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Above the spinodal temperature for micro-phase separation in block co-polymers, asymmetric

mixtures can exhibit random heterogeneous structure. This behaviour is similar to the sub-

critical regime of many pattern-forming models. In particular, there is a rich set of localised

patterns and associated dynamics. This paper clarifies the nature of the bifurcation diagram

of localised solutions in a density functional model of A− B diblock mixtures. The existence

of saddle-node bifurcations is described, which explains both the threshold for heterogeneous

disordered behaviour as well the onset of pattern propagation. A procedure to generate more

complex equilibria by attaching individual structures leads to an interwoven set of solution

curves. This results in a global description of the bifurcation diagram from which dynamics,

in particular self-replication behaviour, can be explained.
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1 Introduction

Block co-polymers are macromolecules built from two or more monomer sub-chains. At

low enough temperatures (typically characterised by large χN, the familiar interaction

parameter), micro-phase segregation occurs and a wide array of micro-structures can be

created [3, 16, 18, 26].

The simplest situation is the AB diblock made up of monomers A and B. These are

observed to form a variety of mesophases such as body-centred cubic, hexagonal, lamellar

and other bicontinuous structures [27]. These phases are generally regarded as spatially

periodic, global energy minimisers [3], although in practice they are not readily observed

without considerable intervention [2]. This difficulty has been ascribed to kinetic trapping

of local minima of the free energy [47].

At temperatures above the region for mesophase formation, the mixture is not neces-

sarily homogeneous. Physical experiments have identified a variety of structured states

without long-range order [19, 34, 38, 39, 44]. The most conspicuous manifestation of these

are randomly distributed spherical micelles [39, 44], which gradually increase in concen-

tration as the ordered regime is approached.
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The transition from the disordered state to the ordered one has been actively investigated

over the past decade. The concentration of disordered micelles as a function of temperature

was first predicted theoretically by Dormidontova and Lodge [13]. They modelled micelles

using Seminov’s strong segregation theory [40], and assumed thermodynamic equilibrium

between micellised and un-micellised polymers. Wang et al. [43] regard the appearance of

micelles as a (thermally) activated process, and use self-consistent field theory calculations

to find the shape of localised concentration fluctuations.

Micelles and other non-periodic structures can be investigated theoretically as localised,

steady state patterns of the underlying model. This approach was taken by Glasner [17],

who identified localised one-, two-, and three-dimensional equilibria in a density functional

model, as well as some of their associated dynamics. Similar to the mean-field model results

of Wang et al. [43], there is a critical value of parameter χN = (χN)MD below which

no localised solutions exist (they call this the micelle dissociation temperature). It was

observed that there is a larger value (χN)SR , smaller than the spinodal value (χN)s,

above which localised solutions give way to pattern propagation which ultimately fills

the domain. In the interval (χN)MD � χN � (χN)SR , there is a multiplicity of stable and

unstable solution branches describing clustered arrangements, which are one focus of the

present work.

The interwoven bifurcation diagram which emerges is similar to many other pattern

forming systems which exhibit subcritical bifurcations (that is, in a regime where the base

state is linearly stable) [10]. There have been two recent, complementary explanations of

this situation, commonly referred to as ‘homoclinic snaking’ by virtue of the shape of the

bifurcation curves. Chapman and Kozyreff [7] take a multiple scales approach, looking

for localised steady states of the sub-critical Swift–Hohenberg equation

ut = −ru−
(
1 + ∂2

x

)2
u+ Au2 + Bu3, r > 0,

by computing exponentially small terms that arise in the expansion. The compatibility of

these small terms gives rise to algebraic criteria that allow the construction of a bifurcation

diagram. In contrast, Beck et al. [4] take a qualitative geometric viewpoint. They regard

localised states as homoclinic orbits of a map arising from the steady state ordinary

differential equations (ODEs). The complex snaking bifurcation picture emerges from the

interwoven tangle of stable and unstable manifolds.

In contrast to wave-packet-type solutions explored in [7], the structures we describe

more closely resemble peaks (sometimes called spikes or spots). Figure 5 shows examples

of localised steady states for the present model. Small-amplitude solutions near (χN)s are

in fact described by oscillations with slow modulation. But as the bifurcation diagram is

traversed, certain oscillations become pronounced, and distinct peaks form.

There are also dynamical phenomena related to the intricate bifurcation of localised

states. In the region just below the point of instability (spinodal decomposition here),

pattern propagation is commonly observed. In the present case, this takes the form of

self-replication (e.g. [12,23,30,35,37]) of individual structures. Nishiura and Ueyama [30]

proposed a general theory for this behaviour, based upon the simultaneous disappearance

via saddle-node events of all solution branches as the bifurcation diagram is traversed.
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The dynamical after-effect is a transition to patterns with a greater and greater number

of fundamental units.

Although localised states are commonly associated with self-replication dynamics, there

is very little literature that marries these two topics. This work serves as both a case study

that shows how these ideas interrelate as well as a clarification of the bifurcation diagram

particularly to block co-polymer mixtures.

The paper is organised as follows. A fundamental branch of localised states is first

identified, and characterised in terms of the asymptotic scaling on different parts of the

branch. More complex equilibria can be built upon this fundamental structure, leading to a

robust qualitative picture of merging and bifurcations of various solution branches. From

this, one ascertains the heteroclinic connections that form a basis for dynamical behaviour.

This ultimately explains the emergence of self-replication behaviour that precedes spinodal

decomposition.

2 The density functional model

The model employed here is a version of the standard Ohta & Kawasaki [31] free energy

density functional

F(φ) =

∫
a

2
|∇φ|2 + g(φ; χN)dx+

γ

2

∫∫
G(x− x′)[φ(x) − f][φ(x′) − f] dx dx′. (2.1)

Here, φ is the volume fraction of A monomers (where by the standard incompressibility

assumption 1 − φ is the B-monomer density), G is the usual free-space Green’s function

for the Laplacian, and g is a double-well energy. As with self-consistent mean-field

theories [20, 21, 24, 27], there are two dimensionless parameters: χN, representing the

Flory–Huggins-type interaction energy between monomers, and the mean volume fraction

f of A-monomers.

