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Abstract

The Pitman–Yor process is a random discrete measure. The random weights or masses
follow the two-parameter Poisson–Dirichlet distribution with parameters 0 < α < 1,
θ > −α. The parameters α and θ correspond to the stable and gamma components,
respectively. The distribution of atoms is given by a probability ν. In this paper we
consider the limit theorems for the Pitman–Yor process and the two-parameter Poisson–
Dirichlet distribution. These include the law of large numbers, fluctuations, and moderate
or large deviation principles. The limiting procedures involve either α tending to 0 or
1. They arise naturally in genetics and physics such as the asymptotic coalescence time
for explosive branching process and the approximation to the generalized random energy
model for disordered systems.
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1. Introduction

For any 0 ≤ α < 1, θ + α > 0, let U1(α, θ), U2(α, θ), . . . be a sequence of independent
random variables with Ui(α, θ) having distribution beta(1 − α, θ + iα) for i ≥ 1. If we define

V1(α, θ) = U1(α, θ),

Vn(α, θ) = (1 − U1(α, θ)) · · · (1 − Un−1(α, θ))Un(α, θ),
n ≥ 2,

then the law of the decreasing order statistic

P(α, θ) = (P1(α, θ), P2(α, θ), . . . )

of (V1(α, θ), V2(α, θ), . . . ) is the two-parameter Poisson–Dirichlet distribution PD(α, θ). It is
a probability on the infinite-dimensional simplex

∇∞ =
{
p = (p1, p2, . . . ) : p1 ≥ p2 ≥ · · · ≥ 0,

∞∑
i=1

pi ≤ 1

}
.
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Let S be a Polish space and ν a probability on S satisfying ν({x}) = 0 for all x in S. In this case
we say that ν is diffuse. The Pitman–Yor process with parameters α, θ , and ν is the random
measure

�α,θ,ν =
∞∑
i=1

Pi(α, θ)δξi ,

where ξ1, ξ2, . . . are independent and identically distributed (i.i.d.) with common distribution ν
and independent of P(α, θ). The α = 0 case corresponds to the Dirichlet process constructed
in [20].

The distribution PD(0, θ) was introduced by Kingman in [27] as the law of relative jump
sizes of a gamma subordinator over the interval [0, θ ]. It also arises in other contexts most
notably population genetics. The distribution PD(α, 0) was also introduced in Kingman [27]
through the stable subordinator. In [29] and [33], PD(α, 0) was constructed from the ranked
length of excursion intervals between the zeros of a Brownian motion (α = 1

2 ) or a recurrent
Bessel process of order 2(1 − α) for general α.

In this paper we focus on the θ = 0 case. This implies that the parameter α is in (0, 1).
Without loss of generality, we choose the space S to be [0, 1] and the probability ν to be
the uniform distribution on [0, 1]. Our main objective is to study the asymptotic behaviour
of PD(α, 0) when α converges to 0, and the behaviour of both PD(α, 0) and �α,0,ν when α
converges to 1. There are many scenarios where the limiting procedure of α approaching 1 or 0
arises naturally. We consider two examples below.

The first example is Derrida’s random energy model (REM) introduced in [9] and [10].
This is a toy model for a disordered system such as spin glasses. For any N ≥ 1, let SN =
{−1, 1}N denote the configuration space. Then the REM is a family of i.i.d. random variables
{HN(σ) : σ ∈ SN } with common normal distribution of mean zero and variance N . Here
HN(σ) is the Hamiltonian. Given the temperature T and β = T −1, the Gibbs measure is a
probability on SN given by

Z−1
N exp{−βHN(σ)},

where
ZN =

∑
σ∈SN

exp{−βHN(σ)}

is the partition function. Let the critical temperature Tc = 1/
√

2 ln 2 and α = T/Tc. Then,
for T < Tc, or, equivalently, β >

√
2 ln 2, the decreasing order statistic of the Gibbs measure

is known (see [37]) to converge to the Poisson–Dirichlet distribution PD(α, 0) as N tends
to ∞. Thus, α converging to 0 corresponds to temperature going to 0, while α converging
to 1 corresponds to temperature rising to the critical value. To account for correlations, the
generalized random energy model (GREM) involving hierarchical levels was introduced and
studied in [11] and [12]. The generalization to continuum levels was carried out in [4] and the
genealogy of the hierarchical systems was described by the Bolthausen–Sznitman coalescent.
In deriving the infinitesimal rate of the coalescent (Proposition 4.11 in [3]), one needs to consider
the limit of PD(e−t , 0) as t converges to 0 or, equivalently, α = e−t converging to 1.

The second example is concerned with the coalescence time for an explosive branching
process. Consider a Galton–Watson branching process with offspring distribution {pj : j ≥ 0}
in the domain of attraction of a stable law of order 0 < γ < 1 and p0 = 0. Let Xn denote the
coalescence time of any two individuals chosen at random at generation n. Then it was shown
in [1] that

P{n−Xn ≤ k} → π(k) as n → ∞,
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where π(k) can be calculated explicitly through PD(γ k, 0). In this case, α = γ k converging
to 0 corresponds to k converging to ∞.

There have been intensive studies of the asymptotic behaviour for the Poisson–Dirichlet
distribution and the Pitman–Yor process in recent years with motivations from probability
theory, population genetics, and Bayesian statistics. The limiting procedures include the
following three cases.

Case A. The parameter θ converges to ∞.

Case B. Both θ and α converge to 0.

Case C. The parameter α converges to 1.

Results in case A include central limit theorems in [22]–[25], large deviations in [6], [7],
[14], and [28], and moderate deviations in [17]. It also includes the work in [13] and [21] where
the large and moderate deviations for �0,θ,ν were studied in a Bayesian context. In case B, the
large and moderate deviations were obtained in [15] and [18]. Recently, the large deviations
for PD(α, 0) in case C was obtained in [19]. An extended account of asymptotic results for
the Poisson–Dirichlet distribution and the Pitman–Yor process can be found in [16] and the
references therein.

The main results of this paper include

(i) the fluctuation and large deviations for PD(α, 0) in case B when each coordinate is raised
to a certain power (Theorem 2 and Theorem 4);

(ii) the fluctuation theorem for PD(α, 0) in case C (Theorem 3);

(iii) the large deviations for �α,0,ν in case C (Theorem 8).

The existing asymptotic results for PD(α, θ) in the literature in case B involve only power 1.
The scalings appear either as a shift or a multiplier. In (i) we studied the asymptotic behaviour of
PD(α, 0)with various powers and discovered an interesting phase transition or critical behaviour
in terms of the magnitude of the power. The scaling property of the stable subordinator plays the
essential role here. The result in (ii) complements the result in [18] and reveals a non-Gaussian
fluctuation.

