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We prove that the number of multigraphs with vertex set {1, . . . ,n} such that every four vertices

span at most nine edges is an2+o(n2) where a is transcendental (assuming Schanuel’s conjecture
from number theory). This is an easy consequence of the solution to a related problem about
maximizing the product of the edge multiplicities in certain multigraphs, and appears to be the first
explicit (somewhat natural) question in extremal graph theory whose solution is transcendental.
These results may shed light on a question of Razborov, who asked whether there are conjectures
or theorems in extremal combinatorics which cannot be proved by a certain class of finite methods
that include Cauchy–Schwarz arguments.

Our proof involves a novel application of Zykov symmetrization applied to multigraphs, a
rather technical progressive induction, and a straightforward use of hypergraph containers.

2010 Mathematics subject classification: Primary 05D99
Secondary 05C35, 05C22

1. Introduction

All logarithms in this paper are natural logarithms unless the base is explicitly written. Given a
set X and a positive integer t, let (

X
t

)
= {Y ⊆ X : |Y | = t}.

A multigraph is a pair (V,w), where V is a set of vertices and

w :

(
V
2

)
→ N = {0,1,2, . . .}.
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Definition 1.1. Given integers s � 2 and q � 0, a multigraph (V,w) is an (s,q)-graph if for
every X ∈

(V
s

)
we have

∑
xy∈(X

2)
w(xy) � q.

An (n,s,q)-graph is an (s,q)-graph with n vertices, and F(n,s,q) is the set of (n,s,q)-graphs
with vertex set [n] := {1, . . . ,n}.

The main goal of this paper is to prove that the maximum product of the edge multiplicities
over all (n,4,15)-graphs is

2γn2+O(n), (1.1)

where

γ =
β 2

2
+β (1−β )

log3
log2

and β =
log3

2log3− log2
.

It is an easy exercise to show that both β and γ are transcendental by the Gelfond–Schneider
theorem [9]. Using (1.1), we will prove that

|F(n,4,9)| = an2+o(n2), (1.2)

where a = 2γ is also transcendental (assuming Schanuel’s conjecture in number theory).
Many natural extremal graph problems involving edge densities have rational solutions, and

their enumerative counterparts have algebraic solutions. Specifically, for a set F of finite graphs,
the number of F-free graphs on [n] is 2(π(F)+o(1))(n

2), where π(F) is the Turán density of F
(which is rational due to the Erdős–Simonovits–Stone theorem [5, 6]). For example, the Erdős–
Kleitman–Rothschild theorem [4] states that the number of triangle-free graphs on [n] is
2n2/4+o(n2) and 21/4 is algebraic since 1/4 is rational. For hypergraphs the situation is more
complicated, and the first author and Talbot [13] proved that certain partite hypergraph Turán
problems have irrational solutions (meaning irrational values of an analogue of Turán density).
Going further, the question of obtaining transcendental solutions for natural extremal problems
is an intriguing one. This was perhaps first explicitly posed by Fox (see [17]) in the context of
Turán densities of hypergraphs. Pikhurko [17] showed that the set of hypergraph Turán densities
is uncountable, thereby proving the existence of transcendental ones (see also [10]), but his list
of forbidden hypergraphs was infinite. When only finitely many hypergraphs are forbidden, he
obtained irrational densities. To our knowledge, (1.1) and (1.2) are the first examples of fairly
natural extremal graph problems whose answer is given by (explicitly defined) transcendental
numbers (modulo Schanuel’s conjecture in the case of (1.2)).

Another area that (1.1) may shed light on is the general question of whether certain proof meth-
ods suffice to solve problems in extremal combinatorics. The explosion of results in extremal
combinatorics using flag algebras [18] in recent years has put the spotlight on such questions,
and Razborov first posed this in Question 1 of [18]. A significant result in this direction is due to
Hatami and Norine [11]. They prove that the related question (due in different forms to Razborov,
Lovász and Lovász–Szegedy) of whether every true linear inequality between homomorphism
densities can be proved using a finite amount of manipulation with homomorphism densities
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of finitely many graphs is not decidable. While we will not attempt to state Question 1 of [18]
rigorously here, its motivation is to understand whether the finite methods that are typically
used in combinatorial proofs of extremal results (formalized by flag algebras and the Cauchy–
Schwarz calculus) suffice for all extremal problems involving subgraph densities. Although we
cannot settle this, one might speculate that these finite ‘Cauchy–Schwarz methods’ may not be
enough to obtain (1.1). In any event, (1.1) seems to be a good test case. Curiously, our initial
explorations into (1.1) were through flag algebra computations which gave the answer to several
decimal places and motivated us to obtain sharp results, though our eventual proof of (1.1) uses
no flag algebra machinery. Instead, it uses some novel extensions of classical methods in extremal
graph theory, and we expect that these ideas will be used to solve other related problems.

As remarked earlier, (1.2) is a fairly straightforward consequence of (1.1) and since the ex-
pression in (1.1) is obtained as a product (rather than sum) of numbers, it is easier to obtain
a transcendental number in this way. However, we should point out that an extremal example
for (1.1) (and possibly all extremal examples, though we were not able to show this) involves
partitioning the vertex set [n] into two parts where one part has size approaching βn, and β is
also transcendental (see Definition 2.3 and Theorem 2.4 in the next section). This might indicate
the difficulty in proving (1.1) using the sort of finite methods discussed above.

Finally, we would like to mention that the problem of asymptotic enumeration of (n,s,q)-
graphs is a natural extension of the work on extremal problems related to (n,s,q)-graphs by
Bondy and Tuza in [3] and by Füredi and Kündgen in [8]. Further work in this direction, including
a systematic investigation of extremal, stability and enumeration results for a large class of pairs
(s,q), will appear in [16] (see also [14] for another example on multigraphs). Alon [1] asked
whether the transcendental behaviour witnessed here is an isolated case. Although we believe
that there are infinitely many such examples (see Conjecture 6.3 in Section 6) we were not able
to prove this for any other pair (s,q). The infinitely many pairs for which we obtain precise
extremal results in [16] have either rational or integer densities.

2. Results

Given a multigraph G = (V,w), define

P(G) = ∏
xy∈(V

2)
w(xy) and (G) = ∑

xy∈(V
2)

w(xy).

Given X ⊆ [n], define

SG(X) = ∑
xy∈(X

2)
w(xy).

We will omit the superscript when it is clear from the context.

Definition 2.1. Suppose s � 2 and q � 0 are integers. Define

exΠ(n,s,q) = max{P(G) : G ∈ F(n,s,q)} and exΠ(s,q) = lim
n→∞

(exΠ(n,s,q))1/(n
2).

An (n,s,q)-graph G is product-extremal if P(G) = exΠ(n,s,q). The limit exΠ(s,q) (which we
will show always exists) is called the asymptotic product density.
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The following result is an enumeration theorem for (n,s,q)-graphs in terms of exΠ(s,q+
(s

2

)
).

Theorem 2.2. Suppose s � 2 and q � 0 are integers. If exΠ(s,q+
(s

2

)
) > 1, then

exΠ

(
s,q+

(
s
2

))(n
2)

� |F(n,s,q)| � exΠ

(
s,q+

(
s
2

))(1+o(1))(n
2)

,

and if exΠ(s,q+
(s

2

)
) � 1, then |F(n,s,q)| � 2o(n2).

Theorem 2.2 follows from what are now standard arguments employing the hypergraph con-
tainers method of [2, 19], and it is also a special case of Theorem 3 of [20] as well as The-
orem 2.12 of [7]. For these reasons we omit the proof here, and direct the reader to [15] where the
proof appears in detail. Theorem 2.2 reduces the problem of enumerating F(n,4,9) to computing
exΠ(4,15). This will be the focus of the remainder of this paper.

Definition 2.3. Given n, let W (n) be the set of multigraphs G = ([n],w) for which there is a
partition L,R of [n] such that w(xy) = 1 if xy ∈

(L
2

)
, w(xy) = 2 if xy ∈

(R
2

)
, and w(xy) = 3 if

(x,y) ∈ L×R.

