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Abstract. Consider a finite Abelian group(G,+), with |G| = pr , p a prime number, and
ϕ : GN → GN the cellular automaton given by(ϕx)n = µxn + νxn+1 for anyn ∈ N,
whereµ andν are integers coprime top. We prove that ifP is a translation invariant
probability measure onGZdetermining a chain with complete connections and summable
decay of correlations, then for anyw = (wi : i < 0) the Ces`aro mean distribution

MPw
= lim
M→∞

1

M

M−1∑
m=0

Pw ◦ ϕ−m,

wherePw is the measure induced byP on GN conditioned byw, exists and satisfies
MPw

= λN , the uniform product measure onGN . The proof uses a regeneration
representation ofP.

1. Introduction and main results
Let (G,+) be a finite Abelian group withq = pr elements,p being a prime number. We
putλ = (q−1, . . . , q−1) as the uniform measure on the group. In this paper we study the
measure evolution under the dynamics of the cellular automatonϕ : GN → GN , given by
(ϕx)n = µxn + νxn+1 for n ∈ N, whereµ andν are integers coprime top (`g means
g + · · · + g `-times). The uniform product measureP = λN is ϕ-invariant,P ◦ ϕ−n = P,
but any other product measureP = πN , with π 6= λ, is notϕ-invariant. Moreover, even in
the simplest caseG = {0,1} and+ the mod 2 sum, the limit of the marginal distribution,
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limm→∞ P{(ϕmx)0 = g} with g ∈ G, does not exist. The reason is that, form = 2k,
(ϕmx)0 = x0 + xm (the other terms sum an even number of times and do not contribute to
the sum) has probabilityp2 + (1 − p)2 to be zero, while form = 2k − 1 this probability
converges to12 because(ϕmx)0 = ∑m

`=0 x`.
Alternatively we can study the Ces`aro mean distribution

MP

.= lim
M→∞

1

M

M−1∑
m=0

P ◦ ϕ−m

for a class of initial distributionsP onGN . In the above display and in the following
.=

means ‘it is defined by’.
Let −N

∗ = {−i : i ∈ N \ {0}} andN
∗ = N \ {0}. Let P be a translation invariant

probability measure onGZ. Forw ∈ G−N∗
let Pw be the measure onGN induced by the

conditional probabilities as follows. For anym ≥ 0 andg0, . . . , gm ∈ G, define

Pw{x0 = g0, . . . , xm = gm} .= P{x0 = g0, . . . , xm = gm | xi = wi, i < 0}.
We say thatP hascomplete connectionsif it satisfies

∀g0 ∈ G, ∀w ∈ G−N∗
, Pw{x0 = g0} > 0. (1.1)

For anym ≥ 0 define

γm
.= sup

{∣∣∣∣Pw{x0 = g}
Pv{x0 = g} − 1

∣∣∣∣ : g ∈ G, v,w ∈ G−N∗
, vi = wi, i ∈ [−m,−1]

}
.

We say thatP hassummable decayif
∞∑
m=0

γm < ∞. (1.2)

This is a uniform continuity condition onPw(g) as a function ofw.
The Ces`aro limits have already been studied for the mod 2 sum automaton and other

classes of permutative cellular automata in [L ] and [MM ]. In these papers it is computed
mainly for Bernoulli measures, and in [MM ] only the one site Ces`aro limit is computed
for a Markov measure. In the mod 2 case the limit is uniformly distributed, but for some
permutative cellular automata the Ces`aro mean exists but it is not necessarily uniform. In
[FMM ] the Athreya–Ney [AN] regeneration times representation of ther-step Markov
chain was used to show the convergence of the Ces`aro mean of the group automata starting
with these Markov chains to the uniform Bernoulli measure.

In this paper we generalize these results for the group automatonϕ and initial measures
with complete connections and summable decay.

THEOREM 1.3. Let (G,+) be a finite Abelian group with|G| = pr , p being a prime
number. LetP be a translation invariant probability measure onGZ with complete
connections and summable decay. Letϕ : GN → GN be the cellular automaton, given by
(ϕx)n = µxn + νxn+1 for n ∈ N, whereµ andν are integers coprime top. Then for all
w ∈ G−N∗

the Ces̀aro mean distributionMPw
exists and verifiesMPw

= λN , the product
of uniform measures onG.

