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The k-colouring problem is to colour a given k-colourable graph with k colours. This

problem is known to be NP-hard even for fixed k > 3. The best known polynomial time

approximation algorithms require nδ (for a positive constant δ depending on k) colours

to colour an arbitrary k-colourable n-vertex graph. The situation is entirely different if we

look at the average performance of an algorithm rather than its worst-case performance.

It is well known that a k-colourable graph drawn from certain classes of distributions can

be k-coloured almost surely in polynomial time.

In this paper, we present further results in this direction. We consider k-colourable

graphs drawn from the random model in which each allowed edge is chosen independently

with probability p(n) after initially partitioning the vertex set into k colour classes. We

present polynomial time algorithms of two different types. The first type of algorithm

always runs in polynomial time and succeeds almost surely. Algorithms of this type

have been proposed before, but our algorithms have provably exponentially small failure

probabilities. The second type of algorithm always succeeds and has polynomial running

time on average. Such algorithms are more useful and more difficult to obtain than the

first type of algorithms. Our algorithms work as long as p(n) > n−1+ε where ε is a constant

greater than 1/4.

1. Introduction

The graph colouring problem is to determine an assignment of colours to vertices in the

graph so that no two adjacent vertices receive the same colour. G is said to be k-colourable

if there exists a k-colouring for G, that is, G has a colouring using at most k colours. The

chromatic number of G, denoted χ(G), is the smallest value of k such that G is k-colourable.

It is an important problem in algorithmic graph theory, and was shown by Karp (see [6])

to be NP-complete.

† This research was done while the author was a graduate student at the department of Computer Science and

Automation, Indian Institute of Science, Bangalore, India.
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There are at least two ways of measuring the ‘running time’ of a colouring algorithm.

In the worst-case complexity measure, the algorithm is judged by its maximum running

time over all relevant n-vertex input instances. In the average-case complexity measure,

the algorithm is judged by its average running time with respect to a chosen probability

distribution over the set of all relevant n-vertex input instances. We note that the average

case performance is very sensitive to the choice of the probability distribution.

Two types of algorithms are considered within the average case model (also called

random models), as follows.

Almost surely succeeding (a.s.) algorithms. These are polynomial time (worst-case)

algorithms which, given a random instance, succeed on it with probability 1− o(1).

Polynomial average time (p.av.t.) algorithms. These are algorithms which succeed on all

relevant input instances and whose average running time is polynomial.

Algorithms of the first type are much easier to obtain than algorithms of the second type,

because a few exponentially slow instances can spoil the whole average. Also, from a

p.av.t. algorithm, we can obtain a.s. algorithms of required failure probabilities. This is

explained further at the end of this section.

If we adopt the worst-case measure, χ(G) cannot be approximated within O(n1−ε) for

any fixed ε > 0, unless NP= ZPP [4]. Also, the existing approximation algorithms are

only guaranteed to use O(n1−3/(k+1)(log n)O(1)) colours even if the input is a k-colourable

(fixed k) graph [9]. For more details on the worst-case complexity of graph colouring

problem, we refer the reader to [16].

On the other hand, if we adopt the average case measure, we can obtain much better

approximations (or even optimum solutions) in polynomial time (or in p.av.t.) for ‘most’

of the input graphs. For example, Grimmett and McDiarmid [7] show that the greedy

algorithm for colouring uses at most twice the minimum number (χ(G)) of colours on

most n-vertex graphs. Turner and others [18, 3, 2] give polynomial time algorithms that

colour most of the k-colourable graphs with k colours, for any constant k. One reason,

pointed out by Karp [10] and Frieze and McDiarmid [5], is that several intractability

proofs are based on very special classes of graphs which we may encounter in practice

only rarely. Thus, ‘average case analysis banishes the pessimism of worst-case analysis’, in

the words of Frieze and McDiarmid [5].

1.1. Description of average-case models

Since our results are concerned with algorithms for k-colourable graphs (for fixed values

of k), we will consider only random models for k-colourable graphs. Two important

issues guiding our choice of random models are: (1) the model should be amenable to

probabilistic analysis and (2) the model should support distributions which are polynomial

time realizable, so that we can compare and evaluate different colouring algorithms.

