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This paper uses the specific-to-general methodological approach that is widely
used in science, in which problems with existing theories are resolved as the need
arises, to illustrate a number of important developments in the modeling of uni-
variate and multivariate financial volatility. Some of the difficulties in analyzing
time-varying univariate and multivariate conditional volatility and stochastic vol-
atility include the number of parameters to be estimated and the computational
complexities associated with multivariate conditional volatility models and both
univariate and multivariate stochastic volatility models. For these reasons, among
others, automated inference in its present state requires modifications and exten-
sions for modeling in empirical financial econometrics. As a contribution to the
development of automated inference in modeling volatility, 20 important issues
in the specification, estimation, and testing of conditional and stochastic volatil-
ity models are discussed. A “potential for automation rating” (PAR) index and
recommendations regarding the possibilities for automated inference in modeling
financial volatility are given in each case.
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A person cannot possibly seek what he knows, and, just as impossibly, he cannot
seek what he does not know, for what he knows he cannot seek, since he knows it,
and what he does not know he cannot seek because, after all, he does not even
know what he is supposed to seek.

—Sgren Kierkegaard (1813—1855), Philosophical Fragments

As we know, there are known knowns; there are things we know we know. We also
know there are known unknowns; that is to say we know there are some things we
do not know. But there are also unknown unknowns—the ones we don’t know we

don’t know.
—Donald Rumsfeld, Department of Defense news briefing (transcript),
February 12, 2002

“What do you want to know?”
“Things that you don’t know you know.”
—The Tailor of Panama (film)

1. INTRODUCTION

Three important components in econometric modeling are specification, esti-
mation, and testing. In respect to testing, McAleer (1994, p. 334) has echoed a
common concern regarding the development of what might be perceived as an
excessive number of formal statistical tests, as follows:

A test that is never used has zero power.

Although the statement is clearly not intended to be technically correct in respect
to statistical theory, it nevertheless captures the feeling that a technique that is
not used may be of little value. A less controversial statement would seem to
be the following:

An automated method of inference that is never used has zero value.

These two statements, and also their corollaries relating to the infrequent use
of certain tests and modeling strategies, would seem, prima facie, to be suffi-
ciently self-evident as to form an implicit code for empirical econometrics. In
fact, as such statements are frequently ignored in practice, they might be seen
more as guidelines than regulations. Econometric modeling techniques have been
developed for purposes of being used in practice. When theory is developed in
the absence of application, it might be seen as being of limited, if not zero,
applied value. However, automated methods of inference are designed to be
used, even though they may suffer from a multitude of sins, including bias and
inefficiency in estimation and pretest bias in inference. This paper is concerned
with automated methods of inference in modeling financial volatility.
Regardless of how they might be perceived, these statements relate to an
important aspect of econometric modeling, namely, testing, and also to any auto-
mated modeling strategy that is based on estimation and testing. Although econo-
metric estimation and testing have had a long and sometimes controversial
history in econometrics, these issues are not of primary concern in this paper.
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Estimation and testing are presented to discuss various aspects of automated
inference and learning in modeling financial volatility.

Echoing the sentiments of Donald Rumsfeld, which are a colloquial rendi-
tion of the much earlier thoughts of the Danish philosopher Sgren Kierkegaard
on summarizing Plato’s theory of recollection, if we ignore what we do not
know we know, as in The Tailor of Panama, and what we do not know we do
not know, the important remaining question is: What do we know we know,
and what do we know we do not know, about automated inference in empirical
financial econometrics?

The dialogue concerning the general-to-specific (or Gets) modeling approach
by Granger and Hendry (this issue) is concerned with a new tool for economet-
ric modeling. As compared with the specific-to-general (or Stog) approach that
is more standard in science (for a discussion of these two approaches, see, e.g.,
Keuzenkamp and McAleer, 1995), Gets would seem to be particularly useful
for modeling the conditional mean using stationary and nonstationary time series
data. Indeed, regardless of the reasons for which it was developed, Gets has
primarily been used for this purpose in econometric practice.

One of the primary purposes of this paper is to illustrate aspects of the Stog
methodological approach in the context of modeling financial volatility from
1982, the year in which the seminal work of Engle (1982) on autoregressive
conditional heteroskedasticity (ARCH) was published, to the present. This lit-
erature has typically been concerned with developing and estimating models,
even before their structural properties, including the analysis of regularity and
moment conditions and the statistical properties of the estimators, have been
established. A critical aspect of the financial volatility literature is that prob-
lems with existing theories are resolved through finding solutions as the need
arises. This Stog approach is entirely consistent with scientific progress.

Many of the problems that are considered in this paper either do not arise or
have not (yet) been considered in the Gets approach. This is not intended as a
specific criticism of Gets but rather as an indication of the empirical models
that might not be encountered by users of any such program in practice. As an
illustration, the following words that are widely used in analyzing financial data
do not appear in the dialogue in Granger and Hendry (this issue): aggregate,
ARCH, asymmetric, asymmetry, Brownian motion, clustering, conditional like-
lihood, continuous, diffusion, double mover, exponential, extreme, factors, fat
tails, fractional, GARCH, high frequency, jumps, knowledge, kurtosis, LAD,
latent, learning, leptokurtosis, leverage, long memory, MCL, MCMC, Monte
Carlo likelihood, multivariate, nonnormality, non-normality, nonparametric, non-
parametric, numerical likelihood, outliers, periodic, persistence, resampling,
re-sampling, returns, reversion, sampler, sample splitting, seasonality, semi-
parametric, semi-parametric, single mover, skewness, spurious, stochastic, sto-
chastic volatility, SV, threshold, transition, ultra-high frequency, value-at-risk,
VaR, Wiener process, and volatility; and there is only one reference to each of
the following words: moments (in the context of instrumental variables [IV]

https://doi.org/10.1017/50266466605050140 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466605050140

AUTOMATED INFERENCE AND LEARNING 235

estimation in question 1) and risk (in question 13). These important aspects of
modeling financial data do not (yet) seem to have been accommodated in the
Gets approach, although they certainly could be.

It might be argued that the number of variations of financial volatility mod-
els is greater than for the various distributed lag, cointegration, and error (or
equilibrium) correction models (ECM) that are available in the econometric
time series literature. An ECM is typically a time series model of stationary
and nonstationary variables with different data transformations, alternative func-
tional forms, and lag structures. It could also accommodate threshold effects,
latent variables, outliers and extreme observations, and conditional and sto-
chastic higher order moments, among other extensions, but these have gener-
ally not been considered worthwhile in practice. In many cases, a linear ECM
with a logarithmic transformation is favored, with the lag structure being a
key consideration in the specification. This is in marked contrast to finan-
cial volatility models, in which the lag structures of both the conditional mean
and volatility seem to be unimportant relative to other problems that arise in
practice.

The number of parameters to be estimated, and the computational difficul-
ties associated with estimating multivariate conditional volatility models and
both univariate and multivariate stochastic volatility models, are fundamental
to the determination of a specific functional form for volatility. In practice, the
dynamic specifications of both generalized ARCH (GARCH) and stochastic vol-
atility (SV) models are frequently determined prior to estimation. Therefore,
modifications and adaptations would seem to be required for automated model
selection techniques in modeling financial volatility, especially in comparison
with the computational difficulties that presently exist.

Knowledge accumulation and methodology in the philosophy of science have
a long history. Dharmapala and McAleer (1996) discuss econometric method-
ology in the philosophy of science in terms of the traditional, instrumentalist
and Popperian falsificationist approaches. The critical methodological analyzes
of various papers in Zellner, Keuzenkamp, and McAleer (2001) provide alter-
native perspectives on the philosophy of science with regard to simplicity, infer-
ence, and modeling.