There are two main elements in the proof: regeneration times and the distribution of
Pascal triangle coefficients modp.
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2. Regeneration times for the initial measure
We show that under the conditions of Theorem 1.3, for allw ∈ −N

∗ we can jointly
construct a random sequencex = (xi : i ∈ N) ∈ GN with distributionPw and a random
subsequence(Ti : i ∈ N

∗) ⊆ N such that(xTi : i ∈ N
∗) are iid uniformly distributed inG

and independent of(xi : i ∈ N \ {T1, T2, . . . }); furthermore(Ti : i ∈ N
∗) is a stationary

renewal process with finite mean inter-renewal time, independent ofw. A consequence of
the construction is that the random vectors (of random lengths)((xTi , . . . , xTi+1−1) : i ≥ 1)
are iid.

Our regeneration approach shares results with [B] and [NN]. The construction is simple:
the probability space is generated by the product of iid uniform (in[0,1]) random variables.
It works as the well known construction and simulation of Markov chains as a function of
a sequence of uniform random variables (see, for instance, [FG]). Bressaudet al [BFG]
construct a coupling using these ideas to show the decay of correlations for measures with
infinite memory.

Forw ∈ G−N∗
andg ∈ G denote

P(g|w) .= P{x0 = g | xi = wi, i ≤ −1}.
Let

a−1(g|w) .= inf{P(z|v) : v ∈ G−N∗
, z ∈ G}. (2.1)

Actually a−1 depends neither ong nor onw; we keep the dependence in the notation for
future (notational) convenience. Since the spaceG−N∗

is compact andP has summable
decay, the infimum in (2.1) must be attained by ag0 ∈ G and aw0 ∈ G−N∗

. Hence,

a−1(g|w) = P(g0|w0) > 0,

becauseP has complete connections. For eachk ∈ N, g ∈ G andw ∈ G−N∗
define

ak(g|w) .= inf{P(g|w−1, . . . , w−k, z) : z ∈ G−N∗ },
where(w−1, . . . , w−k, z) = (w−1, . . . , w−k, z−1, z−2, . . . ). Notice thata0(g|w) does not
depend onw. Let

b−1(g|w) .= a−1(g|w),
for g ∈ G. Fork ≥ 0,

bk(g|w) .= ak(g|w)− ak−1(g|w).
We construct disjoint intervalsBk(g|w) for g ∈ G, k ≥ −1, contained in[0,1], of

Lebesgue measurebk(g|w), respectively, disposed in increasing order with respect tog

andk: B−1(0|w), . . . , B−1(q − 1|w),B0(0|w), . . . , B0(q − 1|w),B1(0|w), . . . , B1(q −
1|w), . . . , with no intersections (we have enumeratedG by {0, . . . , q − 1}). The
construction guarantees ∣∣∣∣ ⋃

k≥−1

Bk(g|w)
∣∣∣∣ = P(g|w)

and ∣∣∣∣ ⋃
g∈G

⋃
k≥−1

Bk(g|w)
∣∣∣∣ = 1.
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(All the unions above are disjoint.)
LetU = (Un : n ∈ Z) be a double infinite sequence of iid random variables uniformly

distributed in[0,1]. Let (�,F,P) be the probability space induced by these random
variables. For eachw ∈ G−N∗

we construct the random sequencex with distribution
Pw in �, as a function ofU , recursively: forn ∈ N

xn
.=

∑
g∈G

g

[ ∑
`≥−1

1{Un ∈ B`(g|xn−1, . . . , x0, w)}
]
.

For` ≥ −1 let
B`(w)

.=
⋃
g∈G

B`(g|w).

Notice that neitherB−1(g|w) norB−1(w) depend onw. Furthermore,

|B−1(g|w)|
|B−1(w)| = |G|−1. (2.2)

Fork ∈ N let

ak
.= min

w

{ ∑
g∈G

ak(g|w)
}
.

This is a non-decreasing sequence and satisfies

[0, ak] ⊂
k⋃

`=−1

B`(w), (2.3)

independently ofw ∈ G−N∗
.

LEMMA 2.4. In the event{Un ≤ ak} for n ∈ N we only need to look atxn−1, . . . , xn−k to
decide the value ofxn. More precisely, forv ∈ GZ such thatvi = wi for i ≤ −1,

Pw{xn = g | Un ≤ ak, xn−1 = vn−1, . . . , x0 = v0}
= Pw{xn = g | Un ≤ ak, xn−1 = vn−1, . . . , xn−k = vn−k}.

Proof. Follows from (2.3). 2

Define times

T1
.= min{n ≥ 0 : Un+j ≤ aj−1, j ≥ 0},

Ti
.= min{n > Ti−1 : Un+j ≤ aj−1, j ≥ 0},

for i > 1.
Let N be the counting measure onN induced by(Ti : i ≥ 1): for A ⊂ N andn ∈ N,

N(A)
.=

∑
i≥1

1{Ti ∈ A}, N(n)
.= N({n}).