Dyer and Frieze [3] describe several such models. They also proved that, under some

assumptions, all these models are equivalent to one another in the sense that results

derived for one model also hold for the other models. One standard model, called the

partition model, ensures that the random graph is k-colourable by initially partitioning
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the vertex set into k colour classes. We consider one widely studied version of this model

denoted by G(n, p, k). In the following, we assume V = {1, . . . , n}.
G(n, p, k) model. Here, the vertex set V is partitioned into k colour classes V1, . . . , Vk .

Usually, we also assume that the sizes of the colour classes are such that |Vi| = ni > n/C
for all i, for some constant C > k. Then edges between vertices in different colour

classes are included with probability p. Here, the edges are chosen independently.

Some authors have considered a slightly different model denoted GUC(n, p, k), which is the

same as the G(·) model except that initially each vertex is uniformly randomly put into one

of the k colour classes, instead of being put arbitrarily into one of the colour classes as is

done in the G(·) model. However, with exponentially low failure probability, every colour

class formed by the GUC(·) model has size at least n/C for some constant C > k. Hence

algorithms that succeed on the G(·) model will also succeed on the GUC(·) model. Both

G(n, p, k) and GUC(·) models suffer from some drawbacks. To overcome these drawbacks,

random graphs were generalized to the notion of semi-random k-colourable graphs, and

algorithms have been developed for such graphs. For more details, see [2, 17, 16].

1.2. Previous results on algorithms for colouring random graphs

For general random graphs where we do not bound the chromatic number, a.s. approxi-

mation algorithms have been proposed before ([7, 11, 12, 18]). As for random k-colourable

graphs, we have the following results. For more algorithmic results on colouring random

graphs, the reader is referred to the recent survey article by Frieze and McDiarmid [5].

When p = p(n) is fixed, the a.s. algorithms given by Turner [18], Dyer and Frieze [3]

succeed with very high probability. [2, 1] provide a.s. algorithms that succeed even when

p(n) goes to 0 very quickly.

The algorithms given in [3] work under the assumption that all colour classes have

sizes between [1 − o(1)]n/3 and [1 + o(1)]n/3 and are proved to have failure probability

at most e−nδ for some positive constant δ. However, using the techniques described in this

paper, we can remove this assumption and can make these algorithms work for graphs

drawn from G(n, p, k).

Blum and Spencer [2] give polynomial time algorithms for colouring graphs from the

GUC(n, p(n), k) model where p(n) > n−1+ε, ε > 0. The main idea behind their algorithm

goes like this. Given two vertices x and y, the algorithm computes the number of paths

of length l (for a suitable positive integer l) in the input graph between x and y. Based

on this number, it concludes that x and y belong to the same or different colour classes.

Blum and Spencer [2] prove that this algorithm succeeds in k-colouring the input random

graph with probability at least 1− o(n−D) for some positive constant D.

Alon and Kahale [1] give polynomial time algorithms for colouring graphs from the

GUC(n, p(n), k) model for p(n) as low as p(n) > c/n for some sufficiently large positive

constant c. Their algorithms are based on the spectral properties of the input graph. They

first compute the eigenvalues and corresponding eigenvectors of the adjacency matrix of

a subgraph. Based on these, they compute an approximation to the colour classes and

then refine it to obtain a k-colouring. Alon and Kahale [1] prove that the algorithms have

polynomially low failure probability.
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Dyer and Frieze [3] describe algorithms for k-colouring random graphs from G(n, p, k)

(with p and k fixed), under the assumption mentioned before, in polynomial average

running time. They show that the greedy colouring algorithm proposed by Kucera [11]

has failure probability at most e−n·[1−o(1)]. When greedy colouring fails, one applies an

intermediate algorithm Colour such that the failure probability of Colour is e−nβ for

some constant β > 1. When Colour also fails, one resorts to brute-force colouring.

Subramanian, Furer and Madhavan [16] describe p.av.t. algorithms for the more general

semi-random model GSB(n, p, k) with p(n) going to 0 asymptotically. Their approach

requires the failure probability of the underlying a.s. algorithm to be at most e−(log n)3/p(n)

for p > n−1+ε, ε > 0. Subramanian, Furer and Madhavan [16] also present another

approach (for p > n−
2k

(k−1)(k+2) +ε, ε > 0) for colouring semi-random graphs in p.av.t., which

only requires an a.s. algorithm with exponentially low failure probability, that is, at most

e−nδ for some fixed δ > 0.