There are a variety of ways to specify the potential and coefficients [5, 8, 32, 41] either

based on first principles or invoking some empirical criteria. The specific form used here

is a compromise between these two aims and was described in detail in [17]. The idea is

to reproduce the linear (spinodal) instability in a controlled way and calibrate the diffuse

interface thickness. This can be accomplished with a potential of the form

g(φ) = h(φ) + χNφ(1 − φ), (2.2)

where the convex part h is calibrated to match Leibler’s well-known theory based on the

random phase approximation [24] at linear order. A good fit suitable to numerical and

analytical solution was found to be [17]

h ≈ −a1(ln(φ) + ln(1 − φ)) + a2φ(1 − φ) + a3φ
2(1 − φ)2, (2.3)

where a1 = 1.3, a2 = 0.23, a3 = 6.05. The other parameters in equation (2.1) were determ-

ined to be a ≈ 2.3 and γ = γ(f) = q∗(f)4, where q∗ is the most unstable wavenumber at the

spinodal point. Reasonable quantitative agreement between this model and a mean-field

approach [43] was found for isolated micelle-type solutions in our previous work [17]. It
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should be emphasised that the particular forms, that is equations (2.2) and (2.3), are given

for specificity, but have little influence on the qualitative results of this paper.

A dynamical model is employed here which follows the standard viewpoint of diffusive

transport arising from gradients of the chemical potential δF/δφ [29]. This can be

equivalently characterised as a Cahn–Hilliard-type gradient flow, leading to

φt = ∆

[
δF

δφ

]
= −a∆2φ+ ∆gφ(φ; χN) + γ(f − φ). (2.4)

where the scale for t has been chosen to absorb the diffusion coefficient. Note that the

mean volume constraint on a domain V∫
V

(φ− f)dx = 0, (2.5)

is automatically enforced for time-independent solutions of equation (2.4) with suitable

no-flux boundary conditions.

3 Localised solutions in one dimension

Many pattern-forming systems exhibit a sub-critical bifurcation that leads to steady states

which are localised, that is, they decay exponentially in the far field. In the context of

block co-polymers, these are bilayer- or micelle-type architectures that exist within a

stable homogeneous mixture. In contrast to standard amphiphiles, there is no solvent that

prefers one of the co-polymer components; these structures exist simply because of the

energetic advantage of phase separation.

One-dimensional steady states φ(x) in our problem are homoclinic orbits of the under-

lying ODE

−aφxxxx + (gφ(φ; χN))xx + γ(f − φ) = 0, φ− f = O(− exp(|x|/λ)), |x| → ∞, (3.1)

where λ denotes some undetermined decay length-scale. Solutions to this problem were

previously investigated in [17], and those results are summarised below.

Linearisation of the dynamic equation about φ = f gives the spinodal point (technically

a curve in two-dimensional parameter space), where the linearised growth rate σ(k) =

−ak4 − g′′(f; χN)k2 − γ is marginal, specifically

(χN)s =
h′′(f) +

√
4aγ

2
. (3.2)

Linearisation of the steady state equations gives the far-field behaviour, and is related

to the linearised dynamics. For χN > (χN)s, there cannot be any decay and therefore

no localised states exist. For χN < (χN)osc, where χNosc = h′′(f)/2, the tails of localised

solutions must be strictly exponential. For (χN)osc < χN < (χN)s, the tails oscillate with

ever decreasing spatial decay as the spinodal value is approached.

Localised solutions describing single peaks in density were investigated numerically

[17], and the results are reproduced in Figure 1. The lower boundary for existence is

χN = (χ)MD(f) (the ‘micelle disassociation’ temperature), which can be either less or greater
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Figure 1. Phase diagram for one-dimensional steady solutions (the domain is regarded as infinite).

The solid line is the spinodal curve, above which the homogeneous state is unstable. The region

between the dotted ((χN)MD) and dashed line ((χN)SR) is where steady solutions were found,

represented by circles. Between the solid and dashed line, self-replicating behaviour is observed. For

f > 0.3, no solutions were found (see Section 3.2).

than (χN)osc. The upper boundary χN = (χN)SR(f) is always in the interval [(χN)osc (χN)s].

The other salient aspect is the existence of a maximum value of composition fraction

f = fmax, above which steady solutions (in A-monomer density) do not exist at all. (By

virtue of symmetry of the model, one has an equivalent picture for localised concentrations

of B-monomer density). The purpose of this section is to clarify where and why all of

these bifurcation points exist.

3.1 Existence and stability of localised states

Some general observations about solutions to equation (3.1) are useful. On one hand,

this equation captures critical points of equation (2.1) since it is the (twice differentiated)

Euler–Lagrange equation. One can view it differently, however, by considering just the

convex part of (2.1)

Fc(φ) =

∫ ∞

−∞

a

2
φ2
x + h(φ)dx+

γ

2

∫∫
G(x− x′)[φ(x) − f][φ(x′) − f] dx dx′, (3.3)

and the (nonlinear) constraint ∫ ∞

−∞
(φ− f)2dx = L (3.4)
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(unless specified, integration will always be over the real line). It is straightforward to see

that finding critical points of equation (3.3) subject to equation (3.4) leads to

δFc

δφ
= Λ(φ− f), (3.5)

where Λ is a Lagrange multiplier. Differentiating twice, one discovers that this equation

is the same as equation (3.1), with 2χN playing the role of the Lagrange multiplier.

For each L, one can attempt to find a constrained minimiser. Since equation (3.3) is

bounded from below, there is a minimising sequence φn such that Fc(φn) is decreasing

and limits to the infimum. If the domain was finite, one can use standard compactness

arguments [15] to construct a minimiser. For an infinite domain, the minimising sequence

could either tend toward a non-trivial function, or could have a (weak) limit which is

simply the base state φ ≡ f. The distinction between the two cases will be made clear in

the next section by identifying the cross-over between small-amplitude and zero-amplitude

steady states. In the former case, there exists a nontrivial branch of solutions of equation

(3.1), given as φ(x;L), χN(L) (see Figure 5 for a numerical study ). Note that in assuming

decay of φ, χN(L) < (χN)s.

The bifurcation diagram is naturally related to the stability of branches. One expects

that there is a switching of sign of an eigenvalue at fold points, for example. This leads

to the conclusion that there must exist an unstable solution branch near fold points (see,

e.g. Maddocks [25]).

The idea to regard stationary solutions as constrained minimisers has even more

implications. Stability of the solutions φ(x;L) is equivalent to positivity of the bilinear

form associated with the second variation

B(ψ,ψ) =

∫
ψLφ(L)ψ dx, (3.6)

where

Lφ(L) ≡ δ2F(φ(L)

δφ2
≡ Lc

φ(L) − 2χN, (3.7)

and integration is over the whole domain. Consider the specific test function ψ = dφL/dL.

We can write

B(ψ,ψ) =

∫ [
Lc

φ(L)

dφ(L)

dL
− Λ(L)

dφ(L)

dL

]
dφ(L)

dL
dx, (3.8)

where Λ(L) = 2χN(L) is the associated Lagrange multiplier satisfying equation (3.5).