We now make a few observations about W (n). First, note that W (n)⊆ F(n,4,15) for all n ∈N.
Given G ∈W (n) with corresponding partition L,R of [n], a 4-set X ∈

([n]
4

)
spans exactly 15 edges

in G if and only if 1 � |X ∩L|� 2. Straightforward calculus shows that for G ∈W (n), the product
P(G) is maximized when |R| ≈ βn, where β = log3/(2log3− log2) is a transcendental number.
This optimization ensures that every vertex contributes roughly the same amount to the product.
Indeed, if R has size about xn, the vertices in R contribute p = 2xn−13(1−x)n, and vertices in L
contribute 3xn. Making these contributions roughly equal requires x log2+(1−x) log3 = x log3,
which, when solved, yields that x = β . As β is transcendental, this might indicate the difficulty
of obtaining this extremal construction using a standard induction argument. Given a family of
hypergraphs F , write P(F) for the set of G ∈ F with P(G) = max{P(G′) : G′ ∈ F}. We use the
shorthand P(n,s,q) for P(F(n,s,q)).

Theorem 2.4. For all sufficiently large n, P(W (n)) ⊆ P(n,4,15). Consequently

exΠ(n,4,15) = max
G∈W (n)

P(G) = 2γn2+O(n) and exΠ(4,15) = 22γ ,

where

γ =
β 2

2
+β (1−β ) log2 3 and β =

log3
2log3− log2

.

For reference, β ≈ 0.73 and 2γ ≈ 1.49. The result below follows directly from Theorems 2.2
and 2.4.

Theorem 2.5. |F(n,4,9)| = 2γn2+o(n2).
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Proof. Theorem 2.4 implies exΠ(4,15) = 22γ > 1. By Theorem 2.2, this implies that

exΠ(4,15)(
n
2) � |F(n,4,9)| � exΠ(4,15)(1+o(1))(n

2).

Consequently, |F(n,4,9)| = 22γ(n
2)+o(n2) = 2γn2+o(n2).

Recall that Schanuel’s conjecture from the 1960s (see [12]) states the following: if z1, . . . ,zn are
complex numbers which are linearly independent over Q, then Q(z1, . . . ,zn,ez1 , . . . ,ezn) has tran-
scendence degree at least n over Q. As promised in the Introduction and abstract, we now show
that assuming Schanuel’s conjecture, 2γ is transcendental. Observe that this implies exΠ(4,15) =
22γ is also transcendental over Q, assuming Schanuel’s conjecture.

Proposition 2.6. Assuming Schanuel’s conjecture, 2γ is transcendental.

Proof. Assume Schanuel’s Conjecture holds. It is well known that Schanuel’s conjecture im-
plies log2 and log3 are algebraically independent over Q (see for instance [21]). Observe γ =
f (log2, log3)/g(log2, log3) where f (x,y) = xy2/2 + y2(y− x) and g(x,y) = x(2y− x)2. Note
that the coefficient of x3 in f (x,y) is 0 while in g(x,y) it is 1. We now show log2, log3,γ log2 are
linearly independent over Q. Suppose for a contradiction that this is not the case. Then there are
non-zero rationals p,q,r such that

p log2+q log3+ rγ log2 = 0.

Replacing γ with f (log2, log3)/g(log2, log3), this implies

p log2+q log3+ r
f (log2, log3)
g(log2, log3)

log2 = 0.

By clearing the denominators of p,q,r and multiplying by g(log2, log3), we obtain that there are
integers a,b,c, not all zero, such that

(a log2+b log3)g(log2, log3)+ c f (log2, log3) log2 = 0.

Let p(x,y) = (ax+by)g(x,y)+ c f (x,y)x. Observe that p(x,y) is a rational polynomial such that
p(log2, log3) = 0. Since the coefficient of x3 is 1 in g(x,y) and 0 in f (x,y), the coefficient of x4

in p(x,y) is a 	= 0. Thus p(x,y) has at least one non-zero coefficient, contradicting that log2 and
log3 are algebraically independent over Q. Thus log2, log3,γ log2 are linearly independent over
Q, so Schanuel’s conjecture implies Q(log2, log3,γ log2,2γ) has transcendence degree at least
3 over Q. Suppose towards a contradiction that 2γ is not transcendental. Then log2, log3,γ log2
must be algebraically independent over Q. Let h(x,y,z) = zg(x,y)− x f (x,y). Then it is clear
h(x,y,z) has non-zero coefficients, and

h(log2, log3,γ log2) = (γ log2)g(log2, log3)− (log2) f (log2, log3) = 0,

where the second equality uses the fact that γ = f (log2, log3)/g(log2, log3). But this implies
log2, log3,γ log2 are algebraically dependent over Q, a contradiction. Thus 2γ is
transcendental.
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3. Extremal result for (n,4,15)-graphs: a two-step reduction

In this section we reduce Theorem 2.4 to two stepping-stone theorems, Theorems 3.2 and 3.3
below. These theorems focus on understanding the structure of (4,15)-graphs which are product-
extremal subject to certain constraints. Given a set F of multigraphs, recall that

P(F) = {G ∈ F : P(G) � P(G′) for all G′ ∈ F} and P(n,4,15) = P(F(n,4,15)).

The first step, Theorem 3.2, shows that a product extremal (n,4,15)-graph cannot have a
triangle spanning more than eight edges or an edge of multiplicity greater than 3. This idea
behind the proof (Section 5) is as follows. If G ∈ F(n,4,15) contains a triangle supporting
at least nine edges, then the contribution of its three vertices to the total product is at most
27 · 23(n−3), which is much less than 33β (n−3) (as one would obtain in an optimized element of
W (n)). Assuming now there are no triangles supporting nine edges in G, an edge of multiplicity
4 could contribute at most 4 ·22(n−2) to the total product, which is much less than 32β (n−2) (again,
as one would obtain in an optimized element of W (n)). Therefore, since these bad configurations
imply the existence of vertices with small product-degree, they cannot exist in any product-
extremal element of F(n,4,15). We now state this result precisely.

Definition 3.1. Given n ∈ N, define F�3(n,4,15) = {G ∈ F(n,4,15) : μ(G) � 3} and

D(n) = F�3(n,4,15)∩F(n,3,8).

Theorem 3.2. For all sufficiently large n, P(n,4,15) = P(D(n)).

The second step, Theorem 3.3, shows there is a product extremal (n,4,15)-graph G in both
D(n) and W (n).

Theorem 3.3. For all sufficiently large n, P(D(n))∩P(W (n)) 	= /0.

The proof of Theorem 3.3 requires several lemmas, and appears in Section 4. We use the rest
of this section to prove Theorem 2.4, given Theorems 3.2 and 3.3. Given G = ([n],w) ∈ W (n),
let L(G) and R(G) denote the parts in the partition of [n] such that w(xy) = 1 if and only if
xy ∈

(L(G)
2

)
. Recall the definition of γ from Theorem 2.4.

Lemma 3.4. For all G ∈ P(W (n)), we have P(G) = 2γn2+O(n).

Proof. Let G = ([n],w) ∈ W (n). Set h(y) = 2(y
2)3y(n−y) and observe that if |L(G)| = n− y and

|R(G)| = y, then P(G) = h(y). Thus it suffices to show that maxy∈[n] h(y) = 2γn2+O(n). Basic cal-
culus shows that h(y) has a global maximum at τ = βn− (log2)/(2(2log3− log2)), where β =
log3/(2log3− log2) is as in Theorem 2.4. This implies maxy∈N

h(y) = max{h(
τ�),h(�τ)}. It
is straightforward to check max{h(
τ�),h(�τ)} = max{h(
βn,�),h(�βn)}. By definition of γ
and h, this implies maxy∈[n] h(y) = 2γn2+O(n).

Proof of Theorem 2.4. Fix n sufficiently large and G1 ∈ P(W (n)). By Theorem 3.3, there
is some G2 ∈ P(D(n))∩P(W (n)). Since G1 and G2 are both in P(W (n)), P(G1) = P(G2).
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Our assumption and Theorem 3.2 imply G2 ∈ P(D(n)) = P(n,4,15), so P(G2) = exΠ(n,4,15).
Combining these facts yields P(G1) = P(G2) = exΠ(n,4,15), so G1 ∈ P(n,4,15). This shows
P(W (n)) ⊆ P(n,4,15). Since G1 ∈ P(n,4,15)∩P(W (n)), Lemma 3.4 implies exΠ(n,4,15) =
P(G1) = 2γn2+O(n). By definition, we have that exΠ(4,15) = 22γ .

4. Proof of Theorem 3.3

The goal of this section is to prove Theorem 3.3. It will require many reductions and lemmas. The
general strategy is to show we can find elements in P(D(n)) with increasingly nice properties,
until we can show there is one in W (n).

