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Abstract Consider a finite Abelian grouf@, +), with |G| = p", p a prime number, and

¢ : GN — GN the cellular automaton given byx), = ux, + vx,41 foranyn € N,
whereu andv are integers coprime tp. We prove that ifP is a translation invariant
probability measure o667 determining a chain with complete connections and summable
decay of correlations, then for amy= (w; : i < 0) the Cearo mean distribution

1 M-1
Mp = lim — P -m.
P M—oco M mX_% wo@

whereP,, is the measure induced & on GYN conditioned byw, exists and satisfies
Mp, = AN, the uniform product measure o&. The proof uses a regeneration
representation dP.

1. Introduction and main results

Let (G, +) be a finite Abelian group witg = p" elementsp being a prime number. We
puti = (¢, ..., ¢~1 as the uniform measure on the group. In this paper we study the
measure evolution under the dynamics of the cellular automato& — GV, given by
(px)n = ux, + vxy41 for n € N, wherep andv are integers coprime tp (£g means

g + -+ g £-times). The uniform product measufe= A" is p-invariant,P o ¢ " = P,

but any other product measuPe= =Y, with = = 1, is notg-invariant. Moreover, even in
the simplest cas&€ = {0, 1} and+ the mod 2 sum, the limit of the marginal distribution,
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liMn—oo P{(¢"x)o = g} with g € G, does not exist. The reason is that, for= 2%,
(¢™x)o = x0 + x, (the other terms sum an even number of times and do not contribute to
the sum) has probability? + (1 — p)? to be zero, while forn = 2¢ — 1 this probability
converges td becauseg”x)o = Y g xe.

Alternatively we can study the Cax mean distribution

o 1 M-1 i
Mp = fim 2> Poy
m=0
for a class of initial distribution® on GY. In the above display and in the following
means ‘it is defined by’
Let -N* = {—i : i € N\ {0}} andN* = N\ {0}. LetP be a translation invariant
probability measure oGZ. Forw € G~V let P, be the measure oG induced by the

conditional probabilities as follows. For any > 0 andgo, ..., gn € G, define
Py{xo=280,...,Xm =8m} =P{xo=80, ..., Xm = 8m | xi = w;, i <O}
We say thaf hascomplete connectiorifit satisfies
Veoe G, Yw e GV, Pyu{xo=go} > 0. (1.1)
For anym > 0 define
ymﬁsup{ w—l :geG,g,gerN*,v,' =w;,i € [—m,—l]}.
Py{xo =g}

We say thai® hassummable decay
o0
Z Ym < 00. (1.2)
m=0

This is a uniform continuity condition oB,, (g) as a function of.

The Cearo limits have already been studied for the mod 2 sum automaton and other
classes of permutative cellular automatalifh §nd MM ]. In these papers it is computed
mainly for Bernoulli measures, and iMM ] only the one site Ces0 limit is computed
for a Markov measure. In the mod 2 case the limit is uniformly distributed, but for some
permutative cellular automata the @es mean exists but it is not necessarily uniform. In
[FMM] the Athreya—Ney AN] regeneration times representation of thetep Markov
chain was used to show the convergence of thafasiean of the group automata starting
with these Markov chains to the uniform Bernoulli measure.

In this paper we generalize these results for the group automedod initial measures
with complete connections and summable decay.

THEOREM1.3. Let (G, +) be a finite Abelian group withG| = p", p being a prime
number. LetP be a translation invariant probability measure a@#’ with complete
connections and summable decay. etGY — GN be the cellular automaton, given by
(px)n = ux, + vxy41 forn € N, wherep andv are integers coprime tg. Then for all
w € GV the Cearo mean distributionMp,, exists and verifiedtp,, = A", the product
of uniform measures ofi. B B

There are two main elements in the proof: regeneration times and the distribution of
Pascal triangle coefficients mad
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2. Regeneration times for the initial measure
We show that under the conditions of Theorem 1.3, forualle —N* we can jointly
construct a random sequence= (x; : i € N) € GN with distributionP,, and a random
subsequence; : i € N*) C N such thai(xr, : i € N*) are iid uniformly distributed irG
and independent afi; : i € N\ {Ty, T», ...}); furthermore(7; : i € N*) is a stationary
renewal process with finite mean inter-renewal time, independant #f consequence of
the construction is that the random vectors (of random lengthsg) ..., x7,,,—1) : i > 1)
are iid.