The large deviations in (iii) provide more information on the microscopic transition structure
at the critical temperature for the REM.At the instant when the temperature starts to move below
the critical value Tc, a portion of mass of the uniform measure ν may be lost and is replaced by
an atomic portion with finite atoms. This represents the emerging of a finite number of energy
valleys and the energy landscape of the system becomes a mixture of valleys and ‘flat’ regions.
The emerging of energy valleys follows the order where the small number of energy valleys is
more likely to occur than a large number of valleys. Our result will validate this picture and
show that large deviations may lead to the disappearance of all ‘flat’ regions. In comparison
with the large deviation result in [19], the result in (iii) reveals the new information that no
singular components arise through large deviations.

The behaviour of �α,0,ν in case C resembles the behaviour of �α,θ,ν in case A in terms of
the law of large numbers. But our result in (iii) will show that the two cases are very different
in terms of large deviations.

The paper is organized as follows. In Section 2 we introduce the necessary terminologies
and review the subordinator representation for PD(α, 0). Section 3 contains the law of large
numbers, fluctuation, and large deviations associated with PD(α, 0) as α converges to 0 or 1.
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In Section 4 we establish the large deviation principle for�α,0,ν under the limit of α converging
to 1. Large deviations for PD(α, 0) are closely related to the large deviations for�α,0,ν . A result
for one usually gives some hint for the other. But a direct derivation from one to the other is
difficult due to the topologies involved and the lack of a continuous map. Thus, our proof here
will be completely new in comparison to the result in [19]. We close the paper in Section 5
with some concluding remarks on the differences between case A and case C.

2. Preliminaries

In this section we introduce the necessary terminologies of large deviations and the subor-
dinator representation of PD(α, 0). All results are stated in the form that is sufficient for our
purposes. We refer the reader to Dembo and Zeitouni [8] for a comprehensive introduction to
the general theory of large deviations.

2.1. Terminologies

Let E be a complete separable metric space equipped with metric d. Consider a family
of E-valued random variables {Yλ : λ > 0} with corresponding distributions {Qλ : λ > 0}.
Assume that Yλ converges in probability to a constant as λ tends to a number λ0 in [0,+∞].
Definition 1. (i) The family of probability measures {Qλ : λ > 0} (or the family {Yλ : λ > 0})
is said to satisfy a large deviation principle with speed a(λ) and rate function I (·) if, for any
closed set F and open set G in E,

(i) (upper bound)

lim sup
λ→λ0

a−1(λ) logQλ{F } ≤ − inf
x∈F I (x),

(ii) (lower bound)

lim inf
λ→λ0

a−1(λ) logQλ{G} ≥ − inf
x∈G I (x),

and I (·) is lower semicontinuous. The rate function I (·) is good if, for any c > 0,

the level set {x : I (x) ≤ c} is compact.

The set {x : I (x) < ∞} is called the effective domain of the rate function.

(ii) The family {Qλ : λ > 0} is said to satisfy a local large deviation principle with speed a(λ)
and rate function I (·) if, for every x in E,

lim
δ→0

lim sup
λ→λ0

a−1(λ) logP {d(Yλ, x) ≤ δ} = lim
δ→0

lim inf
λ→λ0

a−1(λ) logP {d(Yλ, x) < δ} = −I (x).

(iii) The family {Qλ : λ > 0} is exponentially tight with speed a(λ) if, for every L > 0, there
is a compact subset KL of E such that

lim sup
λ→λ0

a−1(λ) logP {Yλ 
∈ KL} ≤ −L.

Remark 1. It is known that a local large deviation principle combined with exponential tight-
ness implies the large deviation principle with a good rate function (see [36]).
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Definition 2. (i) The family {Yλ : λ > 0} is said to satisfy a fluctuation theorem if there exist
functions b(λ) and c(λ), and a finite nondeterministic random variable W such that

lim
λ→λ0

b(λ) = ∞, b(λ)[Yλ − c(λ)] d−→ W, λ → λ0,

where ‘
d−→’ denotes convergence in distribution.

(ii) Assume that the family {Yλ : λ > 0} satisfies the fluctuation theorem above. Let e(λ) satisfy

lim
λ→λ0

e(λ) = ∞, lim
λ→λ0

e(λ)

b(λ)
= 0.

Then the family {Qλ : λ > 0} or, equivalently, the family {Yλ : λ > 0} is said to satisfy a
moderate deviation principle with speed a(λ) (depending on e(λ)) and (good) rate function
I (·) if the family {e(λ)[Yλ− c(λ)] : λ > 0} satisfies a large deviation principle with speed a(λ)
and (good) rate function I (·). Thus, the moderate deviation principle for {Yλ : λ > 0} is the
large deviation principle for {e(λ)[Yλ − c(λ)] : λ > 0}.
2.2. Subordinator representation

For any 0 < α < 1, let ρt be the stable subordinator with index α and Lévy measure

�α(dx) = α

�(1 − α)
x−(1+α) dx, x > 0.

The boundary case α = 1 corresponds to the straight line ρt = t . When α converges to 0, ρt
becomes a killed subordinator with killing rate 1 (see [2]).

For any t > 0, let J 1(ρt ) ≥ J 2(ρt ) ≥ · · · denote the jump sizes of ρt over the interval [0, t].
Then the following representation holds.

Theorem 1. (Perman et al. [29].) For any t > 0, the law of(
J 1(ρt )

ρt
,
J 2(ρt )

ρt
, . . .

)
is PD(α, 0).

For any n ≥ 1, let Zn = �α(J
n(ρ1),∞). Then Z1 < Z2 < · · · and Z1, Z2 − Z1, Z3 −

Z2, . . . are i.i.d. exponential random variables with parameter 1 (see [29]). Noting that

�α(x,∞) = x−α

�(1 − α)
,

it follows that
J n(ρ1)

ρ1
= Z

−1/α
n∑∞

i=1 Z
−1/α
i

and

ρ1 = �(1 − α)−1/α
∞∑
i=1

Z
−1/α
i . (1)

Thus, by Theorem 1, the law of

(
Z

−1/α
1∑∞

i=1 Z
−1/α
i

,
Z

−1/α
2∑∞

i=1 Z
−1/α
i

, . . .

)
is PD(α, 0).
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In other words, we have the representation

Pn(α, 0) = Z
−1/α
n∑∞

i=1 Z
−1/α
i

, n = 1, 2, . . . .

3. Limit theorems for PD(α, 0)

Take a sample of size two from a population with frequencies following the distribution
PD(α, 0). Then the probability that the two samples are of the same type is given by

ϕ2(P(α, 0)) :=
∞∑
i=1

P 2
i (α, 0).

This function is called the homozygosity in population genetics. It is closely associated with
the Shannon entropy in communication, the Herfindahl–Hirschmam index in economics, and
the Gini–Simpson index in ecology. It is a measure of concentration of the population in terms
of types with small values corresponding to lower concentration.