As the literature related to modeling financial volatility is broad and ever
increasing, some limits need to be placed on what can be discussed in the paper.
For this reason, models associated with temporal aggregation, factors, orthog-
onalization, long memory, fractional integration, periodicity, transitions, thresh-
olds, high frequency data, and nonparametric analysis will not be considered.
Techniques for automated inference will undoubtedly also be useful for each of
these topics, but this will have to be left for another forum.

The plan of the remainder of the paper is as follows. Section 2 discusses
some aspects of knowledge and wisdom and whether automated procedures assist
in the acquisition of knowledge. Various univariate and multivariate condi-
tional and SV models are presented in Section 3 according to the practical eco-
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nomic and financial issues which they were intended to address. As a contribution
to the development of automated methods of inference in modeling financial
volatility, 20 important issues in the specification, estimation, and testing of
modeling univariate and multivariate GARCH and SV are discussed in Sec-
tion 4. A potential for automation rating (PAR) index and recommendations
regarding the possibilities for automated inference in modeling financial vola-
tility are given in each case. Some concluding comments are given in Section 5.

2. KNOWLEDGE AND LEARNING

Real knowledge is to know the extent of one’s ignorance.
—Confucius, 551 BC-479 BC

Imagination is more important than knowledge.
—Albert Einstein

I taught them everything they know, but not everything I know.
—James Brown

It would be ironic if, inside the Wharton model, we found in the end, Lawrence
Klein.
—Paul Samuelson

What you get with Gets is Hendry. What you would like to emulate with the vol-
atility version is Engle.
—Adrian Pagan

Your born intelligencer is the man who knows what he is looking for before he
finds it.
—John le Carre, The Tailor of Panama

Model selection is an application of a set of rules, so it can be applied to any
empirical problem after the set of rules has been determined. It would, of course,
be possible to develop an automated modeling strategy for financial volatility
by incorporating a set of rules that would be pertinent for practitioners in finance.

However, automated inference should not be confused with automated learn-
ing, as one does not imply the other. Confucius stated that a realization of one’s
ignorance was necessary to gain knowledge. Albert Einstein’s dictum about imag-
ination versus knowledge has been cited widely, almost as much as his famous
remark about inspiration versus perspiration. The quote from James Brown makes
it clear that the student is rarely as well informed as the teacher. This is almost
certainly the case with most users of the Gets program, especially in compari-
son with its masterful developer. This is not at all surprising as, in this case,
the master is acknowledged to be a genuine expert in the field.

Long before the invention of IBM’s “Deep Blue” chess-playing machine, Paul
Samuelson (1975, p. 8) told the story that “There used to be a marvelous chess
machine that could beat all comers. But alas it turned out that curled inside the
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machine was an actual man.” His quote suggests that the Wharton model was
heavily influenced by Lawrence Klein. Adrian Pagan suggests that using the
Gets package might be a relatively inexpensive way of hiring David Hendry as
an automated consultant for modeling the conditional mean using econometric
time series data. A volatility version of the Gets software package might then
be an inexpensive way of hiring Rob Engle as an automated financial consul-
tant. These sentiments would likely be shared by many in the profession. As
there is presently no volatility version of Gets, one of the purposes of this paper
is to provide some broad directions as to how this might be accomplished. It
will be left to others to implement the design. A related approach has been
considered by Hansen, Lunde, and Nason (2003), who use the model confi-
dence set approach to choose the best univariate volatility model.

Education is intricately intertwined with knowledge, wisdom, imagination,
and learning. We learn from our mistakes, sometimes agonizingly slowly, but
we learn nonetheless. It is not clear how automated methods of modeling can
teach us how to learn from mistakes in learning. Nevertheless, as in the case of
the Tailor of Panama, born intelligencers apparently know what they want even
before they find it. Although this may well be true for the developers of mac-
roeconometric models and econometric software packages, it is less likely to
hold for their disciples. Therefore, a requirement for automated methods of infer-
ence and modeling should be a clear statement of how a user is to learn from
the mistakes that are likely to be made in the process of determining an optimal
model. Some of these issues are considered in Section 4.

3. UNIVARIATE AND MULTIVARIATE CONDITIONAL AND
STOCHASTIC VOLATILITY MODELS

A favorable comment can increase happiness momentarily, but a negative com-
ment can last forever. That is asymmetry.

The concept of Value-at-Risk (VaR) is widely used in the finance industry to
determine the maximum loss over a specified time horizon with a given level
of probability. It is possible to calculate the numerical values of VaR directly.
However, as VaR is typically dependent upon the specific models determined
for GARCH and SV, and also the distributions of the underlying shocks, it is
sensible to estimate GARCH and SV models as important components in the
determination of the VaR thresholds. It is, therefore, possible to capture the
evolution of the underlying distributions using a combination of GARCH and
SV models, and also through direct time series modeling of VaR thresholds. As
the problems arising from modeling univariate and multivariate GARCH and
SV volatility models will affect the VaR thresholds, it is important to under-
stand how frequently arising problems can affect the estimation and analysis of
the GARCH and SV models.

A range of multivariate models can be used for asset allocation, portfolio
risk evaluation, and dynamic portfolio analysis, and it is possible to determine
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which are optimal under different econometric and financial scenarios. For a
portfolio of assets, it may be appropriate to model covariances and conditional
covariances to determine VaR thresholds, but static and dynamic correlations
and conditional correlations are typically more important in making decisions
relating to pairs of assets in the optimal design of a portfolio.

This section provides a critical analysis of the development of some impor-
tant univariate and multivariate GARCH and SV models of financial volatility,
including the specification of the models. The structural properties of the mod-
els and the statistical properties of the estimators are summarized in Section 4.
Several of these models are already available in standard econometric software
packages such as RATS and EViews. Twenty important issues in the specifica-
tion, estimation, and testing of conditional and SV models are discussed. A
PAR index and recommendations regarding the possibilities for automated infer-
ence in modeling financial volatility are given in each case. The following sec-
tions are intended to show the substantial scope that is available for numerous
topics of interesting research in the area of modeling financial volatility.

3.1. Constant Conditional Correlation GARCH Models

The typical specifications underlying the multivariate conditional mean and con-
ditional variance in returns are given as follows:

yt:E(yt‘Ft—l)_l_st, @
g =D,

where ¥, = (V1ry-ees Yur)s M = (Migy..., M)’ is a sequence of independently
and identically distributed (i.i.d.) random vectors, F, is the past information
available to time ¢, D, = diag(h|/?,...,h}/?), m is number of returns, and ¢t =
1,...,n. The constant conditional correlation (CCC) model of Bollerslev (1990)
assumes that the conditional variance for each return, h;, i = 1,..., m, follows

a univariate GARCH process (see Engle, 1982; Bollerslev, 1986), that is,
hy = w; + 2 Q;j 8i2,t*j + E ,Bijhi,t—jv 2
j=1 j=1

where «;; represents the ARCH effects, or the short-run persistence of shocks
to return 7, and B;; represents the GARCH effects, or the contribution of shocks
to return i to long-run persistence, namely,

r S
2 a; + E BU
i=1 i=1

The conditional correlation matrix of CCCis I' = E(n,n,|F,_,) = E(n,7)),
where I' = {p;} fori,j=1,...,m. From (1), &,&, = D,m,m, D,, D, = (diag Q,)'/?,
and E(s,e]|F,_,) = Q, = D,I'D,, where Q, is the conditional covariance
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matrix. The conditional correlation matrix is defined as I' = D; ' Q,D,!, and
each conditional correlation coefficient is estimated from the standardized resid-
uals in (1) and (2). As such, there is no multivariate estimation involved for
CCC, except in the calculation of the conditional correlations.

