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The present paper investigates the mechanism of interface closure in the root region of the

solutions for steady deep-cellular growth. This phenomenon is determined by a transcendent-

ally small factor beyond all orders. It is found that the root region comprises three inner-inner

regions; the inner system in the root region has a simple turning point, whose presence gen-

erates the so-called trapped-waves mechanism, which is responsible for the interface closure at

the bottom of root. The quantization condition derived from the trapped-waves mechanism

yields the eigenvalue that determines the location of interface closure and its dependence on

the interfacial energy and other physical parameters.

Key words: Asymptotics beyond all orders; Multiple variables expansion; Quantization

condition; Steady deep-cellular growth; Interface closure

1 Introduction

Steady deep-cellular growth for a system of binary mixture in directional solidification

has been a subject of focused study in condensed matter physics and material science for

decades [1–10]. The profound understanding of the interfacial pattern formation in the

system of deep-cellular growth has great significance not only theoretically in condensed

matters physics, but also practically in applications of material processing industries.

There have been many experimental investigations and numerical simulations on this

subject by using a model device – the Hele-Shaw cell, which consists of a thin sample

of binary material and two uniform temperature zones: a hot zone with a temperature

TH higher than the melting temperature TM0 of a flat interface and a cold zone with

a temperature TC lower than the melting temperature. The sample is pulled along the

direction from the hot zone to cold zone, with V much greater than the critical number

Vc activating the linear Mullins–Sekerka instability. Analytical investigations of deep-

cellular growth were relatively few, due to the strong nonlinearity of the mathematical

problem involved. Substantial progress was made in the sequence of papers by Xu and

his co-worker in recent years (refer to [11, 12]) which developed a global theory for the

steady deep-cellular growth and their global stability mechanisms. In [11], by adopting

https://doi.org/10.1017/S0956792515000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000066


356 J.-J. Xu and Y.-Q. Chen

y

−x
↑

←
←
←
←
←

C = 1

ξ = −1

ξ = 0

ξ = −0.5
η = const.

η = 0

η < 0

ηT

Figure 1. The sketch of the orthogonal curvilinear coordinate system (ξ, η) based on the

Saffman–Taylor solution.

Figure 2. The interface shape in the (X,Y ) plane calculated by using the first order outer solution

derived in [11] for the typical case: κ = 0.29, c∞ = 1.2mol% and the pulling velocity V = 12μm/s,

the temperature gradient GD = 140.0×10−4K/(μm), primary spacing �w = 90 μm and the tip radius

�t = 22.4μm. The grey area describes the viscous finger given by S–T solution. The circles represent

the experimental data obtained by Pocheau et al. [22].

the curvilinear coordinate system (ξ, η) as shown in Figure 1, Chen–Xu showed that the

solutions of steady deep-cellular growth can be expanded in the form of the regular

perturbation expansion (RPE) in the limit of Péclet number ε = Pe → 0 while the surface

tension parameter Γ = O(ε2). It is obtained that in the zeroth order approximation, the

RPE solution of cellular growth reduces to Saffman–Taylor (S–T) solution for the system

of viscous fingering in Hele-Shaw flow [13–16], showing that the finger-like interface of

the solution extends to infinity without closure. This result recovers the finding by Pelce

and Pumir in 1986 [4]. Chen–Xu further derive the analytical form of the first order

approximate RPE solution and find that its finger-like interface also extends to infinity

without a closure as shown in Figure 2. More importantly, Xu and his co-worker prove

that, up to any order approximations O(εN), the finger-like interface of the RPE solution

still extends to infinity without a closure.

In reality, one prominent feature of the steady deep-cellular growth is that the system

forms a long narrow groove and the finger-like interface always has a smooth closure at

the bottom. Thus, the RPE solution obtained by Chen–Xu naturally raises the questions,

as to what is the mechanism of the interface closure for the steady deep-cellular growth;

how to determine the location of the closure and its dependence on the interfacial-energy

and other physical parameters.
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It is seen that the interface closure observed in the experiments is a phenomenon

determined by some transcendentally small pre-factor with the magnitude δ(ε) = O
(
e− A

ε

)
‘beyond all orders’. The physical phenomena, in which a transcendentally small pre-factor

‘beyond all orders’ plays crucial role, have been previously encountered and extensively

investigated in the areas of nonlinear science, fluid dynamics, and crystal growth (refer

to [17–21]). The interface closure in the steady deep-cellular growth is another prominent

example on this subject.

It is evident that the transcendentally small term missed by the RPE solution derived

in [11] is very hard to ‘catch’ with the numerical simulations without the analytical

treatment. A typical example given in the present paper and described in Figure 12 shows

that as ε = 0.1, one has δ(ε) ≈ 0.4 × 10−8. The desirable information delivered by such

small factor will be fully submerged by the ‘numerical noise’ generated by the unavoidable

rounding-off and truncation errors involved in the numerical simulations.

To demonstrate this argument more clearly, we carry out the numerical computations

with different truncation errors for the first order approximate RPE solution obtained

in [11] (refer to (32) in that paper). The numerical results are shown in Figure 3(a) and (b),

respectively. The solution has been obtained in the closed analytical form, and it has been

proven analytically that its interface extends to infinity with no interface closure, while the

numerical implementation of this analytical solution exhibits an interface closure due to

the numerical truncation errors. Moreover, the calculations with different truncation errors

result in different locations of interface closure. The above demonstration casts serious

doubt over the results of the numerical simulations with different numerical methods

that have shown the interface closure in the system of deep-cellular growth (see, for

instance, [6, 7]).

One may conclude that to explore the mechanism of interface closure and its dependence

on the physical parameters of the system, the analytical approach is not only preferable,

but also necessary.

The issues were investigated in [11], in which the whole physical region was divided

into the outer region away from the location of interface closure and the root region near

the location of interface closure. Some singular perturbation expansion (SPE) form of

solutions in the root region was derived. The elegant multiple-layers structure of the inner

solution was explored. Moreover, the work formulated an eigenvalue problem (EVP) for

the determination of the location of interface closure. However, the inner equation in

the root region derived in [11] was in error, which omitting the important effect of the

curviness of the interface in the root region, hence missing the complex turning point

existing in the root region – a significant piece for resolving the puzzle. As a consequence,

in [11], the critical role of such turning point on the behaviour of the inner solution in the

root region was not well explored, and the issues of the mechanism for interface closure

and the formation of the multi-layer structure of solution in the root region were still not

fully resolved.

The present paper attempts to continue the investigation of these issues. The most

important new result that we find is that in the root region, the steady solutions of

deep-cellular growth have the multi-layer structure, the inner system of the deep-cellular

growth in the root region has a simple turning point ξ̂c on the extended complex

plane, affected by the surface tension and other physical parameters of the system. The
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Figure 3. The numerical descriptions of the interface shapes computed by using the analytical form

of the first order approximate outer solution obtained in [11]. The blue dashed line is calculated by

the Fourier cosine series involved truncated at 6,000 terms, while the solid red line is calculated by

the Fourier cosine series involved truncated at 60,000 terms for the typical cases ε = 0.1,� = 6.0,

Γ̂ = 0.3, κ = 0.1, and (a) λG = 2.0, λ0 = 0.6; (b) λG = 1.0, λ0 = 0.4. In both (a) and (b), the black

dashed line is given by S–T solution, corresponding to the case of ε = 0.

presence of the turning point singularity generates the so-called trapped-waves mechanism,

which is responsible for the interface closure and leads to the quantization condition for

determination of the location of interface closure.

The present paper is arranged as follows. In Section 2, we give the mathematical

formulation of the problem and list the form of outer solutions obtained in [11]. In

Section 3, we give the mathematical description of inner system in the root region. The

interface shape in the root region is divided into sub-region (I) near the bottom of root

and subregion (II), the far field of root region, the approximate form of the RPE-part of

interface shape solution and its corresponding composite solution are derived. In Section

4, we give the inner system for the form of SPE-part of root solution, and give the general

forms of inner-inner solutions in the sub-region (II) and (I), respectively. We further show

the existence of the turning point ξ̂c in the extended complex ξ̂-plane. In Section 5, we

derive the inner-inner equation in sub-domain (T) near the turning point and reduce the

equation into the Airy equation. Furthermore, we derive the turning point solution in

sub-domain (T). In Section 6, we match the turning point solution with the inner-inner

solutions in the sectors (S1) and (S2), which are away from the turning point ξ̂c and

respectively contain the far field of root region and the bottom of root. In Section 7, we

derive the quantization condition for the steady state solution by applying the smoothness

condition at the bottom of root, elucidate the trapped-wave mechanism and show the

numerical results for some typical cases. Finally, in Section 8, we summarize the results

and draw some conclusions.