Our regeneration approach shares results vidflahd [NN]. The construction is simple:
the probability space is generated by the product of iid uniforrfXid]) random variables.
It works as the well known construction and simulation of Markov chains as a function of
a sequence of uniform random variables (see, for instaf¢&]) [ Bressaucet al [BFG]
construct a coupling using these ideas to show the decay of correlations for measures with
infinite memory.

Forw € GN" andg € G denote

P(glw) =Plxo=g | xi = w;,i < -1}
Let
a_1(glw) =inf{P(zlv) :v e GV, z € G}. (2.1)

Actually a_1 depends neither oz nor onw; we keep the dependence in the notation for
future (notational) convenience. Since the sp&c@’ is compact and® has summable
decay, the infimum in (2.1) must be attained hyPac G and aw® € G~'. Hence,

a-1(glw) = P(g°lw’ > 0,
becaus@ has complete connections. Foreach N, g € G andw € G~ define
ax(glw) = inf{P(glw_1, ..., w_,2) :2€ G},

where(w_1, ..., w_t, z) = (W-1, ..., W_k, z2-1, 2—2, . . . ). Notice thatag(g|w) does not
depend orw. Let
b_1(glw) = a-1(glw),

forg € G. Fork > 0,
br(glw) = ar(glw) — ax—1(g|lw).

We construct disjoint interval8; (¢g|w) for ¢ € G, k > —1, contained in0, 1], of
Lebesgue measurg (g|w), respectively, disposed in increasing order with respegt to
andk: B_1(Olw), ..., B_1(g — 1lw), BoOlw), ..., Bo(g — 1lw), B1Olw), ..., B1(g —
1jw), ..., with no intersections (we have enumerat@dby {O0,...,q — 1}). The
construction guarantees

U Bk(g|w)‘ = P(glw)

k>-1

U U Bk(g@)‘ =1

geGk>—1

and
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(All the unions above are disjoint.)

LetU = (U, : n € Z) be a double infinite sequence of iid random variables uniformly
distributed in[0, 1]. Let (22, F,P) be the probability space induced by these random
variables. For each € G~ we construct the random sequencavith distribution
Py, in 2, as a function oU, recursively: fom € N

Xy = Zg[ > LU, € Be(glxn-1. ...,xo,w)}]

geG >-1

For¢ > —1let
Be(w) = | J Be(glw).

geG

Notice that neitheB_1(g|w) nor B_1(w) depend orw. Furthermore,

|B_1(glw)| _
—=" =G|\ (2.2)
[B_1(w)
Fork € Nlet
ax = rr;)m{ Zak(glw)}.
- geG
This is a non-decreasing sequence and satisfies
k
[0,ailc | Bew), (2.3)
t=—1
independently ofv € G~V
LEMMA 2.4. Inthe even{U, < a;} forn € Nwe only need to look at,_1, ..., x,—x tO
decide the value of,. More precisely, fon € GZ such thaw; = w; fori < —1,
Pﬂ{xn = g I Un S Ak, Xpn—1 = Up—-1,...,X0 = UO}
= ]P)Q{xn =gl Uy Sk, Xu—1="0p-1, ..., Xn—k = Up—k}-
Proof. Follows from (2.3). |
Define times

T1 =min{n > 0: Un+j < ajfl,]' > 0},
Ti =min{n > T;_1: Upyj <aj-1,j >0},

fori > 1.
Let N be the counting measure dhinduced by(7; : i > 1): for A ¢ Nandn € N,

N(A) =) " UT; € A}, N(n) =N({n}).

i>1

Notice that the definitions of7; : i > 1) andN depend only or{U,, : n € Z) and do not
depend orw.
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LEMMA 2.5. The distribution of the counting measuke corresponds to a stationary
renewal process.