Although the CCC specification in (2) is a computationally straightforward
multivariate GARCH model, it assumes independence of the conditional vari-
ances across returns and does not accommodate asymmetric behavior. To ac-
commodate interdependencies, Ling and McAleer (2003) proposed a vector
autoregressive moving average (VARMA) specification of the conditional mean
in (1) and the following specification for the conditional variance:

Ht =W+ 2 Ai 2?Etﬂ' + 2 Bszfj’ (3)
i=1 j=1
where H, = (hy,...,h,), 8 = (&f,,...,€5,), and W, A, for i = 1,...,r and B;
for i = 1,...,s are m X m matrices. As in the univariate GARCH model,
VARMA-GARCH assumes that negative and positive shocks have identical
impacts on the conditional variance. To accommodate the asymmetric impacts
of positive and negative shocks, Chan, Hoti, and McAleer (2002) proposed the
VARMA-AGARCH specification for the conditional variance, namely,

H =W+ 2 A€+ 2 Cil_;é_;+ E Bsz—j, 4
i=1 i=1 j=1
where C; are m X m matrices for i = 1,...,r, and I, = diag(/,,,...,I,,), where
0, =0
I, =
1, ¢g,<0.

If m = 1, (4) collapses to the asymmetric GARCH, or GJR, model of Glosten,
Jagannathan, and Runkle (1992).

The parameters of models (1)—(4) are typically obtained by maximum like-
lihood estimation (MLE) using a joint normal density, namely,

N 1 .
0 = argmin - > (log|Q,| + /0, " 2,), 3)
0 =1

where 6 denotes the vector of parameters to be estimated in the conditional
log-likelihood function and |Q,| denotes the determinant of Q,. When 1, does
not follow a joint multivariate normal distribution, equation (5) is defined as
the quasi-MLE (QMLE).

When the number of returns is m = 1, the univariate equivalent of (1) becomes
GARCH(1,1), as follows:

& = 7);\/7[,

o+ 2 ajstz_j + 2 Bih,—;, 6)
j=1 j=1

h,
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where @ > 0, a; =0 forj=1,...,rand §; = 0 for j = 1,..., s are sufficient to
ensure that the conditional variance h, > 0. As (6) can be expanded as an infi-
nite expansion in s,z,j, a univariate GARCH(1,1) model is also known as an
ARCH (c0) model.

Equation (6) assumes that a positive shock (g, > 0) has the same impact on
the conditional variance, h,, as a negative shock (g, < 0). To accommodate
differential impacts on the conditional variance between positive and negative
shocks, Glosten et al. (1992) proposed the following specification for &,:

he=w+ 2 (a+y1(s))el;+ 2 Bih 7)
j=1 J=1

which is a special case of (4). Whenr=s=1, 0 > 0,0, =0, a; + v, =0,
and B; = 0 are sufficient conditions to ensure that the conditional variance
h, > 0. The short-run persistence of positive (negative) shocks is given by
ay(a; + y;). When the conditional shocks, 7,, follow a symmetric distribution,
the expected short-run persistence is «; + y;/2, and the contribution of shocks
to expected long-run persistence is a; + y;/2 + B;.

An alternative specification that accommodates asymmetries between posi-
tive and negative shocks is the EGARCH model of Nelson (1991), namely,

P P q
logh, = w + E a;|m,_;| + 2 Yim-i T 2 Bjlogh,_, (t))
i=1 i=1

Jj=1

which models the logarithm of conditional volatility. In (8), |9,_;| and n,_; cap-
ture the size and sign effects, respectively, of the standardized shocks. Unlike
GARCH and GJR, EGARCH in (8) uses the standardized residuals rather than
the unconditional shocks. As EGARCH also uses the logarithm of conditional
volatility, there are no restrictions on the parameters in (8). As the standardized
shocks have finite moments, the moment conditions of (8) are straightforward.
Nelson (1991) derived the log-moment condition for GARCH(1,1) as

E(log(alntz +B1)) <0, 9

which is important in deriving the statistical properties of the QMLE. Ling and
McAleer (2002a) established the log-moment condition for GJR(1,1) as

E(log((a; + ')/11("71))"%2 +B,)) <O0. (10)

As Elog(l + z,) = Ez,, setting z = a; 92 + B, — 1 shows that the log-moment
condition in (9) can be satisfied even when a; + 8; > 1 (i.e., in the absence of
second moments of the unconditional shocks of the GARCH(1,1) model). Sim-
ilarly, setting z, = (a; + y,1(n,))n? + B, — 1 shows that the log-moment con-
dition in (10) can be satisfied even when «; + y/2 + B8, > 1 (i.e., in the absence
of second moments of the unconditional shocks of the GJR(1,1) model).
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3.2. Time-Varying Conditional Correlation GARCH Models

Conditional volatility models are concerned with the second moments of the
shocks to returns. Although such shocks are typically assumed to be indepen-
dent, they are likely to be dependent in practice. Unless 7, is a sequence of
i.i.d. random vectors, or alternatively a martingale difference process, the
assumption of CCC will not be valid, so that it would be more likely that I, =
{pyy fori,j=1,...omandt=1,...,n.

Engle and Kroner (1995) developed the Baba, Engle, Kraft, and Kroner
(BEKK) model to capture the time-varying behavior of conditional covari-
ances, as follows:

0, = Q0" +Ag,_ e ,A"+ BQ, B, (11

where the second term in (11) is singular. In addition to including a large num-
ber of parameters, which leads to serious computational difficulties, BEKK mod-
els the dynamic conditional covariances rather than what is typically of primary
interest to practitioners in finance, namely, the dynamic conditional correla-
tions. In the specific model given in (11), BEKK can be interpreted as accom-
modating serial correlation of unknown form in the standardized residuals.
Although it was not considered explicitly in Engle and Kroner (1995), the
dynamic conditional correlations associated with BEKK can be derived from
O, =DID asT, = D;l QtD;l’ where D, = (diag Qt)l/z'

To capture the dynamics of time-varying conditional correlation, I;, Engle
(2002) and Tse and Tsui (2002) proposed the closely related dynamic condi-
tional correlation (DCC) model and the variable conditional correlation (VCC)
model, respectively, as extensions of the CCC model. No explanation seems to
have been given as to how the shocks to returns in either the VCC or DCC
model would have to be modified to yield the dynamic structure of the condi-
tional correlations.

The DCC model is given by

Z,=(1-0— 92)Z+ Ommi— +6,Z, 4, (12)

where the second term in (12) is singular and 6, and 6, are scalar parameters.
When 6, = 6, = 0, Z in (12) is equivalent to the CCC model. As Z, in (12) is
conditional on the vector of standardized residuals, (12) is the conditional covari-
ance matrix. If n, were a vector of i.i.d. random variables, with zero mean and
unit variance, Z, in (12) would also be the conditional correlation matrix (after
appropriate standardization). However, there is no discussion of the properties
of 71, in developing the DCC model (although Engle, 2002, p. 342, does state
that “the errors are a Martingale difference by construction” in suggesting how
to estimate the model). As Z, in (12) does not satisfy the definition of a condi-
tional correlation matrix, Engle (2002) calculates the dynamic conditional cor-
relation matrix through the following standardization:

" = {(diag z,)"'*}Z,{(diag Z,)"'/*}. (13)
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(Equation (25) in Engle (2002) uses the standardization (diag Z,)™" rather than
(diag Z,)~/? in formulating DCC, but this is obviously a typographical error.)
The standardization of Z, to obtain I* in (13) may also be required because the
standardized residuals in the DCC model are unlikely to be independently
distributed.