Assuming that φ(L) describes a continuously differentiable branch of solutions, differen-

tiating equations (3.4) and (3.5) with respect to L gives∫
dφ(L)

dL
(φ(L) − f) dx =

1

2
,

∫
Lc

φ(L)

dφ(L)

dL
dx =

dΛ(L)

dL
(φ(L) − f) + Λ

dφ(L)

dL
. (3.9)

Combining with (3.8), it follows that

B(ψ,ψ) =
dΛ

dL

∫
dφ(L)

dL
(φ(L) − f) =

1

2

dΛ

dL
. (3.10)
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If dχN(L)/dL < 0 (which is necessarily true for solutions immediately bifurcating from

the flat state), the second variation is non-positive and the solutions are unstable.

Demonstrating stability is somewhat more delicate. First, let us verify the following: if

φ(L) is a constrained local minimiser of Fc, then Lφ(L) can only have at most one unstable

eigenvalue. Supposing the opposite were true, there would exist orthogonal eigenfunctions

ψ1, ψ2 such that

Lφ(L)ψ1,2 = λ1,2ψ1,2, λ1,2 < 0. (3.11)

We can form a superposition ψε = ε(aεψ1 + bεψ2) so that φ(L) + ψε exactly satisfies the

constraint (3.4), and so that aε, bε limit to constants bounded away from zero as ε → 0.

Notice that F and Fc coincide (up to a constant) on the constraint surface (3.4), therefore

F(φ(L) + ψε) − F(φ(L)) = Fc(φ(L) + ψε) − Fc(φ(L)) � 0. (3.12)

On the other hand,

F(φ(L) + ψε) − F(φ(L)) = B(ψε, ψε) +

∫ [
h(φ(L) + ψε)

− h(φ(L)) − h′(φ(L))ψε − 1

2
h′′(φ(L))ψ2

ε

]
dx (3.13)

≡ ε2
(
a2
ελ1 + b2

ελ2

)
+ Rε.

Note that the integrand in Rε is just the remainder of the Taylor expansion to two orders,

and therefore can be estimated as

Rε � Cε3
∫ (

a2
ελ1 + b2

ελ2

)3
dx, (3.14)

where C is some constant independent of ε. The integral in this expression is bounded

since it can be shown that the eigenfunctions ψ1,2 decay exponentially at infinity. Thus,

R = O(ε3) so that for small enough ε, F(φ(L) + ψε) − F(φ(L)) < 0, which contradicts

equation (3.12).

It follows that if the solution curve φ(L) has a saddle-node (fold) bifurcation where

dχN(L)/dL switches sign, it must involve a switching of the sign of the single potentially

unstable eigenvalue of Lφ(L). That is, one branch must be stable and the other unstable.

We call the combination of lowest amplitude (smallest L) stable and unstable solutions

as the fundamental branch.

In the remainder of this section, solutions are examined in more detail by considering

various limiting cases. Each subsection corresponds to a particular part of the fundamental

branch as shown in Figure 2.

3.2 Small-amplitude solutions and the Maxwell point

Near the spinodal point, one expects bifurcation from the flat state φ = f. To this end,

it is useful to look for multiple-scale solutions whose envelope amplitude is small and

varies slowly in space with respect to the underlying marginally stable wavelength. This

expansion serves as a starting point to identify the fundamental branch of solutions which
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(Section 3.3)

            (Section 3.2)

Unstable branch
            (Section 3.5)

Upper bifurcation
(Section 3.6)

L

Lower bifurcation 

χ N χNs

Stable branch

(Section 3.4)

Small-amplitude solutions

Figure 2. Correspondence between different parts of the fundamental solution branch and

subsections which analyse each region as a limiting case.

can be continued to larger amplitude. Other small-amplitude solutions exist as a matter of

gluing these fundamental units together which is pursued later. The important quantitative

result of this section is to identify the region in parameter space where the subcritical

bifurcation point vanishes. This is conventionally known as the Maxwell point [36] by

analogy to the co-existence point of phase transitions. For this purpose, it is sufficient to

study small-amplitude solutions. We use a multiple-scale ansatz similar to Budd et al. [6].

By setting u = φ− f and rescaling X = (γ/a)1/4, equation (3.1) can be rewritten as

Lεu = −(H(u))XX, Lε ≡ − d4

dX4
+ (ε− 2)

d2

dX2
− 1, (3.15)

where

ε ≡ 2((χN)s − χN)
√
aγ

, (3.16)

and H is the nonlinear part of h′:

H(u) =
h′(f + u) − h′′(f)u

√
aγ

. (3.17)

By expanding

u = ε
1
2U1(x, y) + εU2(x, y) + ε

3
2U3(x, y) + · · · , y ≡ ε

1
2 x, (3.18)

at leading order, one gets L0U1 = 0, which has the even-symmetry solution

U1 = A(y) cos(x). (3.19)
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The next order in the expansion reads (regarding derivatives in L as acting on x )

L0U2 = −1

2
H ′′(0)(U2

1 )xx = H ′′(0)A2(y) cos(2x), (3.20)

leading to the particular solution

U
p
2 = −1

9
h′′′(0)A2(y) cos(2x). (3.21)

The complete solution is therefore U2 = A2(y) cos(x) + B2(y) sin(x) +U
p
2 .

At the next order, one has

L0U3 − 4(U2)xxxy − 6(U1)xxyy + 2(U1)yy + (U1)xx − 4(U2)xy

= −H ′′(0)(U1U2)xx − 1

6
H ′′′(0)(U3

1 )xx −H ′′(0)(U2
1 )xy. (3.22)

The balance of remaining secular terms (i.e. those in the nullspace of L0) gives the

amplitude equation

4A′′ − A+ βA3 = 0, β =
1

18
H ′′(0)2 − 1

8
H ′′′(0). (3.23)

This system is Hamiltonian, and there are two cases to consider. If β > 0, then there exist

two homoclinic orbits connecting the origin. The positive homoclinic branch A > 0 can

be continued to large amplitudes, giving a single-peak profile; in contrast, the negative

branch grows to a two-peak even symmetry solution. If β < 0, no homoclinic orbits exist.

The “Maxwell point’ can be determined by setting β = 0 in equation (3.23), which gives

a relationship between f and other problem parameters. Using the calibrated potential

(2.3), this implies that there are no localised solutions when the volume fraction f � 0.3.

This is more or less in accord with numerical results [17].

3.3 The lower bifurcation point

The remainder of this section concentrates on the limit of small f in order to ascertain the

nature of bifurcations quantitatively. Throughout, we exploit the scaling γ ∼ f−1 which

comes from the underlying calibration of the model described in [17]. This leads, via

dominant balance, to natural choices for the scaling of other quantities.

To capture the structure of solutions near the lower bifurcation point (χN)MD , we

suppose that χN ∼ f−1. There are three regions with different scales for φ and x: an

interior region of width O(f1/2), a narrow transition layer of width O(f), and an outer

region of width O(f−1/2). To avoid superfluous notation, the variable φ will generally be

left unscaled, and its solution in different regions will be obvious from the independent

variable employed.