2 Mathematical formulation of problem and a brief summary of outer solution

We adopt the model and the notation as adopted in [11], using the tip radius �t as the

length scale and using the dimensional impurity concentration in the far field (C∞)D as
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the scale of the concentration. Write W as the half of the primary spacing. As usual, we

assume that the temperature in the region where an interfacial microstructure forms is

linear with given gradient (G)D; the minor species in the binary mixture, considered as an

impurity, is dilute; the solute diffusion in the solid phase is negligible; the thermodynamic

properties other than the diffusivity are the same for both solid and liquid phases, and

there is no convection in the system.

The solute-diffusion length in the system is defined as �D = κD/V , where κD is the

solute diffusivity. We use the tip radius �t as the length scale and assume that �t � �D.

The pulling speed V is used as the velocity scale, and �t/V is used as the time scale. The

scales of the temperature T and concentration C are set as ΔH/(cpρ) and C∞, respectively.

Herein, ΔH is the latent heat release per unit of volume of the solid phase, cp is the specific

heat, ρ is the density of the melt and C∞ is the impurity concentration in the far field.

One may define the following dimensionless parameters: the Péclet number, ε = �t/�D;

the morphological parameter, � = − mC∞
ΔH/(cpρ)

, where m < 0 is the slope of the liquidus

in the phase diagram; the surface-tension parameter, Γ = �c

�t
= �c�D

�2
t

�t

�D
, where �c is the

capillary length defined as �c = γcpρTM0/(ΔH)2, and γ is the surface-tension coefficient;

the dimensionless gradient of the temperature, G = �D

ΔH/(cpρ)
(G)D; the ratio of two length

scales, λG = �D/�G = G/�, where �G = −mC∞/(G)D; the primary spacing parameter,

W = �w/�t. In most practical cases, the surface-tension parameter is very small, Γ � 1.

We assume ε � 1 and Γ = O(ε2) and, accordingly, set Γ = ε2Γ̂ , where Γ̂ = O(1).

Due to the periodicity of the solution, we may only consider a single cell. In this case,

the problem is equivalent to finger-like crystal growth in a channel with fixed side walls

x = ±W .

We, as in [11], formulate the problem in the curvilinear coordinate system (ξ, η) based

on the S–T solution for the system of viscous fingering in the form:

Z = X + iY = Z(ζ) = λ0ζ + i
2(1 − λ0)

π
ln cos

(
πζ

2

)
, (2.1)

where λ0 is the asymptotic width of finger, ζ = ξ+iη, X(ξ, η) = x/W,Y (ξ, η) = y/W. The

variables {ξ = ξ(X,Y ); η = η(X,Y )} constitute a new orthogonal curvilinear coordinate

system on the (X,Y )-plane as shown in Figure 1. The origin of the coordinates is set at

a finger-tip.

In the curvilinear coordinate system (ξ, η), the linear distribution of temperature field

is described by TB = εG
[
WY (ξ, η) − y0

]
.

2.1 Governing equation and boundary conditions

The basic steady-state of cellular growth {CB, ηB} is subject to the governing equation:

∂2CB

∂ξ2
+

∂2CB

∂η2
+ εW

(
Yξ

∂CB

∂ξ
+Xξ

∂CB

∂η

)
= 0 , (2.2)

with the following boundary conditions:

(1) In the up-stream far field: far away from cell tips, the effect of micro-structure at
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the interface on the concentration distribution field is negligible. Hence, it may be

imposed that as η → ∞, CB ∼ 1 +Q0(ε)e
−εWη, where Q0(ε) is a constant, independent

of the variables ξ, η.

(2) At the side walls, ξ = ±1: ∂CB

∂ξ
= 0.

(3) At the interface η = ηB(ξ, ε),

CB = y∗ − ελGWY (ξ, η) − ε2Γ̂

�W
K {ηB(ξ, ε)} , (2.3)

∂CB

∂η
− η′

B

∂CB

∂ξ
− εW (1 − κ)CB

(
Yξη

′
B − Yη

)
= 0, (2.4)

where K{ηB(ξ, ε)} is the twice mean curvature operator, and we designate that K > 0,

when an interfacial finger points to liquid phase side, κ is the segregation coefficient,

and � is the morphological number, proportional to the slope m of the liquidus in

the phase diagram. We write y∗ = ελGy0, and assume that y∗ = y∗0 + εy∗1 + · · · , as

ε → 0.

(4) At the cell tip, ξ = η = 0: ∂ηB

∂ξ
(0) = ηB(0) = 0.

(5) At the bottom of root, ξ = ±1, η = ηb: ηB(±1) = ηb;
∂ηB

∂ξ
(±1) = 0.

2.2 Brief summary of outer solutions

As shown in [11], the whole physical space can be divided into the outer region away

from the bottom of the cell and the root region near the bottom of the cell. The outer

solution for concentration as ε → 0 has the asymptotic form:

CB(ξ, η, ε) ∼ C̄R(ξ, η, ε) + C̄S(ξ, η, ε),

ηB(ξ, ε) ∼ ε [η̄R(ξ, ε) + η̄S(ξ, ε)] .
(2.5)

The first part of solution {C̄R(ξ, η, ε), η̄R(ξ, ε)} is called the RPE part, whose asymptotic

factors depend on ε algebraically, such that {ε, ε2, ε3, . . .}; the second part of the solu-

tion {C̄S(ξ, η, ε), η̄S(ξ, ε)} is called the SPE part, whose asymptotic factors depend on ε

exponentially. It is shown in [11] that the RPE-part of solution has the three distinct

features: (i) It contains no free constant; (ii) It violates the interface-tip condition, since

η̄R(0)� 0; (iii) It shows no interface closure, since ξ → ±1, η̄R(ξ) → 0. The leading order

approximation of RPE-part is obtained in [11]. The RPE solution for the concentration

field is

C̄R(ξ, η, ε) ≈ C̄0(ξ, η, ε) = y∗0 + ε {y∗1 −WλGY (ξ, η) +W [λG − (y∗0 − 1)] η} , (2.6)

where y∗0 = 1+λG(1−λ0)
1−λ0(1−κ) , y∗1 = W (1−κ)λ0λGβ0

(1−κ)λ0−1
and β0 = − 2(1−λ0)

π
ln 2; λ0 = y∗0−1−λG

(1−κ)y∗0−λG
. The

asymptotic width parameter λ0 is connected with the primary spacing parameter W via

the formula: W = π(1−λ0)
2λ2

0
.

The leading order approximation of RPE part solution for the interface shape function

η̄R(ξ, ε) ≈ h̄1(ξ) is expressed in the form of the Fourier cosine series in [11]. The graph of

h̄1(ξ) for a typical case is shown in Figure 4 on the (ξ, η) plane. It is found that h̄1(0)� 0
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Figure 4. The feature of RPE solution h̄1(ξ) of the outer solution for the case ε = 0.1,� = 6.0,

Γ̂ = 0.3, κ = 0.1, and λG = 2.0, λ0 = 0.6; (a) The graph of the function h̄1(ξ) in the outer region;

(b) The red line shows the behaviour of the function h̄1(ξ) near ξ = −1 affected by the numerical

errors. The black line is the asymptote, h̄1 = 2.63(1 + ξ)0.88.

and as ξ → −1, h̄1(ξ) ∼ a0(ξ + 1)α, (0 < α < 1), limξ→−1 h̄1(ξ) = 0. Consequently, the

RPE solution violates the interface-tip condition, η̄B(0) = 0, and yields an infinitely long

finger-like interface in the (X,Y ) plane tangent to the line X = −1 at Y = −∞ with no

interface closure, as indicated before.

In order to satisfy the interface-tip condition η̄B(0) = 0, as a consequence, one

must introduce the additional SPE part expressed in the form of multiple variables

for the outer solution. The leading order approximation of SPE part: {C̄S(ξ, η, ε) ∼
�̄0(ξ, η, ξ+, η+); η̄S(ξ, ε) ∼ h̄0(ξ+)}, has the features: (i) It contains some free constants;

(ii) It is transcendentally small as ε → 0 for fixed ξ � 0, namely this is true except

at the interface-tip (ξ = 0); (iii) It has multiple length scales, so that can be described

in the form of multiple variables {ξ, η, ξ+, η+}, defined as ξ+ = 1/
√
εΓ̂

∫ ξ
0
k(ξ1, η)dξ1;

η+ = 1/
√
εΓ̂

∫ η
0
k(ξ, η1)dη1, where k(ξ, η) ∼ k0(ξ, η) + εk1(ξ, η) + · · · ; (iv) it vanishes

exponentially, as ξ → ±1.