Proof. We will construct a stationary renewal procdésn Z whose projection of¥ is N.
Fork € Z, k' € Z U {00}, define

HIk K] = Uyt <ap-1,€=0,..., kK —k}, ?f k<K,
‘full event’, if k> k.
With this notation,
N(n) = 1{H[n, 0]}, neN. (2.6)
We construct a double infinity counting procé&8ausing the variablegU, : n € Z) by
M(n) = 1{H[n, oo]}, n € Z.

By construction, the distribution df1 is translation invariant, hence! is stationary.
Furthermore, by (2.6) it coincides with in N: M(K) = N(K) for K c N. Define
T; fori < 0 as the ordered time eventsMfin the negative axis.

The (marginal) probability of a counting event at time Z is given by

PM(n) =1} =P{Upyj <aj_1,j =0} =a_1a0a1--- = B,

and it is independent of. We first show that under the hypothesis of summability,of3
is strictly positive. Forang € G, w_1,...,w_; € G andz,v € G~

Plglw_1...w_,z}
Plglw-1...w—, v}

-1 < w,

therefore
inf{P{glw_1... w_k,z}: 2z € GiN*} > (11— y)P{glw-1... w_g, v}
Summing oveg € G and taking a minimum on the sgb_1, ..., w_x}, we conclude that
ap > 1— yx.

Since) .oy < oo we deduce tha} ;. (1 —ar) < oo and hencgg > 0.

We now show thaM is a renewal process di The event{M (n) = 1} depends only
on(Uy : k > n), thatis,(T; : i € Z) are stopping times for the proceds$_; : k € Z).
Since fork < k' < k" < oo,

Hlk, k"IN H[K', k"] = H[k, k' — 1] N H[K', k"],

we have that for any finite set = {k1,...,k,} with k1 < --- < k, < k’ and for any
sequencémy : £ > k') with m, € {0, 1},

PIM(A) =n |[ME) =1, M) = my, £ > k')

:P{ ﬂH[k,-,k’ -1 ‘ M (k') = 1}

i=1

= [ [PtH ki, ki1 — 11}, 2.7)
i=1

https://doi.org/10.1017/50143385700000924 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700000924

1662 P. A. Ferrari et al

wherek,+1 = k’. The computation above could be done bec@$é(k’) = 1} = 8 > 0.
Equation (2.7) means that, given a counting event atkintbe distribution of the counting
events for times less thandoes not depend on the events aktefThis characterizeld as

a renewal process. Since the dengitig positive,T3, the residual time is a honest random
variable, and for # 1, E(T;41 — T;) = % < oo. O

LEMMA 2.8. The variablegxr, : i > 0) are iid uniformly distributed inG.
Proof. Let us show that the marginal distribution of, is uniform in G. Since times

(T; : i € N*) are finite almost surely,

Pixy, =g} = ZP{U,, e | Belglw), T =n}

neN >-1

=Y P{U, € B_1(glw) | Up € B_a(w)}P{T; = n}
neN

=|G|™L

The second identity follows becau$& = n} is the intersection ofU, € B_1(w)}
with events depending on variablés, .., £ # 0) which are independent df,,. The
third identity follows from (2.2). The same computation shows that for &nyc N,
(i(k): ke K) CN,and(g : k € K) < G,

P{xr,, = gk, k € K} = |G| 7K,

so that(xr,,, : k € K) are iid inG. The reason why the above computation works is that
in the even{T; = n}, U,4+1 < ao, hencex,;1 does not depend on the past. Since for all
J =1, Untj < @ntj-1, Xntj+1 ONly depends omy 11, ..., Xu+ ). U

3. Arenewal lemma
In this section we show that a stationary discrete-time renewal proceBshas high
probability to visit sets with many points.

LEMMA 3.1. LetN be a stationary renewal process with finite inter-renewal mean. Then
forall A C N,
P{N(A) =0} < e(JA])

with e(n) — 0asn — oo. Also,s : N — R can be chosen to be decreasing.