For the first region described above, set x = zf1/2. Leading order balance gives

−aφzzzz − 2f(χN)φzz = 0. (3.24)
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By virtue of matching to the intermediate region on the right (where φ = O(f)) and

symmetry, this integrates to

φ = A

[
cos

(√
2fχN

a
z

)
+ 1

]
, 0 < z < zf, zf ≡ π

√
a

2fχN
, (3.25)

where A is as yet undetermined.

The second region is a wide outer region where φ ∼ f and a re-scaled coordinate Z is

defined by x = Zf−1/2. The leading order problem is now

−fa1

(
1

φ

)
ZZ

+ γ(f − φ) = 0. (3.26)

Letting w = 1/φ, one can integrate the resulting equation using limZ→∞ w = 1/f, giving

fa1

2
w2
Z + γ (ln(fw) − fw + 1) = 0. (3.27)

The complete solution by further integration requires the undetermined matching value

φ∗ ≡ lim
Z→0

φ(Z) = lim
Z→0

1

w(Z)
.

The third region is between the inner and outer regions and uses the re-scaled coordinate

ζ = f−1(x − zff
1/2). To be consistent with matching to the outer region, one needs

φ = O(f). At leading order,

−aφζζζζ − a1f
2

(
1

φ

)
ζζ

= 0. (3.28)

Integrating twice and matching to the outer region gives

−aφζζ − a1f
2

(
1

φ
− 1

φ∗

)
= 0. (3.29)

Integrating this and matching to the first inner region connects the undetermined constants

A and φ∗:

φzz(z = π
√
a/2f(χN)) =

2AfχN

a
=

1

f2
lim
ζ→−∞

φζζ =
a1

aφ∗ . (3.30)

The final ingredient that determines the solution is a Fredholm-type solvability across

all three regions. By virtue of the fact that the linearisation of equation (3.1) about any

leading order solution yields an adjoint operator with unity in its nullspace, one discovers

that this solvability condition is nothing more than the volume fraction constraint (2.5)

at leading order. This means that the volume fraction surplus in the inner region must

balance the deficit in the outer region; in scaled variables, this reads

∫ π
√

a
2fχN

0

φ(z)dz =
1

f

∫ ∞

0

(f − φ(ζ))dζ,

which can be computed from equations (3.25) and (3.27). This provides a second algebraic
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Figure 3. (Colour online) Solution to equation (3.31) (shown as dotted line) compared to numerical

solutions of steady states for f = 0.1 (circles) and f = 0.05 (x’s). The vertical axis is the value φ∗

(for asymptotics) or the minimum value of φ for a single-peak solution (for numerical solutions).

Note the axes are scaled according to the presumed dependence on f.

relationship between A and φ∗, from which one can eliminate A in equation (3.30) to

arrive at

a1π
√
a

φ∗(2χN)3/2
=

√
2a1

γ

(
f/φ∗ − ln(f/φ∗) − 1

)
. (3.31)

This algebraic equation for φ∗ yields a saddle-node bifurcation in the parameter χN

(see Figure 3). Consequently, there are two branches of solutions which form as χN

is increased: a larger amplitude branch (corresponding to lower φ∗) distinguished by a

single-peak profile, and an unstable branch (corresponding to larger φ∗) that has a more

pronounced oscillation as χN increases. The latter branch ultimately connects to the

small-amplitude solutions described in the previous subsection.

Solutions near the bifurcation point were computed numerically. These were obtained

by dynamical steepest descents, subject to a constraint of the form (3.4), using

φt =

[
δF

δφ

]
xx

+ λ(t)uxx. (3.32)

The dynamical Lagrange multiplier λ(t) was chosen at each timestep to maintain (3.4).

Note that multiplying both sides of equation (3.32) by φ − f and integrating gives an
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implicit formula for λ,

0 =
d

dt

∫
1

2
(φ− f)2dx =

∫
(φ− f)

[
δF

δφ

]
xx

dx+ λ(t)

∫
uuxx dx. (3.33)

Figure 3 compares the minimum value φ∗ of the approximate solutions to the minima

of numerically computed equilibria. As f decreases, the nose of the bifurcation becomes

closer to the asymptotic calculation.

3.4 Intermediate region: Stable branch

When χN ∼ f−2 instead of f−1 and χN � χNs, one may find solutions that have a ‘mesa’-

type profile. We construct these as in the previous subsection as an inner and outer region

connected by a narrow interface. The smaller amplitude branch of the bifurcation curve

also continues into this region, and ultimately connects to the small-amplitude branch.

The interest here is simply showing existence of solutions by a formal construction.

The outer solution is similar to the previous case. Note that χN < (χN)s implies that

(a1/f2 − 2χN)2/4 − γ < 0, which means that if one wishes to investigate a family of

solutions as f → 0, we need

2χN <
a1

f2
. (3.34)

With φ ∼ f, x = Zf−1/2, the leading order balance is

f
(
Q′(φ)

)
ZZ

+ γ(f − φ) = 0, Q′(φ) ≡ −a1

φ
− 2χNφ. (3.35)

By virtue of equation (3.34), Q is convex in the relevant region φ � f. Therefore, w = Q′(φ)

defines a one-to-one change of variables whose inverse is given by the Legendre transform

φ = P ′(w), P (w) = min
φ

[Q(φ) − φw], (3.36)

and equation (3.35) becomes

wZZ + γ(f − P ′(w)) = 0, P ′(w) =
−w +

√
w2 − 8χNa1

4χN
. (3.37)

Integration gives

1

2
w2
Z + γ(f(w − w0) − P (w) + P (w0)) = 0, w0 = Q′(f). (3.38)

As before, a further integration requires the matching value φ∗ ≡ limZ→0 φ(Z) to provide

the boundary condition w(0) = Q′(φ∗). The solution in the original variable can therefore

be written as φ = P ′(w(Z;φ∗)), where, in particular, φ is monotone increasing in Z and

decreasing in the parameter φ∗. We will show that φ∗ is uniquely determined and is in the

relevant range φ < f for a solution of equation (3.38) to exist.

The intermediate region uses the re-scaled variable ζ = f−1(x− z∗f1/2), where z∗ is the

width of the inner region to be determined, and φ is O(1). After two integrations (using
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matching conditions φζ = 0 = φζζζ = 0 as ζ → ±∞), the leading order equation is

−af−2φζζ − a1

φ
+

a1

1 − φ
− 2χN

(
φ− 1

2

)
= 0, (3.39)

which is subject to matching conditions uζ → 0 as ζ → ±∞. (Note that the a1 terms are

not necessarily sub-dominant if φ, 1 −φ = O(f)). This is the standard ‘double-well’ diffuse

interface problem, whose solution is given by a heteroclinic orbit of this integrable system

with asymptotic values corresponding to the potential minima:

lim
ζ→±∞

φ(ζ) =
1

2
∓

√
1

4
− a1/χN. (3.40)

In particular, φ∗ ∼ a1/χN as f → 0, which provides an admissible boundary condition

for the outer solution.