The VCC model uses a transformation of the standardized shocks to esti-
mate the time-varying conditional correlations, namely,

L=0-6,-0)T+6,%_,+6,T,_,,
1-6,—6,=0, 0, =0, 6,=0, 14)

where the typical element in the nonsingular second term, which is a lagged
recursive conditional correlation matrix, is given by

M M M 172
‘I’ijt—l = E nit—lnjz—l/{E 77i2t—1 2 77]%—1} s
1=1 =1 =1

where M = m. When 0, = 6, = 0, T in (14) is equivalent to the CCC model. No
standardization of (14) is required because it satisfies the definition of a condi-
tional correlation matrix, albeit of standardized shocks, 7;,, that are not inde-
pendently distributed (although they are explicitly—and incorrectly—assumed
to be serially independently distributed in Tse and Tsui, 2002, p. 352). The pri-
mary structural difference between DCC and VCC is that (13) standardizes Z,
to obtain the dynamic conditional correlation matrix, whereas VCC assumes
that the time-varying conditional correlation matrix can be calculated recur-
sively using (14).

Chan, Hoti, and McAleer (2003) proposed the generalized autoregressive con-
ditional correlation (GARCC) model, which, unlike the DCC and VCC mod-
els, motivates the dynamic structure of the conditional correlations explicitly
through serial correlation in the vector of standardized shocks. They showed
that, if 7, follows an autoregressive process rather than being a sequence of
i.i.d. random vectors, that is,

m = Vt(”flm---,‘f]mt)', Vt’\’l'l'd((),l),

L
Mit 2 biuMi—1 T s &, ~ iid (0, a'iz)v i=1,...,m, 1s)
=1

then a more general dynamic model than DCC and VCC could be obtained
when L — oo, as follows:

W/;:W+q)1°7lr7177[—1+q)2°m71, (16)

where ®, and ®, are m X m matrices and © is the Hadamard (or element by
element) product. The first equation in (15) was introduced to the univariate
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ARCH literature (i.e., for m = 1) by Tsay (1987) as a random coefficient auto-
regressive approach to deriving ARCH models, with a straightforward exten-
sion to univariate GARCH models. Chan, Hoti, and McAleer (2003) showed
that, when ¢; = ¢1;8; and §; ~ iid(0, $5; '), (16) is the dynamic conditional
correlation matrix of the standardized residuals, 7;;, which are not indepen-
dently distributed because of the presence of serial correlation in (15). The
GARCC matrix is given by

I, = {(diag W,)~""2} W, {(diag W,)~"/2}, 17)

which makes clear the importance of recognizing the serial correlation in the
vector of standardized residuals. Chan, Hoti, and McAleer (2003) show that
the standardization in (17) may not be required, in practice, so that (16) is effec-
tively the conditional correlation matrix. However, the standardization in (13)
for the DCC model is required as (12) does not satisfy the definition of a con-
ditional correlation matrix of the standardized shocks. As a direct extension of
the preceding model, asymmetric effects can be accommodated in GARCC by
modifying the conditional covariance matrix in (16) with the indicator function
in (4) to produce the asymmetric GARCC (AGARCC) model.

There has been a plethora of interesting practical extensions to the DCC and
VCC models, with modifications of one model being directly applicable to the
other. Engle (2002) and Hafner and Franses (2003) suggested more general spec-
ifications in which the scalar parameters in DCC were replaced by appropriate
matrices to relax the restrictions implicit in (12). Cappiello, Engle, and Shep-
pard (2003) introduced asymmetry into the correlation dynamics of DCC. Bil-
lio, Caporin, and Gobbo (2004) and Billio and Caporin (2004) modified the
generalized DCC models of Engle (2002) and Hafner and Franses (2003) to
develop more flexible DCC models that partition groups (or blocks) of finan-
cial commodities into subsets with common dynamic conditional correlations.
Kwan, Li, and Ng (2004) extended VCC in a multivariate threshold framework
by combining the univariate threshold GARCH model with dynamic condi-
tional correlations. However, to date none of these extensions has examined
the asymptotic properties of the respective models.

3.3. Univariate and Multivariate SV Models

In the continuous time SV model, both the asset price and volatility follow
diffusion processes, with the logarithm of volatility following the Ornstein—
Uhlenbeck process. By using the discrete time approximation to the continuous
time SV model and the strong solution of the Ornstein—Uhlenbeck process, the

discrete time formulation of the univariate SV model for t = 1,...,n can be
represented as an extension of a simple discrete time model in Taylor (1986),
namely,
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y, = ag,exp(h,/2), g, ~ NID(0,1), (18)
|logy? =logo? +loge? +h,], 19)
hyoy = dh,+n,,  m,~NID0,0?), |$|<1, (20)
E(g,m,) = po,, -1=p=0, (21)

in which the returns to a financial asset in (18) are a nonlinear function of the
average volatility level, o, the shocks to returns, g,, and volatility at time ¢, A,.
The stationary SV equation is given by (20), in which ¢ is the persistence param-
eter. Given information at time ¢, the one-period-ahead forecasts of the mean
and variance of h,., are ¢h, and 0',3, respectively. The negative leverage effect
is given as p = 0, but it is not necessary to impose the restriction a priori.

Although (18) is equivalent to (19), the transformation to log y? in (19) loses
information regarding the sign of y,, so that optimal inference based on these
two equations would differ in view of (21). However, this information can be
recovered using the state space form derived by Harvey and Shephard (1996).

The shocks to returns and volatility may be contemporaneously correlated.
The correlation coefficient, p, is expected to be negative so as to capture the
dynamic leverage between the shocks to returns and shocks to volatility through
changes in the debt-equity ratio (for a general discussion of the leverage effect,
see Black, 1976, and Christie, 1982, whereas Yu, 2004a, defined the leverage
effect in the context of SV models). Although the dynamic leverage effects given
in (21) are assumed to be identical for positive and negative shocks, this restric-
tion can be relaxed. Asai and McAleer (2004a) developed the dynamic asym-
metric leverage (DAL) SV model to accommodate the differences between
positive and negative shocks on dynamic leverage, in addition to incorporating
both the sign and magnitude of the previous returns in the SV equation. Yu
(2004b) used a special case of the DAL model of Asai and McAleer (2004a) to
compare the SV and GARCH models, generalize the news impact function,
and reinforce the empirical results by the realized volatility inherent in high
frequency intraday data.

The discrete time formulation of the multivariate counterpart of the univari-

ate SV model is given for i,j =1,...,mand t = 1,...,n as
y, = {diag(o; exp(h;, /2))}e,, g,~NID(0,1,,), 22)
yo=Ayat, & ={eaks
h, = ®h, + 1, n, ~ NID(0,diag(o))), (23)
h=1{hay,  m={m},  P={d;
E(gm;) =Po3,, 24)
P={p;h 3, =1®o,, v=(1,...,1) o, = (0, ,...,0, ).
(25)
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The off-diagonal terms in @ in (23) represent the volatility spillover effects
from other assets. As P in (24) is the matrix of contemporaneous correlations,
the contemporaneous covariance matrix in (24), P o 3, , captures the multivar-
iate contemporaneous (dynamic) leverage effects. Separate dynamic leverage
effects of positive and negative shocks could be incorporated in (24) and (25)
through the use of an appropriate indicator function, as in the VARMA-
AGARCH model in (4), or using an extension of a univariate continuous func-
tion, as in the DAL model of Asai and McAleer (2004a). A multivariate extension
of the dynamic leverage SV model of Harvey and Shephard (1996) is com-
pared with a multivariate extension of the asymmetric leverage SV model of
Danielsson (1994) in Asai and McAleer (2004c¢).