A direct application of Pitman’s sampling formula (see [30] and [32]) leads to

Eα,0[ϕ2(P(α, 0))] = 1 − α.

This implies that P(α, 0) converges in probability to (1, 0, . . . ) and (0, 0, . . . ) as α converges
to 0 and 1, respectively. The objective of this section is to obtain more detailed information
associated with these limits including fluctuation and large deviations.

3.1. Convergence and limit

Let 0 < γ (α) ≤ 1 and ι(α) > 0 be such that

lim
α→0

γ (α)

α
= c1 ∈ [0,+∞] (2)

and

lim
α→1

ι(α)

�(1 − α)
= c2 ∈ [0,∞).

Theorem 2. Let
P
γ (α)(α, 0) = (P

γ (α)
1 (α, 0), P γ (α)2 (α, 0), . . . ).

If c1 is finite then P
γ (α)(α, 0) converges almost surely to (1, (Z1/Z2)

c1 , (Z1/Z3)
c1 , . . . ) as α

converges to 0. If c1 = ∞ then P
γ (α)(α, 0) converges to (1, 0, . . . ) in probability asα converges

to 0.

Proof. Set Z̃ = (Z−1
1 , Z−1

2 , . . . ). Then we have

( ∞∑
i=1

Z
−1/α
i

)α
= ‖Z̃‖1/α.

When α approaches to 0, ‖Z̃‖1/α converges almost surely to ‖Z̃‖∞ = Z−1
1 . This implies

that

P
α(α, 0) =

(
Z−1

1

‖Z̃‖1/α
,
Z−1

2

‖Z̃‖1/α
, . . .

)
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converges almost surely to (1, Z1/Z2, Z1/Z3, . . . ) as α converges to 0. Write P
γ (α)(α, 0) as((

Z−1
1

‖Z̃‖1/α

)γ (α)/α
,

(
Z−1

2

‖Z̃‖1/α

)γ (α)/α
, . . .

)
.

Then, by continuity, it follows that P
γ (α)(α, 0) converges almost surely to(

1,

(
Z1

Z2

)c1

,

(
Z1

Z3

)c1

, . . .

)

as α converges to 0. If c1 = ∞ then, for anyM ≥ 1, we have γ (α)/α > M for small enough α.
Thus, for any n > 1,

lim
α→0

P
γ (α)
n (α, 0) ≤ lim

α→0
PMn (α, 0) =

(
Z1

Zn

)M
.

Since M is arbitrary, we obtain

lim
α→0

P
γ (α)
n (α, 0) = 0 almost surely for n > 1.

Finally, for n = 1, we have
P1(α, 0) ≤ P

γ (α)
1 (α, 0) ≤ 1.

Noting that
E[P1(α, 0)] ≤ E[ϕ2(P(α, 0))] = 1 − α,

it follows that P1(α, 0) converges to 1 in probability which implies that Pγ (α)1 (α, 0) converges
to 1 in probability. �
Theorem 3. As α converges to 1, ι(α)P(α, 0) converges to c2(Z

−1
1 , Z−1

2 , . . . ) in probability.

Proof. Let Sα = ρ−α
1 . Then the law of Sα is the Mittag–Leffler distribution with density

function

gα(s) =
∞∑
k=0

(−s)k
k! �(αk + α + 1)

sin(αkπ)

αkπ
,

and ∞∑
i=1

Z
−1/α
i =

(
Sα

�(1 − α)

)−1/α

, E[Srα] = �(r + 1)

�(αr + 1)
, r > −1.

This implies that

E[(Sα − 1)2] = 2

�(2α + 1)
− 2

�(α + 1)
+ 1 → 0, α → 1.

Hence, Sα converges to 1 in probability as α converges to 1.
By (1), we have

ι(α)P(α, 0) = ι(α)

�(1 − α)
�(1 − α)1−1/α

((
Z1

Sα

)−1/α

,

(
Z2

Sα

)−1/α

, . . .

)

= ι(α)

�(1 − α)
�(1 − α)1−1/α exp

{
1

α
log Sα

}
(Z

−1/α
1 , Z

−1/α
2 , . . . ).
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Since Sα converges to 1 in probability and (Z−1/α
1 , Z

−1/α
2 , . . . ) converges to

(Z−1
1 , Z−1

2 , . . . )

almost surely as α converges to 1, we conclude that ι(α)P(α, 0) converges in probability to

c2(Z
−1
1 , Z−1

2 , . . . ). �

Remark 2. The random variable Sα is Pitman’s α-diversity (see [32]). Consider the random
partition �∞ of the set {1, 2, . . . } with asymptotic frequencies following the PD(α, 0) distri-
bution. For any n ≥ 2, let�n denote the restriction of�∞ on {1, 2, . . . , n} andKn denote the
number of blocks in the random partition �n. The random variable Sα is the asymptotic limit
of Kn/nα as n tends to ∞ (see Theorem 3.8 in [32]). When α converges to 1, Sα converges
to 1. Thus, all blocks will become singletons.

3.2. Large deviations

In this section we consider the large deviations associated with the deterministic limits
obtained in Theorem 2. In comparison with the large deviations for P(α, 0), these results may
be viewed as moderate deviations for log P(α, 0) = (logP1(α, 0), . . . ). We prove these results
through a series of lemmas.

For any n ≥ 1, let

Rn = Pn+1(α, 0)

Pn(α, 0)
.

Then {Rn : n ≥ 1} is a sequence of independent beta random variables with each Rn having the
beta(nα, 1) distribution (Proposition 8 in [34]).

Lemma 1. Let Rγ (α) = (R
γ (α)
1 , R

γ (α)
2 , . . . ). As α converges to 0, large deviation principles

hold for Rγ (α) on the space [0, 1]∞ with respective speeds and rate functions (α/γ (α), Ĩ1(·))
and (log γ (α)/α, Ĩ2(·)) depending on whether c1 = 0 or c1 = ∞, where

Ĩ1(x) =

⎧⎪⎨
⎪⎩

∞∑
n=1

n log
1

xn
, xn > 0 for all n > 1,

+∞ otherwise,

and

Ĩ2(x) = #{n ≥ 1 : xn > 0}.

Proof. First note that, for any 0 ≤ a < b ≤ 1, it follows that, for any n ≥ 1,

P{Rγ(α)n ∈ (a, b)} = P{Rγ(α)n ∈ [a, b]} = bn(α/γ (α)) − an(α/γ (α)). (3)

Assume that c1 = 0. Then we have limα→0 α/γ (α) = ∞. For any n ≥ 1 and any x in
[0, 1], we have, by applying (3),

lim
δ→0

lim inf
α→0

γ (α)

α
log P{|Rγ(α)n − x| < δ} = lim

δ→0
lim sup
α→0

γ (α)

α
log P{|Rγ(α)n − x| ≤ δ}

= n log x,
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where log x = −∞ for x = 0. This combined with the compactness of [0, 1] implies that
R
γ(α)
n satisfies a large deviation principle on [0, 1] with speed α/γ (α) and rate function n log x.