Notice that the definitions of(Ti : i ≥ 1) andN depend only on(Un : n ∈ Z) and do not
depend onw.
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LEMMA 2.5. The distribution of the counting measureN corresponds to a stationary
renewal process.

Proof. We will construct a stationary renewal processM in Z whose projection onN is N.
Fork ∈ Z, k′ ∈ Z ∪ {∞}, define

H [k, k′] .=
{

{Uk+` ≤ a`−1, ` = 0, . . . , k′ − k}, if k ≤ k′,
‘full event’, if k > k′.

With this notation,

N(n) = 1{H [n,∞]}, n ∈ N. (2.6)

We construct a double infinity counting processM using the variables(Un : n ∈ Z) by

M(n)
.= 1{H [n,∞]}, n ∈ Z.

By construction, the distribution ofM is translation invariant, henceM is stationary.
Furthermore, by (2.6) it coincides withN in N: M(K) = N(K) for K ⊂ N. Define
Ti for i ≤ 0 as the ordered time events ofM in the negative axis.

The (marginal) probability of a counting event at timen ∈ Z is given by

P{M(n) = 1} = P{Un+j ≤ aj−1, j ≥ 0} = a−1a0a1 · · · .= β,

and it is independent ofn. We first show that under the hypothesis of summability ofγk, β
is strictly positive. For anyg ∈ G, w−1, . . . , w−k ∈ G andz, v ∈ G−N∗

∣∣∣∣P{g|w−1 . . . w−k, z}
P{g|w−1 . . . w−k, v} − 1

∣∣∣∣ ≤ γk,

therefore

inf{P{g|w−1 . . . w−k, z} : z ∈ G−N∗ } ≥ (1 − γk)P{g|w−1 . . . w−k, v}.
Summing overg ∈ G and taking a minimum on the set{w−1, . . . , w−k}, we conclude that

ak ≥ 1 − γk.

Since
∑
k≥0 γk < ∞ we deduce that

∑
k≥0(1 − ak) < ∞ and henceβ > 0.

We now show thatM is a renewal process onZ. The event{M(n) = 1} depends only
on (Uk : k ≥ n), that is,(Ti : i ∈ Z) are stopping times for the process(U−k : k ∈ Z).
Since fork < k′ < k′′ ≤ ∞,

H [k, k′′] ∩H [k′, k′′] = H [k, k′ − 1] ∩H [k′, k′′],
we have that for any finite setA = {k1, . . . , kn} with k1 < · · · < kn < k′ and for any
sequence(m` : ` > k′) with m` ∈ {0,1},

P{M(A) = n | M(k′) = 1,M(`) = m`, ` > k′}

= P

{ n⋂
i=1

H [ki, k′ − 1]
∣∣∣∣ M(k′) = 1

}

=
n∏
i=1

P{H [ki, ki+1 − 1]}, (2.7)
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wherekn+1
.= k′. The computation above could be done becauseP{M(k′) = 1} = β > 0.

Equation (2.7) means that, given a counting event at timek′, the distribution of the counting
events for times less thank′ does not depend on the events afterk′. This characterizesM as
a renewal process. Since the densityβ is positive,T1, the residual time is a honest random
variable, and fori 6= 1, E(Ti+1 − Ti) = β−1 < ∞. 2

LEMMA 2.8. The variables(xTi : i ≥ 0) are iid uniformly distributed inG.

Proof. Let us show that the marginal distribution ofxTi is uniform inG. Since times
(Ti : i ∈ N

∗) are finite almost surely,

P{xTi = g} =
∑
n∈N

P

{
Un ∈

⋃
`≥−1

B`(g|w), Ti = n

}

=
∑
n∈N

P{Un ∈ B−1(g|w) | Un ∈ B−1(w)}P{Ti = n}

= |G|−1.

The second identity follows because{Ti = n} is the intersection of{Un ∈ B−1(w)}
with events depending on variables(Un+`, ` 6= 0) which are independent ofUn. The
third identity follows from (2.2). The same computation shows that for anyK ⊂ N,
(i(k) : k ∈ K) ⊆ N, and(gk : k ∈ K) ⊆ GK ,

P{xTi(k) = gk, k ∈ K} = |G|−|K |,

so that(xTi(k) : k ∈ K) are iid inG. The reason why the above computation works is that
in the event{Ti = n}, Un+1 ≤ a0, hencexn+1 does not depend on the past. Since for all
j ≥ 1,Un+j ≤ an+j−1, xn+j+1 only depends onxn+1, . . . , xn+j . 2

3. A renewal lemma
In this section we show that a stationary discrete-time renewal process onN has high
probability to visit sets with many points.