The proof methods can be viewed as a generalization of Zykov symmetrization to multigraphs.
For graphs, Zykov symmetrization allows us to assure that any extremal graph is almost regular,
since otherwise we may increase the number of edges. For example, given a triangle-free graph
G = (V,E), if xy ∈ E satisfies d(y) > d(x)+ 1, then one can increase the total number of edges
without creating a triangle by deleting x, replacing it with a copy y′ of y, then declaring yy′ /∈ E.
After repeating this process enough times, one obtains a triangle-free graph where all vertices
have roughly the same degree, and where the number of edges is as large as possible. We apply
a version of this idea to multigraphs. Specifically, we will show that in certain product-extremal
multigraphs, all vertices will have roughly the same product-degree.

Definition 4.1. For a multigraph G = (V,w), the product-degree of x ∈V is

p(x) := ∏
u∈V\{x}

w(ux).

Specifically, given G ∈ F(n,4,15), we will replace and duplicate vertices to obtain a new
multigraph G′ ∈ F(n,4,15) where all vertices have roughly the same value of p(x) and where
P(G′) � P(G). We now give some definitions which will be used in this section.

Given a multigraph G = (V,w), let ∼G be the binary relation on V defined by x ∼G y if and
only if either x = y, or w(xy) = 1 and for all z ∈V \{x,y}, w(xz) = w(yz).

Proposition 4.2. Suppose G = (V,w) is a multigraph. Then ∼G forms an equivalence relation
on V . Moreover, if Ṽ = {V1, . . . ,Vt} is the set of equivalence classes of V under ∼G, then for each
i 	= j, there is wi j ∈ {1,2,3} such that for all (x,y) ∈Vi ×Vj, w(xy) = wi j.

The proof is straightforward and left to the reader. Given G = (V,w) and i, j,k ∈ N, an (i, j,k)-
triangle in G is a set {x,y,z} ∈

(V
3

)
such that {w(xy),w(yz),w(xz)} = {i, j,k}. Say that G omits

(i, j,k)-triangles if there is no (i, j,k)-triangle in G.

Definition 4.3. A multigraph G is neat if μ(G) � 3 and G omits (i, j,k)-triangles, for each
(i, j,k) ∈ {(1,1,2),(1,1,3),(1,2,3)}.

In neat multigraphs, ∼G is especially well-behaved.
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x y

u

w(x,y)

w(x,u) w(y,u)

G

x y

u

1

w(y,u) w(y,u)

Gx→y

Figure 1. A triangle {x,y,u} in G versus Gx→y.

Proposition 4.4. Suppose G = (V,w) is a neat multigraph. Then for all x,y ∈V , x ∼G y if and
only if w(xy) = 1. Moreover, if Ṽ = {V1, . . . ,Vt} is the set of equivalence classes of V under ∼G,
then for each i 	= j, there is wi j ∈ {2,3} such that for all (x,y) ∈Vi ×Vj, w(xy) = wi j.

Again, the proof is straightforward and left to the reader.

4.1. Finding a neat multigraph in P(D(n))
Definition 4.5. Suppose n � 1. Define C(n) to be the set of neat multigraphs in D(n), that is,

C(n) = {G ∈ D(n) : G omits (i, j,k)-triangles, for each (i, j,k) ∈ {(1,1,2),(1,1,3),(1,2,3)}}.

Observe that for all n, W (n)⊆C(n)⊆D(n). The goal of this subsection is to prove Lemma 4.8,
which says that for all n, there is a product-extremal element of D(n) which is also in C(n). We
begin with some notation.

Suppose G = (V,w) is a multigraph. Given x 	= y ∈ V , define Gx→y = (V,w′) to be the multi-
graph such that

• Gx→y[V \{x,y}] = G[V \{x,y}],
• w′(xy) = 1, and
• for all u ∈V \{x,y}, w′(xu) = w(yu).

The idea is that Gx→y is obtained from G by making the vertex x ‘look like’ the vertex y. See
Figure 1 for an illustration of a triangle {x,y,u} in G versus Gx→y.

Observe that if G′ = Gx→y, then x ∼G′ y. This cloning operation affects P(G) as follows. For
any xy ∈

(V
2

)
,

P(Gx→y) =
p(y)

p(x)w(xy)
P(G). (4.1)

Lemma 4.6. Suppose n � 1, G ∈ D(n), and uv ∈
([n]

2

)
. Then Gu→v ∈ D(n).
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Proof. Fix G = ([n],w) ∈ D(n) and let G′ := Gu→v = ([n],w′). We show G′ ∈ D(n). Given X ⊆
[n], let S(X) = SG(X) and S′(X) = SG′

(X). By definition of Gu→v and because G ∈ D(n), μ(G′) �
3. We now check that G′ ∈F(n,4,15). Suppose X ∈

([n]
4

)
. If u /∈X , then S′(X) = S(X) � 15. If X∩

{u,v} = {u}, then S′(X) = S((X \{u})∪{v}) � 15. So assume {u,v} ⊆ X , say X = {u,v,z,z′}.
Because G ∈ F(n,3,8) and by definition of Gu→v, we have that S′({v,z,z′}) = S({v,z,z′}) � 8.
Combining this with the facts that w′(uv) = 1 and μ(G′) � 3 yields

S′(X) = S′({v,x,y})+w′(uv)+w′(ux)+w′(uy) � 8+1+3+3 = 15.

We now verify that G′ ∈ F(n,3,8). Suppose X ∈
([n]

3

)
. If u /∈ X , then S′(X) = S(X) � 8. If X ∩

{u,v} = {u}, then S′(X) = S((X \ {u})∪ {v}) � 8. So assume {u,v} ⊆ X , say X = {u,v,z}.
Because μ(G′) � 3,

S′(X) � w′(uv)+3+3 = 1+3+3 = 7 � 8.

Consequently, G′ ∈ F�3(n,4,15)∩F(n,3,8) = D(n).

Corollary 4.7. Suppose n � 1, G = ([n],w)∈P(D(n)) and uv∈
([n]

2

)
. If w(uv) = 1, then Gu→v ∈

P(D(n)).

Proof. By Lemma 4.6, Gv→u ∈ D(n). Combining this with (4.1) and the fact that G ∈ P(D(n))
yields that

P(Gv→u) =
p(u)
p(v)

P(G) � P(G).

Thus p(u) � p(v). The symmetric argument shows p(v) � p(u), so p(u) = p(v). Therefore,

P(Gu→v) =
p(v)
p(u)

P(G) = P(G),

which implies Gu→v ∈ P(D(n)).

Given G = (V,w), set

tG =
∣∣∣∣
{

xy ∈
(

V
2

)
: x ∼G y

}∣∣∣∣.
We now prove the main result of this subsection.

Lemma 4.8. For all n � 1, P(D(n))∩C(n) 	= /0. Consequently, P(C(n)) ⊆ P(D(n)).

Proof. Fix G = ([n],w)∈P(D(n)) such that tG is maximal among the elements of P(D(n)). Let
V1, . . . ,Vk be the ∼G-classes of G, enumerated so that |V1|� · · ·� |Vk|. Suppose there is i < j and
(x,y)∈Vi×Vj such that w(xy) = 1. Let G′ = ([n],w′) = Gx→y. By Corollary 4.7, G′ ∈ P(D(n)). It
is straightforward to check that the ∼G′ classes of G′ are V ′

1, . . . ,V
′

k , where V ′
i =Vi \{x}, V ′

j =Vj ∪
{x} and V ′

� = V� for all � ∈ [k]\{i, j}. Consequently, tG′ = tG + |Vj|− |Vi|+1 > tG, contradicting
the maximality of tG. Thus, for all i 	= j and (x,y) ∈ Vi ×Vj, w(xy) 	= 1. By Proposition 4.2, we
must have that for all i 	= j, either w(xy) = 2 for all (x,y) ∈Vi ×Vj, or w(xy) = 3 for all (x,y) ∈
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Vi×Vj. This implies that G omits (i, j,k)-triangles for each (i, j,k)∈ {(1,1,2),(1,1,3),(1,2,3)}.
Thus G ∈ P(D(n))∩C(n). Combining this with C(n)⊆ D(n) yields that P(C(n))⊆P(D(n)).

4.2. Acyclic multigraphs
We say two multigraphs G = (V,w) and G′ = (V ′,w) are isomorphic, denoted G ∼= G′, if there is
a bijection f : V → V ′ such that w(xy) = w′( f (x) f (y)), for all xy ∈

(V
2

)
. We say that G = (V,w)

contains a copy of G′ if there is X ⊆V such that G[X ] ∼= G′.