Similarly, for c1 = ∞, we have

lim
δ→0

lim inf
α→0

(
log

γ (α)

α

)−1

log P{|Rγ(α)n − x| < δ}

= lim
δ→0

lim sup
α→0

(
log

γ (α)

α

)−1

log P{|Rγ(α)n − x| ≤ δ}
= − 1(0,∞),

where 1(0,∞) is the indicator function of set (0,∞). These combined with the independence
of R1, R2, . . . imply the large deviations for Rγ (α). �
Lemma 2. There exists δ ≥ 1 such that, for any λ < δ,

E[exp{λ(1 − α)(P−1
1 (α, 0)− 1)}] = (1 + Aλ,α)

−1 < ∞, (4)

where

Aλ,α = α

∫ 1

0
(1 − eλ(1−α)z)z−(1+α) dz.

Proof. Clearly, Aλ,α is nonnegative for λ ≤ 0, and converges to −∞ as λ tends to +∞. It
is known (Equation (77) in [27]) that

E[exp{λ(1 − α)(P−1
1 (α, 0)− 1)}] = (1 + Aλ,α)

−1 < ∞ for λ ≤ 0.

For λ > 0, we have

Aλ,α = (1 − λ)eλ(1−α) − 1 + λ2(1 − α)

∫ 1

0
z1−αeλ(1−α)z dz

≥ (1 − λ)eλ(1−α) − 1 + λ2(1 − α)

∫ 1

0
z1−αeλ(1−α)z dz. (5)

If we define
λα = sup{λ > 0 : Aλ,α + 1 > 0},

then λα ≥ 1 by (5) and
δ = inf{λα : 0 < α < 1} ≥ 1.

By Campbell’s theorem, (4) holds for any λ < δ. �
Lemma 3. Let ε > 0 be arbitrarily given. If c1 = 0 then

lim sup
α→0

γ (α)

α
log P{|Pγ (α)1 (α, 0)− 1| > ε} = −∞. (6)

If c1 = ∞ and
lim
α→0

γ (α) = 0, (7)

then

lim sup
α→0

1

log γ (α)/α
log P{|Pγ (α)1 (α, 0)− 1| > ε} = −∞. (8)
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Proof. Since the limit involves only smallα, we may assume that 0 < α < 1
2 and 0 < ε < 1

2 .
Let δ be as in Lemma 2 and set δ1 = δ/4. By direct calculation, we obtain

P{|Pγ (α)1 (α, 0)− 1| > ε} = P{P−1
1 (α, 0)− 1 ≥ (1 − ε)−1/γ (α) − 1}

≤ E[exp(δ1(P
−1
1 (α, 0)− 1))] exp(−δ1[(1 − ε)−1/γ (α) − 1])

≤ (1 + Aδ1,α)
−1 exp(−δ1[(1 − ε)−1/γ (α) − 1]). (9)

From (5), it follows that
lim
α→0

(1 + Aδ1,α) = 1. (10)

If c1 = 0 then

lim sup
α→0

(1 − ε)−1/γ (α) − 1

α/γ (α)

= lim sup
α→0

(1 − ε)−1/γ (α)

α/γ (α)

= lim sup
α→0

exp

{
1

γ (α)

[
log

1

(1 − ε)
+ γ (α) log γ (α)− γ (α)

α
α logα

]}
= ∞. (11)

Next assume that c1 = ∞ and (7) holds. For any 0 < ε < 1
2 , (1 − ε)1/γ (α) converges to 0

as α tends to 0. Hence, for any k ≥ 1, we can find αk > 0 such that, for all 0 < α < αk ,

P{|Pγ (α)1 (α, 0)− 1| > ε} ≤ P

{
P1(α, 0) <

1

k

}
.

By the large deviation principle for P1(α, 0) (see Lemma 2.3 in [15]), we obtain

lim sup
α→0

1

log 1/α
log P{|Pγ (α)1 (α, 0)− 1| > ε} ≤ lim sup

α→0

1

log 1/α
log P

{
P1(α, 0) <

1

k

}
≤ −(k − 1).

Noting that γ (α) < 1 and k is arbitrary, it follows that

lim sup
α→0

1

log γ (α)/α
log P{|Pγ (α)1 (α, 0)− 1| > ε}

≤ lim sup
α→0

1

log 1/α
log P{|Pγ (α)1 (α, 0)− 1| > ε}

≤ lim
k→∞ lim sup

α→0

1

log 1/α
log P

{
P1(α, 0) ≤ 1

k

}
= −∞. (12)

Combining (9)–(12), we obtain (6) and (8). �
Theorem 4. Let γ (α) satisfy (2), and set

∇ = {x = (x1, x2, . . . ) : 1 ≥ x1 ≥ x2 ≥ · · · ≥ 0}.
Then the followings hold as α converges to 0.
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(i) If c1 = 0 then the family {Pγ (α)(α, 0) : 0 < α < 1} satisfies a large deviation principle
on space ∇ with speed α/γ (α) and rate function

I1(x) =

⎧⎪⎨
⎪⎩

∞∑
n=1

n log
xn

xn+1
, x1 = 1, xn > 0 for all n > 1,

+∞ otherwise.

(ii) If c1 = ∞ and (7) holds then the family {Pγ (α)(α, 0) : 0 < α < 1} satisfies a large
deviation principle on space ∇ with speed log γ (α)/α and rate function

I2(x) =
{
n− 1, x1 = 1, xn > 0, xk = 0, k > n,

+∞ otherwise.

Proof. Writing P
γ (α) in terms of Rγ (α), we have

P
γ (α) = P

γ (α)
1 (α, 0)(1, Rγ (α)1 , R

γ (α)
1 R

γ(α)
2 , . . . ).

By Lemma 3, Pγ (α)1 (α, 0) is exponentially equivalent to 1. Hence, by Lemma 2.1 in [17],
(1, Rγ (α)1 , R

γ (α)
1 R

γ(α)
2 , . . . ) and P

γ (α) have the same large deviation principle. Define

ψ : [0, 1]∞ → ∇, (x1, x2, . . . ) → (1, x1, x1x2, . . . ).