1.3. Our contributions

We present the following algorithmic results on k-colouring random k-colourable graphs.

1. Almost surely succeeding polynomial time algorithms for k-colouring random graphs

from G(n, p, k) with p > n−1+ε where ε > 1/4 is a constant.

Even though our results work only when p > n−1+ε, ε > 1/4, they work for the stronger

G(n, p, k) model as against the results of [2] and [1], which were meant for the GUC(n, p, k)

model. Also, they are quite simple and are combinatorial in nature. In addition, our a.s.

algorithms have the advantage that their failure probability is provably exponentially low.

This is desirable when we try to design p.av.t. algorithms for k-colouring.

However, as pointed out in [16], colouring ‘most’ of the graphs does not always mean

colouring a majority of relevant input graphs because what constitutes ‘most’ of the

graphs depends on the distribution chosen and also how we define the term ‘most’. There

are often situations when we may not mind spending more time on some inputs but would

like to have a k-colouring. Also, a.s. algorithms can have varying guarantees of failure

probabilities such as o((log n)−Ω(1)), o(n−Ω(1)), o(n−Ω(log n)), o(e−Ω(nδ )), and so on. Certainly,

all these algorithms are not equally good. Designing a single a.s. algorithm provides only

one guarantee of failure probability. Ideally, we would prefer to have algorithms which

guarantee very low failure probabilities. A p.av.t. algorithm guarantees this by providing

a continuous trade-off between running time and failure probabilities. In particular, we

can achieve any desired polynomially low failure probability at the cost of polynomial

increase in running time. For more details, we refer the reader to [16].

More importantly, aiming for p.av.t. algorithms forces us to design algorithms with very

low failure probability. Our second major contribution is the following.

2. Polynomial average time algorithms for k-colouring random graphs from G(n, p, k)

with p > n−1+ε where ε > 1/4 is a positive constant.

Our results on p.av.t. algorithms significantly improve the previously known results. Our

results are based on three different techniques for designing p.av.t. algorithms using a.s.

polynomial time algorithms. Each technique works by applying a series of intermediate

algorithms with increasing running times and decreasing failure probabilities. These inter-
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mediate algorithms represent a trade-off between running time and failure probability. We

can reduce failure probability to O(e−Ω(m·nε)) if we are willing to spend O(nO(m)) time on

n-vertex graphs.† A similar approach has been used in [16] for obtaining p.av.t. algorithms

for semi-random graphs, but these only work for a much smaller range of edge proba-

bilities mentioned before. However, for the G(n, p, k) model, by exploiting the uniformity,

we present techniques that work even for those a.s. algorithms whose failure probability

is ‘much higher’ than that required by [3] or [16]. In fact, the second and third techniques

only require exponentially low failure probability and work for p > n−1+ε, ε > 1/4. As a

result, we are able to k-colour sparse random graphs in polynomial average time.

The paper is organized as follows. In Section 2 we introduce some graph-theoretic

notation and basic facts about asymptotic behaviour of functions. These will be used

often in the rest of the paper. In Section 3 we present the a.s. algorithms for k-colouring

random graphs. In Section 4 we present p.av.t. algorithms for k-colouring random graphs.

Finally, in Section 5 we conclude with some remarks on open problems and future

directions. The work presented here also appears in [15] and a part of the work has

previously appeared in extended abstract form [13, 14].

2. Some preliminaries

2.1. Notation and notions

For a graph G = (V , E) and any S ⊆ V and u ∈ V , we use the following notation often.

• NS (u) = { v ∈ S | u is adjacent to v }; dS (u) = |NS (u)|. In particular, if S = V , then

NV (u) is the set of neighbours of u in V , and dV (u) is the degree of u in V . We

also denote the set NV (u) by N(u) and dV (u) by d(u). Also, for any set T ⊆ V , the

neighbourhood N(T ) of T is defined by N(T ) = { u ∈ V | u is adjacent to some v ∈ T }
=
⋃
v∈T N(v).