The leading order approximation of SPE part of solution η̄S(ξ, ε) is obtained in [11] as

η̄S(ξ, ε) ≈ h̄0(ξ+) = d̄ 0

{

e
1√
εΓ̂
χ(ξ)
}

= d̄ 0e
χI(ξ)√
εΓ̂ cos

(
χR(ξ)√
εΓ̂

)
, (2.7)

where d̄ 0 is an arbitrary constant,

χ(ξ) =

∫ ξ

0

k̄s(ξ1)dξ1 = χR(ξ) + iχI(ξ), (2.8)

k̄s(ξ) = W

√
�Δ0G0(ξ, 0)

[
1 +

i

λ0
Yξ,0(ξ, 0)

]
, (2.9)

and G0(ξ, 0) ∼ −(1 − λ0) tan
(

πξ
2

)
, Yξ,0(ξ, 0) = −(1 − λ0) tan( πξ

2
). It is seen that by setting
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Figure 5. The graph of the outer solution for the case ε = 0.1, κ = 0.1, λG = 0.8, λ0 = 0.4, � = 1.0,

Γ̂ = 2. The top on the left is the graph of the outer solution ηB(ξ)(with inclusion of the SPE part)

over (−1 < ξ � 0); while the bottom on the right is the graph of the RPE part of outer solution

εh1(ξ).

d̄ 0 = −h̄1(0), the full outer solution will be able to satisfy the interface-tip condition:

ηB(0, ε) = η̄R(0, ε) + η̄S(0, ε) = 0 as shown in Figure 5.

However, even including the SPE part, the leading order approximation of the full

outer solution still show no interface closure at the bottom of the root, because of the

fact, limξ→−1 h̃0(ξ, ε) = 0, decaying exponentially. It can be shown that the nature of no

interface closure remains up to any order approximations of the outer solution. Therefore,

the issue of interface closure is determined by some exponentially small quantities beyond

all orders, which were missed in the outer solution.

3 Mathematical formulation of problem in the root region

To explore the mechanism of interface closure for steady deep-cellular growth, one must

investigate the behaviour of the solution with a different length scale in the root region,

|ξ + 1| � 1; |η − ηB(ξ, ε)| � 1.

Assume that the interface shape function in the root region has the following asymptotic

form:

ηB(ξ, ε) = δ(ε)η̂B(ξ̂, ε); η̂B(ξ̂, ε) ∼
[
η̂R(ξ̂, ε) + η̂S(ξ̂, ε)

]
, (3.1)

where ξ̂ = (ξ + 1)/δ(ε), η̂R(ξ̂, ε) is the RPE part of the inner solution for the interface

shape function, δ(ε) is the asymptotic factor to be determined, so that |η̂R(ξ̂, ε)| = O(1);

η̂S(ξ̂, ε) is the SPE part, it is transcendentally small as ε → 0.

We further assume that the solution for the interface shape function ηB(ξ, ε) is analytic

at the bottom of the root ξ = −1 or ξ̂ = 0 and satisfies the root smoothness condition.

Therefore, one may expand it in the Taylor series: ηB(ξ, ε) = δ2η̂b + ā2(1 + ξ)2 + ā3(1 +

ξ)3+· · · , subsequently, write the formula: η̂B(ξ̂, ε) ≈ P̂n(ξ̂) = [η̂b+a2ξ̂
2+a3ξ̂

3+· · ·+anξ̂n],
where n is any large integer.
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Furthermore, in the far field of root region, from the asymptotic behaviour of RPE

part of the outer solution h̄1(ξ) ∼ a0(1 + ξ)α, as (ξ → −1), or ηB(ξ, ε) ≈ δ(ε)η̂B(ξ̂, ε) ≈
ε a0(1 + ξ)α = a0εδ

α(ε)ξ̂α, it is deduced that δ(ε) = εδα(ε), or, δ(ε) = ε
1

1−α and

η̂B(ξ̂, ε) ≈ a0ξ̂
α, (ξ̂ � 1). (3.2)

The composite solution of the interface shape in the root region is the function:

η̂T(ξ̂) ≈
{
a0ξ̂

α, as ξ̂ � 1;

η̂B(ξ̂, ε), as ξ̂ = O(1).
(3.3)

In view of the above, in the leading order approximation such a composite solution can

be written in the following form:

η̂T(ξ̂) =

{
η̂

(II)
T (ξ̂) = a0ξ̂

α, (II) : (ξ̂∗ < ξ̂ < ∞),

η̂
(I)
T (ξ̂) = P̂n(ξ̂), (I) : (0 � ξ̂ < ξ̂∗),

(3.4)

satisfying the (n− 1)-th order smoothness conditions:

η̂
(I)
T (ξ̂∗) = η̂

(II)
T (ξ̂∗),

dk

dξ̂k
η̂

(I)
T (ξ̂∗) = dk

dξ̂k
η̂

(II)
T (ξ̂∗), (k = 1, 2, . . . , n− 1).

As a consequence, we derive that

a0ξ̂
α
∗ = η̂∗ = η̂b + a2ξ̂

2
∗ + a3ξ̂

3
∗ + · · · + anξ̂n∗

a0αξ̂
α−1
∗ = 2a2ξ̂∗ + 3a3ξ̂

2
∗ + · · · + nanξ̂n−1

∗

a0α(α− 1)ξ̂α−2
∗ = 2a2 + (3 · 2)a3ξ̂∗ + · · · + n(n− 1)anξ̂n−2

∗
. . . ,

or, in general,

a0(α− i)!ξ̂(α−i)
∗ =

∑
i<m�n

am
m!ξ̂m−i

∗
(m− i)!

, (i = 1, 2, . . . , n− 1). (3.5)

The above function η̂T(ξ̂) has up to (n − 1)-th order continuous derivatives in the entire

root region (0 � ξ̂ < ∞). With the n conditions (3.5), the n coefficients of P̂n(ξ̂):

{η̂b, a2, . . . , an} are fully determined as the functions of joint point ξ̂∗. In the leading order

approximation, we shall set η̂R(ξ̂, ε) ≈ P̂3(ξ̂), accordingly, the corresponding composite

solution is described as

η̂T(ξ̂) =

{
a0ξ̂

α, (II) : (ξ̂∗ < ξ̂ < ∞),

η̂b + a2ξ̂
2 + a3ξ̂

3, (I) : (0 � ξ̂ < ξ̂∗),
(3.6)

as sketched in Figure 6. In this case (n = 3), the function η̂T(ξ̂) has continuous up to

second order derivatives in the entire root region (0 � ξ̂ < ∞), and the coefficients η̂∗, η̂b,
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Figure 6. The sketch of the function η̂T(ξ̂) in the root region.

a2 and a3 are derived as the following functions of ξ̂∗:

η̂∗ = a0ξ̂
α
∗ , η̂b =

[
1 − α(5−α)

6

]
η̂∗

a2 = α(3−α)η̂∗
2ξ̂2

∗
a3 = − α(2−α)η̂∗

3ξ̂3
∗
.

It will be seen later that the parameter ξ̂∗ can be determined as the eigenvalue of an EVP.

We now define the root variables ξ̂ and η̂ in the root region as

ξ̂ =
1 + ξ

δ(ε)
, η̂ =

η − δ(ε)η̂T(ξ̂)

δ(ε)
=

η

δ(ε)
− η̂T(ξ̂). (3.7)

From (3.7), we derive that

∂
∂η

= 1
δ(ε)

∂
∂η̂
, ∂2

∂η
= 1

δ2(ε)
∂2

∂η̂2 ,

∂
∂ξ

= 1
δ(ε)

[
∂

∂ξ̂
− η̂′

T(ξ̂) ∂
∂η̂

]
,

∂2

∂ξ2 = 1
δ2(ε)

[
∂2

∂ξ̂2
+ η̂′2

T (ξ̂) ∂2

∂η̂2 − 2η̂′
T(ξ̂) ∂2

∂η̂∂ξ̂
− η̂′′

T(ξ̂) ∂
∂η̂

]
,

(3.8)

The concentration field in the inner region can be considered as the function of the

inner variables {ξ̂, η̂}, namely,

CB(ξ, η, ε) = CB

[
−1 + δ(ε)ξ̂, δ(ε)(η̂ + η̂T), εδ(ε)(η̂ + η̂T)

]
= ĈB(ξ̂, η̂, ε). (3.9)

We write the inner solution in the following form:

ĈB(ξ̂, η̂, ε) = ĈR(ξ̂, η̂, ε) + ĈS(ξ̂, η̂, ε),

η̂B(ξ, ε) = η̂R(ξ̂, ε) + η̂S(ξ̂, ε),
(3.10)

where ĈR(ξ̂, η̂, ε) with η̂R(ξ̂, ε) = 0 is the RPE-part of the inner solution, while ĈS(ξ̂, η̂, ε)

with η̂S(ξ̂, ε) is the SPE-part of the inner solution. In the leading order approximation, we
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find

ĈR(ξ̂, η̂, ε) ⇐⇒ C̄R(ξ, η, ε) ≈ y∗0 − ε ln δ(ε)WλGŶ∗ + ε
[
y∗1 −WλGŶ0(ξ̂, η̂)

]
. (3.11)

The major task for us is to find the second, SPE-part of root solution {ĈS(ξ̂, η̂, ε), η̂S(ξ̂, ε)},
which is transcendentally small as ε → 0.

