENNINGSON, D.S. 2001 Stability and Transition in Shear Flows. Springer.
THOMAS, C. 2020 The linear stability of an acceleration-skewed oscillatory Stokes layer. J. Fluid Mech. 895,

A27.
THOMAS, C. 2021 Effects of velocity skewness on the linear stability of the oscillatory Stokes layer. Phys.

Fluids 33, 034104.
THOMAS, C., BASSOM, A.P. & BLENNERHASSETT, P.J. 2012 The linear stability of oscillating pipe flow.

Phys. Fluids 24, 014106.
THOMAS, C., BASSOM, A.P., BLENNERHASSETT, P.J. & DAVIES, C. 2011 The linear stability of oscillatory

Poiseuille flow in channels and pipes. Proc. R. Soc. A 467, 2643–2662.
THOMAS, C., BLENNERHASSETT, P.J., BASSOM, A.P. & DAVIES, C. 2015 The linear stability of a Stokes

layer subjected to high frequency perturbations. J. Fluid Mech. 764, 193–218.
THOMAS, C., DAVIES, C., BASSOM, A.P. & BLENNERHASSETT, P.J. 2014 Evolution of disturbance

wavepackets in an oscillatory stokes layer. J. Fluid Mech. 752, 543–571.
TREFETHEN, L.N. 2000 Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics.
VON KERCZEK, C. & DAVIS, S.H. 1974 Linear stability theory of oscillatory Stokes layers. J. Fluid Mech.

62, 753–773.

928 A23-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.824

	1 Introduction
	1.1 General background
	1.2 Key features of the disturbance development
	1.3 Paper objective
	1.4 Paper structure

	2 Base flow
	3 Floquet theory
	4 The Briggs method
	4.1 Integral solution
	4.2 Pinch points
	4.3 Symmetry constraints
	4.4 Development of the disturbance maximum

	5 Results
	5.1 Floquet analysis
	5.1.1 Eigenspectra
	5.1.2 Neutral stability curve
	5.1.3 Temporal growth of the disturbance maximum

	5.2 Absolute instability
	5.2.1 Approach I: C
	5.2.2 Approach II: R

	5.3 Spatial periodicity due to multiple absolutely unstable modes
	5.4 Discussion

	6 Conclusions
	6.1 Future work

	References