We use the notation G ∈ G(n, p, k) to mean that G is a random k-colourable graph drawn

from the model G(n, p, k). Throughout Sections 3 and 4, we let V1, . . . , Vk , with sizes

n1, . . . , nk , respectively, be the k colour classes used in the model. Assume ni > n/C for all

i for some constant C > k. Let F denote the set of all potential edges between vertices

in different colour classes. For all i, 1 6 i 6 k, let Wi denote the set Vi ∪ . . . ∪ Vk and Gi
denote the subgraph of G induced by the set Wi. Also, for each i, let mi denote the size

of the set Wi, that is, mi = ni + · · · + nk . We also define Mi as
∑

i<l1<l26k
nl1 · nl2 for all

i = 1, . . . , k − 2 and 0 for i = k − 1. Mi is the maximum number of edges that Gi+1 can

have. Also, we are interested only in the asymptotic behaviour of our algorithms.

2.2. Some basic facts on probability estimates and asymptotic functions

We will very frequently use the Chernoff bounds (see [8]) on the tail probabilities of

Bernoulli trials. We state and prove some simple facts about the asymptotic behaviour

of certain functions. We also state some estimates on the probability of certain events

† There is a difference between the trade-offs mentioned in the previous and this paragraph. In the former, we

obtain a continuous trade-off from an existing p.av.t. algorithm. In the latter, we provide a (not necessarily

continuous) trade-off to get a p.av.t. algorithm.
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occurring. We will often use these facts later. Let f(n) be any real-valued function over

positive integers. We use the notation f(n) = o(1) to capture the fact that the function

f(n) tends to 0 as n tends to infinity. Often, we are only concerned with the asymptotic

behaviour of a function, and not with any explicit description of the function. Hence

we use the notation o(1) to denote any function f(n) such that f(n) = o(1), without

mentioning explicitly the function f(n). The actual function f(n) is to be inferred from

the context. The equalities and inequalities in the following facts are understood to hold

for sufficiently large n.

Fact 2.1. Let M(n), p(n) be, respectively, nonnegative integer-valued and nonnegative real-

valued functions such that M(n)→∞, p(n)→ 0 and M(n)p(n)→ 0 as n→∞. Then,

(1− p(n))M(n) = 1−M(n) · p(n) · [1− o(1)].

Fact 2.2. Let S(n) be a set of vertices such that |S(n)| = M(n). Let u be any vertex that

is not in S(n). Let each edge {u, s} (s ∈ S(n)) be selected with equal probability p(n). If

M = M(n) and p = p(n) are such that M(n)p(n) = o(1) and M(n)→∞ as n→∞, then

Pr (u is adjacent to some vertex in S(n))

= Mp−M2p2[1− o(1)]/2 = Mp[1− o(1)],

Pr (u is adjacent to at least two vertices in S(n))

= M2p2[1− o(1)]/2.

Proof. We have

Pr (u is adjacent to some vertex in S(n))

= 1− (1− p(n))M(n)

= Mp−M(M − 1)p2/2 + higher order terms,

Pr (u is adjacent to at least two vertices in S(n))

= 1− (1− p)M −Mp · (1− p)M−1

= Mp−M(M − 1)p2[1− o(1)]/2−Mp+M(M − 1)p2[1− o(1)].

Using the assumptions M(n)p(n) = o(1) and M(n)→∞, we have

Pr (u is adjacent to some vertex in S(n))

= Mp−M2p2[1− o(1)]/2 = M(n)p(n)[1− o(1)],

Pr (u is adjacent to at least two vertices in S(n))

= M(n)2p(n)2[1− o(1)]/2.

Fact 2.3. Let α∗ be any constant such that 0 < α∗ < 1. Let f, g be any two constants such

that 0 6 f < g 6 1. Let α be any value (not necessarily a constant) such that α∗ 6 α < 1.
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Let l, s be any two constant positive integers. Then we have

(1− fα)l · [1− o(1)]s > (1− gα)l ,
(1 + gα)l · [1− o(1)]s > (1 + fα)l ,

(1− gα)l · [1 + o(1)]s 6 (1− fα)l ,
(1 + fα)l · [1 + o(1)]s 6 (1 + gα)l .

Proof. We use the following two facts, which can be verified easily. For any constant

positive integer s, we have [1 − o(1)]s = [1 − o(1)] and [1 + o(1)]s = [1 + o(1)]. Also, we

have α∗ 6 α < 1, where α∗ is a positive constant. Using these, we have

(1− fα)l · [1− o(1)]s = (1− fα)l · [1− o(1)]

= (1− fα)l − (1− fα)l · o(1)

= (1− fα)l − o(1)

> (1− gα)l .
Similarly, we can derive the other inequalities.