Definition 4.9. Given t � 3, define Ct(3,2) to be the multigraph ([t],w) such that

w(12) = w(23) = · · · = w((t −1)t) = w(t1) = 3,

and w(i j) = 2 for all other pairs i 	= j. For n � 1, set NC(n) (NC = ‘no cycles’) to be the set of
G ∈C(n) which do not contain a copy of Ct(3,2) for any t � 3.

We will show in the next subsection that for large n, all product-extremal elements of C(n)
are in NC(n). However, we must first show that we can find product-extremal elements of NC(n)
which are ‘nice’, and this is the goal of this subsection. In particular we will show that for all
n � 1, there is a product-extremal element of NC(n) which is also in W (n).

We begin with some notation and definitions. If G contains a copy of Ct(3,2), we will write
Ct(3,2) ⊆ G, and if not, we will write Ct(3,2) � G. A vertex-weighted graph is a triple (V,E, f )
where (V,E) is graph and f : V → N>0. We now give a way of associating a vertex-weighted
graph to a neat multigraph. Suppose G = (V,w) is a neat multigraph, Ṽ = {V1, . . . ,Vt} is the set
of equivalence classes of V under ∼G, and for each i 	= j, wi j ∈ {2,3} is from Proposition 4.4.
Define the vertex-weighted graph associated with G and ∼G to be G̃ = (Ṽ , Ẽ, f ) where

Ẽ =
{

ViVj ∈
(

Ṽ
2

)
: wi j = 3

}

and f (Vi) = |Vi| for all i ∈ [t]. We will use the notation | · |G to denote this vertex-weight function
f , and we will drop the superscript when G is clear from context. If H = (V,E) is a graph and
X ⊆V , then let H[X ] = (X ,E ∩

(X
2

)
) be the subgraph of H induced by X .

Lemma 4.10. Suppose n � 1 and G is a neat multigraph with vertex set [n]. Then G ∈ NC(n) if
and only if G̃ is a forest.

Proof. Suppose G̃ is not a forest. Then there is X = {Vi1
, . . . ,Vik

} ⊆ Ṽ such that G̃[X ] is a cycle
of length k � 3. Choose some y j ∈ Vi j

for each 1 � i � k and let Y = {y1, . . . ,yk}. Then by

definition of G̃, we must have G[Y ] ∼= Ck(3,2). Thus G /∈ NC(n).
On the other hand, suppose G /∈ NC(n). Then either G /∈C(n) or Ct(3,2) ⊆ G for some t � 3.

Suppose G /∈C(n). Since G is neat, this implies G /∈D(n). Since μ(G) � 3 implies G∈F(n,3,8),
we must have G /∈F(n,4,15). Thus there is some Y ∈

([n]
4

)
such that SG(Y ) > 15. Since μ(G) � 3,

this implies that either

(i) {w(xy) : xy ∈
(Y

2

)
} = {3,3,3,3,2,2} or

(ii) {w(xy) : xy ∈
(Y

2

)
} = {3,3,3,3,3, j}, some j ∈ {1,2,3}.
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Let X be the set of equivalence classes intersecting Y , that is, X = {Vi ∈ Ṽ : Y ∩Vi 	= /0}. In
case (i), because Y spans no edges of multiplicity 1 in G, the elements of Y must be in pairwise
distinct equivalence classes under ∼G. Thus in G̃, |X | = 4 and X spans exactly four edges. This
implies G̃[X ] is either a 4-cycle or contains a triangle. In case (ii), if j = 1, then |X |= 3 and G̃[X ]
is a triangle. If j 	= 1, then |X | = 4 and spans at least five edges. This implies G̃[X ] contains a
triangle. Therefore, if G /∈ F(n,4,15), then G̃ is not a forest. Suppose now that Ct(3,2) ⊆ G, for
some t � 3. Then if X ⊆ [n] is such that G[X ] ∼= Ct(3,2), G̃[X ] is a cycle, so consequently G̃ is
not a forest.

Definition 4.11. Given a vertex-weighted graph G̃ = (Ṽ ,E, | · |), set

fπ(G̃) = ∏
UV∈E

3|U ||V | ∏
UV∈(Ṽ

2)\E

2|U ||V |.

Note that we have P(G) = fπ(G̃) for all G ∈C(n).

Two vertex-weighted graphs G1 = (V1,E1, f1) and G2 = (V2,E2, f2), are isomorphic, denoted
G1

∼= G2, if there is a graph isomorphism g : V1 →V2 such that for all v ∈V1, f1(v) = f2(g(v)).

Lemma 4.12. Suppose n � 1 and H = (Ṽ ,E, | · |) is a vertex-weighted forest such that

∑
V∈Ṽ

|V | = n.

Then there is a multigraph G ∈ NC(n) such that G̃ is isomorphic to H.

Proof. Let Ṽ = {V1, . . . ,Vt} and for each i, let xi = |Vi|. Since ∑t
i=1 xi = n, it is clear there exists

a partition P1, . . . ,Pt of [n] such that for each i ∈ [t], |Pi|= xi. Fix such a partition P1, . . . ,Pt . Define
G = ([n],w) as follows. For each xy ∈

([n]
2

)
, set

w(xy) =

⎧⎪⎪⎨
⎪⎪⎩

1 if xy ∈
(Pi

2

)
for some i ∈ [t],

3 if xy ∈ E(Pi,Pj) for some i 	= j such that ViVj ∈ E,

2 if xy ∈ E(Pi,Pj) for some i 	= j such that ViVj /∈ E.

By construction, G is a neat multigraph and G̃ is isomorphic to H. Because H ∼= G̃ is a forest,
Lemma 4.10 implies G ∈ NC(n).

Given a vertex-weighted graph, H = (Ṽ ,E, | · |) and V ∈ Ṽ , let dH(V ) denote the degree of V
in the graph (Ṽ ,E). Given a graph (Ṽ ,E) and disjoint subsets X̃ ,Ỹ of Ṽ , let E(X̃) = E ∩

(X̃
2

)
and

E(X̃ ,Ỹ ) = E ∩{XY : X ∈ X̃ ,Y ∈ Ỹ}.

Lemma 4.13. Suppose H = (Ṽ ,E, | · |) is a vertex-weighted forest. Then there is a vertex-
weighted star H ′ = (Ṽ ,E ′, | · |), with centre V satisfying |V | = max{|X | : X ∈ Ṽ}, such that

fπ(H ′) � fπ(H). (4.2)
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Proof. First, without loss of generality, we may assume H is a tree, since adding edges only
increases the value of fπ . Fix V ∈ Ṽ such that |V | = max{|X | : X ∈ Ṽ}. Suppose Y ∈ Ṽ is a leaf,
but YV /∈ E. Say YW ∈ E. Let E ′ be the edge set obtained from E by deleting YW and adding
YV . Then

fπ(Ṽ ,E ′, | · |) = (3/2)|V ||Y |−|W ||Y | fπ(H) � fπ(H),

where the last inequality is because |V | = max{|X | : X ∈ Ṽ}. Repeating this enough times yields
the desired vertex-weighted star H ′.

Lemma 4.14. Suppose n � 1, G ∈ NC(n), and G̃ = (Ṽ ,E, | · |) is the vertex-weighted graph
associated with G and ∼G. Suppose (Ṽ ,E) is a star with centre V and there is W ∈ Ṽ \{V} such
that |W | > 1. Then G /∈ P(NC(n)).

Proof. Let Ṽ ′ = (Ṽ \{W})∪{W1,W2} and E ′ = (E \{VW})∪{VW1,VW2}, where W1,W2 are
new vertices. Let H = (Ṽ ′,E ′, | · |′) where the vertex-weight function | · |′ is defined by |U |′ = |U |
for all U ∈ Ṽ \{W}, |W1|′ = |W |−1 and |W2|′ = 1. By definition of H,

∑
U∈Ṽ ′

|U |′ = ∑
U∈Ṽ

|U | = n.

Since H is obtained from G̃ by splitting the degree-one vertex W into W1 and W2, and G̃ is a forest,
H is also a forest. Thus H satisfies the hypotheses of Lemma 4.12, so there is a G′ ∈ NC(n) such
that G̃′ is isomorphic to H. This and Definition 4.11 implies fπ(H) = fπ(G̃′) = P(G′). Then

fπ(H) = fπ(G̃)2|W |−1 � 2 fπ(G̃) > fπ(G̃),

where the last inequality is because by definition, fπ(G̃) > 0. Thus we have shown G′ ∈ NC(n)
and P(G′) = fπ(H) > fπ(G̃) = P(G), so G /∈ P(NC(n)).