Proof. We are going to prove that for &l > 0 there exist such that for any finite set
A C N with |A] > no,

P{N(A) =0} < . (3.2)

We start with some known facts of renewal theory. [Tgtbe the renewal times and
B = 1/E(T;4+1 — T;) for somei > 1 (and hence for all > 1). Since the inter-renewal
distribution has a finite first moment, the key renewal theorem holds: we have

lim P(N() = 1| N(O) = 1} = . (3.3)
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Let S, = Ty,.1 — n be the residual time (over jump) at where we have denoted

N(n) = N([0, n]), and fork > 0O let

B =P{NKk) =1|T1 =0}, Fk) =P{T2—T1>k}, F,(k)=P{S,>k|T1L=0}
(3.4)

Now we have

Fy(k) = F(] + k),anj = F(k)v (35)
j=0

where N
Fk) = ZF(j) -0
=k

ask — oo because we are assuming that the inter-renewal time has a finite mean.
For any subseB C A we have

P{N(A) = 0} < P{N(B) = 0.
For anyA with |A| = n and any 1< ¢ < n, there exists a set
(b, ... by =Bl C A
with
n .

[Z]fb;?Jrl—b;?, j=1...,0-1, (3.6)
where[x] is the largest integer in. The choice ofb7, ..., by} depends om apart from
£, and (3.6) holds uniformly for alll with [A| = n.

Lete > 0 and take any &< § < B. Takeng such thaf8, > é forn > ng. Letn > £ng
and define
I = {Sb'; < [n/€] — no},
as the event ‘the over jump 01;‘ does not superafe/¢] — ng'. Let
O = N®) —bj_1 = Sy ) =0}, A} =(N©)) =0},
be the events ‘starting at the over jump @;Ll, b;? is not hit' and 79’} is not hit’,
respectively. From (3.5) we getfor2 j < ¢

P{I" | I_3} = (1= F([n/t] - no)). (3.7)
Then

P{N(A) = 0} < P{N(B}) = 0} = P{A} N--- N A?}
<P{AINTHP{AZN---NAY [T+ 1-P(T})

L -1
< Hlp{@f} | T} + Z;(l — (I | T 1))
J= J=

< (1 =8"+ (- DF(n/€] - no) + P{T1 > [n/€] — no} (3.8)

sinceB, > 8 for n > ng and (3.7). Now chooséso that(1 — §)¢ < ¢/3, thenn so that
F([n/t] — no) < ¢/3(¢ — 1) andP{Ty > [n/f] — no} < ¢/3, to conclude

P{N(B}) =0} <e¢
for sufficiently largen + ¢. |
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4. Convergence of the Ca® limit
To prove this theorem we shall need some results concerning walks of variables
determining a chain with complete connections. For this purpose let us introduce some
notation. First,R = (rx : k € N) denotes an increasing sequenceNin We put
R, = (rx : k < n). For any subsequende = (7 : k € N) of R we define the index
function by (k) = € if 7x = r¢. We also set(R) = |R N R,|. Leta® = @f : r e R)
be a sequence of non-negative integers. They define m#ps G — G such that
VR(g) = afg = g +--- + gaR times, for anyr € R. We associate to it the following
sequence of random variables taking value§jn

Sk = Z alfx,, neN.

reRr,

We will distinguish the following subsequence:
R* = R*(a®) = {r e R: a® # 0 modp).

Remark.Since(G, +) is a finite Abelian group withG| = p", p a prime number, then
the functiomy (g) = ag, wherea € N, is one-to-one whenever# 0 mod p.

Let J € N be a finite set. Consider a finite family of sequengés= (R’ : j € J).
Associated to each sequence there is a sequence of non-negative infégersa®’ :
r € RJ) and the corresponding set of mapping® = (¥X' : r € R/). As before we
consider the sequenc&s* = R*(a®’) for j € J. LetR/ = (R/ : j € J) be a family of
subsequences verifying the following conditions:

(H1) R/ C R/*forany;j € J;
(H2) RFNR =0ifi #jeJ;
(H3) if r € RI N R¥fork < j e J, thena®* = 0 modp.
We set
A(R)) =min(n(R)) : j € J}
and
A(R’) = max{ii(R’) : R’ verifying (H1), (H2), (H3).

The proof of Theorem 1.3 is based upon the following result.

LEMMA 4.1. LetP be a translation invariant measure @&’ with complete connections

such that}", _o ym < oo, and letw € G, Then we have the following.