For any vertex x, and for any l (1 6 l 6 k), let Nl(x) (or nl(x)) denote the set of (or

number of) neighbours of x in the colour class Vl . If y is any other vertex, then Nl(xy)

(or nl(xy)) denotes Nl(x)∪Nl(y) (or |Nl(x)∪Nl(y)|). For any vertex w, w 6= x, w 6= y, with

each of the edges {x, w}, {y, w} being chosen independently with probability p,

Pr (w is adjacent to at least one of x or y) = p(2− p).
Let α∗ be any positive constant. Using Chernoff bounds, we deduce that the following

hold in the random graph G.

P1: For any l (1 6 l 6 k) and for any fixed x 6∈ Vl , we have, with probability at least

1− e−Ω(np), the following inequality:

(1− α∗) · nl · p 6 nl(x) 6 (1 + α∗) · nl · p.
P2: For any l (1 6 l 6 k) and for any fixed x, y 6∈ Vl , we have, with probability at least

1− e−Ω(np), the following inequality:

(1− α∗) · nl · p(2− p) 6 nl(xy) 6 (1 + α∗) · nl · p(2− p).
P3: If (1/p(n))2 = o(n), then for any l (1 6 l 6 k) and for any fixed x, y 6∈ Vl , we have,

with probability at least 1− e−Ω(np2), the following inequality:

(1− α∗) · nl · p2 6 |Nl(x) ∩Nl(y)| 6 (1 + α∗) · nl · p2.

3. Almost surely succeeding algorithms for colouring random graphs

In this section, we present new a.s. algorithms for k-colouring the G(n, p(n), k) model for

values of p(n) such that p(n) > n−1+ε, ε > 1/4. In Section 3.1 we describe the common

theme underlying all these new algorithms. In Sections 3.2 and 3.3 we present the new
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algorithms. Our algorithms have exponentially low failure probability. Precisely, the failure

probability of our algorithms is at most e−Ω(min(np,n2p3)) or at most e−Ω(min(np,n3p4)), depending

on the value of p(n).

3.1. Outline of the algorithms for colouring random graphs

Our algorithms depend on the values of p(n) and the sizes ni, to compute a k-colouring

of G; but we do not know these values. However, this is not a serious obstacle and this

difficulty can be overcome, as is shown in the following theorem.

Theorem 3.1. Let A(G, n, k, (n′1, . . . , n′k), q) be a deterministic algorithm for k-colouring the

random graph G. Let TA(n) denote the maximum running time of algorithm A on any n-

vertex graph. Assume that A succeeds on G with probability at least 1−o(1) if n′i = ni for all

i = 1, . . . , k and q = p[1± o(1)]. Then there exists another deterministic algorithm B(G, n, k)

such that B succeeds on G with probability at least 1− o(1) and the maximum running time

of algorithm B on any n-vertex graph is O(nk+1 · TA(n)).

Proof. The main idea behind algorithm B is to invoke A(G, n, k, (n′1, . . . , n′k), q) for all

possible values of n′i, i = 1, . . . , k. Algorithm B works as follows.

Algorithm B(G, n, k).

(1) m(G) = number of edges in the input graph G

(2) for all (n′1, . . . , n′k) such that
∑

16i6k n
′
i = n and n′i > 0 for all i do

(2a) M =
∑

16i<j6k n
′
i · n′j

/* M is the actual number of potential edges if n′i = ni for all i */

(2b) q(G) = m(G)/M

(2c) Apply A(G, n, k, (n′1, . . . , n′k), q(G)); if A succeeds, then exit.

end /* of for loop */

end /* of algorithm B(G, n, k) */

Clearly there are only O(nk+1) solutions to the equation
∑

16i6k n
′
i = n, n′i > 0 for all i.

Hence algorithm A will be called at most O(nk+1) times in step (2c). Since A runs in TA(n)

time, algorithm B runs in O(nk+1 ·TA(n)) time. Consider the iteration of the for loop when

we have n′i = ni for all i where ni are the sizes of the colour classes used by the adversary.