We now prove the main result of this subsection. Observe that for all n � 1, W (n) ⊆ NC(n).

Lemma 4.15. For all n � 1, P(NC(n))∩W (n) 	= /0. Consequently, P(W (n)) ⊆ P(NC(n)).

Proof. Fix n � 1, G = ([n],w)∈P(NC(n)). Consider the vertex-weighted graph G̃ = (Ṽ ,E, | · |)
associated with G and ∼G. By Lemma 4.10, G̃ = ([n],E) is a forest. By Lemma 4.13, there is a
vertex-weighted star H = (Ṽ ,E ′, | · |) with centre V satisfying |V | = max{|X | : X ∈ Ṽ} and such
that fπ(H) � fπ(G̃). By Lemma 4.12, there is G′ ∈ NC(n) such that G̃′ ∼= H. Thus

P(G′) = fπ(H) � fπ(G̃) = P(G), (4.3)

where the equalities hold by Definition 4.11. Since G ∈P(NC(n)) and G′ ∈ NC(n), (4.3) implies
G′ ∈ P(NC(n)). Since G′ ∈ P(NC(n)) and (G̃′,E ′) is a star with centre V , Lemma 4.14 implies
that for all W ∈ Ṽ \{V}, |W | = 1. Consequently, by definition, G′ ∈W (n), and thus P(NC(n))∩
W (n) 	= /0. Since W (n) ⊆ NC(n), this implies P(W (n)) ⊆ P(NC(n)).

Although not necessary for the purposes of this paper, the arguments above can be strengthened
to show that for sufficiently large n, P(W (n)) = P(NC(n)). First, one adds a clause to
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Lemma 4.13: equality holds in (4.2) if and only if H = H ′, or H is a tree where |V | = |W |
for some V 	= W . Suppose now that n is sufficiently large and G ∈ P(NC(n)). We sketch why
G ∈W (n) (which implies P(W (n)) =P(NC(n))). Proceed as in the proof of Lemma 4.15 to find
H and then G′ ∈W (n). If H = G̃ then G = G′ ∈W (n). So assume H 	= G̃. Since equality holds
in (4.3), the new clause of Lemma 4.13 implies H is a tree and there is W 	= V with |W | = |V |.
This implies |U | = |V | = 1 for all U ∈ Ṽ , so

P(G) = fπ(G) = 3|E|2(n
2)−|E| � 3n−12(n

2)−n+1

(where the second inequality is because H is a tree). Since n is large, this is much smaller than

2(�βn
2 )3�βn(n−�βn), which can be achieved by elements of W (n), contradicting G ∈ P(NC(n)).

4.3. Getting rid of cycles and proving Theorem 3.3
In this subsection we prove Lemma 4.27, which shows that for large n, all product-extremal
elements of C(n) are in NC(n). We will then prove Theorem 3.3 at the end of this subsection.
Our proof uses an argument that is essentially a progressive induction.

Definition 4.16. Suppose G is a multigraph. The (3,2)-girth of G is min{t � 3 : Ct(3,2) ⊆ G}
(where by convention, min /0 = ∞).

Note that if G ∈ C(n), then C3(3,2) � G (since C(n) ⊆ F(n,3,8)) and C4(3,2) � G (since
S(C4(3,2)) = 16). Consequently, no G∈C(n) can have (3,2)-girth strictly less than 5. Therefore,
to show some G ∈ C(n) is in NC(n), we only need to show Ct(3,2) � G for t � 5. Given G =
(V,w), X ⊆V and z ∈V \X , set PG

z (X) = ∏x∈X w(xz).

Lemma 4.17. Let 5 � t � n. Suppose G = ([n],w) ∈C(n) has (3,2)-girth t. If X ∈
([n]

t

)
is such

that G[X ] ∼= Ct(3,2), then for all z ∈ [n]\X either

(1) |{x ∈ X : w(zx) = 3}| � 1 and PG
z (X) � 3 ·2t−1 or

(2) |{x ∈ X : w(zx) = 3}| � 2 and PG
z (X) � 322t−3 < 3 ·2t−1.

Proof. Let X = {x1, . . . ,xt} where w(xixi+1) = w(x1xt) = 3 for each i ∈ [t −1] and w(xix j) = 2

for all other pairs i j ∈
([t]

2

)
. We will use throughout that μ(G) � 3 (since G∈C(n)). Fix z∈ [n]\X

and let Z = {x∈X : w(zx) = 3}. If |Z|� 1, then clearly 1 holds. So assume |Z|� 2 and i1 < · · ·< i�
are such that Z = {xi1

, . . . ,xi�
}. Without loss of generality, assume i1 = 1. Set

I = {(xi j
,xi j+1

) : 1 � j � �−1}∪{(xi1
,xi�

)}.

Given (x,y) ∈ I, let

d(x,y) =

{
i j+1 − i j if (x,y) = (xi j

,xi j+1
) for some 1 � j � �−1,

t − i� +1 if (x,y) = (xi1
,xi�

).

Note that because C3(3,2) � G, 2 � d(x,y) � t − 2 for all (x,y) ∈ I. Suppose first that there is
some (u,v) ∈ I such that d(u,v) = t −2. Then since d(x,y) � 2 for all (x,y) ∈ I and

∑
(x,y)∈I

d(x,y) � t,
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we must have that |I| = 1 and either (u,v) = (xi1
,xi�

) = (x1,xt−1) or (u,v) = (xi1
,xi�

) = (x1,x3).
Without loss of generality, assume (u,v) = (x1,x3). Then we must have that w(zx2) � 1 since
otherwise G[{z,x1,x2,x3}] ∼= C4(3,2), a contradiction. This shows that PG

z (X) � 32 · 1 · 2t−3 <

3 ·2t−1.
Suppose now that for all (x,y)∈ I, d(x,y) � t−3. Given (x,y)∈ I, say an element xk is between

x and y if either (x,y) = (xi j
,xi j+1

) and i j < k < i j+1 or (x,y) = (xi1
,xi�

) and i� < k. Then for each

(x,y) ∈ I, there must be a xk between x and y such that w(zxk) � 1, since otherwise

{z,x,y}∪{u : u is between x and y}

is a copy of Cd(x,y)+2(3,2) in G, a contradiction since d(x,y)+ 2 < t. This implies there are at
least � elements u in X \Z such that w(zu) � 1, so

PG
z (X) � 3�2t−2� � 322t−4 < 3 ·2t−1.

Definition 4.18. Suppose t � n and X ∈
([n]

t

)
. Define GX = ([n],w) to be the following multi-

graph, where Y = [n]\X . Choose any A ∈ P(W (n− t)) and B ∈W (t) so that |R(B)| = �β t and
|L(B)| = 
(1−β )t�. Define w on

(Y
2

)
∪

(X
2

)
to make GX [Y ] ∼= A and GX [X ] ∼= B. Define w on the

remaining pairs of vertices in the obvious way so that GX ∈W (n).

Observe that in the notation of Definition 4.18,

P(GX) = P(A)2(|R(B)|
2 )+|R(A)||R(B)|3|L(B)||R(B)|+|R(B)||L(A)|+|L(B)||R(A)|.

It will be convenient to have a uniform lower bound on the exponential term in the above quantity.
Towards this end, given n, t ∈ N we define

f (n, t) = min
{

2(�β t
2 )+�β tc3�β t
(1−β )t�+c
(1−β )t�+�β t(n−t−c) : c ∈ {
β (n− t)�,�β (n− t)}

}
.

Lemma 4.19. Let t � n and X ∈
([n]

t

)
. Then for any A′ ∈ P(W (n− t)), P(GX) � P(A′) f (n, t).

Proof. Set Y = [n] \X and let GX = ([n],w). Let B ∈ W (t) and A ∈ P(W (n− t)) be as in the
definition of GX so that GX [X ] ∼= B and GX [Y ] ∼= A. Let LA,RA and LB,RB be the partitions of
Y and X respectively. By choice of B, |LB| = 
(1 − β )t� and |RB| = �β t. Let c = |RA|. By
definition, |LA| = n− t − c, and since A ∈ P(W (n− t)), c ∈ {
β (n− t)�,�β (n− t)} (by the
proof of Lemma 3.4). Combining these observations with the definition of f (n, t) implies

2(|RB |
2 )+|RA||RB|3|LB||RB|+|RB||LA|+|LB||RA| = 2(�β t

2 )+�β tc3�β t
(1−β )t�+c
(1−β )t�+�β t(n−t−c) � f (n, t).