Then ψ is clearly continuous and (1, Rγ (α)1 , R
γ (α)
1 R

γ(α)
2 , . . . ) = ψ(Rγ (α)). Noting that

Ii(x) = inf{Ĩi (y) : ψ(y) = x}, i = 1, 2,

the theorem follows from Lemma 1 and the contraction principle. �

4. Asymptotic behaviour of �α,0,ν

Recall that the REM has configuration space SN = {−1, 1}N and the Hamiltonian given by
a family of i.i.d. normal random variables with mean 0 and variance N ,

{HN(σ) | σ ∈ SN }.
The Gibbs measure GN(σ) at temperature T is given by

Z−1
N exp{−βHN(σ)},

where β = 1/T and ZN = ∑
σ∈SN exp{−βHN(σ)}. By making the change of variable

rN(σ ) = 1 −
N∑
i=1

(1 − σi)2
−i−1,

we can regard [0, 1] as the new configuration space. The corresponding Gibbs measure has the
form

μTN(dx) =
∑
σ∈SN

δrN (dx)GN(σ).
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As N → ∞, the limiting Gibbs measure μT = limN→∞ μTN exhibits phase transition at the
critical temperature Tc = (

√
2 log 2)−1. More specifically, by Theorems 9.3.1 and 9.3.4 in [5],

we have

μT =
{
ν if T ≥ Tc,

�α,0,ν if T < Tc.

Thus, a phase transition occurs when the temperature crosses the critical value between high
temperature and low temperature regimes. The low temperature regime has a rich structure.
The transition from the low temperature regime to the critical temperature regime corresponds
toα tending to 1 from below. The goal of this section is to understand the microscopic behaviour
of this transition through the establishment of a large deviation principle for �α,0,ν .

4.1. Estimates for stable subordinator

Recall that ρt is the stable subordinator with index 0 < α < 1. For t = 1, the following
holds.

Lemma 4. (See [26] and [35].) The distribution function of ρα/(1−α)
1 has two integral repre-

sentations:

F(x) = P{ρα/(1−α)
1 ≤ x} = 1

π

∫ π

0
e−A(u)/x du, (13)

where A(u) is the Zolotarev function defined as

A(u) =
{

sinα(αu) sin1−α((1 − α)u)

sin u

}1/(1−α)
.

The distribution function ofρ1 is, thus,F(xα/(1−α)). The density function ofρ1 has the following
representation:

φα(t) = 1

π

∫ ∞

0
e−tue−uα cosπα sin(uα sin πα) du. (14)

Applying these representations, we obtain the following estimations.

Theorem 5. For any given 1 > δ > 0, we have

lim
α→1

(1 − α) log log
1

P{ρ1 < 1 − δ} = lim
α→1

(1 − α) log log
1

P{ρ1 ≤ 1 − δ} = log
1

1 − δ
(15)

and

lim
α→1

1

log 1/(1 − α)
log P{ρ1 > 1 + δ} = lim

α→1

1

log 1/(1 − α)
log P{ρ1 ≥ 1 + δ} = −1. (16)

Proof. For any u ∈ (0, π), v ∈ (0, 1), we have

d[v cot(vu)− cot u]
dv

= 1

2 sin2(vu)
(sin(vu)− 2vu) ≤ 1

2 sin2(vu)
(sin(vu)− vu) ≤ 0,

which implies that
d log sin(vu)/ sin u

du
= v cot(vu)− cot u ≥ 0.

Hence,

A(u) = exp

{
α log

sin(αu)

sin u
+ (1 − α) log

sin((1 − α)u)

sin u

}
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is nondecreasing in u. Furthermore, it follows from direct calculation that

A(0+) = lim
u→0

A(u) = (1 − α)αα/(1−α), lim
u→π

A(u) = ∞.

Therefore, applying representation (13), we have, for any ε > 0,

π − ε

π
exp

{
− A(π − ε)

(1 − δ)α/(1−α)

}
≤ 1

π

∫ π−ε

0
exp

(
− A(u)

(1 − δ)α/(1−α)

)
du

= P{ρ1 ≤ 1 − δ}
≤ exp

{
− A(0+)
(1 − δ)α/(1−α)

}
.

This implies that

1

P{ρ1 ≤ 1 − δ} ≥ exp

{
exp

{
logA(0+)+ α

1 − α
log

1

1 − δ

}}

and
1

P{ρ1 ≤ 1 − δ} ≤ π

π − ε
exp

{
exp

{
logA(π − ε)+ α

1 − α
log

1

1 − δ

}}
.

Taking the double logarithm and letting α converge to 1, we have

log
1

1 − δ
≤ lim inf

α→1
(1 − α) log log

1

P{ρ1 ≤ 1 − δ}
= lim inf

α→1
(1 − α) log log

1

P{ρ1 < 1 − δ}
≤ lim sup

α→1
(1 − α) log log

1

P{ρ1 < 1 − δ}
= lim sup

α→1
(1 − α) log log

1

P{ρ1 ≤ 1 − δ}
≤ log

(
1

1 − δ

)
,

which is (15).
To prove (16), we apply (14) to obtain

P{ρ1 > 1 + δ} =P{ρ1 ≥ 1 + δ}
= 1

π

∫ ∞

1+δ

∫ ∞

0
u−1e−(1+δ)ue−uα cosπα sin(uα sin πα) du dt

= sin πα

π

∫ ∞

0
u−(1−α)e−δu

[
e−u−uα cosπα sin(uα sin πα)

uα sin πα

]
du.

Noting that sin(uα sin πα)/uα sin πα is bounded and

lim
α→1

sin πα

π(1 − α)
= 1,

it follows that (16) holds. �
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Theorem 6. The family {ρ1 : 0 < α < 1} satisfies a large deviation principle on (0,∞) as α
tends to 1 with speed − log(1 − α) and rate function (not good in this case)

J (x) =

⎧⎪⎨
⎪⎩

1, x > 1,

0, x = 1,

+∞ otherwise.

Proof. Let A be a closed set in (0,∞). If A contains 1 then infx∈A J (x) = 0 and the upper
estimate holds. If A does not contain 1 then we can find 0 < a < 1 < b such that A is either a
subset of (0, a], a subset of [b,∞), or a subset of (0, a] ∪ [b,∞). For each case, we can apply
Theorem 5 to obtain the upper estimate.

The proof for the lower estimates is as follows. Let B be any open set. If B intersects with
[0, 1) then the lower estimates are trivial. If B does not intersect with [0, 1) then B cannot
contain 1. Hence, we can find 1 < a < b < ∞ such that (a, b) ⊂ B and

P{ρ1 ∈ B} ≥ P{ρ1 ∈ (a, b)} ≥ b − a

π

∫ ∞

0
u−1e−bue−uα cosπα sin(uα sin πα) du,

which implies that

lim inf
α→1

1

− log(1 − α)
log P{ρ1 ∈ B} ≥ −1 = − inf

x∈B J (x). �

For any n ≥ 1, let τ1, . . . , τn+1 be independent copies of ρ1. Set

σi = τi

τ1
, i = 2, . . . , n+ 1. (17)

Set
σ̃n = min{σi : 2 ≤ i ≤ n+ 1}

and let rn denote the frequency of σ̃n among {σi}i=2,...,n+1. Define

Jn(u1, . . . , un) =

⎧⎪⎨
⎪⎩
n+ 1 − rn, σ̃n < 1,

n− rn, σ̃n = 1,

n, σ̃n > 1.