4 The singular perturbation expansion part of inner solution in the root region

The inner systems governing the SPE-part of solution {ĈS(ξ̂, η̂, ε), η̂S(ξ̂, ε)} can be obtained

from (2.2)–(2.4). In doing so, one needs to change the outer variables (ξ, η) to the inner

variables (ξ̂, η̂) and expand all the coordinate functions into the asymptotic forms, as

ε → 0 with fixed (ξ̂, η̂). For convenience of the readers, we list the results below [14–16]:

R(ξ, η) = π2δ2(ε)(η̂ + η̂T)2 + π2δ2(ε)ξ̂2 + · · · ,

Θ(ξ, η) = − arctan
(

ξ̂
η̂+η̂T

)
+ · · · ;

X̂(ξ̂, η̂, ε) ∼ −1 + 2(1−λ0)
π

arctan
(

ξ̂
η̂+η̂T

)
+ · · ·

Ŷ (ξ̂, η̂, ε) ∼ ln δ(ε)Ŷ∗ + Ŷ0(ξ̂, η̂) + δ(ε)Ŷ1(ξ̂, η̂) + · · · ,

Yη(ξ, η) = 1
δ(ε)
Ŷη̂(ξ̂, η̂, ε) ∼ 1

δ(ε)
Ŷη̂,0(ξ̂, η̂) + Ŷη̂,1(ξ̂, η̂) + · · · ,

Yξ(ξ, η) = 1
δ(ε)
Ŷξ̂(ξ̂, η̂, ε) ∼ 1

δ(ε)
Ŷξ̂,0(ξ̂, η̂) + · · · ,

(4.1)

where

Ŷ∗ =
2(1 − λ0)

π
, Ŷ0 =

(1 − λ0)

π
ln

π2
[
(η̂ + η̂T)2 + ξ̂2

]
4

, Ŷ1 = λ0(η̂ + η̂T),

Ŷη̂,0(ξ̂, η̂) =
2(1 − λ0)

π

(η̂ + η̂T)

ξ̂2 + (η̂ + η̂T)2
, Ŷη̂,1(ξ̂, η̂) = λ0,

Ŷξ̂,0(ξ̂, η̂) =
2(1 − λ0)

π

ξ̂

ξ̂2 + (η̂ + η̂T)2
,

(4.2)

and

G(ξ, η) =
√
Y 2
ξ + Y 2

η =
1

δ(ε)
Ĝ(ξ̂, η̂, ε) ∼ 1

δ(ε)
Ĝ0(ξ̂, η̂) + · · · ,

Ĝ0(ξ̂, η̂) =
2(1 − λ0)

π

1√
ξ̂2 + (η̂ + η̂T)2

.
(4.3)
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Moreover, one may write

K{δ(ε)η̂B} = − 1

Ĝ0(ξ̂, 0)

∂2η̂B

∂ξ̂2
+ K̂0(ξ̂, 0) + O

(
η̂B

)
,

K̂0(ξ̂, 0) = − π

2(1 − λ0)

η̂T√
ξ̂2 + η̂2

T

.
(4.4)

By showing only the lowest order small terms, one may write the inner equation as

∂2ĈS

∂ξ̂2
+
[
1 + η̂′2

T (ξ̂)
] ∂2ĈS

∂η̂2
− 2η̂′

T(ξ̂)
∂2ĈS

∂η̂∂ξ̂
= O(h.o.t.). (4.5)

The interface conditions in the root region can be linearized along η̂ = 0 and it follows

that at η̂ = 0,

ĈS +
∂ĈR

∂η̂
η̂S = −εWλG

∂Ŷ0

∂η̂
η̂S +

ε2Γ̂

�W Ĝ0(ξ̂, 0)

∂2η̂S

∂ξ̂2
+ O(h.o.t.), (4.6)

and

∂ĈS

∂η̂
+

∂2ĈR

∂η̂2
η̂S − ∂η̂S

∂ξ̂

∂ĈR

∂ξ̂
− εW (1 − κ)ĈRŶξ̂,0

∂η̂S

∂ξ̂

+ εW (1 − κ)ĈSŶη̂,0 + εW (1 − κ)Ŷη̂,0
∂ĈR

∂η̂
η̂S

+ εW (1 − κ)ĈRŶη̂η̂,0η̂S = O(h.o.t.). (4.7)

The system (4.5)–(4.7) is a linear homogeneous system of PDE’s, which can be solved

by using the multiple variables expansion method. Presuming that the SPE-part of root

solutions contains the multiple length scales, we introduce the following fast root variables:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ̂+ =
φ̂(ξ̂, η̂)

β̂(ε)
=

1

β̂(ε)

∫ ξ̂

0

k̂(ξ̂1, η̂)dξ̂1,

η̂+ =
ψ̂(ξ̂, η̂)

β̂(ε)
=

1

β̂(ε)

∫ η̂

0

k̂(ξ̂, η̂1)√
1 + η̂′2

T

dη̂1,

(4.8)

where β̂ is to be determined. In the above, we have assumed that

φ̂ξ̂ =

√
1 + η̂′2

T ψ̂η̂ = k̂(ξ̂, η̂). (4.9)

Furthermore, we write

ψ̂ξ̂ = −
√

1 + η̂′2
T φ̂η̂ = ĝ(ξ̂, η̂). (4.10)

In terms of these multiple variables (ξ̂, η̂, ξ̂+, η̂+), we express the SPE part of the root

solution as

ĈS(ξ̂, η̂, ε) = �̂∗(ξ̂, η̂, ξ̂+, η̂+, ε), η̂S(ξ̂, ε) = ĥ∗(ξ̂, ξ̂+, ε),
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where (ξ̂, η̂, ξ̂+, η̂+) are formally treated as the independent variables. Then the inner

system (4.5)–(4.7) can be converted into the form with the multiple variables (ξ̂, η̂, ξ̂+, η̂+).

We only consider the leading order approximation in the limit of ε → 0:

�̂∗(ξ̂, η̂, ξ̂+, η̂+, ε) ∼ εb̂∗0(ε)�̂∗0(ξ̂, η̂, ξ̂+, η̂+),

ĥ s(ξ̂, ξ̂+, ε) ∼ b̂∗0(ε)ĥ∗0(ξ̂, ξ̂+),

k̂(ξ̂, η̂, ε) ∼ k̂0(ξ̂, η̂),

ĝ(ξ̂, η̂, ε) ∼ ĝ0(ξ̂, η̂),

(4.11)

where |b̂∗0(ε)| � 1 is an asymptotic factor.

4.1 The zeroth order approximation O(1)

By balancing both sides of the interface conditions (4.5)–(4.7), we derive that

β̂ =
√
εΓ̂ , (4.12)

and leading order equation as

(k̂2
0 + ĝ2

0)

(
∂2Ĉ∗0

∂ξ̂2
+

+
∂2Ĉ∗0

∂η̂2
+

)
+ 2η̂′

T

[
k̂0ĝ0

�T

(
∂2Ĉ∗0

∂ξ̂2
+

− ∂2Ĉ∗0

∂η̂2
+

)
− k̂2

0 − ĝ2
0

�T

∂2Ĉ∗0

∂ξ̂+∂η̂+

]
= 0.

(4.13)

We now set ĝ0(ξ̂, η̂) = k̂0(ξ̂, η̂). It follows from (4.9)–(4.10) that k̂0 =
∫ η̂

0
∂

∂ξ̂

[
k̂0/(1+η̂

′2
T )1/2

]
dη̂,

so that

∂k̂0

∂η̂
− ∂

∂ξ̂

⎡
⎣ k̂0√

1 + η̂
′2
T

⎤
⎦ = 0. (4.14)

This is a governing equation of k̂0(ξ̂, η̂), and can be solved for the function k̂0(ξ̂, η̂),

provided the boundary value k̂0(ξ̂) = k̂0(ξ̂, 0) is determined. Furthermore, in this case,

(4.13) reduces to (
1 +

η̂′
T

�T

)
∂2Ĉ∗0

∂ξ̂2
+

+

(
1 − η̂′

T

�T

)
∂2Ĉ∗0

∂η̂2
+

= 0. (4.15)

In [11], the authors had mistakenly over-simplified (4.15) to Laplace’s equation:

∂2�̂∗0

∂ξ̂2
+

+
∂2�̂∗0

∂η̂2
+

= 0. (4.16)

However, this equation missed the crucial terms containing the η̂′
T/�T = O(1) in (4.15),

which describe the curviness of the interface in the root region. The role of these missed

terms is critical for generating the mechanism of interface closure. It is the presence of

these terms that results in the turning point singularity and determines the multiple-layer

structure of the inner solution.
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The interface conditions in leading order approximation are: at the interface η̂ = η̂+ = 0,

Ĉ∗0 =
k̂2

0

�W Ĝ0(ξ̂, 0)

∂2ĥ∗0

∂ξ̂2
+

, (4.17)

k̂0√
1 + η̂′2

T

(
∂Ĉ∗0

∂η̂+
− ∂Ĉ∗0

∂ξ̂+

)
− k̂0W

[
(1 − κ)y∗0 − λG

]
Ŷξ̂,0(ξ̂, 0)

∂ĥ∗0

∂ξ̃+

= 0. (4.18)

The system allows the following normal modes solutions:

Ĉ∗0 = Ã∗0(ξ̂, η̂) exp
{

iξ̂+ − λcη̂+

}
,

ĥ∗0 = D̃∗0 exp
{

iξ̂+

}
,

(4.19)

where the coefficient D̃∗0 is a free constant and λc = [(�T + η̂′
T)/(�T − η̂′

T)]1/2. From (4.17),

we derive

Â∗0(ξ̂) = Ã∗0(ξ̂, 0) = −D̃∗0
k̂2

0

�W Ĝ0(ξ̂, 0)
.