By virtue of matching to the intermediate layer, the inner problem necessarily has the

scaling 1 − φ = O(f2). Together with the scaled variable z = f−1/2x the dominant terms

are (
a1

1 − φ
− 2χNφ

)
zz

= 0, 0 < z < z∗,

which means the solution is merely a constant φ(z) = 1 − φ∗ ∼ 1 − a1/χN as f → 0. The

scaled width z∗ of this region is uniquely determined by the same solvability argument

used before, which reads

f

∫ z∗

0

φ(z)dz =

∫ ∞

0

(
f − φ(Z)

)
dZ. (3.41)

3.5 Intermediate region: Unstable branch

The continuation of the smaller amplitude branch that comes out of the bifurcation

described in Section 3.3 can also be constructed in an asymptotic fashion in the interme-

diate regime χN ∼ f−2. The goal as in the previous section is to simply demonstrate the

construction of a unique solution.

Observe that in the bifurcation equation (3.31), it is the larger solution of φ∗ which

corresponds to the branch of interest, and as χN becomes large, φ∗ → f. Expanding

φ∗ = f + φ∗
1, equation (3.31) implies the scaling φ∗

1 ∼ γ1/2(χN)−3/2 ∼ f5/2. This motivates

the rescaling φ = f − f5/2φ1(Z) in the outer region described by the scaled variable

x = Zf−1/2. The dominant terms are

(a1/f
2 − 2χN)(φ1)ZZ − f−1γφ1 = 0, lim

Z→∞
φ1(Z) = 0, (3.42)

which gives the immediate solution

φ1(Z) = φ∗
1 exp

(
−Z

√
fγ

a1 − 2f2χN

)
, (3.43)

where φ∗
1 is yet undetermined.
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There is just one inner region, employing the scaled variable ζ = x/f and with φ = O(f).

To leading order one has

−af−2φζζζζ +

(
−a1

φ
− 2χNφ

)
ζζ

= 0, (3.44)

which is solved with the boundary conditions

lim
ζ→∞

φ(ζ) = f, lim
ζ→∞

φζ(ζ) = 0 = φζ(0) = φζζζ(0). (3.45)

This can be immediately integrated twice, and once more since it is Hamiltonian. Applying

the far-field condition, one finds

a

2f2
φ2
ζ + ln(φ/f) − φ− f

f
+ χN(φ− f)2 = 0. (3.46)

This implicitly defines a unique homoclinic solution with even symmetry and φ(ζ) > f.

The selection of φ∗
1 proceeds as in previous cases, arising from the solvability condition

demanded by volume balance:

∫ ∞

0

(φ(ζ) − f)dζ = f

∫ ∞

0

φ1dZ = φ∗
1

√
a1 − 2χNf2

fγ
. (3.47)

3.6 The upper bifurcation point

When χN ≈ χNs, the solution for large x is not monotone as described by the outer

expansion (3.35). To capture the oscillation, set u ≡ φ− f, so that for small u

−auxxxx + βuxx − γu = 0, β ≡ a1/f
2 − 2χN. (3.48)

If all three terms are to be retained in the dominant balance for small f, then lengths

must be scaled as z = x/f1/4 and β = O(f−1/2).

To match the linear oscillatory region to the outer solution defined by equation (3.35),

one needs u = O(f5/2), and the leading order equation is (in unscaled variables)

−auxxxx − 2
a1

f3
(u2)xx + βuxx − γu = 0. (3.49)

Non-dimensionalising by

z = (γ/a)1/4x, U =
2a1

f3(aγ)1/2
u, Γ = − β

(aγ)1/2
, (3.50)

equation (3.49) becomes

Uzzzz + ΓUzz +U + (U2)zz = 0. (3.51)

The solution must decay as z → ∞, and must become unbounded as z → −∞ in order
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to match the outer solution. Note that when the non-dimensional quantity Γ → 2,

χN → (χN)s.

The oscillatory solutions must match to a region of no oscillation, where u has size

O(fα) with 1 < α < 5/2. Using a similar non-dimensionalisation as above,

Z = f5/4−α/2(γ/a)1/4x, w =
2a1

fα+1/2(aγ)1/2
u, (3.52)

and it is found to leading order that

(w2)ZZ + w = 0. (3.53)

It is straightforward to match the w and U approximations, which leads to the conditions

w(Z∗) = 0 = wZ (Z∗), U(z) ∼ 1

2
wZZ (Z∗)z2, z → −∞, (3.54)

where Z∗ is the point of crossover to the oscillatory region. The first two conditions can

be used with equation (3.53) to give the exact solution w = −(Z −Z∗)2/12, which implies

that

U(z) ∼ − 1

12
z2, z → ∞. (3.55)

The problem for U can be studied by a shooting method. There are two modes for the

linearisation of equation (3.51) which decay as z → ∞. Writing η = (U,Uz,Uzz, Uzzz), let

η1, η2 span the linear stable manifold of η = 0. The idea is to find a trajectory on the

(nonlinear) stable manifold which has the correct asymptotic behaviour (3.55).

A numerical implementation is as follows. A small initial condition η(0) = ε[cos(θ)η1 +

sin(θ)η2] near the stable manifold is chosen, and the integration proceeds backwards in z

until |U| is larger than some tolerance Umax  1 (it was found that ε = 0.05 and Umax = 4

gave satisfactory results). The condition (3.55) can be encoded as Uzzz = 0 as z → −∞.

The problem therefore becomes one of finding θ so that Uzzz = 0 when |U| = Umax, which

was solved by a combination of a line search and bisection.

Figure 4 shows the results for Γ = 1.7 and Γ = 1.87. There are two distinct solutions

for U in the former case. As Γ is increased, the θ values of these solutions become closer,

until Γb ≈ 1.87, where the two solutions are nearly indistinguishable (Figure 4). This

suggests a saddle-node bifurcation is imminent near this parameter value.

In terms of the original variables, this predicts the upper bifurcation point is related to

the point of spinodal instability by

(χN)s − (χN)SR =
1

2
(2 − Γb)

√
aγ. (3.56)

For f = 0.1, γ = 72, a = 2.34, we find that the exact values are (χN)s = 72.37 and

(χN)SR = 71.36 whereas formula (3.56) yields (χN)s − (χN)SR = 0.9.