LEMMA 3.1. Let N be a stationary renewal process with finite inter-renewal mean. Then
for all A ⊂ N,

P{N(A) = 0} ≤ ε(|A|)
with ε(n) → 0 asn → ∞. Also,ε : N → R can be chosen to be decreasing.

Proof. We are going to prove that for allε > 0 there existsn0 such that for any finite set
A ⊂ N with |A| > n0,

P{N(A) = 0} ≤ ε. (3.2)

We start with some known facts of renewal theory. LetTi be the renewal times and
β = 1/E(Ti+1 − Ti) for somei ≥ 1 (and hence for alli ≥ 1). Since the inter-renewal
distribution has a finite first moment, the key renewal theorem holds: we have

lim
n→∞ P{N(n) = 1 | N(0) = 1} = β. (3.3)
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Let Sn
.= TN(n)+1 − n be the residual time (over jump) atn, where we have denoted

N(n) = N([0, n]), and fork ≥ 0 let

βk = P{N(k) = 1 | T1 = 0}, F (k) = P{T2 − T1 > k}, Fn(k) = P{Sn > k | T1 = 0}.
(3.4)

Now we have

Fn(k) =
n∑
j=0

F(j + k)βn−j ≤ F(k), (3.5)

where

F(k)
.=

∞∑
j=k

F (j) → 0

ask → ∞ because we are assuming that the inter-renewal time has a finite mean.
For any subsetB ⊂ A we have

P{N(A) = 0} ≤ P{N(B) = 0}.
For anyA with |A| = n and any 1< ` < n, there exists a set

{bn1, . . . , bn` } .= Bn` ⊂ A

with [n
`

]
≤ bnj+1 − bnj , j = 1, . . . , `− 1, (3.6)

where[x] is the largest integer inx. The choice of{bn1, . . . , bn` } depends onA apart from
`, and (3.6) holds uniformly for allA with |A| = n.

Let ε > 0 and take any 0< δ < β. Taken0 such thatβn > δ for n > n0. Let n > `n0

and define
0nj

.= {Sbnj ≤ [n/`] − n0},
as the event ‘the over jump ofbnj does not superate[n/`] − n0’. Let

2nj
.= {N(bnj − bnj−1 − Sbnj−1

) = 0}, 3nj
.= {N(bnj ) = 0},

be the events ‘starting at the over jump ofbnj−1, bnj is not hit’ and ‘bnj is not hit’,
respectively. From (3.5) we get for 2≤ j ≤ `

P{0nj | 0nj−1} ≥ (1 − F([n/`] − n0)). (3.7)

Then

P{N(A) = 0} ≤ P{N(Bn` ) = 0} = P{3n1 ∩ · · · ∩3n` }
≤ P{3n1 ∩ 0n1}P{3n2 ∩ · · · ∩3n` | 0n1} + 1 − P{0n1}

≤
∏̀
j=1

P{2nj | 0nj } +
`−1∑
j=1

(1 − P{0nj | 0nj−1})

≤ (1 − δ)` + (`− 1)F ([n/`] − n0)+ P{T1 > [n/`] − n0} (3.8)

sinceβn > δ for n > n0 and (3.7). Now choosèso that(1 − δ)` < ε/3, thenn so that
F([n/`] − n0) < ε/3(`− 1) andP{T1 > [n/`] − n0} ≤ ε/3, to conclude

P{N(Bn` ) = 0} ≤ ε

for sufficiently largen+ `. 2
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4. Convergence of the Cesàro limit
To prove this theorem we shall need some results concerning walks of variables
determining a chain with complete connections. For this purpose let us introduce some
notation. First,R = (rk : k ∈ N) denotes an increasing sequence inN. We put
Rn = (rk : k ≤ n). For any subsequenceR = (rk : k ∈ N) of R we define the index
function byfR(k) = ` if rk = r`. We also setn(R) = |R ∩ Rn|. Let aR = (aRr : r ∈ R)
be a sequence of non-negative integers. They define mapsψRr : G → G such that
ψRr (g) = aRr g = g + · · · + gaRr times, for anyr ∈ R. We associate to it the following
sequence of random variables taking values inG,

SRn =
∑
r∈Rn

aRr xr, n ∈ N.