From (4.18), we derive

− Â∗0(ξ̂)√
1 + η̂′2

T

k̂0(λc + i) − ik̂0W
[
(1 − κ)y∗0 − λG

]
Ŷξ̂,0(ξ̂, 0)D̃∗0 = 0,

or

Â∗0(ξ̂)√
1 + η̂′2

T

k̂0(λc + i) + ik̂0W
[
(1 − κ)y∗0 − λG

]
Ŷξ̂,0(ξ̂, 0)D̃∗0 = 0.

In order to satisfy the interface conditions (4.17) and (4.18) the function k̂0(ξ̂) must be

subject to the formula:

− (λc + i)k̂3
0

�W Ĝ0(ξ̂, 0)
√

1 + η̂′2
T

+ ik̂0WŶξ̂,0(ξ̂, 0)
[
(1 − κ)y∗0 − λG

]
= 0. (4.20)

There are three roots for k̂0:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k̂
(1)
0 (ξ̂) = k̂s(ξ̂) =

(
i

λc + i

) 1
2

m̂
√

Ĝ0(ξ̂, 0)Ŷξ̂,0(ξ̂, 0)
(
1 + η̂′2

T

) 1
4

k̂
(2)
0 (ξ̂) = −k̂s(ξ̂) = −

(
i

λc + i

) 1
2

m̂
√

Ĝ0(ξ̂, 0)Ŷξ̂,0(ξ̂, 0)
(
1 + η̂′2

T

) 1
4

k̂
(3)
0 (ξ̂) = 0,

(4.21)

where we have defined

m̂ = W

√
�
[
(1 − κ)y∗0 − λG

]
. (4.22)
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Recalling the formulas⎧⎨
⎩

Ĝ0(ξ̂, 0) = 2(1−λ0)
π

1√
ξ̂2+η̂2

T(ξ̂)

Ŷξ̂,0(ξ̂, 0) = 2(1−λ0)
π

ξ̂

ξ̂2+η̂2
T(ξ̂)

> 0, (0 � ξ̂ < ∞),
(4.23)

one may re-write

k̂s(ξ̂) =
(

i
λc+i

) 1
2 2(1−λ0)m̂

π
ξ̂

1
2[

ξ̂2+η̂2
T(ξ̂)
] 3

4

(
1 + η̂′2

T

) 1
4 . (4.24)

In accordance with the above, we obtain three fundamental solutions:

Ĥ1(ξ̂) = e
i√
εΓ̂
χ̂(ξ̂)

= e
− χ̂I(ξ̂)√

εΓ̂

[
cos

(
χ̂R(ξ̂)√
εΓ̂

)
+ i sin

(
χ̂R(ξ̂)√
εΓ̂

)]
,

Ĥ2(ξ̂) = e
− i√

εΓ̂
χ̂(ξ̂)

= e
χ̂I(ξ̂)√
εΓ̂

[
cos

(
χ̂R(ξ̂)√
εΓ̂

)
− i sin

(
χ̂R(ξ̂)√
εΓ̂

)]
,

Ĥ3(ξ̂) = 1,

(4.25)

where we have defined

χ̂(ξ̂) =

∫ ξ̂

a

k̂s(ξ̂1)dξ̂1 = χ̂R(ξ̂) + iχ̂I(ξ̂)

=
2(1 − λ0)m̂

π

∫ ξ̂

a

[
i

λc(ξ̂1) + i

] 1
2 ξ̂

1
2

1 (1 + η̂′2
T )

1
4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1.

(4.26)

Here, the lower limit a can be chosen arbitrarily. The fundamental solutions

Ĥ1(ξ̂), Ĥ2(ξ̂), Ĥ3(ξ̂) can be called the H-waves. One may write the general inner solu-

tion in the root region as

ĥ∗0(ξ̂, ξ̂+) = d̃1Ĥ1(ξ̂) + d̃2Ĥ2(ξ̂) + d̃3Ĥ3(ξ̂), (4.27)

where (d̃1, d̃2, d̃3) are arbitrary constants. To match with the outer solution, the constant

solution Ĥ3(ξ̂) for the interface shape function should be ruled out. Hence, one may write

the general solution in the root inner region as

ĥ∗0(ξ̂, ξ̂+) = d̃1Ĥ1(ξ̂) + d̃2Ĥ2(ξ̂). (4.28)

The pair of coefficients (d̃1, d̃2) may have different values in different sub-regions which

will be determined in following sections.

4.2 The root inner solution in the sub-region (II)

The sub-region (II) contains the far field of the root region ξ̂ � 1, where the solution must

match with the outer solution. It may be deduced that the root solution only contains

one wave type basic solution Ĥ2(ξ̂) in sub-region (II). As a matter of the fact, in order to
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match with the outer solution,

ηB(ξ, ε) = ε
[
h̄1(ξ) + h̄0(ξ, ε) + · · ·

]
, (4.29)

where

h̄0(ξ, ε) = −
{h̄1(0)H2(ξ)} = −h̄1(0)e
χI(ξ)√
εΓ̂ cos

(
χR(ξ)√
εΓ̂

)
→ 0

exponentially decays as ξ → −1, the inner solutions of the interface shape function must

have the form:

η̂B(ξ̂, ε) = δ(ε)
[
η̂T(ξ̂) + b̂∗0(ε)d̂2Ĥ2(ξ̂) + · · ·

]
, (4.30)

where Ĥ2(ξ̂) increases exponentially as ξ̂ → ∞. The first terms on the right-hand side of

(4.29) and (4.30) are obviously matched. To match the SPE part of the inner solution,

b̂∗0(ε)ĥ∗0(ξ̂, ξ̂+) = b̂∗0(ε)d̂2Ĥ2(ξ̂) with the SPE part of the outer solution, εh̄0(ξ, ε), we

write ξ̂0 = 1
δ(ε)

. Obviously, the point ξ̂ = ξ̂0 as the inner variable corresponds to the point

ξ = 0 as the outer variable. By choosing the lower limit a = 0, it follows from (4.26) that

χ̂(ξ̂0) = e
iπ
4
2(1 − λ0)m̂

π

∫ ξ̂0

0

ξ̂
1
2

1

[
1 + η̂′2

T (ξ̂1)
] 1

4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1, (4.31)

and

χ̂(ξ̂) = e
iπ
4
2(1 − λ0)m̂

π

⎡
⎣∫ ξ̂0

0

ξ̂
1
2

1

[
1 + η̂′2

T (ξ̂1)
] 1

4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1 +

∫ ξ̂

ξ̂0

ξ̂
1
2

1

[
1 + η̂′2

T (ξ̂1)
] 1

4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1

⎤
⎦ . (4.32)

On the other hand, as

χ(ξ) =

∫ ξ

0

W
√

�Δ0G0(ξ1, 0)

[
1 +

i

λ0
Yξ,0(ξ1, 0)

] 1
2

dξ1, (4.33)

and with the inner variable, the interval (0, ξ) is changed to interval (ξ̂0, ξ̂), we can consider

∫ ξ

0

W
√

�Δ0G0(ξ1, 0)

[
1 +

i

λ0
Yξ,0(ξ1, 0)

] 1
2

dξ1

�

e
iπ
4
2(1 − λ0)m̂

π

∫ ξ̂

ξ̂0

ξ̂
1
2

1

[
1 + η̂′2

T (ξ̂1)
] 1

4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1.

In view of the property of η̂T(ξ̂) shown by (3.6), one may conclude that

e
−i χ̂(ξ̂)√

εΓ̂ ⇐⇒ e
−i χ(ξ)√

εΓ̂ .
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Hence, from the matching conditions of the outer solution with the inner solution it

follows that

δ(ε)b̂∗0(ε) exp

⎧⎨
⎩ −i√

εΓ̂
e

iπ
4
2(1 − λ0)m̂

π

∫ 1
δ

0

ξ̂
1
2

1

[
1 + η̂′2

T (ξ̂1)
] 1

4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1

⎫⎬
⎭ = ε,

d̂2 = −h̄1(0).