3.7 Multi-peaked solutions

More complex equilibria can be built from the stable and unstable structures previ-

ously described. This viewpoint has been used in a dynamical setting [14, 17, 45] using
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Figure 4. (Colour online) Results of the shooting method applied to equation (3.51). The top figure

is for Γ = 1.7, showing the shooting function Uzzz at the exit point U = Umax as a function of θ.

Two distinct values θ ≈ 0.3650565, 3.1545 yield the solutions (solid, dashed respectively) shown on

the right. The lower figures are for Γ = 1.87. In this case, the values θ ≈ 0.286207, 0.285988 give

nearly indistinguishable solutions (right), suggesting an imminent bifurcation.

perturbation methods. The basic idea is an ansatz

φ(x, τ) = f +

n∑
i=1

(φ0(x− xi(τ)) − f) + εψ(x, τ), τ = εt, (3.57)

where ψ is a correction term and φ0 is a single-peak equilibrium solution with its maximum

at x = 0. As long as the locations xi are sufficiently separated, the correction term has

size ε ∼ exp(−L), where L is the characteristic separation distance. This analysis produces

a system for dxi/dt with nearest neighbour interaction. In the case where the far-field

behaviour of solutions is oscillatory, this takes the form [17] (assuming the positions are

ordered x1 < x2 < x3 < . . .)

dxi

dτ
= F(xi+1 − xi) − F(xi − xi−1), F(x) = I exp(−[Reλ]x) sin([Imλ]x− α). (3.58)

Here, I is a positive integral that depends on φ0, and α is a phase shift that can

be ascertained from the structure of φ0 (if there is no left or right neighbour, the
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corresponding term is ignored). As τ → ∞, steady states may be reached which exhibit

‘mode lock’. This is characterised by peak separation distances that are multiples of the

oscillation wavelength 2π/Imλ, up to some phase shift.

If, instead, the far-field behaviour is characterised by exponential decay, peak locations

still obey a nearest neighbour interaction of the form (3.58a), except F(d) < 0 if d > 0

and the interaction is strictly repulsive. This means multi-peak equilibria that exist for

χN > (χN)osc would break up as χN is decreased past (χN)osc. This is somewhat of an

artefact of using an infinite domain; in a sense, the bifurcation curves “go to infinity”

at χN = (χN)osc. Thus, true multi-peaked equilibria don’t exist for χN > (χN)osc. One

could, in principle, obtain a continuous bifurcation picture by working on a finite domain

instead, although this is not pursued here.

One would expect equation (3.57) to make sense as a large time approximation only

if φ0 were stable. Steady solutions, however, can be built by “gluing” together stable φS

and unstable φU single peaks (assuming χN is in the range where they both exist):

φ(x) = f +

n∑
i=1

(
φSi

0 (x− xi) − f
)

+ O(ε), Si ∈ {S,U}. (3.59)

The calculation of peak locations xi proceeds exactly as in [17]; the details are recounted

in the Appendix. The conclusion is a set of equations with nearest neighbour coupling

0 = F(xi+1 − xi; Si,Si+1) − F(xi − xi−1; Si,Si−1), (3.60)

where a term with index i is suppressed if i � 1, 2, . . . , n. The S dependency in the

interaction functions F accounts for whether neighbouring peaks are stable or unstable.

As with the dynamical interaction, F oscillates if and only if χN > (χN)osc.

From here onward, we will focus on the case of even solutions on the half line [0,∞)

with the first peak fixed at x = 0. The following notation will be adopted: S will denote

a stable peak, U an unstable one, and even multi-peaked states are described by a string

S1S2S3 . . .Sn, where S1 is the stability of the peak located at x = 0. (This could be

equivalently regarded as a state Sn . . .S3S2,S1S2S3 . . .Sn on the whole real line.)

For the case where F oscillates, one can construct any combination S1S2 . . .Sn. This

is done by first determining the spacing of the right-most peak

F(xn − xn−1; Sn−1,Sn) = 0, (3.61)

and then proceeding inductively to find the remaining spacings

F(xi−1 − xi−2; Si−2,Si−1) = F(xi − xi−1; Si,Si−1) = 0, i = n− 1, n− 2, n− 3, . . . (3.62)

For each i, there are many solutions; in what follows, we consider only those for which

the spacing xi − xi−1 is as small as possible so that the dynamical interaction (3.58) is

stable

For finite domains, the argument is somewhat more subtle. If the domain is large

compared to the number of peaks, the exponentially decaying interaction of the right-most

peak and right boundary can be ignored, and the previous construction is asymptotically
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correct. As χN is taken down towards (χN)osc, the preferred spacing of peaks becomes

large (since the imaginary part of the eigenvalue corresponding to spatial decay goes

to zero), and the interaction with the right boundary becomes important. Nevertheless,

the solution branch S1S2 . . .Sn can be continued until a bifurcation point, which is

discussed in the next section.

Stability of the various solution branches can be studied by the linearisation of equation

(2.4) about a steady solution φ, or equivalently by looking at the second variation of the

energy. The latter involves the linear operator

Lφ = − d

dx2
− 2χN − G ∗ +h′′(φ) ≡ L0 + h′′(φ). (3.63)

For the single unstable peak φ = φU , it was shown (Section 3.1) that there is a single

unstable eigenfunction ηU . By virtue of linearisation at infinity, it can be seen that ηU has

the same exponential decay rate as φ0. If there is at least one unstable peak when i = j

in equation (3.59), then the Rayleigh integral is∫
ηU(x− xj)Lφη

U(x− xj)dx

=

∫
ηU(x− xj)L0η

U(x− xj)dx

+

∫
ηU(x− xj)h

′′

(
n∑
i=1

(
φSi

0 (x− xi) − f
))

ηU(x− xj)dx

=

∫
ηU(x− xj)L0η

U(x− xj)dx

+

∫
ηU(x− xj)h

′′(φU(x− xj))η
U(x− xj)dx+ O(ε)

=

∫
ηULφUη

U dx+ O(ε). (3.64)

Thus, the approximate superposition (3.59) is also unstable as long as the negative

eigenvalue of LφU is not exponentially small.

If equation (3.59) is composed of only stable peaks, then one must consider the role

of interaction (2.4). The eigenvalues more or less divide into two categories [46]: order

1 eigenvalues associated with the stability of a single peak, and exponentially small

eigenvalues which can be ascertained perturbatively from linearisation of the reduced

dynamics (2.4). We will suppose that the SSS . . . branches under consideration are strictly

those formed by stable interactions. Existence of these types of solutions were explored

previously [17].