We will distinguish the following subsequence:

R∗ .= R∗(aR) = {r ∈ R : aRr 6= 0 modp}.
Remark.Since(G,+) is a finite Abelian group with|G| = pr , p a prime number, then
the functionψ(g) = ag, wherea ∈ N, is one-to-one whenevera 6= 0 modp.

Let J ⊆ N be a finite set. Consider a finite family of sequencesRJ = (Rj : j ∈ J ).
Associated to each sequence there is a sequence of non-negative integersaR

j = (aR
j

r :
r ∈ Rj ) and the corresponding set of mappingsψR

j = (ψR
j

r : r ∈ Rj ). As before we

consider the sequencesRj∗ .= R∗(aRj ) for j ∈ J . Let R̃J = (R̃j : j ∈ J ) be a family of
subsequences verifying the following conditions:
(H1) R̃j ⊆ Rj∗ for anyj ∈ J ;
(H2) R̃j ∩ R̃i = ∅ if i 6= j ∈ J ;
(H3) if r ∈ R̃j ∩ Rk for k < j ∈ J , thenaR

k

r = 0 modp.
We set

ñ(R̃J ) = min{n(R̃j ) : j ∈ J }
and

ñ(RJ ) = max{ñ(R̃J ) : R̃J verifying (H1), (H2), (H3)}.
The proof of Theorem 1.3 is based upon the following result.

LEMMA 4.1. Let P be a translation invariant measure onGZwith complete connections
such that

∑
m≥0 γm < ∞, and letw ∈ G−N∗

. Then we have the following.
(a) ∃ε1 : N → R, a decreasing function withε1(n) → 0 if n → ∞, such that for

any increasing sequenceR in N and any sequence of non-negative integersaR it is
verified that

|Pw{SRn = g} − q−1| ≤ ε1(n(R
∗)), for anyn ∈ N, g ∈ G.

(b) LetJ ⊂ N be finite. Then there is a decreasing functionεJ : N → R with εJ (n) → 0
if n → ∞, such that for any set of sequencesRJ = (Rj : j ∈ J ) and any family of
non-negative integers(aR

j : j ∈ J ), it is verified that

|Pw{SRjn = gj , for j ∈ J } − q−|J ||
≤ εJ (ñ(R

J )), for anyn ∈ N, (gj : j ∈ J ) ∈ GJ .
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Before beginning the proof of Lemma 4.1 we include a useful arithmetic property. We
include a proof for completeness. For(G,+) a finite Abelian group with|G| = pr , where
p is a prime number, consider the following system of equations (S):

(1) a11g1 + a12g2 + · · · + a1`g` = 0
(2) a21g1 + a22g2 + · · · + a2`g` = 0

...

(`) a`1g1 + a`2g2 + · · · + a``g` = 0

such that

(H′) aij ∈ N, aii 6= 0 modp, aij = 0 modp if i < j.

Denoteaii = kip + si with si ∈ {1, . . . , p − 1} andaij = cij p for i < j .

LEMMA 4.2. The system (S) has unique solutiong1 = g2 = · · · = g` = 0.

Proof. First of all we will prove that ifg1, . . . , g` are solutions of (S) and for some
1 < s ≤ r, psgi = 0, i ∈ {1, . . . , `}, thenps−1gi = 0 for i ∈ {1, . . . , `}. We prove
this property by induction on{1, . . . , `}. First consider equation (1),

(k1p + s1)g1 +
∑̀
j=2

c1jpgj = 0.

If we add the equationps−1 times, we obtain

k1p
sg1 + s1p

s−1g1 +
∑̀
j=2

c1jp
sgj = 0,

then s1ps−1g1 = 0. Since the product bys1 defines a one-to-one map we conclude
that ps−1g1 = 0. Let us continue with the induction assuming thatps−1g1 = 0,
ps−1g2 = 0, . . . , ps−1gt = 0, for 1≤ t < `, and we prove thatps−1gt+1 = 0.

Addingps−1 times equationt + 1 we get

t∑
j=1

at+1,jp
s−1gj + (kt+1p + st+1)p

s−1gt+1 +
∑̀
j=t+2

ct+1,jp
sgj = 0.

Therefore, using the induction hypothesis we obtainst+1(p
s−1gt+1) = 0 and hence

ps−1gt+1 = 0.
To conclude we use the last property recursively beginning from the fact thatprgi = 0

for anyi ∈ {1, . . . , `}. 2

Hence the transformationA : G` → G`, AEg = Eh, with Eg, Eh ∈ G` and matrixA
verifying condition (H′) is a one-to-one and onto transformation. In what follows we
identify Pw with P.