Combining this with the definition of GX , we have

P(GX) = P(A)2(|RB |
2 )+|RA||RB|3|LB||RB|+|RB||LA|+|LB||RA| � P(A) f (n, t).

Since P(A) = P(A′) for all A′ ∈ P(W (n− t)), this finishes the proof.

Definition 4.20. Given n, t ∈ N, let h(n, t) = 3n2(t
2)+t(n−t)−n.
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Lemma 4.21. Let 5 � t � n, G ∈C(n) and ν > 0. Suppose X ∈
([n]

t

)
, G[X ]∼= Ct(3,2), and there

is some A ∈ P(W (n− t)) such that P(G[[n]\X ]) � νP(A). Then

P(G) � ν((h(n, t))/ f (n, t))P(GX).

Proof. Let Y = [n]\X . Because G[X ] ∼= Ct(3,2),

P(G) = P(G[Y ])3t2(t
2)−t ∏

z∈Y

PG
z (X).

By Lemma 4.17, for each z ∈ Y , PG
z (X) � 3 ·2t−1. This implies

P(G) � P(G[Y ])3t2(t
2)−t(3 ·2t−1)n−t = P(G[Y ])3n2(t

2)+t(n−t)−n = P(G[Y ])h(n, t). (4.4)

By assumption, P(G[Y ]) � νP(A), so (4.4) implies P(G) � νP(A)h(n, t). Combining this with
Lemma 4.19 yields

P(G) � νP(A)h(n, t) = νP(A) f (n, t)(h(n, t)/ f (n, t)) � νP(GX)(h(n, t)/ f (n, t)).

The following lemma will be proved in the Appendix.

Lemma 4.22. There are γ > 0 and 5 < K � M1 such that the following holds.

(a) For all K � t � n, h(n, t) < f (n, t).
(b) For all 5 � t � K and n � M1, h(n, t) < 2−γn f (n, t).

The rough idea behind the proof of Lemma 4.22 is to use certain inequalities involving β (see
(I) and (II) in the Appendix) to show that the dominating terms compare to one another in the
desired ways, in each case. For case (a), since t is large, the dominating terms are those involving
t2 or tn, while in case (b), since n � t, the dominating terms are only those involving n. Our next
two lemmas give us upper bounds for P(G) when G ∈C(n) has large finite girth (Lemma 4.23),
or small girth (Lemma 4.25).

Lemma 4.23. Let K be the constant from Lemma 4.22. Then for all K � t � n, the following
holds. If G ∈C(n) has (3,2)-girth t, then for all G1 ∈ P(W (n)), P(G) < P(G1).

Proof. Let t � K and n = t + i. We proceed by induction on i. Suppose first that i = 0. Fix
G ∈ C(n) with (3,2)-girth t. Then n = t implies G ∼= Ct(3,2) and so P(G) = 3t2(t

2)−t = h(t, t).
Let H ∈ W (n) have |R(H)| ∈ {�βn,
βn�} and L(H) = V (H)−R(H). Then by definition of
f (n, t),

P(H) = 2(|R(H)|
2 )3|L(H)||R(H)| � f (t, t) > h(t, t) = P(G),

where the strict inequality is by Lemma 4.22(a). Since H ∈W (n), this implies P(G) < P(G1) for
all G1 ∈ P(W (n)).

Suppose now that i > 0. Assume by induction that the conclusion of Lemma 4.23 holds for all
K � t0 � n0 where n0 = t0 + j and 0 � j < i. Fix G ∈ C(n) with (3,2)-girth t. Let X ∈

([n]
t

)
be

such that G[X ] ∼= Ct(3,2).
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Claim 4.24. For any A ∈ P(W (n− t)), P(G[[n]\X ]) � P(A).

Proof of claim. Note that Ct ′(3,2) � G[[n]\X ] for all 3 � t ′ < t. We have two cases.

(1) If Ct ′(3,2) � G[[n] \X ] for all t ′ � t, then G[[n] \X ] is isomorphic to some D ∈ NC(n− t).
By Lemma 4.15, for any A ∈ P(W (n− t)),

P(G[[n]\X ]) = P(D) � P(A).

(2) If Ct ′(3,2) ⊆ G[[n]\X ] for some t ′ � t, then fix t0 the smallest such t ′. Set n0 = n− t and j =
n0− t0. Our assumptions imply t0 � t � K, so j < n− t = i. Note that G[[n]\X ] is isomorphic
to some D ∈C(n− t) =C(n0). Then we have that K � t0 � n0, n0 = t0 + j, 0 � j < i, and D ∈
C(n0) has (3,2)-girth t0. By our induction hypothesis, for any A ∈P(W (n0)) =P(W (n−t)),

P(G[[n]\X ]) = P(D) < P(A).

Claim 4.24 and Lemma 4.21 with ν = 1 imply P(G) � (h(n, t)/ f (n, t))P(GX). Since K � t � n,
Lemma 4.22(a) implies h(n, t)/ f (n, t) < 1, so this shows P(G) < P(GX). Since GX ∈ W (n), we
have P(G) < P(GX) � P(G1) for all G1 ∈ P(W (n)).

Lemma 4.25. Let M1 and K be the constants from Lemma 4.22. There is M2 such that for
all 5 � t � K and n � M1 + K, the following holds. If G ∈ C(n) has (3,2)-girth t, then for all
G1 ∈ P(W (n)), P(G) � 2M2(h(n, t)/ f (n, t))P(G1).

Proof. Set M = M1 +K. Choose M2 sufficiently large that for all 5 � t � K and t � n � M,

exΠ(n,4,15) � 2M2(h(n, t)/ f (n, t)).

We show that the conclusions of Lemma 4.25 hold for all n � M by induction. Suppose first that
n = M. Fix 5 � t � K and G ∈C(n) with (3,2)-girth t. Then by our choice of M2,

P(G) � exΠ(n,4,15) � 2M2(h(n, t)/ f (n, t)) � 2M2(h(n, t)/ f (n, t))P(G1),

for all G1 ∈ P(W (n)). Suppose now that n > M. Assume by induction that the conclusions of
Lemma 4.25 hold for all 5 � t0 � K and M � n0 < n. Fix 5 � t � K and G∈C(n) with (3,2)-girth
t. Let X ∈

([n]
t

)
be such that G[X ] ∼= Ct(3,2) and set n0 = n− t.

Claim 4.26. For any A ∈ P(W (n0)), P(G[[n]\X ]) � 2M2 P(A),

Proof. [Proof of claim.] Fix A ∈ P(W (n0)). Note that Ct ′(3,2) � G[[n] \X ] for all t ′ < t and
n0 � M1 � K (since n− t � M−K = M1). We will use the following observation:

for all 5 � t0 � K,
h(n0, t0)
f (n0, t0)

� 2−γn0 < 1. (4.5)

This holds by Lemma 4.22(b) and the fact that n0 � M1. Suppose first that n0 < M. Then G[[n]\X ]
is isomorphic to some D ∈ F(n0,4,15) and n0 � K, so by our choice of M2,

P(G[[n]\X ]) = P(D) � exΠ(n0,4,15) � 2M2
h(n0,K)
f (n0,K)

P(A) � 2M2 P(A),
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where the last inequality is by (4.5). Assume now that n0 � M. We have two cases.

(1) If Ct ′(3,2) � G[[n]\X ] for all t ′ � t, then G[[n]\X ] is isomorphic to some D ∈ NC(n0). By
Lemma 4.15,

P(G[[n]\X ]) = P(D) � P(A) � 2M2 P(A).

(2) If Ct ′(3,2) ⊆ G[[n]\X ] for some t ′ � t, choose t0 the smallest such t ′, and let D ∈ C(n0) be
such that G[[n]\X ]∼= D. Suppose first that t0 � K. Then we have 5 � t � t0 � K, M � n0 < n,
and D ∈C(n0) has (3,2)-girth t0. Therefore our induction hypothesis implies the conclusions
of Lemma 4.25 hold for D, n0, t0. In other words, since A ∈ P(W (n0)),

P(G[[n]\X ]) = P(D) � 2M2
h(n0, t0)
f (n0, t0)

P(A) � 2M2 P(A),

where the last inequality is by (4.5). Suppose finally that t0 > K. Then K � t0 � n0 and
D ∈C(n0) has (3,2)-girth t0. Thus we have by Lemma 4.23 that

P(G[[n]\X ]) = P(D) < P(A) � 2M2 P(A).