It is then derived that in the far field of the root region, the root solution gives

δ(ε)ĥ∗0 = −εΔ(ε)h̄1(0)Ĥ2(ξ̂) + · · · , (4.34)

where

Δ(ε) = exp

⎧⎨
⎩ e

i3π
4√
εΓ̂

2(1 − λ0)m̂
π

∫ 1
δ

0

ξ̂
1
2

1

[
1 + η̂′2

T (ξ̂1)
] 1

4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1

⎫⎬
⎭ .

As ε → 0, the pre-factor Δ(ε) → 0 is exponentially decaying.

4.3 Root inner solution in the sub-region (I)

In the sub-region (I), which contains the bottom of the root region (ξ̂ = η̂ = 0), the

physical solution 
{ĥ∗0(ξ̂)} in the root region must satisfy the smoothness conditions at

the bottom (ξ̂ = 0, η̂ = η̂b):


{ĥ∗0(0)} = 
{ĥ ′
∗0(0)} = 0. (4.35)

As a consequence, the root solution must have the form:

ĥ∗0(ξ̂) = d̃1Ĥ1(ξ̂) + d̃2Ĥ2(ξ̂) (4.36)

with d̃1 and d̃2 both nonzero. Now the questions are raised as to how does the asymptotic

solution (4.36), which comprises two waves in the sub-region (I) near the bottom of the

root, connect with the asymptotic solution (4.34), which solely comprises one wave in the

far filed of the root region, sub-region (II)? how does the root solution behave in the

transition region? The key to answer these questions is that the above obtained asymptotic

solutions have a simple turning point singularity. To explore such a singularity, very similar

to the system of dendritic growth [23–25], one needs to study the problem in the complex

ξ-plane, and extend all the functions depending on the real variable ξ̂, such as the wave

number function k̂s, ĥ∗0, Ĉ∗0, etc, to the corresponding complex functions by analytical

continuation. It is noted from (4.24) that the wave number function has a complex root

k̂s(ξ̂c) = 0. Indeed, from the property of η̂T(ξ̂) shown by (3.6), we may approximately write

η̂T(ξ̂) = P̂3(ξ̂) in the root region ξ̂ = O(1). By setting
[
1+η̂′2

T (ξ̂c)
]

= 1+(2a2ξ̂c+3a3ξ̂
2
c )

2 = 0,

we derive the complex turning points

ξ̂c =
−2a2 ±

√
4a2

2 + 12 ia3

6a3
, (4.37)
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which are the functions of joint point of ξ̂∗. Among the above two roots, we take the one

with the minus sign, such ξ̂c is located in the fourth quarter of the complex ξ̂ plane with


{ξ̂c} > 0,�{ξ̂c} < 0, as shown in Figure 10.

The presence of the turning point ξ̂c plays a crucial role for the interface closure.

According to the turning point theory, the complex ξ̂ plane will be divided by the Stokes

lines and anti-Stokes lines emitted from ξ̂c into several sectors. In each sector, the pair of

coefficients (d̃1, d̃2) may have different values. To determine the connection condition of

these coefficients, one needs to study the properties of the turning point singularity and

derive the inner-inner equation in the vicinity of (ξ̂c, 0) in the extended complex plane

(ξ̂, η̂) and find its solutions.

5 The inner-inner equation in the vicinity of (ξ̂c, 0)

We introduce the following inner-inner variables in the vicinity of (ξ̂c, 0), as it was done

in [23–25], which we call the sub-domain (T):

ξ̃∗ =
(ξ̂ − ξ̂c)

(εΓ̂ )α̂
, η̃∗ =

η̂

(εΓ̂ )α̂
. (5.1)

It is evident that in the sub-domain (T), the SPE part of root solution does not have

multiple length scales and cannot be expressed in the form of multiple variables. To derive

the system valid in the sub-domain (T), one needs to start with the system (4.5)–(4.7).

Now, denote the SPE-part of the root solution in sub-domain (T) by

C̃∗(ξ̃∗, η̃∗, ε) = ĈS(ξ̂, η̂, ε), h̃∗(ξ̃∗, ε) = η̂S(ξ̂, ε). (5.2)

By neglecting the higher order terms, as the leading order approximation in the vicinity of

the turning point, {C̃∗(ξ̃∗, η̃∗, ε) ≈ C̃∗0(ξ̃∗, η̃∗), h̃∗(ξ̃∗, ε) ≈ h̃∗0(ξ̃∗)} is subject to the following

inner-inner equation:

∂2C̃∗0

∂ξ̃2
∗

+
[
1 + η̂′2

T (ξ̂)
] ∂2C̃∗0

∂η̃2
∗

− 2η̂′
T(ξ̂)

∂2C̃∗0

∂η̃∗∂ξ̃∗
= 0. (5.3)

We consider the following type of the solutions for C̃∗0:

C̃∗0 = Ã∗0 exp
{
iξ̃∗ − λ̃cη̃∗

}
. (5.4)

By substituting (5.4) into (5.3), it is obtained that

−1 + λ̃2
c(1 + η̂′2

T ) + i2η̂′
T(ξ̂)λ̃c = 0,

and

λ̃c =
1

1 + iη̂′
T(ξ̂)

, (
{λ̃c} > 0). (5.5)

https://doi.org/10.1017/S0956792515000066 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000066


Interface closure in the root region 373

From (5.4), one may deduce that

∂C̃∗0

∂η̃∗
= iλ̃c

∂C̃∗0

∂ξ̃∗
. (5.6)

Furthermore, in the leading order approximation, it is derived that C̃∗0 = O(εh̃∗0) and the

interface conditions at the interface at η̃∗ = 0 are:

C̃∗0 =
1

�W Ĝ0(ξ̂, 0)

∂2h̃∗0

∂ξ̃2
∗
, (5.7)

∂C̃∗0

∂η̃∗
− ∂�̄∗1

∂ξ̂

∂h̃∗0

∂ξ̃∗
−W (1 − κ)y∗0Ŷ0,ξ̂(ξ̂, 0)

∂h̃∗0

∂ξ̃∗
= 0. (5.8)

By applying the relationship (5.6), from (5.8) we derive that

iλ̃c
∂C̃∗0

∂ξ̃∗
−W

[
(1 − κ)y∗0 − λG

]
Ŷξ̂,0(ξ̂, 0)

∂h̃∗0

∂ξ̃∗
= 0. (5.9)

By combining (5.9) with (5.7), we derive

iλ̃c
1

�W Ĝ0(ξ̂, 0)

∂3h̃∗0

∂ξ̃3
∗

−W
[
(1 − κ)y∗0 − λG

]
Ŷξ̂,0(ξ̂, 0)

∂h̃∗0

∂ξ̃∗
= 0, (5.10)

which can be re-written as

∂3h̃∗0

∂ξ̃3
∗

+ k̃2
s (ξ̂)

∂h̃∗0

∂ξ̃∗
= 0. (5.11)

In (5.11), we have defined

k̂2
s (ξ̂) = im̂ 2Ĝ0(ξ̂, 0)Ŷξ̂,0(ξ̂, 0)

[
1 + iη̂′

T(ξ̂)
]
,

so that

k̂s(ξ̂) = e
iπ
4
2(1 − λ0)m̂

π

ξ̂
1
2[

ξ̂2 + η̂2
T(ξ̂)

] 3
4

[
1 + iη̂′

T(ξ̂)
] 1

2 . (5.12)

It is seen that at ξ̂ = ξ̂c, we have k̂s(ξ̂c) = 0 since
[
1 + iη̂′

T(ξ̂c)
]

= 0. Moreover, one can

write that as ξ̂ → ξ̂c

k̂2
s (ξ̂) = A2(ξ̂ − ξ̂c) + O(h.o.t),

where

A2 = i
4(1 − λ0)

2m̂ 2

π2

ξ̂c[
ξ̂2
c + η̂2

T(ξ̂c)
] 3

2

[
iη̂′′

T(ξ̂c)
]

= −4(1 − λ0)
2m̂ 2

π2

ξ̂c[
ξ̂2
c + η̂2

T(ξ̂c)
] 3

2

(2a2 + 6a3ξ̂c). (5.13)
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Figure 7. The variation of the coefficient A on the complex A-plane with the parameter ξ̂∗ for the

typical case: α = 0.88, a = 2.63, κ = 0.1, λ0 = 0.6, λG = 2,� = 1. 
{A} decreases when ξ̂∗ increases

from 0.5 → 5.0 with the step size Δξ̂∗ = 0.2. The argument arg{A} ≈ −0.04π.

The variation of A in the complex plane with ξ̂∗ for a typical case is shown in Figure 7.

We derive

k̂2
s (ξ̂) ≈ A2(εΓ̂ )α̂ξ̃∗.