Proof of Lemma 4.1.
(a) For any increasing sequenceR = (rk : k ∈ N) we put

τR = inf{k ∈ N : N(rk) = 1}, where∞ = inf φ,
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the first time that some element of the sequenceR belongs to the renewal processN
introduced in §2. ConsiderR∗ the subsequence corresponding to mappingsψRr such that
aRr 6= 0 modp. We denote byn∗ = n(R∗), τ ∗ = τR

∗
, andf = fR∗ the corresponding

index functions. First we prove

P{SRn = g | τ ∗ ≤ n∗} = q−1.

To see that, write

P{SRn = g | τ ∗ ≤ n∗}

=
n∗∑
k=0

P{SRn = g | τ ∗ = k}

=
n∗∑
k=0

P

{ f (k)−1∑
i=0

ψri (xri )+ ψrf (k)(Urf (k) )+
n∑

i=f (k)+1

ψri (xri ) = g

∣∣∣∣ τ ∗ = k

}

=
n∗∑
k=0

∑
g1,g2∈G

P

{ f (k)−1∑
i=0

ψri (xri ) = g1, Urf (k) = ψ−1
rf (k)

(g − g1 − g2),

n∑
i=f (k)+1

ψri (xri ) = g2

∣∣∣∣ τ ∗ = k

}

= q−1
n∗∑
k=0

∑
g1,g2∈G

P

{ f (k)−1∑
i=0

ψri (xri ) = g1,

n∑
i=f (k)+1

ψri (xri ) = g2

∣∣∣∣ τ ∗ = k

}

= q−1
n∗∑
k=1

P{τ ∗ = k} = q−1
P{τ ∗ ≤ n∗}

where in the last equalities we have used thatUrf (k) is independent of the variables
(xn : n 6= rf (k)) whenτ ∗ = k. Then,

P{SRn = g} = q−1
P{τ ∗ ≤ n∗} + P{SRn = g | τ ∗ > n∗}

and
P{SRn = g} − q−1 = −q−1

P{τ ∗ > n∗} + P{SRn = g | τ ∗ > n∗}.
Using Lemma 3.1 we get

|P{SRn = g} − q−1| ≤ 2P{τ ∗ > n∗} ≤ 2ε(n∗ + 1).

(b) LetRJ = (Rj : j ∈ J ) be a family of sequences,(aR
j : j ∈ J ) be the family of

non-negative sequences,(ψR
j : j ∈ J ) be the corresponding family of mappings, andR̃J

be a family of subsequences verifying conditions (H1), (H2), and (H3). Denotefj = fR̃j

andτj = τ R̃
j

for anyj ∈ J . Fix n ∈ N and putñ = ñ(R̃J ).
Take a vectorEk = (kj : j ∈ J ) ∈ {1, . . . , ñ}J . On the set{τj = kj : j ∈ J } we define

the random variables

ρj (Ek, n,U) =
∑
i∈J

1{r̃ iki ∈ Rjn}ψfi(ki)(Ufi(ki )), for j ∈ J.
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Consider(g′
j : j ∈ J ) ∈ GJ . From hypotheses (H1), (H2), and (H3) the system of linear

equationsρj (Ek, n,U) = g′
j , j ∈ J , defines a system of type (S). Then, by Lemma 4.2,

there is a unique(g′′
j : j ∈ J ) ∈ GJ such that

ρj (Ek, n,U) = g′
j , j ∈ J ⇔ Ufj (kj ) = g′′

j , j ∈ J. (4.3)

Let T (Ek) = (
⋃
j∈J R

j
n) \ {fj (kj ) : j ∈ J }. It is easy to see that variables(SR

j

n : j ∈ J ) on
{τj = kj : j ∈ J } can be written as

SR
j

n =
∑

r∈T (Ek)∩Rjn
ψr(xr)+ ρj (Ek, n,U).

Therefore,

P{SRjn = gj , τj = kj : j ∈ J }
=

∑
hr∈G:r∈T (Ek)

P

{
ρj (Ek, n,U) = gj −

∑
r∈T (Ek)∩Rjn

ψr(hr ), xr = hr , τj = kj

: j ∈ J, r ∈ T (Ek)
}

=
∑

hr∈G:r∈T (Ek)
P{Ufj(kj ) = g′′

j , xr = hr , τj = kj : j ∈ J, r ∈ T (Ek)},

where(g′′
j : j ∈ J ) ∈ GJ is given by property (4.3). By independence we conclude that

P{SRjn = gj , τj = kj : j ∈ J } = q−|J |
P{τj = kj : j ∈ J }.