Claim 4.26 and Lemma 4.21 with ν = 2M2 imply P(G) � 2M2(h(n, t)/ f (n, t))P(GX). Since GX

is in W (n), we have that

P(G) � 2M2(h(n, t)/ f (n, t))P(GX) � 2M2(h(n, t)/ f (n, t))P(G1),

for all G1 ∈ P(W (n)).

We can now prove that for large n, all product-extremal elements of C(n) are in NC(n).

Lemma 4.27. For all sufficiently large n, P(C(n))⊆ NC(n). Therefore, P(C(n)) =P(NC(n)).

Proof. Let γ , K and M1 be as in Lemma 4.22 and let M2 be as in Lemma 4.25. Choose M �
M1 + K sufficiently large that 2M2−γn < 1 for all n � M. Suppose n > M and G ∈C(n)\NC(n).
We show G /∈ P(C(n)). Since W (n) ⊆ C(n), it suffices to show there is G1 ∈ W (n) such that
P(G1) > P(G). Since G /∈ NC(n), there is 5 � t � n such that G has (3,2)-girth t. If t � K, then
Lemma 4.23 implies that for any G1 ∈ P(W (n)), P(G) < P(G1). If 5 � t < K, then Lemma 4.25
implies that for any G1 ∈ P(W (n)),

P(G) � 2M2(h(n, t)/ f (n, t))P(G1) � 2M2−γnP(G1),

where the second inequality is because of Lemma 4.22(b). By our choice of M, this implies
that for all G1 ∈W (n), P(G) < P(G1). This shows P(C(n)) ⊆ NC(n). Since NC(n) ⊆C(n), this
implies P(C(n)) = P(NC(n)).

We can prove the main result of this section, Theorem 3.3.

Proof of Theorem 3.3. Assume n sufficiently large. By Lemma 4.8, we can choose some
G in P(D(n))∩C(n) = P(C(n)). By Lemma 4.27, P(C(n)) = P(NC(n)), so G ∈ P(NC(n)).
By Lemma 4.15, there is some G′ ∈ P(NC(n))∩W (n) = P(W (n)). Since G and G′ are both in
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P(NC(n)), P(G) = P(G′). Since G∈P(D(n)) and W (n)⊆D(n), this implies that G′ ∈ P(D(n)).
Thus we have shown G′ ∈ P(D(n))∩P(W (n)).

5. Proof of Theorem 3.2

In this section we prove Theorem 3.2. We will need the following computational lemma, which
is proved in the Appendix. Given n, t, let k(n, t) = 15t2(t

2)+t(n−t)−t .

Lemma 5.1. There is M such that for all n � M and 2 � t � n, k(n, t) < f (n, t).

Lemma 5.1 is proved via a similar strategy to Lemma 4.22. Specifically, when t is small, one
analyses only the terms containing n to obtain the inequality. When t is large, one more carefully
compares the terms containing tn, t2 and n− t. The following can be checked easily by hand and
is left to the reader.

Lemma 5.2. Suppose a, b and c are non-negative integers. If a + b � 4, then a · b � 22. If
a+b+ c � 6, then a ·b · c � 23.

Proof of Theorem 3.2. Let n0 be such that Lemmas 4.27 and 5.1 hold for all n > n0, and fix
n � n0 sufficiently large. It suffices to show P(n,4,15)⊆ D(n). Suppose towards a contradiction
there is G = ([n],w) ∈ P(F(n,4,15))\D(n). Given X ⊆ [n] and z ∈ [n]\X , let S(X) = S(G[X ])
and Sz(X) = ∑x∈X w(xz). If G /∈ F(n,3,8), let D1, . . . ,Dk be a maximal collection of pairwise
disjoint elements of

([n]
3

)
such that S(Di) � 9 for each i, and set D =

⋃k
i=1 Di. If G ∈ F(n,3,8), set

D = /0. If μ(G[[n]\D]) > 3, choose e1, . . . ,em a maximal collection of pairwise disjoint elements
of

([n]\D
2

)
such that S(ei) � 4 for each i and set C =

⋃m
i=1 ei. If μ(G[[n] \D]) � 3, set C = /0. Let

X = D∪C and � = |X | = 3k + 2m. Note that by assumption X is non-empty, so we must have
� � 2. We now make a few observations. If D 	= /0, then for each Di and z ∈ [n]\Di,

Sz(Di) � S(Di ∪{z})−S(Di) � 15−9 = 6 = 2 ·3,

which implies by Lemma 5.2 that PG
z (Di) � 23. By maximality of the collection D1, . . . ,Dk,

G[[n]\D] is a (3,8)-graph. Thus if C 	= /0, then for each i and z ∈ [n]\ (D∪ ei),

Sz(ei) � S(ei ∪{z})−4 � 8−4 = 4 = 2 ·2,

which implies by Lemma 5.2 that PG
z (ei) � 22. Since μ(G) � 15, for each Di and e j, P(Di) � 53

and P(e j) � 15. Let Y = [n] \X and write P(Y ) for P(G[Y ]). Our observations imply that P(G)
is at most

P(Y )
( k

∏
i=1

P(Di)
)( m

∏
i=1

P(ei)
)

2(�
2)+�(n−�)−�+m � P(Y )15�−m2(�

2)+�(n−�)−�+m � P(Y )k(n, �).

(5.1)

Note that G[Y ] is isomorphic to an element of D(n− �). We partition the argument into two
cases.

Case 1. n− � � n0. In this case we can use the crude bounds

P(G) < 15(n0
2 )15�−m2(�

2)+�n0 < 2(�
2)+4�+2n2

0+�n0 < exΠ(n,4,15),
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where the second inequality holds since � � n − n0 � n0 since n � n0. The last inequality
holds because n � n0, exΠ(n,4,15) = 2γn2+o(n2) and 2γ >

√
2. This contradicts the fact that

G ∈ P(n,4,15).

Case 2. n− � > n0. In this case we may apply Lemma 4.27 to G[Y ] as |Y | = n− � > n0. Fix
A ∈ P(W (n− �)). By Lemmas 4.8, 4.27 and 4.15, P(W (n− �)) ⊆ P(D(n− �)), which implies
that P(Y ) � P(A). Combining this with Lemma 4.19 yields P(GX) � P(A) f (n, �) � P(Y ) f (n, �).
This along with the bound on P(G) in (5.1) implies

P(G)
P(GX)

� P(Y )k(n, �)
P(Y ) f (n, �)

=
k(n, �)
f (n, �)

< 1,

where the last inequality is by choice of n0 < n and Lemma 5.1. So P(G) < P(GX), a contradic-
tion.

6. Concluding remarks

The arguments used to prove Theorem 2.4 can be adapted to prove a version for sums. If G =
(V,w), let S(G) = ∑

xy∈(V
2)

w(xy). Given integers s � 2 and q � 0, set

exΣ(n,s,q) = max{S(G) : G ∈ F(n,s,q)}.

An (n,s,q)-graph G is sum-extremal if S(G) = exΣ(n,s,q). Let S(n,s,q) denote the set of sum-
extremal (n,s,q)-graphs with vertex set [n], and let S(W (n)) denote the set of G ∈ W (n) such
that S(G) � S(G′) for all G′ ∈W (n). Straightforward calculus shows that for G ∈W (n), the sum
S(G) is maximized when |L(G)| ≈ (2/3)n. Then the ideas in our proofs can be adapted to the
sum-setting to yield the following theorem.

Theorem 6.1. For all sufficiently large n, S(W (n)) ⊆ S(n,4,15). Consequently

exΣ(n,4,15)

= max

{
2

(

(2n)/3�

2

)
+3

(⌊
2n
3

⌋)(⌈
n
3

⌉)
,2

(
�(2n)/3

2

)
+3

(⌈
2n
3

⌉)(⌊
n
3

⌋)}

=
8
3

(
n
2

)
+O(n).

We would like to point out that the asymptotic value for exΣ(n,4,15) was already known
as a consequence of [8]. Our contribution is in showing S(W (n)) ⊆ S(n,4,15). The following
result shows that product-extremal (n,4,15)-graphs are far from sum-extremal ones. Given two
multigraphs G = (V,w) and G′ = (V,w′), set

Δ(G,G′) =
{

xy ∈
(

V
2

)
: w(xy) 	= w′(xy)

}
.