We will surely come to this iteration, denoted iter, unless A has already succeeded in

some previous iteration. We have ni > n/C for all i, for some constant C > k. Hence the

value of M (defined in step (2a)) in this iteration is such that M = Ω(n2). Hence, using

Chernoff’s bounds, for δ = 1/(log n), we have

(1− δ) ·Mp 6 m 6 (1 + δ) ·Mp

with probability at least 1−e−Ω(Mpδ2). In other words, we have q(G) = m(G)/M = p[1±o(1)]

with probability at least 1− e−nβ for some constant β > 1. Hence
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Pr (algorithm B fails on G)

6 Pr (algorithm A fails on G during iter)

6 Pr (inequality (3.1) is not satisfied during iter)

+ Pr (inequality (3.1) is satisfied, but algorithm A fails on G)

6 e−nβ + o(1)

= o(1).

Thus algorithm B succeeds with probability 1− o(1).

Note. Hence it is enough to design a polynomial time algorithm A(G, n, k, (n′1, . . . , n′k), q)

such that A succeeds on G with probability 1 − o(1) whenever n′i = ni, for all i and

q = p[1 ± o(1)]. Also, we can assume that the algorithm knows the values of ni for all i

and hence knows the approximate value q of p.

The common idea behind the a.s. algorithms we are going to describe in this section

is to separate the colour classes one by one. Suppose there exists some x ∈ V1 and a

polynomial time computable quantity n(x, y, G) such that, for all elements y of V , we can

correctly infer from n(x, y, G) whether y ∈ V1 or not. Then, by enumerating all possible

choices of x, we can separate the colour class V1. Now apply the same procedure to the

remaining graph. This idea is formally stated and proved in the next theorem. As before,

q(G), m(G) have their usual meanings and M is the number of potential edges considered

by the adversary.

Theorem 3.2. Let G ∈ G(n, p(n), k), p(n) > n−1+ε, ε > 0 be a random graph. Let Vi,Wi, ni,

Gi = G(Wi) have their usual meanings. Let n(x, y, G) be a polynomial time computable

function. Suppose there exist k−1 fixed vertices xi ∈ Vi and k−1 polynomial time computable

values B(n′i, . . . , n′k, q(G)) (i = 1, . . . , k−1) such that the condition Cond(G) (described below )

holds with probability at least 1− f(n) (0 6 f(n) 6 1).

Cond(G). For all i (1 6 i 6 k − 1), and for all y ∈Wi, y 6= xi,

n(xi, y, Gi) > B(ni, . . . , nk, q(G)), if y ∈ Vi,
n(xi, y, Gi) < B(ni, . . . , nk, q(G)), if y ∈ Vj, j > i.

Then there exists a polynomial time algorithm B(G, n, k) such that B succeeds in k-colouring

G with probability at least 1− (f(n) + e−n·log n).

Proof. It is clear from the proof of Theorem 3.1 that it is enough to design a polynomial

time algorithm ColourBySep(G, n, k,(n′1, . . . , n′k), q), given below, such that ColourBySep

succeeds on G with probability 1−f(n) whenever n′i = ni, for all i and q = q(G) = p[1±o(1)].

Once we have got such an algorithm, the algorithm B(G, n, k) can be constructed easily

as explained in the proof of Theorem 3.1.
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ColourBySep(H, n, i, (n′k−i+1, . . . , n
′
k), q).

(1) if i = 1 then

(2) if H has no edge then return V (H) /* success */

/* else failure */

(3) for all vertices u ∈ V (H) do

(4) CC = {u} ∪ { v ∈ V (H) | n(u, v, H) > B(n′k−i+1, . . . , n
′
k, q) };

(5) if |CC| is an independent set of size n′k−i+1 then

(6) Apply ColourBySep(H − CC, n, i− 1, (n′k−i+2, . . . , n
′
k), q).

(7) if ColourBySep succeeds in obtaining a (i− 1)-colouring {Cj} of H − CC ,

then

(7a) output the i-colouring {CC} ∪ {Cj} of H .

end /* for loop */

end /* of ColourBySep */

It is clear from the description of the algorithm that, if G satisfies Cond(G) mentioned

before, then ColourBySep succeeds in k-colouring G, whenever n′i = ni, for all i. Since,

by assumption, G satisfies Cond(G) with probability at least 1 − f(n), we conclude that

ColourBySep succeeds on G with probability at least 1 − f(n) whenever n′i = ni, for all

i. Hence there exists a polynomial time algorithm B(G, n, k) for k-colouring G which

succeeds with probability at least 1− (f(n) + e−n·log n).