Hence
P

{
SR

j

n = gj : j ∈ J,max
j∈J τj ≤ ñ

}
= q−|J |

P

{
max
j∈J τj ≤ ñ

}
,

which together with Lemma 3.1 allows us to deduce that

|P{SRjn = gj : j ∈ J } − q−|J || ≤ 2P

{
max
j∈J τj > ñ

}
≤ 2|J |ε(ñ+ 1). 2

Now we can give the proof of the main theorem.

Proof of Theorem 1.3.First, let us introduce some notation. Thep-expansion ofm ∈ N

is m = ∑
i≥0mip

i with mi ∈ Zp . We denote byI(m) = {i ∈ N : mi 6= 0} its support
and we denote its elements in decreasing order,I(m) = {δ1,m > · · · > δsm,m}, where
sm = |I(m)|. Now putm(i) = mδi,m , som = ∑sm

i=1m
(i)pδi,m . Observe thatδ1,m = integer

part(logm), where we take logm in basep.
Sincep is a prime number, the Lucas’ theorem [Lu ] asserts that[(

m

k

)]
p

=
[∏
i≥0

(
mi

ki

)]
p

,

where
(
r
s

) = 0 if r < s. In particular,
[(
m
k

)]
p
> 0 if and only if ki ≤ mi for all i ≥ 0.
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Let us return to the automatonϕ. SinceG is Abelian, a simple recurrence implies

(ϕmx)i =
∑
k≤m

(
m

k

)
µm−kνkxk+i .

Observe that this expression has the form of variablesSRn defined before. In this case the
mapping has the shape

(
m
k

)
µm−kνk g which is one-to-one if

[(
m
k

)]
p

6= 0 sinceµ andν
are coprime top. Then our computations are devoted to showing that we have enough
one-to-one mappings.

In order to clarify the proof we shall first prove that the Ces`aro mean of the marginal
distribution exists and it is uniform, that means

π(g)
.= lim
M→∞

1

M

M−1∑
m=0

Pw{(ϕmx)0 = g} exists and verifiesπ(g) = q−1, for anyg ∈ G.

Let us fix α ∈ (0, 1
2). ForM > 0 consider the setRM = {m ≤ M : |I(m)| ≥

α log logM}. We will prove that(RM : M ∈ N) is a sequence of sets of density one,
which means|{m ≤ M} \RM |/M −−−−→

M→∞
0. For that purpose we make the decomposition

{m ≤ M} = ⋃
1≤s≤sM+1As,M with

A1,M = {m ≤ M : δ1,m < δ1,M},
As,M = {m ≤ M : δr,m = δr,M for r < s andδs,m < δs,M} for 1 ≤ s ≤ sM,

AsM+1,M = {M}.
Observe that|As,M| = M(s)pδs,M for 1 ≤ s ≤ sM . Takes∗M = sup{s : δs,M ≥ log logM}.
Sinceδ1,M = integer part(logM), we haves∗M ≥ 1. Now,

|{m ∈ As,M : |I(m)| ≤ αδs,M}| ≤
∑

t≤αδs,M
(p − 1)t

(
δs,M

t

)

≤ (p − 1)αδs,M2δs,M e−2(α− 1
2 )

2δs,M .

Hence,

|{m ≤ M} \RM | ≤
∑

1≤s≤s∗M
(2(p − 1)α)δs,M e−2(α− 1

2 )
2δs,M +

∑
s∗M<s≤sM

M(s)pδs,M + 1.

We have ∑
s∗M<s≤sM

M(s)pδs,M + 1 ≤ (logM)2 + 1.

Takeα < 1
2p(log(p − 1))−1, thenp′ .= 2(p − 1)αe−2(α− 1

2 )
2
< p. Therefore,

1

M

∑
1≤s≤s∗M

(2(p − 1)α)δs,M e−2(α− 1
2 )

2δs,M ≤ 1

M

∑
1≤s≤s∗M

p′δs,M

≤
∑

1≤s≤s∗M

(
p′

p

)δs,M
≤ p

p − p′

(
p′

p

)log logM

.

https://doi.org/10.1017/S0143385700000924 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700000924


Ces̀aro mean distribution of group automata 1669

Hence|{m ≤ M} \RM |/M −→M→∞ 0. So(RM : M ∈ N) is a sequence of sets of
density one. Hence,

π(g) = lim
M→∞

1

M

∑
m∈RM

1

M
Pw{(ϕmx)0 = g}

= lim
M→∞

1

M

∑
m∈RM

Pw

{ ∑
k≤m

(
m

k

)
µm−kνkxk = g

}
.