As a consequence, in the leading order approximation (5.11) is reduced to:

(εΓ̂ )1−2α̂ d
2W∗0

dξ̃2
∗

+ (εΓ̂ )α̂A2ξ̃∗W∗0 = 0. (5.14)

Here we write W∗0(ξ̃∗) = dĥ∗0

dξ̃∗
(ξ̃∗). By setting α̂ = 1

3
, we derive the Airy equation:

d2W∗0

dξ̃2
∗

+ A2ξ̃∗W∗0 = 0. (5.15)

Furthermore, by letting

ξ∗ = A 2
3 ξ̃∗ = A 2

3
(ξ̂ − ξ̂c)

(εΓ̂ )
1
3

,

one may further change (5.15) into the standard form of Airy equation:

d2W∗0

dξ
2

∗

+ ξ∗W∗0 = 0. (5.16)

It is now seen clearly that the system has a simple turning point singularity at ξ̂ = ξ̂c,

or ξ∗ = 0. According to the turning point theory, one can draw three Stokes lines and

anti-Stokes lines emitted from ξ̂c on the complex ξ̂c plane. Among these lines, the anti-

Stokes line (A1) divides the complex ξ̂c plane into two sectors: (S1) and (S2), and intersects

the real ξ̂-axis at ξ̂′
c. The intersection point ξ̂′

c divides the real ξ̂-axis into two subintervals

(0, ξ̂′
c) and (ξ̂′

c,∞). The pair of the constants (d̃1, d̃2) in (4.28) will have different values in

the sectors (S1) and (S2), so does in the sub-intervals (0, ξ̂′
c) and (ξ̂′

c,∞).

The open angle between two neighbouring Stokes lines and two neighbouring anti-

Stakes lines emitted from the turning point ξ̂c is θ = 2
1+2

π = 2
3
π, as shown in Figure 8.
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Figure 8. The sketch of the structure of Stokes and anti-Stokes lines emitted from the turning

point ξ̂c in the root region, where (T) is the vicinity of the turning point ξ̂c, (L1) and (L2) are the

Stokes lines, while (A1) is the anti-Stokes line.

The general solution of (5.16) is

W∗0(ξ̃∗) = D∗1ξ
1
2

∗H
(1)
1
3

(ζ) + D∗2ξ
1
2

∗H
(2)
1
3

(ζ),

(
ζ =

2

3
ξ

3
2

∗

)
, (5.17)

where H (1)
1
3

(ζ) is the Hankel function of the first kind of order 1
3
, while H (2)

1
3

(ζ) is the

Hankel function of the second kind of order 1
3
.

6 Matching

Away from the turning point ξ̂ = ξ̂c, the inner-inner solution in the sub-domain (T)

must match with the root solution in the sector (S2), as well as the root solution in the

sector (S2). The matching conditions will determine the unknown coefficients in the root

solutions and leads to a quantization condition for the eigenvalue ξ̂∗

6.1 Inner-inner solutions in sub-domain (T) matching with the root solution in sector (S2)

We now let ξ∗ → ∞ starting from the turning point ξ∗ = 0 in sector (S2). From the

solution (5.17), we derive that in the domain (S2)
⋂

(T ), we have D∗1 = 0, and the

inner-inner solution can be written as

W∗0(ξ̃∗) = D∗2ξ
1
2

∗H
(2)
1
3

(ζ). (6.1)

Hence, as ξ∗ → ∞, we have

W∗0(ξ∗) = W
(T)
∗0 = D∗2e

i(5/12)π

√
2

πζ
e−iζ ,

and

D∗2e
i(5/12)π = −εΔ(ε)h1(0), (6.2)
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which may be considered as an incoming W-wave in the sector (S2). The root solution in

the section (II) can be finally written as

η̂B(ξ̂, ε) = δ(ε)η̂T(ξ̂) − εΔ(ε)h1(0)Ĥ2(ξ̂) + · · ·

= δ(ε)η̂T(ξ̂) − εh1(0) exp

⎧⎨
⎩ e

i3π
4√
εΓ̂

2(1 − λ0)m̂
π

∫ 1
δ

ξ̂

ξ̂
1
2

1

[
1 + η̂′2

T (ξ̂1)
] 1

4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1

⎫⎬
⎭

+εδ(ε)h̄∗0(ξ̂) + · · · .

(6.3)

6.2 Inner-inner solutions in sub-domain (T) matching with the root solution in sector (S1)

In the sector (S1), according to the theory of Hankel functions, one has the formula:

H
(2)
1
3

(ζeiπ) = H
(2)
1
3

(ζ) + ei 1
3 πH

(1)
1
3

(ζ), (−π < arg(ζ) � π).

Hence, it is deduced that the inner-inner solution (6.1) in (S1)
⋂

(T ) can be expressed in

the following form:

W∗0(ξ∗) = D∗2ξ
1
2

∗

[
H

(2)
1
3

(ζ) + eiπ/3H
(1)
1
3

(ζ)
]
. (6.4)

Thus, letting ξ∗ → ∞ in the sector (S1), we obtain

W∗0(ξ∗) = D∗2

[√
2

πζ
e−iζ+i(5/12)π + eiπ/3

√
2

πζ
eiζ−i(5/12)π

]
= −εΔ(ε)h1(0)

√
2

πζ

[
e−iζ − ieiζ

]
= b̃2W

(−)
∗0 (ξ̂) + b̃1W

(+)
∗0 (ξ̂),

(6.5)

where b̃2/b̃1 = i.

On the other hand, for the inner-inner solution (4.36) in the sector (S1),

ĥ∗0(ξ̂) = d̃1Ĥ1(ξ̂) + d̃2Ĥ2(ξ̂), (6.6)

where the fundamental solutions Ĥ1(ξ̂) and Ĥ2(ξ̂) can be specified as

Ĥ1(ξ̂) = exp

{
i√
εΓ̂

∫ ξ̂

ξ̂c

k̂s(ξ̂1)dξ̂1

}
, Ĥ2(ξ̂) = exp

{
− i√

εΓ̂

∫ ξ̂

ξ̂c

k̂s(ξ̂1)dξ̂1

}
,

by setting the lower limit a = ξ̂c. Moreover, one may express it in terms of the W -wave

representation as

Ŵ∗0(ξ̂) = d̃1Ŵ
(+)
∗0 (ξ̂) + d̃1Ŵ

(−)
∗0 (ξ̂), (6.7)

where

Ŵ∗0(ξ̂) = ĥ ′
∗0(ξ̂), Ŵ

(+)
∗0 (ξ̂) = Ĥ ′

1(ξ̂), Ŵ
(−)
∗0 (ξ̂) = Ĥ ′

2(ξ̂).
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Figure 9. The sketch of wave diagram with W -wave representation in the root region.

By comparing (6.5) with (6.7) and noting that

W
(+)
∗0 (ξ̂) outgoing W-wave with k̃s ⇐⇒ Ŵ

(+)
∗0 (ξ̂) W-wave with k̂s,

W
(−)
∗0 (ξ̂) incoming W-wave with − k̃s ⇐⇒ Ŵ

(−)
∗0 (ξ̂) W-wave with − k̂s,

it is deduced that in order for the inner solution in the vicinity of turning point (T) to

match with the root solution in the sector (S1), the connection conditions:

d̃2 = −εΔ(ε)h1(0); d̃2/d̃1 = b̃2/b̃1 = i, d̃1 = −i

must be satisfied. As a consequence, root solution in the sector (S1) (4.36) becomes

ĥ∗0(ξ̂) = d̃2

[
Ĥ2(ξ̂) − iĤ1(ξ̂)

]
. (6.8)

7 The quantization condition for the eigenvalue ξ̂∗

From (6.8), the corresponding physical solution in the sector (S1) (0 � ξ̂ � ξ̂′
c) is derived

as

ĥ∗0(ξ̂) = d̃2

{
Ĥ2(ξ̂) − iĤ1(ξ̂)

}
, (7.1)

which should satisfy the root conditions at the bottom of the root region (ξ̂ = 0, η̂ = η̂b):

ĥ∗0(0) = 0, ĥ ′
∗0(0) = 0. (7.2)

The behaviour of the solution over the interval (0 � ξ̂ < ξ̂′
c) has a similarity to the

Schrödinger waves trapped in a finite potential well η̂T(ξ̂) in quantum mechanics, as

sketched in Figure 9. The waves in the sub-region (S1) are trapped between the bottom

of root ξ̂ = 0 and the reflection point ξ′
c. Such a wave diagram may be called the trapped-

waves mechanism, which was first discovered in the system of dendritic growth (see [23–25].