The assumption of independently distributed shocks to returns in (22) and to
volatility in (23) means that the contemporaneous covariance matrix in (24)
does not vary over time. This independence assumption could be relaxed such
that the shocks to returns in (22) are generated by an autoregressive process, as
follows:

& = Vl(sl)‘"-'asmt),9 eriid(oal),

L
g, = 2 0,8, + Vi v, ~ NID(0,a?), i=1,...,m, (26)
=1

which follows a multivariate random coefficient autoregressive approach. The
presence of serially dependent processes can affect the outcome and interpre-
tation of the multivariate leverage effect in (24) and (25), such that the dynamic
correlation matrix of the vector of shocks to returns would follow a specific
functional form. Danielsson (1994) considered the special case m = 1 and
L = 1. Asai and McAleer (2004b) examined the more general multivariate case
in (26) in which (i) & and m, in (24) can have a constant contemporaneous
correlation matrix, X,; or (ii) a dynamic correlation matrix, X, which re-
places (24) by specifying X, to have a vector autoregressive representation
with a Wishart distribution. Meyer and Yu (2004) develop several multivariate
SV specifications as extensions of some existing models, including specifica-
tions with Granger causality in volatility, time-varying correlations, heavy-
tailed error distributions, additive factor structure, and multiplicative factor
structure.

As a further extension of the multivariate SV model given previously, if the
vector of shocks to volatility in (23) were also correlated over time, the dynamic
leverage given in (24) and (25) could also be made to vary over time. A spe-
cific functional form for the serial dependence of the shocks to volatility in
(23) would yield a specific functional form for the time-varying dynamic lever-
age matrix in (24) and (25).

The random errors in (18) are typically assumed to be normally distributed.
Equation (19) makes it clear that likelihood methods cannot be used to esti-
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mate the SV parameters as the density function of the logarithm of a squared
normal random variable is typically unknown. Recent developments have been
based on likelihood-based procedures and on the Bayesian Markov chain Monte
Carlo (MCMC) technique.

4. THE POTENTIAL FOR AUTOMATED INFERENCE IN MODELING
FINANCIAL VOLATILITY

This section discusses 20 important issues in the specification, estimation, and
testing of GARCH and SV models. A PAR index is given, from 1 (low) to 10
(high), and recommendations regarding the possibilities for automated infer-
ence in modeling financial volatility are given in each case.

(1) Theoretical Development (PAR = 2)
(GARCH) Predominantly discrete time
(SV) Predominantly continuous time

The original development and subsequent extensions of GARCH models have
been predominantly in a discrete time framework. Although SV models have
typically been derived in a continuous time framework, they have been esti-
mated using both high frequency and ultra-high frequency data. As an excep-
tion to the rule, Nelson (1990) investigated ARCH models as an approximation
to continuous time SV models and showed that a class of exponential GARCH
(EGARCH) models could approximate a range of stochastic differential equa-
tions. Drost and Werker (1996) examined continuous time GARCH modeling.

Recommendation 1. Select a volatility model that is appropriate to the data
to be analyzed.

(2) Decomposition of Returns (PAR = 5)
(GARCH) Additive and independent of volatility
(SV) Multiplicative and dependent on volatility

It is clear from equation (1) that the GARCH decomposition of returns is
additive and independent of volatility, whereas the SV decomposition of returns
in (18) (equivalently, (19) while retaining information regarding the sign of y,)
is multiplicative and dependent on volatility. The exception to the indepen-
dent decomposition between returns and volatility is the GARCH-in-mean
(GARCH-M) specification, which introduces risk into the conditional mean
equation in a similar manner as that of the SV model. In both types of decom-
positions, the shocks to returns are, in virtually all cases, assumed to be inde-
pendently distributed.

Recommendation 2. Check for spillovers between returns and risk.
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(3) Specification of Conditional Mean (PAR = 7)
(GARCH) Arbitrary
(SV) Diffusion process

The conditional mean specification is, in general, arbitrary for GARCH models
of the conditional volatility, as in (1), whereas it is derived analytically for the
SV model, as in (18). Various modifications to the conditional means in both
models are possible (see, e.g., Asai and McAleer, 2003a, who introduced holi-
day effects into the univariate conditional mean of the SV model).

Recommendation 3. The specification of the conditional mean should be
tested for its empirical adequacy; otherwise, the conditional variances and
covariances may be biased.

(4) Specification of Volatility (PAR = 7)
(GARCH) Arbitrary
(SV) Diffusion process

As in the case of the conditional mean specification, the conditional variance,
conditional covariance, and conditional correlation specifications are also gen-
erally arbitrary for GARCH models, as in (2), (3), (4), (8), (11), (12), (14), and
(16), whereas the stochastic variance equation is derived analytically for the
SV model, as in (20) and (23). As before, various modifications to the condi-
tional variances in both models are possible (e.g., Asai and McAleer, 2003a,
introduced holiday effects into the univariate stochastic variance of the SV model
and the conditional variance of the EGARCH model).

Recommendation 4. The specification of volatility should be tested for
its empirical adequacy. It will typically be satisfactory to use univariate
GARCH(1,1), GJR(1,1), EGARCH(1,1), or SV AR(1) models.

(5) Joint Specification of Mean and Volatility (PAR = 7)
(GARCH) Arbitrary
(SV) Simultaneous

On the basis of the specification of the conditional mean and conditional vari-
ance, it is clear that the joint specification of the mean and volatility are arbi-
trary for GARCH but can be undertaken simultaneously for the SV model. The
arbitrariness in the decomposition of the returns, in addition to the specifica-
tion of the conditional mean, variances, covariances, and correlations in the
development of a variety of univariate and multivariate GARCH models, might
be referred to as the “Mitsubishi advertisement modeling approach” (MAMA).
This is encapsulated in the advertising motto: “Please consider.” Although the
arbitrary specifications might be regarded as self-evident, there are few excep-
tions to the rule that theoretical arguments relating to the conditional mean,
variance, covariance, and correlation specifications in modeling GARCH are
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generally absent. This is in marked contrast to the joint specification of the
mean and volatility for SV models.

Recommendation 5. The joint specification of the conditional mean and con-
ditional volatility should be tested for their empirical adequacy; otherwise, the
conditional variances and covariances may be biased.

(6) Regularity Conditions (PAR = 8)
(GARCH) Univariate and multivariate log-moment and second moments
(SV) Stationary processes

Regularity conditions regarding strict stationarity, ergodicity, and the existence
of moments have been derived for a wide range of univariate and multivariate
GARCH models. The existence of moments is a necessary and sufficient (suf-
ficient) condition for strict stationarity and ergodicity in univariate (multivari-
ate) GARCH models. Bollerslev (1986) showed that the necessary and sufficient
condition for the existence of the second moment of &,, that is, E(g?) < oo, for
the case r = s =1 is @; + B; < 1 and also analyzed the GARCH( p,g) model.
Ling and McAleer (2003) established the moment conditions for univariate and
multivariate GARCH models, and Ling and McAleer (2002b) derived the nec-
essary and sufficient conditions for the asymmetric power GARCH model of
Ding, Granger, and Engle (1993).

In comparison with the various GARCH models that are available, SV mod-
els are based on stationary processes.

Recommendation 6. The appropriate regularity conditions should be evalu-
ated as diagnostic checks of the structural properties of the underlying models.
In particular, the log-moment condition is weaker, and hence more useful, than
the moment conditions.

(7) Unconditional Variance (PAR = 3)
(GARCH) Finite or infinite
(SV) Finite

The log-moment condition, as given in (9) and (10) for the GARCH(1,1) and
GJR(1,1) models, respectively, is a weak regularity condition that does not
require the existence of moments. This result makes it clear that the uncondi-
tional variance of the shocks to returns can be infinite for GARCH models, and
hence fat-tailed distributions are likely to be more appropriate than their nor-
mal counterpart. Moreover, there is no statistical reason for using integrated
GARCH models. In comparison, SV models are based on stationary processes
so that the unconditional variance of shocks to returns is finite.