We say G and G′ are δ -close if |Δ(G,G′)| � δn2, otherwise they are δ -far.

Corollary 6.2. There is δ > 0 such that for all sufficiently large n, the following holds. Suppose
G ∈ P(n,4,15) and G′ ∈ S(n,4,15). Then G and G′ are δ -far from one another.
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The proof of Corollary 6.2 is straightforward and left to the reader. Details appear in [15].
Given a � 2, let Wa(n) be the set of multigraphs ([n],w) such that there is a partition L,R of [n]
with w(xy) = a−1 for all xy ∈

(L
2

)
, w(xy) = a for all xy ∈

(R
2

)
, and w(xy) = a + 1 for all x ∈ L,

y ∈ R. Basic calculus shows that for G ∈Wa(n), P(G) is maximized when |R| ≈ βan, where

βa =
log(a+2)− log(a−1)

2log(a+2)− loga− log(a−1)
.

Note that the W (n) = W2(n). Based on our results for (4,15), we make the following conjecture.

Conjecture 6.3. For all a � 2, P(Wa(n)) ⊆ P(n,4,6a+3). Consequently,

exΠ(n,4,6a+3) = 2γan2+O(n),

where

γa =
(1−βa)2

2
log2(a−1)+

β 2
a

2
log2 a+βa(1−βa) log2(a+2).

When a = 2, this is Theorem 2.4. However, at least some of the arguments used in this paper
will not transfer immediately to cases with a > 2. For instance, the proofs of Lemma 4.6 and
Corollary 4.7 use the fact that a = 2 in a non-trivial way (in particular it is key there that the
smallest multiplicity appearing in W (n) is 1). Further, when a > 2, one must contend with ‘small’
edge multiplicities, that is, those in {i : 1 � i < a−2}. This is not an issue for (4,15) since this
set is empty.
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Appendix

We begin by stating two inequalities. See [15] for formal proofs.

(I) 21−β 2
< 31.5β (1−β ).

(II) 5(1−β 2 −2β (1−β ) log2 3)+ log2 3−1 < 0.

For any r ∈ R, (
r
2

)
=

r2 − r
2

.

Given 2 � t � n, let

f∗(n, t) = 2(β t
2 )+β 2t(n−t)32β t(1−β )(n−t)+β (1−β )t2

.

The next lemma allows us to work with f ∗(n, t) instead of f (n, t).

Proposition A.1. For all 2 � t � n, if m = n− t then f (n, t) � f∗(n, t)2−3t−m3−2t−m.
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Proof. Define η(u,v,z,w) = 2(u
2)+uz3uv+zv+uw and observe that

f (n, t) � η(β t −1,(1−β )t −1,βm−1,(1−β )m−1).

We leave it to the reader to verify that

η(β t −1,(1−β )t −1,βm−1,(1−β )m−1) = f∗(n, t)22−2β t−βm33−2t−m.

Thus f (n, t) � f∗(n, t)22−2β t−βm33−2t−m � f∗(n, t)2−2t−m3−2t−m.

Proof of Lemma 4.22. Choose K sufficiently large that 3 < β (1−β )K/2 and

33K+K(β+1)/2 < 3β (1−β )K2/8.

We now prove part (a) for this K. Fix K � t � n and set m = n− t. Proposition A.1 along with
the definitions of h(n, t) and f∗(n, t) implies

h(n, t)
f (n, t)

� 3m+t2(t
2)+tm−(m+t)

f∗(n, t)2−2t−m3−2t−m
=

(
21−β 2

32β (1−β )

)mt(2(1−β 2)/2

3β (1−β )

)t2

2t(1+β )/2+m32m+3t . (A.1)

Combining A.1 with (I) yields that

h(n, t)
f (n, t)

� (3−β (1−β )/2)tm(3−β (1−β )/4)t2
2t(1+β )/2+m32m+3t .

Combining this with our assumptions on K and the fact that t � K, we obtain

h(n, t)
f (n, t)

< 3(3−β (1−β )t/2)m−β (1−β )t2/4+t(1+β )/2+3t � 3−β (1−β )t2/8 < 1. (A.2)

This finishes the proof of part (a). For part (b), fix 5 � t � K. Observe that for n � K, we have
f (n, t) = 2β 2nt32β (1−β )t+o(n) and h(n, t) = 2nt−n3n+o(n), so

h(n, t)
f (n, t)

=
2n(t−1+log2(3))+o(n)

2β 2nt+2β (1−β )tn log2(3)+o(n)
= 2n(t(1−β 2−2β (1−β ) log2(3))−1+log2(3))+o(n). (A.3)

Set

α = 5(1−β 2 −2β (1−β ) log2(3))−1+ log2(3)

and note that (II) implies α < 0. Since t � 5, (A.3) implies h(n, t)/ f (n, t) � 2αn+o(n). Thus for
sufficiently large n, h(n, t) � f (n, t)2−γn where γ := −α/2 > 0. Since the definition of α did not
depend on t, this finishes the proof of part (b).

Proof of Lemma 5.1. Recall we want to show there is M such that for all n � M and 2 � t � n,
k(n, t) < f (n, t), where k(n, t) = 15t2(t

2)+t(n−t)−t . Let K be from Lemma 4.22 and recall the proof
of Lemma 4.22 (see inequality (A.2)) showed that for all K � t � n,

h(n, t)/ f (n, t) � 3−β (1−β )t2/8.

Choose K′ � K sufficiently large that (15/2)K′
3−β (1−β )(K′)2/8 < 1. Suppose now that K′ � t � n.

Then by definition of k(n, t), and our choice of t � K′,

k(n, t)
f (n, t)

=
(15/2)t(2/3)nh(n, t)

f (n, t)
� (15/2)t(2/3)n3−β (1−β )t2/8 < (2/3)n < 1.
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Thus k(n, t) < f (n, t) for all K′ � t � n. Suppose now that 2 � t � K′ and n � K′. Then since
t � n, f (n, t) � (2β 2

32β (1−β ))nt−o(n) and k(n, t) � 2nt+o(n), we have

k(n, t)
f (n, t)

�
(

2

2β 2 32β (1−β )

)nt+o(n)

=
(

21−β 2

32β (1−β )

)nt+o(n)

< 3−2β (1−β )n+o(n),

where the last inequality is by (I) and because t � 2. Thus we can choose M sufficiently large
that if n > M and 2 � t � K′, then k(n, t)/ f (n, t) < 1. Combining our two cases yields that
k(n, t)/ f (n, t) < 1 for all n � max{M,K′} and 2 � t � n.
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l’URSS: Classe des sciences mathématiques et naturelles, pp. 623–634.

[10] Grosu, C. (2016) On the algebraic and topological structure of the set of Turán densities. J. Combin.
Theory Ser. B 118 137–185.

[11] Hatami, H. and Norine, S. (2011) Undecidability of linear inequalities in graph homomorphism
densities. J. Amer. Math. Soc. 24 547–565.

[12] Lang, S. (1966) Introduction to Transcendental Numbers, Addison-Wesley.
[13] Mubayi, D. and Talbot, J. (2008) Extremal problems for t-partite and t-colorable hypergraphs.

Electron. J. Combin. 15 R26.
[14] Mubayi, D. and Terry, C. (2015) Discrete metric spaces: Structure, enumeration, and 0–1 laws.

J. Symbolic Logic, accepted. arXiv:1502.01212

[15] Mubayi, D. and Terry, C. (2016) An extremal graph problem with a transcendental solution.
arXiv:1607.07742

[16] Mubayi, D. and Terry, C. (2016) Extremal theory of locally sparse multigraphs. arXiv:1608.08948

[17] Pikhurko, O. (2014) On possible Turán densities. Israel J. Math. 201 415–454.
[18] Razborov, A. (2007) Flag algebras. J. Symbolic Logic 72 1239–1282.
[19] Saxton, D. and Thomason, A. (2015) Hypergraph containers. Inventio. Math. 201 925–992.
[20] Terry, C. (2018) Structure and enumeration theorems for hereditary properties in finite relational

languages. Ann. Pure Appl. Logic 169 413–449.
[21] Waldschmidt, M. (2014) Schanuel’s conjecture: algebraic independence of transcendental numbers. In

Colloquium De Giorgi 2013 and 2014, Vol. 5 of Colloquia, Ed. Norm., Pisa, pp. 129–137.

https://doi.org/10.1017/S0963548318000299 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000299