Despite of the above similarity, the substantial difference in mathematics between two

phenomena should not be under-estimated. In the problem of quantum mechanism, the

turning point lies on the real axis, whereas in the problem under study, the turning point

lies on the complex plane away from the real axis. Hence, the deduction of the pre-factor

‘i’ existing in (7.1) is not trivial.
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Figure 10. The variation of the turning point ξ̂c on the complex ξ̂c-plane with the parameter ξ̂∗
for the typical case: α = 0.88, a = 2.63, κ = 0.1, λ0 = 0.6, λG = 2,� = 1. 
{ξ̂c} increases when ξ̂∗
increases from 0.5 → 5.0 with the step size Δξ̂∗ = 0.2.

Due to H ′
1(0) = H ′

3(0) = 0, the smoothness condition ĥ ′
∗0(0) = 0 is always satisfied. To

satisfy the condition ĥ∗0(0) = 0, we require


[Ĥ2(0) − iĤ1(0)] = 0. (7.3)

Recalling (see (4.19), (4.24)) that

χ̂(ξ̂) =

∫ ξ̂

ξ̂c

k̂s(ξ̂1)dξ̂1 = χ̂R(ξ̂) + iχ̂I(ξ̂)

=
2(1 − λ0)m̂

π

∫ ξ̂

ξ̂c

[
i

λc(ξ̂1) + i

] 1
2 ξ̂

1
2

1 (1 + η̂′2
T )

1
4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1, (7.4)

we define

Q̂R = − χ̂R(0)√
εΓ̂

=
2√
εΓ̂

(1 − λ0)m̂
π




⎧⎨
⎩
∫ ξ̂c

0

[
i

λc(ξ̂1) + i

] 1
2 ξ̂

1
2

1

[
1 + η̂′2

T (ξ̂1)
] 1

4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1

⎫⎬
⎭ ,

Q̂I = − χ̂I(0)√
εΓ̂

=
2√
εΓ̂

(1 − λ0)m̂
π

�

⎧⎨
⎩
∫ ξ̂c

0

[
i

λc(ξ̂1) + i

] 1
2 ξ̂

1
2

1

[
1 + η̂′2

T (ξ̂1)
] 1

4

[ξ̂2
1 + η̂2

T(ξ̂1)]
3
4

dξ̂1

⎫⎬
⎭ .

(7.5)

The bottom smoothness condition (7.3) finally yields the quantization condition

e2Q̂R = cot Q̂I. (7.6)

Note that Q̂ = Q̂R + iQI is a composed function of ξ̂∗, since the turning point ξ̂c is a

complex function of the joint point ξ̂∗. The quantization condition (7.6), which modifies

the result given in [11], yields a single eigenvalue ξ̂∗ as the function of ε and other the

thermodynamic properties of the system, as well as the growth conditions. For the typical

case: ε = 0.1, κ = 0.1, λG = 2.0, λ0 = 0.6, W0 = 1.745, � = 1.0, Γ̂ = 1.0, from the

quantization condition (7.6), we calculate that ξ̂∗ = 2.14, 
{ξ̂c} = 4.11,�{ξ̂c} = −0.466.

The variations of eigenvalue ξ̂∗ with ε are shown in Figure 11(a) for the typical cases

Γ̂ = 1.0, 1.5, 2.0. The outer solutions for these cases yield α ≈ 0.88 and a0 ≈ 2.63. These

parameters are rather insensitive to the parameter κ and Γ̂ . It is seen that the value
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Figure 11. For the cases of κ = 0.1, λ0 = 0.6, W0 = 1.7453, � = 1.0, λG = 2.0, (a) the variations

of ξ̂∗ with the parameter ε; (b) the variations of 
{ξ̂c} and �{ξ̂c} with the parameter ε. The

calculations have been done using the outer solutions for these cases with α = 0.88 and a 0 = 2.63.

of ξ̂∗ increases with increasing surface tension parameter Γ̂ and Péclet number ε. In

Figure 11(b) we show variation of the turning point location ξ̂c with the Péclet number

ε for the case of Γ̂ = 1.0. It is seen that the absolute values of |
{ξ̂c}| and |�{ξ̂c}| both

increase with increasing Péclet number ε, while for a fixed ε, |
{ξ̂c}| � |�{ξ̂c}|.
Once ξ̂∗ is determined, and the parameters η̂∗ and η̂b are determined, then the inner

solution in the whole root region (0 � ξ̂ < ∞) is determined, and may be written as

η̂B(ξ̂, ε) = δ(ε)η̂T(ξ̂) − εΔ(ε)h̄1(0)e
χ̂I(ξ̂)√
εΓ̂ cos

(
χ̂R(ξ̂)√
εΓ̂

)
+ · · · . (7.7)

Together with the outer solution

ηB(ξ, ε) = ε

[
h̄1(ξ) − h̄1(0)e

χI(ξ)√
εΓ̂ cos

(
χR(ξ)√
εΓ̂

)] + · · · , (7.8)

the composite solution in the whole physical region, including the outer region and inner

region, is derived as

ηB(ξ, ε) = δ(ε)η̂T(ξ̂) − εa0(1 + ξ)α

+ ε

[
h̄1(ξ) − h̄1(0)e

χI(ξ)√
εΓ̂ cos

(
χR(ξ)√
εΓ̂

)] + · · · .
(7.9)

The composite solutions ηB(ξ) for Γ̂ = 1.0, 1.5, 2.0 are shown in Figure 12. The global

interface shapes on the (X,Y ) plane for the cases of λ0 = 0.4, Γ̂ = 2.0, 3.0, 4.0 and

λ0 = 0.6, Γ̂ = 1.0, 1.5, 2.0 are shown in Figures 13(a) and (b), respectively. In the figures,

for comparison, we also show the S–T solution with black dashed line and the outer

solution with solid red line. It is seen that in the root region the difference between the

S–T solution and the solution we obtained is substantial. It is also seen that the effect of

surface tension parameter on the pattern formation in the root region is very important.

The smaller the value of Γ̂ the longer the total length of finger.
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Figure 12. The graph of composite solution ηB(ξ) in (ξ, η) plane for the typical case: ε = 0.1,

κ = 0.1,λG = 2.0, λ0 = 0.6, � = 1.0. near ξ = −1 for Γ̂ = 1.0, 1.5, 2.0 from bottom to top on the

left-hand side of figure. The bullets show the joint points ξ̂∗ in the root region. The calculations have

been done using the outer solutions for these cases with α = 0.88, a 0 = 2.63 and δ(ε) = 0.4642×10−8.

0 2

-6

-4

-2

0

-1 0 1 2 3
-5

-4

-3

-2

-1

0

)b()a(

Figure 13. The interface shapes drawn on (X,Y ) plane for the typical case: ε = 0.1, κ = 0.1,

� = 1.0 and (a). λ0 = 0.4, λG = 0.8, Γ̂ = 2.0, 3.0, 4.0; (b). λ0 = 0.6, λG = 2.0, Γ̂ = 1.0, 1.5, 2.0.

It is seen that the total length of finger increases with decreasing value of Γ̂ . In the figures, the

black dashed line is given by the Saffman–Taylor solution, the red dashed line is given by the outer

solution, which is not valid in the root region, while the solid red line is given by the root solution.

In terms of the global asymptotic solution obtained, we can determine the properties of

steady arrayed-cellular growth in the root region and the their dependence on the effects

of operating parameters, these properties include: the total length of the finger, Yb; the

mean curvature of the bottom of finger, Kb; the concentration of impurity at the bottom

of root, Croot. The results are qualitatively consistent with those shown in [11], but there

are some quantitative discrepancy between them, due to the correction of the quantization

condition. We anticipate that more precise experiments of deep-cellular growth will be

performed in the future and the experimental data on these quantities will finally become
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available. Thus, one can make the further comparisons of theoretical predictions with

experimental data.

8 Conclusions

In this present paper, we investigate the mechanism of interface closure in the root region

of the steady state solution for deep-cellular growth. The phenomenon under investigation

is determined by a transcendentally small pre-factor beyond all orders. The most important

discovery made in the present paper is that the root region comprises three inner-inner

layers; the inner system in the root region has a complex turning point ξ̂c in the extended

complex plane whose presence leads to the so-called trapped-waves mechanism and plays

the crucial role for the interface closure in the root region. The quantization condition

derived from the trapped-waves mechanism yields the eigenvalue ξ̂∗ as the function of

parameter ε and other parameters of the system, which determines the total length of the

cell hence, the global feature of the interfacial pattern.

It should be remarked that, as described by the solution derived in the present paper,

the interface in the root region forms a long and narrow groove. Such a groove looks

more like a slender liquid needle, as the width of the groove may be comparable with the

thickness of the thin layer. As a consequence, the 2D model adopted in the present paper

should be modified in the root region with the inclusion of a 3D effect. Moreover, a steady

slender liquid needle may be broken into a sequence of droplets under small perturbations

induced by the Rayleigh instability caused by the surface tension. The formation of liquid

droplets is indeed observed in some experiments of deep-cellular growth. These issues are

worth further investigating in the future.
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