(@ 3e1 : N - R, a decreasing function withy(n) — 0if n — oo, such that for
any increasing sequendin N and any sequence of non-negative integefst is
verified that

P, (SR =g} —q 7Y <e1(n(R*)), foranyneN,geG.

(b) LetJ c Nbefinite. Thenthere is a decreasing functign N — R withe;(n) — 0
if n — 0o, such that for any set of sequend@s = (R’ : j € J) and any family of
non-negative integer&:®’ : j € J), itis verified that

Py (S =g, forj e Jy—q V]
<es@(R’)), foranyneN,(gj:jeJ)eG’.
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Before beginning the proof of Lemma 4.1 we include a useful arithmetic property. We
include a proof for completeness. K@¥, +) a finite Abelian group withG| = p”, where
p is a prime number, consider the following system of equations (S):

1) angr + aizg2 + -+ + auge=0
2) azxigr + axg2 + -+ 4+ axge=0
&) angr + appg2 + - 4+ awpge=0

such that

(H) aij €N, a;; #0modp, a;j =0modpifi < j.
Denoteq;; = k;p + s; withs; € {1, ..., p — 1} anda;; = ¢;jp fori < j.
LEMMA 4.2. The system (S) has unigue solutgn=g> = --- =g, = 0.

Proof. First of all we will prove that ifgs, ..., g, are solutions of (S) and for some
1<s<r p'gi=0,i¢e{l... 0}, thenplg =0fori e {1,...,¢}. We prove
this property by induction ofil, . . ., ¢}. First consider equation (1),

¢
(kip + s1)g1 + Z c1jpgj = 0.
=2

If we add the equatiop® ! times, we obtain

¢
kip*g1+siprer+ Y c1jp'e; =0,
=
thensip*~1g1 = 0. Since the product by; defines a one-to-one map we conclude
that p*~1g; = 0. Let us continue with the induction assuming thdtlg; = 0,
plg=0,..., p*1g, =0,forl<r < ¢, and we prove that* g, .1 = 0.
Adding p*~? times equation + 1 we get

t

¢
Z az+1.,jPS_lgj + (ke1p + s+ P " Lgren + Z ci41,jp°8; =0.
=1 j=t+2

Therefore, using the induction hypothesis we obtaim (p*~1g;41) = 0 and hence

P g =0.
To conclude we use the last property recursively beginning from the facptlgat= 0
foranyi € {1, ..., ¢}. O

Hence the transformation : G¢ — GY, Ag = i, with 3,4 € G’ and matrixA
verifying condition (H) is a one-to-one and onto transformation. In what follows we
identify P,, with PP

Proof of Lemma 4.1.
(a) For any increasing sequenke= (r; : k € N) we put

R =inflk e N:N(x) =1}, whereco =info,
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the first time that some element of the sequeRcbelongs to the renewal proceblk
introduced in §2. Conside®* the subsequence corresponding to mappiffsuch that
aR #+ 0 modp. We denote by* = n(R*), t* = X", andf = fz+ the corresponding
index functions. First we prove

PSf =gl <n*)=q"

To see that, write

P{SF =g | " <n*}

n*
=Y P(SF=glt"=k)
k=0

n* fk)-1 n
= ZP{ Z Wr,- (-xr,') + er(k)(Urf(k)) + Z wri (xri) =g T* = k}
k=0 i=0 i=f)+1
n* flk)—1
= Z Z P{ Z I/fri(xr,‘) = 81, Urf(k) = w;;:b\)(g — 81— 82)7
k=0 g1,82€G i=0
n
Z wr,-(xr,-) 282 7:* :k}
i=fk)+1
n* f)-1 n
S VPO IR AR ST TR
k=0 g1.82€G i—0 i=f)+1

where in the last equalities we have used thiaf,, is independent of the variables
(xn 11 # 1) Wwhent* = k. Then,
PSR =g} = ¢ 'P{* < n*} + P{SF =g | T* > n*}
and
PSR =g} — ¢t = —¢7P(r* > n*} + PSR =g | ¢* > n*).
Using Lemma 3.1 we get

IP(SR = g} — ¢~ < 2P{¢* > n*} < 2¢(n* + D).