4 Self-replication

4.1 The global bifurcation diagram

The previous section derived local solution branches that form the connected fundamental

branch. The small-amplitude solutions grow as χN is reduced, pass through the interme-

diate region and bifurcate at the fold point (χN)MD . As χN then increases along the stable
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Figure 5. (Colour online) Numerical continuation of the primary (one peak) branch of steady

states. The vertical axis represents the L2 norm of φ − f. Small-amplitude solutions (A) grow and

bifurcate to create the stable branch (B). This branch then bifurcates at (χN)SR and creates a

solution (C) which is an approximate superposition of small-amplitude unstable peaks and a stable

peak in the middle.

branch, the intermediate region is passed leading to the parameter region described by

the upper bifurcation point. The continuation of this branch past the upper bifurcation

point (χN)SR is less clear.

To explore this issue, we use numerical pseudo-arclength continuation [1] to compute

solutions of (3.1) past the fold point. The results for even symmetry solutions are shown

in Figure 5. The calculation suggests that the route the bifurcation takes is to ‘glue’ an

unstable branch solution on each side of the stable peak. As χN is further reduced, the

outlying peaks grow until the next fold point χMD is reached. At this point, all three peaks

are essentially the same size, and each is at the transition from stable to unstable. This

point is the intersection of two different branches: one describing the SU → US transition

and the other describing the UU → SS transition (see Figure 6).

The same reasoning can lead to a repeated construction of different branches labelled

by a string of S and U symbols. Thus, the SS branch bifurcates at (χN)SR to the SSU

branch, which continues (with χN decreasing) until the merger with the UUU, UUS ,

USU, USS , SUU, SUS and SSS branches. Note that we could also construct other

solution branches for which the spacing between peaks was not minimal (e.g. adding

other multiples of the tail oscillation frequency), but we avoid that complexity here.

4.2 Dynamic pathways

Certain qualitative aspects of dynamics (equation (2.4)) can also be inferred from the

global bifurcation diagram, at least in a region of parameter space near the interval

(χN)MD � χN � (χN)SR . The reasoning relies on persistence of heteroclinic orbits (in

the time-dependent PDE sense) connecting unstable and stable states. One must verify or

https://doi.org/10.1017/S0956792511000398 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000398


334 K. B. Glasner

Figure 6. (Colour online) Sketch of the global bifurcation diagram for even-symmetry solutions

and corresponding dynamic pathways. The fundamental stable and unstable branches near the

bottom are labelled U and S . The other branches are predicted by the singular perturbation

calculation derived from the approximate superposition of single-peak solutions. By virtue of the

stability of various branches, heteroclinic pathways leading from unstable to stable branches can

be inferred (represented schematically by solid arrows). Past the lower (χN)MD or upper (χN)SR
bifurcation points, one expects the dynamical pathways to persist, leading to pattern collapse or

self-replication (the vertical axis is an arbitrary coordinate).

otherwise accept that as the bifurcation parameter χN changes, these orbits continuously

deform and remain qualitatively intact.

Heteroclinic pathways are created, in a sense, at the bifurcation points. For example, by

virtue of stability of the SS state, near (χN)MD there are trajectories leading from the SU,

US and UU branches (in Figure 6, these are the solid arrows). If these pathways persist as

χN increases, this implies a connection between the SU and SS branches near the upper

bifurcation point (χN)SR . There is also a complementary heteroclinic connection between

the SU and S branches near (χN)SR , so there is consequently a pathway connecting them

even near (χN)MD . The conclusion is that a perturbation of the (unstable) SU state would

likely do one of two things: either proceed towards the stable peak S by shedding outlying

peaks, or move towards SS by growth of the outlying peaks.
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4.3 Self-replication and pattern collapse

Just beyond the bifurcation points, localised states give way to dynamical phenomena.

It was shown in [17] that the free energy of a single peak becomes negative (relative

to the flat state) as χN is increased. Adiabatically increasing χN past (χN)SR must

therefore lead to pattern propagation, rather than collapse towards the homogeneous

state φ = f. This propagation takes the form of self-replication of individual peaks

outward in space. This phenomenon has been commonly observed and studied in a

variety of models [12, 23, 30, 35, 37].

There are two commonly observed scenarios for self-replication. One is where peaks

appear to split apart, sometimes termed ‘pulse splitting’ [23]. In contrast, our situation is

like ‘edge-splitting’ [22] or ‘peak insertion’ [33], where peaks nucleate from the homogen-

eous state rather instead. It should be emphasised that this phenomenon is distinct from

propagation into an unstable homogeneous state since χN may be below the spinodal

instability threshold.

A basic explanation for self-replication in pattern-forming systems was put forward

by Nishiura and Ueyama (NE) [30]. Their idea is that self-replication dynamics are an

‘aftereffect’ of simultaneous (or nearly simultaneous) saddle-node bifurcations. When the

fixed points disappear, there are still attractive orbits passing close to the saddle-node

bifurcations. Provided these orbits lead approximately from one bifurcation point to

another, one expects dynamics which appear to create new near-equilibrium structures.

In our problem, the upper bifurcation points of all multi-peak states are approximately

(χN)SR , simply as a result of the cut-and-paste construction which utilises the single-peak

solution. This, of course, does not preclude the possibility that the multi-peak solutions

might persist just above (χN)SR , but these states would have to be outside of the range

of validity of the perturbation expansion. The upper bounds for existence (in χN) for the

S , SS and SSS stable solutions were checked numerically and found to be almost exactly

the same. This seems to be a special feature of our problem. Indeed, it has been observed

elsewhere (e.g. [30]) that the fold points are often not perfectly aligned, but form a sort

of cascade structure where the domain of existence expands as the bifurcation diagram is

traversed upwards.

The other ingredient in self-replication is the requirement that a dynamically relevant

trajectory (that is, one which attracts a large set) leads from one state to another. In

other words, one must have a pathway that closely proceeds as S → SS → SSS → . . ..

The justification for this comes from extending the heteroclinic orbits from the unstable

branches to the stable ones (the solid arrows in Figure 6), just past the bifurcation point.

Starting from an initial condition near the single peak S , the dynamics would seem to

jump on the heteroclinic branch connecting SU to SS , which is described by the growth

of a peak to the right of the first large one. This is precisely what is seen in numerical

experiments (Figure 7).

It is also interesting to ask what happens in the reverse case, when χN is decreased

below (χN)MD . There are heteroclinic orbits which connect the multi-peaked unstable

branches U, UU, UUU etc., to the homogeneous state φ = f. The continuation of

these orbits past the bifurcation point does not lead to a single pathway of the form

UUU → UU → U but rather many distinct paths, all of which lead directly from an
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Figure 7. (Colour online) Numerical evolution of self-replication (χN = 71.5, f = 0.1, γ = 72). The

initial condition was found by setting χN = 70 < (χN)SR ≈ 71.4 and relaxing to a single-peaked

equilibrium. The dynamics lead to the creation of a rapidly growing outlying peak at about x = 7.5.

N-peak state to the flat state. Therefore, one expects collapse of the pattern, rather than

self-replication in reverse. This is corroborated by numerical experiments.