Clearly, Jn(·) is a rate function on (0,∞)n.

Theorem 7. The family {(σ2, . . . , σn+1) : 0 < α < 1} satisfies a large deviation principle on
(0,∞)n with speed − log(1 − α) and rate function Jn(·) as α tends to 1.

Proof. Note that the map

� : (0,∞)n+1 → (0,∞)n, (x1, . . . , xn+1) →
(
x2

x1
, . . . ,

xn+1

x1

)

is clearly continuous. It follows from the contraction principle that large deviation upper and
lower estimates hold for the family {(σ2, . . . , σn+1) : 0 < α < 1} with the bounds given by the
function

J̃n(u1, . . . , un) = inf

{n+1∑
i=1

J (xi) : xj+1 = ujx1, j = 1, . . . , n

}
.
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Since J (x) = ∞ for x in (0, 1), it follows that

J̃n(u1, . . . , un) = inf{
n+1∑
i=1

J (xi) : x1 ≥ 1, xj+1 = ujx1 ≥ 1, j = 1, . . . , n}

= Jn(u1, . . . , un)

and the theorem follows. �

Remark 3. The contraction principle used in Theorem 7 does not lead to a large deviation
principle in general due to the fact that the starting rate function is not good. But here and later
on, direct calculations show that the upper and lower bounds are all given by rate functions.

4.2. Large deviations for �α,0,ν

LetM1([0, 1]) denote the space of probabilities on [0, 1] equipped with the weak topology.
For any μ in M1([0, 1]), define

I(μ) =

⎧⎪⎨
⎪⎩

0, μ = ν,

n, μ = ∑n
i=1 piδxi + (1 − ∑n

i=1 pi)ν,

∞, otherwise.

The main result of this subsection is the following theorem.

Theorem 8. The family {�α,0,ν : 0 < α < 1} satisfies a large deviation principle onM1([0, 1])
with speed − log(1 − α) and good rate function I(·) as α tends to 1.

We prove this theorem through a series of lemmas.

Lemma 5. For any n ≥ 1, let 0 = t0 < t1 < · · · < tn < tn+1 = 1 and B1, . . . , Bn+1 be a
measurable partition of [0, 1] such that ν(Bi) = ti − ti−1. Then

(�α,0,ν(B1), . . . , �α,0,ν(Bn+1))

d= ρ−1
1 (ρt1 , ρt2 − ρt1 , . . . , ρtk − ρtk−1 , ρ1 − ρtk )

d=
(
t
1/α
1 +

n+1∑
k=2

(tk − tk−1)
1/ασk

)−1

(t
1/α
1 , (t2 − t1)

1/ασ2, . . . , (1 − tn)
1/ασn+1),

where σ2, . . . , σn+1 are defined in (17), and ‘
d=’ denotes equality in distribution.

Proof. The first equality is from [31] and the second equality follows from the independent
increments of the stable subordinator and ρt

d= t1/αρ1. �

Lemma 6. Let

�n+1 :=
{
(y1, . . . , yn+1) : yi ≥ 0,

n+1∑
k=1

yk = 1

}
.

Then the family {(�α,0,ν(B1), . . . , �α,0,ν(Bn+1)) : 0 < α < 1} satisfies a large deviation
principle on �n+1 with speed − log(1 −α) and good rate function In(·) as α tends to 1, where

In(y1, . . . , yn+1) = (n+ 1)− γ (y1, . . . , yn+1)
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with

γ (y1, . . . , yn+1) = #

{
1 ≤ i ≤ n+ 1 : yi

ti − ti−1
= min

{
yk

tk − tk−1
: 1 ≤ k ≤ n+ 1

}}
.

Proof. First note that the map

H : [0, 1]n × (0,∞)n → [0, 1],

(v1, . . . , vn+1; u1, . . . , un) →
(
v1 +

n+1∑
k=2

vkuk−1

)−1

(v1, v2u1, . . . , vn+1un)

is continuous and (�α,0,ν(B1), . . . , �α,0,ν(Bn+1)) has the same distribution as

H(t
1/α
1 , . . . , (1 − tn)

1/α; σ2, . . . , σn+1).

Noting that (t1/α1 , . . . , (1 − tn)
1/α) satisfies a full large deviation principle with effective

domain (t1, . . . , (1−tn)). It follows from Theorem 7, the independence between (t1/α1 , . . . , (1−
tn)

1/α) and (σ2, . . . , σn+1), and the contraction principle that large deviation estimates hold for
(�α,0,ν(B1), . . . , �α,0,ν(Bn+1)) with upper and lower bounds given by the function

Ĩn(y1, . . . , yn+1) = inf

{
Jn(u1, . . . , un) : ui ∈ (0,∞), ui = t1

y1

yi+1

ti+1 − ti
, i = 1, . . . , n

}

=

⎧⎪⎨
⎪⎩
n+ 1 − r̃n, min2≤i≤n+1{yi/(ti − ti−1)} < y1/t1,

n− r̃n, min2≤i≤n+1{yi/(ti − ti−1)} = y1/t1,

n, min2≤i≤n+1{yi/(ti − ti−1)} > y1/t1,

where r̃n is the frequency of min2≤i≤n+1{yi/(ti− ti−1)} among y2/(t2 − t1), . . . , yn+1/(1− tn).
On the other hand,

γ (y1, . . . , yn+1) =

⎧⎪⎨
⎪⎩
r̃n, min2≤i≤n+1{yi/(ti − ti−1} < y1/t1,

r̃n + 1, min2≤i≤n+1{yi/(ti − ti−1)} = y1/t1,

1, min2≤i≤n+1{yi/(ti − ti−1)} > y1/t1.

Hence, we obtain Ĩn(·) = In(·). It remains to show that In(·) is a good rate function. Since
�n+1 is compact, it suffices to verify the lower semicontinuity of the In(·). For any point
(y1, . . . , yn+1) in �n+1, let γ (y1, . . . , yn+1) = m. If the neighbourhood of (y1, . . . , yn+1) is
small enough then the frequency of the minimum in each point inside the neighbourhood is at
least m. Hence, I(·) is lower semicontinuous. �
Lemma 7. We have

I(μ) = sup{In(μ([0, t1]), μ((t1, t2]), . . . , μ((tn, 1]) : 0 = t0 < t1 < · · · < tn < tn+1 = 1,

n = 1, 2, . . . }. (18)

The supremum can be taken over all continuity points t1, . . . , tn of μ.

Proof. We divide the proof into several cases. Let μ be any probability in M1([0, 1]). By
Lebesgue’s decomposition theorem, we can write

μ = λ1μa + λ2μs + λ3μac,
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where μa is atomic, μs is diffuse and singular with respect to ν, μac is absolutely continuous
with respect to ν, and

λ1 + λ2 + λ3 = 1, λi ≥ 0, i = 1, 2, 3.