Recommendation 7. As the unconditional variance need not be finite for the
log-moment regularity condition to be satisfied, it is unnecessary to estimate
an integrated process for volatility models.
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(8) Asymmetric and Dynamic Leverage Effects (PAR = 8)

(GARCH) EGARCH, GJR, and threshold effects

(SV) Dynamic leverage, dynamic asymmetric leverage, and threshold
effects

The two most popular asymmetric GARCH models are the threshold GJR model
of Glosten et al. (1992) and the EGARCH model of Nelson (1991). The struc-
tural properties of the GJR(1,1) model were established by Ling and McAleer
(2002a), who showed that the necessary and sufficient condition for E(g2) <
o0 is a; + y;/2 + B; < 1. For the case p = ¢ = 1 in (8), Nelson (1991) showed
that |8;] < 1 ensures stationarity and ergodicity for EGARCH(1,1). Caporin
and McAleer (2004a) incorporated dynamic asymmetric effects into the GARCH
model to distinguish between small and large, and positive and negative, shocks.

As compared with the GARCH literature, the interpretation of asymmetric and
leverage effects in SV models is not entirely clear. Jacquier, Polson, and Rossi
(2004) undertook a Bayesian analysis of a discrete time univariate SV model
with fat tails and correlated errors. Yu (2004a) showed that it was not clear how
to ensure and interpret the leverage effect in their model and advocated the Euler
approximation to the continuous time SV model with the leverage effect. So,
Li, and Lam (2002) proposed a threshold SV model in which the constant and
the autoregressive parameter in the SV equation change according to the sign
of the previous return. Asai and McAleer (2003b) examined two methods for
modeling asymmetries in SV models, namely, the indicator function threshold
effects approach of Glosten et al. (1992), as suggested by Harvey and Shephard
(1996), and the dynamic leverage effects given in equations (21) and (25). Asai
and McAleer (2004a) modified the dynamic leverage parameter in (21) to develop
a dynamic asymmetric leverage SV model with differential impacts from posi-
tive and negative shocks, with leverage being greater for negative shocks.

Recommendation 8. Asymmetric and dynamic leverage effects should be esti-
mated to provide diagnostic checks of the underlying univariate models, other-
wise, the conditional variances and covariances may be biased.

(9) Estimation and Asymptotic Theory for Univariate Models (PAR = 8)

(GARCH) QMLE is consistent and asymptotically normal.

(SV) MCL is consistent and asymptotically normal; Bayesian MCMC
is exact.

The GARCH and SV models available in the literature do not have analytical
expressions for their associated estimators, and even the likelihood function for
SV models does not have an analytical expression. This computational diffi-
culty can lead to significant problems in developing an automated approach to
model financial volatility.

Weiss (1986) and Pantula (1989) analyzed the statistical properties of the
ARCH (p) model and established the consistency and asymptotic normality of
the QMLE under the existence of fourth moments of the unconditional shocks.
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These results were followed by a host of other developments, specifically related
to the sufficient conditions for the consistency and asymptotic normality of the
QMLE for GARCH( p,q) models. The fourth (sixth) moment is sufficient for
the local (global) QMLE to be asymptotically normal (Ling and McAleer, 2003).
The log-moment condition in (9) and its generalization to GARCH(p,q) are
sufficient for consistency of the QMLE of univariate and multivariate GARCH
models (Jeantheau, 1998) and sufficient for asymptotic normality of the QMLE
of univariate GARCH models (Boussama, 2000). The sufficient conditions for
consistency and asymptotic normality of the GJR(1,1) model were established
by McAleer, Chan, and Marinova (2002), whereas those for GJR(p,q) may be
obtained as a special case of the results for ARMA-AGARCH in Chan et al.
(2002). By comparison, the statistical properties of the univariate and multivar-
iate EGARCH models (Nelson, 1991) have not yet been formally developed.
However, as the innovations in EGARCH are assumed to be i.i.d., the statisti-
cal properties of univariate EGARCH are likely to be natural extensions of uni-
variate ARMA processes. For the case p = ¢ = 1 in (8), Shephard (1996)
observed that |B;| < 1 may be a sufficient condition for consistency of the
QMLE for EGARCH(1,1), and McAleer et al. (2002) suggested that |8;| < 1
may also be a sufficient condition for the existence of moments and for asymp-
totic normality of the QMLE. These regularity conditions may be used as diag-
nostic checks of the underlying models. Discrimination criteria such as the
Akaike information criterion (AIC) and Bayesian information criterion (BIC)
are also useful in the optimal selection of GARCH models.

The standard methods of estimating univariate SV models are numerical or
Monte Carlo likelihood (MCL) and various Bayesian MCMC techniques. Recent
developments in numerical likelihood methods are concerned with sampling
theory based on y, in (18) and based on log y? in (19). The optimal numerical
likelihood method based on y,, namely, the evaluation of the likelihood through
recursive numerical integration, has been considered by Fridman and Harris
(1998) and Watanabe (1999), and the optimal Monte Carlo maximum likeli-
hood method based on log y? has been proposed by Sandmann and Koopman
(1998). The approaches based on log y? would need to be modified to accom-
modate asymmetric effects. Jacquier et al. (1994) proposed a Bayesian MCMC
technique based on a single-move sampler that requires sampling each A, in
(18). Two methods are more efficient than the single-move sampler, namely,
the multimove sampler of Shephard and Pitt (1997, and correction: 2004) (see
also Watanabe and Omori, 2004) and the integration sampler of Kim, Shep-
hard, and Chib (1998) and Chib, Nardari, and Shephard (2002). Bayesian MCMC
methods have also been proposed in the literature for estimating SV models
with leverage: Yu (2004b) used the single-move sampler, whereas Omori, Chib,
Shephard, and Nakajima (2004) used the mixture sampler that was developed
by Kim et al. (1998). The numerical likelihood techniques yield estimators that
are consistent and asymptotically normal, whereas the Bayesian MCMC infer-
ences are exact. In analyzing the specification of SV models, it would also be
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useful to consider the marginal likelihood, harmonic mean estimation, and the
deviance information criterion (DIC) of Berg, Meyer, and Yu (2004).

Recommendation 9. The appropriate regularity conditions and model selec-
tion criteria should be evaluated as diagnostic checks of the properties of the
underlying univariate models.

(10) Persistence (PAR = 7)
(GARCH) Higher than for SV models
(SV) Lower than for GARCH models

In empirical research, it has generally been found that the persistence of shocks
to volatility is captured reasonably well by simple GARCH and SV models.
The persistence of shocks needs to be modeled accurately as this can affect the
structural, asymptotic, and empirical properties of estimated volatility models.
For example, although the long-run persistence need not be less than unity for
the QMLE of the GARCH(1, 1) model to be consistent and asymptotically nor-
mal, an excessively high long-run persistence can lead to the log-moment con-
dition being violated. Taylor (1994) and Shephard (1996), among others, have
found that the persistence in volatility implied by GARCH(1,1) models is, in
general, higher than the persistence implied by AR(1) SV models.

Recommendation 10. The persistence of shocks needs to be modeled
accurately.

(11) Leptokurtosis (PAR = 7)
(GARCH) Requires leptokurtotic conditional distributions
(SV) Distributions are typically adequate.