From the remark,
(
m
k

) 6= 0 modp implies that the mappingψ(g) = (
m
k

)
µm−kνkg is one-

to-one. Therefore, from Lucas’ theorem and Lemma 4.1(a) we get that for anym ∈ RM∣∣∣∣
{
k ≤ m :

(
m

k

)
modp 6= 0

}∣∣∣∣ ≥ 2α log logM

and then ∣∣∣∣Pw
{ ∑
k≤m

(
m

k

)
µm−kνkxk = g

}
− q−1

∣∣∣∣ ≤ ε1(2α log logM).

Thenπ(g) = q−1.
Now we are ready to prove the result. Notice that for every(gj : j < s) ∈ Gs there

exists a(g′
j : j < s) ∈ Gs such that

{x ∈ GN : (ϕnx)j = gj for j < s} = {x ∈ GN : (ϕn+j x)0 = g′
j for j < s}.

Then it suffices to show that for any finite setJ ⊆ N with 0 ∈ J and(gj : j ∈ J ) ∈ GJ it
is verified that

lim
M→∞

1

M

∑
m≤M

Pw{(ϕm+j x)0 = gj : j ∈ J } = q−|J |.

Introduce the following notation. We putGm = |{n ≤ δ1,m : mn < p − 1}| and we denote

{n ≤ δ1,m : mn < p − 1} = {β1,m < β2,m < · · · < βGm,m}.
Fix α ∈ (0, 1

2), ε ∈ (0, α), andε′ ∈ (0, 1
2(α − ε)). Denotè = maxJ and define

R
′
M = {m ≤ M : log(2(`+ 1)) ≤ Gm andβ[log 2(`+1)],m ≤ ε log logM}

R
′′
M = {m ≤ M : δ1,m > ε log logM, |I(m) ∩ {ε log logM ≤ n ≤ δ1,m}| ≥ ε′ log logM}.

Both families of sets(R′
M : M ∈ N) and(R′′

M : M ∈ N) are of density one.
Now for any family of sets(R̃M : M ∈ N) with R̃M ⊆ {m ≤ M}, we put

R̃M,J = {m ≤ M : m + j ∈ R̃M for j ∈ J }. If (R̃M : M ∈ N) is of density one
then also(R̃M,J : M ∈ N) is of density one. Hence(RM,J : M ∈ N), (R′

M,J : M ∈ N),
and(R′′

M,J : M ∈ N) are sequences of density one.
Letm ∈ R′

M,J ∩R′′
M,J . We denoteI+(m+ j) = I(m + j) ∩ {n > ε log logM}, and

I−(m + j) = I(m + j) ∩ {n ≤ ε log logM}. From the definition ofR′
M we have that

I+(m + j) = I+(m) for j ∈ J . PutC+(m + j) = {(m + j)i : i ∈ I+(m + j)} and
C−(m + j) = {(m+ j)i : i ∈ I−(m+ j)} for j ∈ J . We haveC+(m + j) = C+(m) for
j ∈ J , and the sets(C−(m+ j) : j ∈ J ) are all different between them. Define forj ∈ J
R̃
j = {k ≤ m+ j : I(k) ⊆ I(m+ j), ki ≤ mi for i ∈ I+(m),

ki = (m+ j)i for i ∈ I−(m+ j)}.
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The family (R̃j : j ∈ J ) is disjoint because the sets(C−(m + j) : j ∈ J ) are different.
Moreover,|R̃j | ≥ 2ε

′ log logM .
From Lemma 4.1(b) and the remark we get the result. In fact, for everym ∈

R′
M,J ∩R′′

M,J andj ∈ J we have that

(ϕm+j x)0 =
m+j∑
k=0

(
m+ j

k

)
µm+j−kνkxk

and the sequences(R̃j : j ∈ J ) satisfy conditions (H1), (H2), and (H3). Indeed, property
(H1) follows fromR̃j ⊂ {k ≤ m + j : (

m+j
k

)
modp > 0}, since they are disjoint (H2)

holds, and ifk ∈ R̃j then
(
m+j ′
k

)
modp = 0 for everyj ′ < j in J which shows property

(H3). Then, from Lemma 4.1(b), for any suchm

|Pw{x : (ϕm+j x)0 = gj , j ∈ J } − q−|J || ≤ εJ (2ε
′ log logM).

Then the theorem is shown. 2
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