Set

Fs(x) = μs([0, x]), f (x) = dμac

dν
(x).

Case 1. The probability μ has a countable number of atoms. Since the total mass of μa
is equal to 1, there exists a countable infinite number of atoms all with different values of
masses. Let the masses of these atoms be ranked in descending order and the corresponding
atoms are x1, x2, . . . . Clearly, μs({xi}) = μac({xi}) = 0 for all i ≥ 1. For any m ≥ 2, by
the continuity of probabilities, we can choose small positive numbers ε1, ε2, . . . , εm such that
xi ± εi, 1 ≤ i ≤ m, are the continuity points of μ, (xi − εi, xi + εi] ⊂ [0, 1], 1 ≤ i ≤ m, are
disjoint, and

μ((x1 − ε1, x1 + ε1]) > μ((x2 − ε2, x2 + ε2]) > · · · > μ((xm − εm, xm + εm]).
The partition based on the points {xi ± εi, i = 1, 2, . . . , m} clearly yields a lower boundm− 1
for I(·). Since m is arbitrary, the supremum taken over continuity points of μ gives the value
of ∞ which is the same as I(·).

Case 2. The probability μ has at most a finite number of atoms and ν({f (x) 
= 1}) > 0. Let
A = {x ∈ [0, 1] : f (x) < 1}, B = {x ∈ [0, 1] : f (x) > 1}, and C = {x ∈ [0, 1] : f (x) = 1}.
Then, we have

μac(A) < ν(A), μac(B) > ν(B), μac(C) = ν(C),

and
ν(A)− μac(A) = μac(B)− ν(B).

The fact that ν{C} < 1 thus implies that ν(A) > 0 and ν(B) > 0. For any m ≥ 1, we can find
0 < s1 < · · · < sm < 1 and 0 < t1 < · · · < tm < 1 such that

{si}1≤i≤m ⊂ A, {ti}1≤i≤m ⊂ B,

{si, ti}i≥1 does not contain atoms of μ when λ2 > 0, F ′
s(x) = 0 for x = si or, ti , i ≥ 1.

For any i, j ≥ 1, we then have

lim
ε→0

μ((si − ε, si + ε])
2ε

= λ3 lim
ε→0

μac((si − ε, si + ε])
2ε

= λ3f (si)

< λ3f (tj )

= λ3 lim
ε→0

μac((tj − ε, tj + ε])
2ε

= lim
ε→0

μ((tj − ε, tj + ε])
2ε

.

This makes it possible to choose εi > 0 such that si ± εi, tj ± εj are all continuity points
of μ and

μ((si − εi, si + εi])
ν(si − εi, si + εi] <

μ((tj − εj , tj + εj ])
ν(tj − εj , tj + εj ] .

This provides a lower bound of m for I(μ). Since m is arbitrary, we have established (18)
in this case.
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Case 3. The probability μ has at most a finite number of atoms, λ2 > 0 and ν({f (x) 
=
1}) = 0. It is clear that we haveμac = ν in this case. For anym ≥ 1, the singularity guarantees
the existence of 0 < s1 < · · · < sm < 1 and 0 < t1 < · · · < tm < 1 such that the derivative
of Fs(x) is 0 for x = ti , while the derivative at si is either ∞ or does not exist. Additionally,
we can choose si and ti so that none of them are atoms of μa. Let ε be small enough so that
all intervals (si − ε, si + ε] and (ti − ε, ti + ε], i = 1, . . . , m, are disjoint. Let J denote the
partition of [0, 1] using {ti±ε, si±ε : i = 1, . . . , m}. We can then find a refined partition, using
a subsequence if necessary, J̃ of J, and positive numbers ε0 and δ0 such that si ± ε0, ti ± ε0
are continuity points of μ and the value of (2ε0)

−1μs on each interval containing one of the
ti is less than δ0 while its value on each interval containing one of the si is greater than δ0. In
other words, we can have, for any 1 ≤ i, j ≤ m,

μ((si − ε0, si + ε0])
ν((si − ε0, si + ε0]) 
= μ((tj − ε0, tj + ε0])

ν((tj − ε0, tj + ε0]) .

This implies that

sup{In(μ([0, t1]), μ((t1, t2]), . . . , μ((tn, 1]) : 0 = t0 < · · · < tn+1 = 1, n ≥ 1} ≥ m.

The arbitrary selection of m leads to (18) in this case.
Case 4. The probability μ has at most a finite number of atoms, λ2 = 0 and ν({f (x) 
=

1}) = 0. In this case we have μ = λ1μa + λ3ν. If λ1 = 0 then μ = ν and I(μ) is clearly 0.
Assume that λ1 > 0 and the number of atoms is r . Let F(x) = μ([0, x]). Since r is finite, any
partition J of [0, 1] will have at most r disjoint intervals covering these atoms. The maximum

sup{In(μ([0, t1]), μ((t1, t2]), . . . , μ((tn, 1]) : 0 = t0 < t1 < · · · < tn < tn+1 = 1, n ≥ 1}
is achieved at any partition with exactly r disjoint intervals covering the r atoms. �

Proof of Theorem 8. LetC([0, 1]) be the space of all continuous function on [0, 1] equipped
with the supremum norm, and {gj (x) : j = 1, 2, . . . } be a countable dense subset of C([0, 1]).
The set {gj (x) : j = 1, 2, . . . } is clearly convergence determining on M1([0, 1]). Let |gj | =
supx∈[0,1]|gj (x)| and {hj (x) = gj (x)/|gj | ∨ 1 : j = 1, . . . } is also convergence determining.

For any μ, υ in M1([0, 1]), define

d(μ, υ) =
∞∑
j=1

1

2j
|〈μ, hj 〉 − 〈υ, hj 〉|.

Then d is a metric generating the weak topology on M1([0, ]).
For any δ > 0, μ ∈ M1([0, 1]), let

B(μ, δ) = {υ ∈ M1([0, 1]) : d(υ, μ) < δ}, B̄(μ, δ) = {υ ∈ M1([0, 1]) : d(υ, μ) ≤ δ}.
Since M1([0, 1]) is compact, the family of the laws of �α,0,ν is exponentially tight. By

Theorem (P) in [36], to prove the theorem it suffices to verify that

lim
δ→0

lim inf
α→1

1

− log(1 − α)
log P{B(μ, δ)} = lim

δ→0
lim sup
α→1

1

− log(1 − α)
log P{B̄(μ, δ)}

= −I(μ).

Let m be large enough so that{
υ ∈ M1([0, 1]) : |〈μ, hj 〉 − 〈υ, hj 〉| < 1

2δ : j = 1, . . . , m
} ⊂ B(ν, δ). (19)
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Consider 0 = t0 < t1 < · · · < tn+1 = 1 with Ai = (ti−1, ti], i = 1, . . . , n+ 1, such that

sup{|hj (x)− hj (y)| : x, y ∈ Ai, i = 1, . . . , n; j = 1, . . . , m} < 1
8δ.