Empirical research has also found that the kurtosis in the distributions of shocks
is captured reasonably well by simple GARCH and SV models. Although nor-
mality is not necessary for the consistency or asymptotic normality of the QMLE
for GARCH models, the QMLE can be inefficient when the standardized shocks
are not normal. Moreover, whether the distribution of the shocks is normal or
fat-tailed can affect inferences arising from empirical volatility models. Shep-
hard (1996), among others, has found that the assumption of normality is ade-
quate for the AR(1) SV model, whereas a fat-tailed distribution, such as Student
t, is required to make the GARCH(1,1) model comparable with its SV counter-
part. Hall and Yao (2003) showed that, for GARCH models with heavy-tailed
errors, the QMLE suffers from complex limit distributions and slow conver-
gence rates.

Carnero, Pena, and Ruiz (2004) found that the AR (1) SV model is more flex-
ible than its GARCH(1,1) counterpart in representing simultaneously the per-
sistence of shocks and excess kurtosis implied by these models.

Recommendation 11. The kurtosis in the distributions of shocks needs to be
modeled accurately.
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(12) A Single Outlier and Hidden Volatility (PAR = 6)
(GARCH) Delete the single outlier.
(SV) Delete the single outlier.

Outliers are like musical chairs. All hell breaks loose when the music stops.

Outliers have a long history in statistics but far less so in econometrics. Chow
(1960) introduced two test statistics to econometrics, namely, a test for struc-
tural change and a test of predictive failure, otherwise known as Chow’s first
and second tests, respectively. The test of predictive failure is a test of forecast
accuracy under the assumption of correct model specification. If the model is
correct, it should forecast accurately; if it does not do so, the model is incorrect
as long as the data are accurately observed and do not contain outliers. Chow’s
second test is also a test of outliers if the model is correct; if the model does
not forecast adequately, it may be due to outliers in the data (for further details,
see McAleer and Tse, 1988). In financial econometrics, a single outlier can also
affect the structural and statistical properties of the QMLE of GARCH models.

If a single outlier is not deleted from the sample, it may hide volatility that
does, in fact, exist, thereby leading to the problem of what might be called
hidden volatility.

Recommendation 12. It is essential to check for the presence of a single
outlier and hidden volatility.

(13) Sequential Outliers and Spurious Volatility (PAR = 6)
(GARCH) Delete the sequential outliers.
(SV) Delete the sequential outliers.

While I was walking up the stair,
1 met a man who wasn’t there.
He wasn'’t there again today.
How I wish he’d go away.

Spurious suggests a lack of genuine content. For example, a regression involv-
ing nonstationary processes may be deemed spurious because the statistical sig-
nificance is based on an inappropriate asymptotic distribution. In financial
econometrics, sequential outliers can also affect the structural and statistical
properties of the QMLE of GARCH models. Volatility may be spurious if it is
found to be statistically significant even though it does not exist. An empirical
finding of spurious volatility is less likely to depend on the use of an incorrect
asymptotic distribution than on biases arising from the presence of sequential
outliers. Sakata and White (1998) analyze the impact of outliers on volatility
modeling through the use of high breakdown point conditional dispersion
estimation.

If sequential outliers are not deleted, they may mimic volatility that does not
exist, thereby leading to the problem of what might be called spurious volatil-
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ity. There has been very little discussion in the volatility literature to date on
this potentially serious problem.

Recommendation 13. It is essential to check for the presence of sequential
outliers and spurious volatility.

(14) Serial Correlation in Univariate Shocks to Returns (PAR = 9)

(GARCH) Random coefficient autoregressive process and a special case of
GARCC

(SV) Very limited

A univariate moving average process in the unconditional shocks is a special
case of the VARMA-GARCH model. However, serial correlation in the stan-
dardized residuals, which will affect the interpretation of the conditional vari-
ance, has been all but ignored in the GARCH literature. Two exceptions are the
random coefficient autoregressive approach of Tsay (1987) and a special case
of GARCC, in which serial correlation in the standardized residuals of a uni-
variate GARCH model can be obtained by setting m = 1 in equation (15).

Danielsson (1994) examined an SV model with an AR(1) process in the uncon-
ditional shocks to returns in (18) (i.e., with m = 1 and L = 1 in (26)) and con-
sidered a simulation-based method for computing the maximum likelihood
estimates. (The AR(1) SV process in equation (1) in Danielsson, 1994, uses a
different parameterization from that in equation (20) in this paper.)

Recommendation 14. It is important to test for the presence of serial corre-
lation in the univariate shocks to returns.

(15) Specification of Multivariate Models (PAR = 8)
(GARCH) Various extensions of univariate models
(SV) Various extensions of univariate models

As discussed in Section 3, this area has been the subject of substantial recent
research, especially since 2002. Several of these models are already available
in standard econometric software packages such as RATS and EViews. Multi-
variate models include the diagonal model of Bollerslev, Engle, and Wool-
dridge (1988), the vech (or VAR) model of Engle and Kroner (1995), CCC,
BEKK, VARMA-GARCH, VARMA-AGARCH, DCC, VCC, GARCC, asym-
metric DCC, various generalized DCC models, flexible DCC, and asymmetric
GARCC. Chan, Hoti, and McAleer (2003) established the structural properties
of GARCC, which include the necessary and sufficient conditions for station-
arity and ergodicity, and sufficient conditions for the existence of moments.
In comparison with the expansive published and unpublished research in multi-
variate GARCH models, to date there have been few published papers in the
analysis of multivariate SV models. Harvey, Ruiz, and Shephard (1994) devel-
oped the first multivariate SV model as an extension of the univariate SV model,
but they did not include any leverage effects, interdependence (or spillovers)
across stochastic volatilities, or dynamic correlations of shocks within and
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between the returns and stochastic volatility equations. Danielsson (1998), Pitt
and Shephard (1999), and Liesenfeld and Richard (2003) are among the few
published papers in which multivariate SV models have been estimated. Alter-
native multivariate SV models have been analyzed and developed by Jacquier,
Polson, and Rossi (1995, 1999), Chib, Nardari, and Shephard (2001), Chan,
Kohn, and Kirby (2003), Asai and McAleer (2004b, 2004c), and Meyer and Yu
(2004). Gourieroux, Jasiak, and Sufana (2004) proposed the Wishart autoregres-
sive (WAR) multivariate process of stochastic positive semidefinite matrices to
develop an altogether different type of dynamic SV model.

Recommendation 15. The specification of the multivariate conditional mean
should be tested for its empirical adequacy; otherwise, the conditional vari-
ances and covariances may be biased. However, the conditional correlations
need not be biased.

(16) Estimation of Multivariate Models (PAR = 8)
(GARCH) QMLE
(SV) MCL and Bayesian MCMC

The QMLE method has typically been used to maximize the conditional likeli-
hood functions of various multivariate GARCH models. Ling and McAleer
(2003), Chan et al. (2002), and Chan, Hoti, and McAleer (2003) established the
structural properties, including the existence of moment conditions, of the
VARMA-GARCH, VARMA-AGARCH, and GARCC models, respectively.
Comte and Lieberman (2003) assumed but did not derive the regularity condi-
tions for the BEKK model and did not consider the presence of serial correla-
tion in the standardized residuals as an underlying cause of the dynamic
conditional covariance matrix.

To state the obvious, the problems inherent in estimating univariate SV mod-
els are exacerbated for their multivariate counterparts. The most common tech-
nique for estimating multivariate SV models is the Bayesian MCMC method,
with the high dimensionality of the models being a serious practical problem.
Liesenfeld and Richard (2003) applied the maximum likelihood approach based
upon an efficient importance sampling (ML-EIS) procedure to a multivariate
factor model with SV and also used the EIS approach for filtering to yield sev-
eral diagnostic tests.

Recommendation 16. Multivariate conditional volatility models are typi-
cally estimated using QMLE, whereas the most common technique for estimat-
ing multivariate SV models is the Bayesian MCMC method.