(b) LetR’ = (R’ : j € J) be a family of sequence&®’ : j € J) be the family of
non-negative sequenceég;®’ : j € J) be the corresponding family of mappings, akt
be a family of subsequences verifying conditions (H1), (H2), and (H3). Defjote f;;
andr; = t*’ forany; € J. Fixn € N and putii = i(R).

Take a vectok = (kj:jeJ)efl,....,i}. Ontheselr; = k; : j € J} we define
the random variables

pik.n, U) =Y Uit € R fu) Upan). forjel.
ieJ
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Consider(g; : j € J) € G’. From hypotheses (H1), (H2), and (H3) the system of linear
equationsoj(l?, n,U) = g;., j € J, defines a system of type (S). Then, by Lemma 4.2,
there is a uniqueg’ : j € J) € G’ such that

pik.nU)y=g; jel & Usuy=4gl jel. (4.3)
Let7(k) = (U;c; R\ (f;(kj) : j € J). Itis easy to see that variables®’ : j € J) on
{tj =kj: j e J}can be written as

S = 3 v +pikn U,
reT(K)NR}
Therefore,
P(SK =g 1j=kj:jeJ)
= Z P{,Oj(l_é,l’l,g) =8j— Z Wr(hr)axr :hra T :k]
hyeGireT (%) reT(MNR]

:jeJ,reT(/?)}

= Y PWUjuy=8jxr=h.1i=kj:jelreT k)
hy€G:reT (k)

where(g;./ : j € J) € G’ is given by property (4.3). By independence we conclude that

]P){Sr]lg_/ =gj,tj=kj:jel} :q—\J\P{Tj =kj:jelJ}.
Hence _
P[S,f’ =g;:j€J,maxt; < fz} = q*”']P’{ maxt; < ﬁ},
JjeJ jeJ
which together with Lemma 3.1 allows us to deduce that

IP(SK = gitjedt—q V< 21P{maJXT,- > ﬁ} <2|J|e@@ + 1). O
JE

Now we can give the proof of the main theorem.

Proof of Theorem 1.3First, let us introduce some notation. Theexpansion ofn € N
ism =Y, om;p" withm; € Z,. We denote byL(m) = {i € N : m; # 0} its support
and we denote its elements in decreasing ordén) = {81m > -+ > &,.m}, Where
sm = |Z(m)|. Now putm® = ms, ,, som = Y _i", m pdim . Observe thady ,, = integer
part(logm), where we take log: in basep.

Sincep is a prime number, the Lucas’ theorehu] asserts that

()], =[],

where(’) = 0if r <s. In particular,[(’f)]p > Oifand only ifk; < m, foralli > 0.

r
s
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Let us return to the automatgn SinceG is Abelian, a simple recurrence implies

m _
(¢"x)i = Z <k)ltm Kok X

k<m

Observe that this expression has the form of variaSfeslefined before. In this case the
mapping has the shag§) . ~*v* ¢ which is one-to-one i[(’,f)]p # 0 sinceu andv
are coprime top. Then our computations are devoted to showing that we have enough
one-to-one mappings.

In order to clarify the proof we shall first prove that the @esmean of the marginal
distribution exists and it is uniform, that means

L 1A m - o -1
7(g) = Mlinoo -~ Z Py, {(¢™x)o = g} exists and verifies (g) = ¢, foranyg € G.

m=0

Let us fixa € (O,%). ForM > O considerthe seRy = {m < M : |Z(m)| >
aloglogM}. We will prove that(Ry : M € N) is a sequence of sets of density one,
whichmeans${m < M} \ Ry |/M —— 0. For that purpose we make the decomposition

M—o00

Aty ={m <M : 81, < 81,m),
Asmy={m<M:8.,y =8 mforr <sandds, <ds,m} forl<s <spy,
ASM+1,M - {M}

Observe thatA,, y| = M psM for 1 < s < sy. Takes}, = supls : 8, » > loglogM}.
Sincedy y = integer parilog M), we havesy, > 1. Now,

5
m € A 1 Zm)| < @deadl < D (p - 1)’( ;M)

tgaSS’M

<(p- 1)0!55,M 25S,M672(a7%)25&M.
Hence,
1
m < M)\ Rul< Y (@p — Doydome 2@ 3~y phm 4
1<s<sy, Sy <s<sm

We have
> MOph 41 < (logM)? + 1.