Choose 0 < δ1 < δ/4n, and define

Vt1,...,tn (μ, δ1) = {(y1, . . . , yn) ∈ �n : |yi − μ(Ai)| < δ1, i = 1, . . . , n}.
For any υ in M1([0, 1]), let

�(υ) = (υ(A1), . . . , υ(An+1)).

If �(υ) belongs to Vt1,...,tn (μ, δ1) then, for j = 1, . . . , m,

|〈υ, hj 〉 − 〈μ, hj 〉| =
∣∣∣∣
n+1∑
i=1

∫
Ai

hj (x)(υ(dx)− μ(dx))

∣∣∣∣ < δ

4
+ nδ1 <

δ

2
,

which implies that

�−1(Vt1,...,tn (μ, δ1)) ⊂ {
υ ∈ M1([0, 1]) : |〈υ, hj 〉 − 〈μ, hj 〉| < 1

2δ : j = 1, . . . , m
}
.

This combined with (19) implies that

�−1(Vt1,...,tn (μ, δ1)) ⊂ B(μ, δ).

Since Vt1,...,tn (μ, δ1) is open in �n, it follows from Lemma 6 that

lim
δ→0

lim inf
α→1

1

− log(1 − α)
log P{B(μ, δ)}

≥ lim
δ→0

lim inf
α→1

1

− log(1 − α)
log P{�−1(Vt1,...,tn (μ, δ1))}

= lim
δ→0

lim inf
α→1

1

− log(1 − α)
log P{(�α,0,ν(A1), . . . , �α,0,ν(An+1)) ∈ Vt1,...,tn (μ, δ1)}

≥ −In+1(μ(A1), . . . , μ(An+1))

≥ −I(μ). (20)

Next we assume that t1, . . . , tn are continuity points of μ. We denote the collection of all
partitions from these points by Jμ. This implies that �(υ) is continuous at μ. Hence, for any
δ2 > 0, we can choose δ > 0 small enough such that

B̄(μ, δ) ⊂ �−1(Vt1,...,tk (μ, δ2)).

Let

V̄t1,...,tk (μ, δ2) = {(y1, . . . , yn) ∈ �n : |yi − μ(Ai)| ≤ δ2, i = 1, . . . , n}.
Then we have

lim
δ→0

lim sup
α→1

1

− log(1 − α)
log P{B̄(μ, δ)}

≤ lim sup
α→1

1

− log(1 − α)
log P{(�α,0,ν(A1), . . . , �α,0,ν(An+1)) ∈ V̄t1,...,tn (μ, δ2)}.

(21)
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Letting δ2 go to 0 and applying Lemma 6 again, we obtain

lim
δ→0

lim sup
θ→∞

1

θ
logP {B̄(μ, δ)} ≤ −In+1(μ(A1), . . . , μ(An+1)).

Finally, taking supremum over Jμ and applying Lemma 7, we obtain

lim
δ→0

lim sup
α→1

1

− log(1 − α)
log P{B̄(μ, δ)} ≤ −I(μ),

which combined with (20) leads to the theorem. �

5. Concluding remarks

A comparison between α converging to 1 and θ converging to ∞ reveals fundamental
differences. Under these limiting procedures, we have both P(α, 0) and P(0, θ) converging to
(0, 0, . . . ). This can be seen from the distributions of ϕ2(P(α, 0)) and ϕ2(P(0, θ)).

It was shown in [22] and [25] that√
1
2θ [θϕ2(P(0, θ))− 1] d−→ Z as θ → ∞,

where Z is the standard normal random variable. By the Ewens sampling formula, we have

E[ϕ2(P(0, θ))] = 1

θ + 1
, E[ϕ2

2(P(0, θ))] = 3! + θ

(θ + 1)(θ + 2)(θ + 3)
,

and

E[ϕ3
2(P(0, θ))] = 1

(θ + 1)(5)
(5! + 3 · 3! θ + θ2).

The skewness of ϕ2(P(0, θ)) is given by

E[ϕ3
2(P(0, θ))] − 3E[ϕ2(P(0, θ))]E[ϕ2

2(P(0, θ))] + 2(E[ϕ2(P(0, θ))])3
(E[ϕ2

2(P(0, θ))] − (E[ϕ2(P(0, θ))])2)3/2

= O(θ−5)

O(θ−4.5)
→ 0 as θ → ∞,

which is consistent with the Gaussian limit.
On the other hand, for ϕ2(P(α, 0)), we have

E[ϕ2(P(α, 0))] = 1 − α, E[ϕ2
2(P(α, 0))] = 1

6 [(1 − α)(2 − α)(3 − α)+ α(1 − α)2],
and

var(ϕ2(P(α, 0))) = 1
3α(1 − α),

E[ϕ3
2(P(α, 0))] = 1

5! [(1 − α)(5) + 3α(1 − α)2(2 − α)(3 − α)+ α2(1 − α)3].

This means that the skewness of ϕ2(P(α, 0)) is of orderO(1−α)/O((1−α)3/2)which goes
to ∞ as α converges to 1. Thus, the distribution of ϕ2(P(α, 0)) is skewed strongly to the right
and a Gaussian limit is unlikely. The cause for this is the fact that as α increases the frequencies
become more even, and the tail becomes heavier.
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Another difference is reflected from the large deviation behaviour of the Pitman sampling
formula. For any n ≥ 1, a partition η of n with length l, the conditional Pitman sampling
formula given P(α, θ) = p is

Fη(p) = C(n, η)
∑

distinct i1,...,il

p
η1
i1
. . . p

ηl
il
,

where

C(n, η) = n!∏l
k=1 ηk!

∏n
j=1 aj (η)

.

Assuming ηi ≥ 2 for all i then Fη(p) is continuous on ∇∞. By the contraction principle,
large deviation principles hold for the image laws of PD(0, θ) and PD(α, 0) under Fη(p) with
respect to speed θ and − log(1 − α).

Integrating Fη(p) with respect to PD(α, θ) leads to the unconditional Pitman sampling
formula. The large deviation speed was shown in [14] to be log θ under PD(0, θ). In [19],
the large deviation speed under PD(α, 0) was shown to be − log(1 − α). In other words,
under PD(0, θ) the conditional and unconditional Pitman sampling formulae have different
large deviation speeds due to averaging and finite sample size, while under PD(α, 0) the
corresponding speeds are the same.

In a Bayesian context, the limiting procedure θ → ∞ corresponds to the sample size
tending to ∞ and the large deviations for �0,θ,ν become the large deviations for the posteriors
of Dirichlet prior to when the sample size converges to ∞ (see [21]). It is not clear what the
natural Bayesian counterpart is for the limiting procedure α → 1.
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