(17) Statistical Properties of Multivariate Models (PAR = 8)

(GARCH) QMLE is consistent and asymptotically normal.

(SV) MCL is consistent and asymptotically normal; Bayesian MCMC
is exact.

Although there are many multivariate GARCH models, there are few papers
that have examined the structural properties of the models and the statistical
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properties of the estimators. Ling and McAleer (2003) showed that the multi-
variate second moment was sufficient for consistency of the QMLE for the
VARMA-GARCH model. Chan et al. (2002) and Chan, Hoti, and McAleer
(2003) established the consistency of the QMLE for the VARMA-AGARCH
and GARCC models, respectively, under appropriate multivariate log-moment
conditions. Each of these authors established asymptotic normality of the local
(global) QMLE of their respective models under verifiable fourth (sixth) moment
conditions. Engle and Sheppard (2001) assumed that the (unstated and hence
unverifiable) regularity conditions were satisfied and discussed how the statis-
tical properties of DCC could be established. Comte and Lieberman (2003) estab-
lished consistency of the QMLE for the BEKK model using the conditions
regarding multivariate log-moments in Jeantheau (1998) and established asymp-
totic normality by assuming the existence of eighth moments.

The statistical properties of the various estimators of multivariate SV mod-
els follow from their univariate counterparts. Multivariate Bayesian MCMC tech-
niques yield exact inferences, whereas alternative numerical likelihood estimators
yield estimators that are consistent and asymptotically normal.

Recommendation 17. The appropriate regularity conditions should be eval-
uated as diagnostic checks of the statistical properties of the underlying multi-
variate models.

(18) Multivariate Asymmetric and Dynamic Leverage Effects (PAR = 8)

(GARCH) VARMA-AGARCH, EGARCH, ADCC, AGARCC, and
DAMGARCH

(SV) Limited

As discussed in Section 3, multivariate asymmetric effects have been examined
explicitly in the VARMA-AGARCH, AGARCC, asymmetric DCC (ADCC), and
dynamic asymmetric multivariate GARCH (DAMGARCH) (Caporin and
McAleer, 2004b) models. Asymmetric effects have been considered implicitly
in estimating multivariate EGARCH, but the statistical properties of multivar-
iate EGARCH have not been developed formally. As the innovations in
EGARCH are assumed to be i.i.d., the statistical properties of multivariate
EGARCH would be expected to follow as natural extensions of ARMA pro-
cesses (for further details, see Shephard, 1996; McAleer et al., 2002).

An extension of the univariate dynamic leverage effect in SV models in (21)
can be accommodated through the specifications in (24) and (25). Jacquier et al.
(1995) and Chan, Kohn, and Kirby (2003) extended the multivariate SV model
to incorporate various types of leverage effects, as in equation (24), although
these papers do not guarantee the existence of leverage effects (for further details,
see Yu, 20044, in the context of Jacquier, Polson, and Rossi, 2004; Meyer and
Yu, 2004). Danielsson (1998) suggested a multivariate extension of the asym-
metric SV model analyzed in Harvey and Shephard (1996). Asai and McAleer
(2004b) proposed two types of correlation structures for multivariate SV mod-
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els, namely, the constant correlation (CC) and dynamic correlation (DC) SV
models, as multivariate extensions of the univariate asymmetric SV models in
Danielsson (1994) and Asai and McAleer (2004a). Meyer and Yu (2004) also
developed a multivariate SV model with time-varying correlations. Multivariate
extensions of the dynamic leverage and asymmetric leverage models are com-
pared in Asai and McAleer (2004c).

Recommendation 18. Asymmetric and dynamic leverage effects should be
estimated to provide diagnostic checks of the underlying multivariate models;
otherwise, the conditional variances and covariances may be biased. However,
the conditional correlations need not be biased.

(19) Serial Correlation in Multivariate Shocks to Returns (PAR = 9)
(GARCH) GARCC
(SV) Very limited

A multivariate moving average process in the unconditional shocks is a special
case of the VARMA-GARCH model. The GARCC model is the only volatility
specification that explicitly considers serial correlation in the vector of stan-
dardized residuals. Serially dependent processes are not discussed in the devel-
opment of either the DCC or VCC models, or of any extensions to these models,
in spite of the fact that serial correlation in the standardized residuals, or alter-
natively martingale difference processes, provides a clear motivation for dynamic
conditional correlations to exist. The BEKK model implicitly accommodates
serially dependent processes, but of unknown form, in (11).

Asai and McAleer (2004b) analyzed dynamic correlations in multivariate SV
models using an approach that accommodates serial correlation. Their model
can be extended, under appropriate parametric restrictions and upon relaxing
the independence assumption of the shocks to the returns in (22) and the shocks
in (23), to accommodate serially dependent processes explicitly, as follows: an
ARMA process in the vector of shocks to returns in (22), an MA process in the
vector of shocks to stochastic volatility in (23), and an ARMA process in the
correlations of the two vectors of shocks in (24) and (25).

Recommendation 19. It is important to test for the presence of serial corre-
lation in the multivariate shocks to returns.

(20) Modeling Ultra-high Frequency Prices, Volumes and Spreads (PAR = 8)
(GARCH) Limited
(SV) Standard SV models

GARCH models were not developed specifically for continuous time data, so it
is perhaps not surprising that such models do not seem to have been widely
used for modeling prices, volumes, and spreads with ultra-high frequency data.
Although the autoregressive conditional duration (ACD) model of Engle and
Russell (1998) measures duration, it does not (yet) seem to have been extended
to the empirical analysis of prices, volumes, or spreads.
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In recent years, realized volatility has come to be directly related to the vol-
atility literature (see the influential papers by Andersen, Bollerslev, Diebold,
and Ebens, 2001; Andersen, Bollerslev, Diebold, and Labys, 2001; and
Barndorff-Nielsen and Shephard, 2002a, 2002b; and the survey by Andersen,
Bollerslev, and Diebold, 2002). Realized volatility has changed the way in which
volatility is normally modeled. This is due to the fact that ultra-high frequency
volatility can now be treated as being directly observed in the market and is an
area where the automated inference approach might become very useful. In addi-
tion to SV models, which would seem to be ideally suited to model ultra-high
frequency data, a variety of nonparametric models may also be used to model
such data.

The PAR index may not be appropriate for analyzing all ultra-high fre-
quency data, as it will depend on the purpose of the empirical analysis. If the
high frequency data are used to model and calculate volatility, then the auto-
mated approach is likely to be useful. However, the availability of ultra-high
frequency data may make it possible to use an accurate approximation of the
unobserved volatility. It may then be feasible to treat high frequency volatility
as being directly observable, so that the PAR index would be lower.

Recommendation 20. New GARCH, SV, nonparametric, and realized vola-
tility models of ultra-high frequency prices, volumes, and spreads should be
developed, estimated, and tested against each other.

5. CONCLUDING REMARKS

This paper used the specific-to-general methodological approach that is widely
used in science, in which problems with existing theories are resolved as the
need arises, to illustrate a number of important developments in the modeling
of univariate and multivariate financial volatility. Some of the difficulties in
analyzing time-varying univariate and multivariate GARCH and SV models
included the number of parameters to be estimated and the computational com-
plexities associated with some multivariate GARCH models and both univari-
ate and multivariate SV models. For these reasons, among others, automated
inference in its present state was argued to require various modifications and
extensions for modeling in empirical financial econometrics.

As a contribution to the development of automated inference in modeling
financial volatility, 20 important issues in the specification, estimation, and test-
ing of GARCH and SV models were discussed. A potential for automation rat-
ing (PAR) index and recommendations regarding the possibilities for automated
inference in modeling financial volatility were given in each case.
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