Sy <s<sy
Tak 1p(log(p — 1)L, thenp’ = 2(p — 1)%e—2@—2)? Theref
akea < 5p(log(p )"+, thenp (p )¥e < p. Therefore,

1 1
2N @ - e e < P

1<s<sy, 1<s<s

M

I\ S5, M /\ loglogM
=2 (5) =556
1<s<s p p—D \Pp
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Hence|{im < M}\ Ry|/M — y—>x 0. SO(Ry : M € N) is a sequence of sets of
density one. Hence,

H 1 1 m
m(g)= lm - > 27 P el@ 00 = g}
meRy

o1 M\ m—k k
“m 2 e ()t =]
meRy k<m

From the remark(}) # 0 mod p implies that the mapping (g) = (})u"*v*g is one-
to-one. Therefore, from Lucas’ theorem and Lemma 4.1(a) we get that for anR 5,

oo ()

m _ —
‘Pﬂ{ Z <k)um kkak =g} —q 1

k<m

> o loglogM

and then
< 81(204 log IogM).

Thenm(g) = ¢~ L.
Now we are ready to prove the result. Notice that for evgry: j < s) € G® there
exists a(g; 1 j < s) € G* such that

(xeGV: (¢"x);=gjforj<s}={xe GV (@" T x)o = g; for j < s}.

Then it suffices to show that for any finite seiC NwithO e J and(g; : j € J) € G’ it
is verified that

1 , | )
lim M Z Pﬂ{(wm-‘r./x)o:gj:] c J}zq \J\

M— o0
m<M
Introduce the following notation. We p@t,, = |{n < 81, : m, < p — 1}| and we denote

n<é1p:my <p—-1= {,Bl,m <PBom<--< ,BGm,m}'
Fixa € (0, 3), e € (0,), ande’ € (0, 3(a — ¢)). Denotet = maxJ and define
,M ={m <M :logR(¢+1) <Gy andﬂ“ogz(ul)])m < eloglogMm}

o =1{m <M :81,, > eloglogM, |Z(m) N {eloglogM < n < §1,}| > &'loglogM}.
Both families of set§R/), : M € N) and(R, : M € N) are of density one.

Now for any family of sets(Ryy : M € N) with Ry, € {m < M}, we put
Rmyg ={m <M :m+je RyforjeJ. If Ry : M e N)is of density one
then alsaRy.; : M € N) is of density one. HencéRy,; : M € N), (R}, , : M € N),
and(R/,(“ : M e N) are sequences of density one.

Letm € R;WJ mR/,(“. We denoteZ, (m + j) = Z(m + j) N {n > eloglogM}, and
I (m+j)=Z@m+ j)n{n < eloglogM}. From the definition ofR), we have that
To(m+ j) = Zy(m) for j € J. PutCo(m + j) = {(m + j); : i € I, (m + j)} and
C.m+j)={m+j):iel_(m+ j)forjeJ. We haveCy(m + j) = C4(m) for
j € J,andtheset&_(m + j) : j € J) are all different between them. Define fpe J

RI=tk<m+j:I(k)ySI(m+j), ki <m;forieTy(m),
ki = (m+ j);fori e Z_(m + j)}.
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The family(?i/' : j € J)is disjoint because the sets_(m + j) : j € J) are different.
Moreover,|R/| > 2¢'loglogM

From Lemma 4.1(b) and the remark we get the result. In fact, for every
Ry s NRYy ;andj € J we have that

m+j .
(goerjx)o: § :( N ]>/Lm+jkvkxk
k=0

and the sequenceﬁf : j € J) satisfy conditions (H1), (H2), and (H3). Indeed, property
(H1) follows fromRJ/ C {k <m + j : (") mod p > 0}, since they are disjoint (H2)

holds, and ifc € R/ then(’"Jk“"/) mod p = 0 for everyj’ < j in J which shows property
(H3). Then, from Lemma 4.1(b), for any sueh

Py (x 2 (@" )0 =gj, j € J} —q V1| < g (27'09100M),
Then the theorem is shown. m|
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