4.4 Scaling of self-replication velocity

We conclude the discussion of self-replication by a numerical study of the velocity of

pattern propagation as a function of the parameter χN. Near the onset of self-replication,

the dynamics are multi-scale: they are slow between self-replicating events, where small

outlying peaks take a long time to nucleate, and fast during the growth process. The

passage of an orbit near a saddle-node bifurcation point is necessarily slow; in particular,

the time of passage should scale as (χN − (χN)SR)−1/2.

As further evidence of the NE self-replication scenario, numerical experiments were

conducted to examine the rate of pattern growth from a single peak. The domain was

chosen to be large enough to accommodate at least 20 peaks. Times and locations were

recorded for the ‘birth’ of each subsequent peak, and linear regression was used to compute

an average velocity. The results of this experiment are shown in Figure 8. The fit of the

scaling exponent was very close to the predicted value of 1/2.

Note that two data points in Figure 8 are for χN > (χN)s. In this case, the pattern

is propagating into an unstable flat state instead. This appears to be different than

propagation into an unstable state predicted by linear mechanisms (e.g. [11, 42]). In

particular, the propagation speed is non-zero as the point of instability is crossed.

5 Conclusion

Localised states in models of block co-polymers have a complex, inter-connected bifurc-

ation diagram. One can infer dynamics from the global picture, and draw conclusions

about the mechanisms that lead from a disordered arrangement of localised structures to

a patterned state. This lends some clarity to the theoretical description of heterogeneous

structures that appear independently of spinodal decomposition.

Physically, the one-dimensional equilibria studied correspond to three-dimensional

bilayers of infinite extent. This case was the main focus of this paper, since many of

the calculations can be made explicitly. One finds a similar description for 2-D axisym-

metric and 3-D spherical localised states [17], corresponding to cylindrical and spherical
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Figure 8. (Colour online) Speed of self-replication, obtained by linear regression of peak growth

events. Also shown is a power law fit giving scaling exponent ≈ 0.51. (f = 0.1, γ = 72).

micelles respectively. The higher dimensional analogue of multi-peak solutions are mi-

celle clusters, which can be predicted by the exponentially small interaction of individual

micelles. Self-replication can also be seen in higher dimensions, but it is complicated by

other instabilities in micellar structures themselves [17].

There has been an ongoing discussion in the literature about the nature of the order–

disorder transition for block co-polymers [13,34,43]. Central to this issue is the appearance

of states with no long-range order (i.e. disordered micelles). An outstanding question is

how to characterise the multiplicity of metastable states in this regime. One approach is

that of Zhang and Wang [47], who compute the configurational entropy [28] in a density

functional model. Their conclusions indicate that for highly asymmetric volume fractions,

there can be a glass transition which occurs at temperatures above the spinodal. This is

consistent with our picture of a multiplicity of metastable equilibria, at least up to the

point of self-replication. This phenomenon suggests a transition to equilibria which are

space-filling patterns with some degree of ordering, instead of being trapped in a single

metastable glass-like state, however.

One physically important phenomenon which is lacking in the present description

are fluctuations which describe deviations from the mean-field approximation. There are

systematic ways of including these into equilibrium descriptions of block co-polymers [16],

but less has been done incorporating them into a dynamical theory. One might consider an

ad-hoc approach, allowing for stochastic motion and nucleation of individual structures

within a reduced dynamical description. This would allow for aggregation and/or self-

organisation of micelle clusters by virtue of interaction dynamics. Additionally, nucleation

of new structures would be expected near the self-replication threshold, since the free

energy barriers between multi-peak states become small. In this sense, self-replication

might be preempted by fluctuation-driven nucleation.

The ingredients we identify that culminate in self-replication dynamics are not particular

to block co-polymers. The central features which generate this phenomenon are (1) a
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sub-critical bifurcation of a single elementary localised state giving rise to an unstable

and stable branch, (2) the ability to glue together stable and unstable localised states,

(3) the simultaneous loss of all localised states at some upper bifurcation point. These

phenomena are very common throughout the literature on pattern-forming systems [9].

A complete description of the order–disorder transition in three dimensions is much

more complicated by virtue of other instabilities that arise. In two dimensions, these

take the form of micelles which deform as growing filaments, which themselves may

become unstable [17]. A more detailed examination of these dynamical modes may lead

to a better understanding of the morphology that is observed in the ordered regime as

well.

Appendix

Details leading to equation (3.60) are now given. The calculation proceeds as in [14, 17].

Starting from equation (3.59), the correction term solves the linear equation

Lψ = −ε−1Rxx, R ≡ N

(
f +

n∑
i=1

(φSi

i − f)

)
−

n∑
i=1

N(φi − f), (A1)

where φi = φ0(x − xi) has been used and Nxx is the non-linear part of the equation for

φS or φU:

−aφxxxx + [g′′(f)(φ− f) +N(φ)]xx + γ(f − φ) ≡ Lφ+N(φ),

N(φ) ≡ g′(φ) − g′′(f)(φ− f) − g′(f). (A2)

Note the R term is actually O(ε).

One obtains a solvability condition for equation (A1) using the approximate eigenfunc-

tions ηS,S = S,U satisfying

−a(ηS)xxxx + g′′(φS
0 )ηS

xx − γηS = 0, (A3)

together with an appropriate decay condition for |x| → ∞. In one dimension, these are

explicitly

ηS(x) =

∫ x

−∞
φS

0 (x′) dx′. (A4)

Note that η has the same decay rate in the far field as φ0.

Multiplying equation (A1) by ηSl (x − xl), l = 1, 2, . . . , n, and integrating over the real

line, at leading order one gets

0 =
∑
i�l

∫
N ′(φSl

l )(φSii − f)(φSl

l )x dx∫
(φSl

l )xηSl (x− xl)dx
. (A5)

The far-field behaviour of equilibria (3.1) can be written as

φS
0 − f ∼ Re

[
AS exp(−QSx)

]
, x → ∞,
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where A may be complex. Since the numerator of (A5) has an order 1 factor and a factor

which can be approximated by the exponentially small tail of φ0, for xl > xj this integral

approximates to

Re

[∫
AS exp(−QS(x− xj))N

′(φSl

l )(φSl

l )xdx

]
= Re

[
ASIS exp(QS(xj − xl))

]
,

IS ≡
∫

exp(−QSx)N ′(φS
0 )(φS

0 )x dx. (A6)

Since all these integrals are O(ε2) except for those involving the nearest neighbours,

equation (A5) reduces to equation (3.60) with

F(x; Si,Si+1) = Re
[
J exp(−QSix)

]
, J ≡ ASi+1ISi+1∫

(φ0)xηSi+1 dx
. (A7)
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