Remark 3.1. In the above theorem, we can also interchange the positions of the two

inequalities (> and <) appearing in the definition of Cond(G). That is, n(x, y, G) <

B(ni, . . . , nk, q) if y ∈ Vi and n(x, y, G) > B(ni, . . . , nk, q) if y ∈ Vj, j > i.

Remark 3.2. In the above theorem, n(x, y, G) denotes a unique value of a polynomial

time computable function. We can generalize the theorem by allowing n(x, y, G) to be any

value returned by a suitable polynomial time algorithm A. In this case, we require that

Cond(G) holds true for all values returned by the algorithm A. The theorem also holds

true in the general case.

3.2. Algorithms for the case of p > n−1+ε, ε > 1/3

In this subsection, we prove the existence of a.s. algorithms for the case of ε > 1/3. In view

of the note given after Theorem 3.1, we can assume that our algorithms know the values

of ni and also the approximate value q of p. The algorithm works by removing the colour

classes one by one in decreasing order of their sizes. It first removes the largest colour

class, then the second largest colour class, and so on. Given two vertices x and y such

that x belongs to the largest colour class, the algorithm determines whether y belongs to

the largest colour class or not, by computing the number of edges in the subgraph of G

induced by the set N(x) ∪N(y).

Theorem 3.3. Let G ∈ G(n, p(n), k), p(n) > n−1+ε, ε > 1/3 be a random graph. Then there

exists a polynomial time algorithm A for k-colouring G such that A succeeds with probability

at least 1− e−Ω(min(np,n2p3)).
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Proof. As before, let Vi, ni,Wi, Gi, mi, C, q(G), m(G) have their usual meanings. We as-

sume, without loss of generality, that n1 > . . . > nk . We have q(G) = m(G)/M, where

M =
∑

16i<j6k ninj and q = p[1±o(1)] with probability at least 1−e−nβ for some constant

β > 1.

For any two vertices x and y, let n(x, y, G) denote the number of edges in the subgraph

of G induced by the set N(x) ∪N(y). Clearly, n(x, y, G) is a polynomial time computable

function. By Theorem 3.2, it suffices to prove the existence of k − 1 fixed vertices xi ∈ Vi
(1 6 i 6 k − 1) and k − 1 polynomial time computable quantities B(ni, . . . , nk, q) such that

G satisfies Cond(G), with probability at least 1− e−Ω(min(np,n2p3)).

Compute the positive value α such that, for all i = 1, . . . , k − 1,

(1− α)3 · ni · nj > 8α(3 + α2) ·Mi, for all j > i,

and at least one of these inequalities is violated if we use 2α instead of α. α can be

computed in constant time from the values of n1, . . . , nk . It is easy to verify, using ni > n/C
for all i, that α exists and is bounded below by a sufficiently small positive constant α∗.
Since α∗ is assumed to be small, we have α > α/4 > α∗. Let β = α/2.

Define the quantities B(ni, . . . , nk, q) (i = 1, . . . , k − 1) as follows:

B(ni, . . . , nk, q) = (1− β)3 · q3 · (Mi · (2− q)2 + ni · nk).
Consider any i (i = 1, . . . , k − 1) and any fixed vertex xi ∈ Vi. Let y ∈ Wi be any other

vertex. Assume that inequalities P1 and P2 hold. Given that this happens, using Facts 2.2

and 2.3 and inequalities P1 and P2 and the fact q = p[1± o(1)] and hence p = q[1± o(1)],

and also the assumption n1 > . . . > nk , we deduce that the following hold with probability

at least 1− e−Ω(n2p3):

y ∈ Vi : n(xi, y, Gi) 6 (1 + α∗)3 · p3 · (2− p)2 ·Mi

6 (1 + α/4)3 · q3 · (2− q)2 · [1 + o(1)]5 ·Mi

6 (1 + α/2)3 · q3 · (2− q)2 ·Mi

= (1 + β)3 · q3 · (2− q)2 ·Mi

= (1− β)3 · q3 · (Mi · (2− q)2 + nink)

− q3 · (nink(1− β)3 − 2β(3 + β2) · (2− q)2 ·Mi

)
< B(ni, . . . , nk, q).

The choice of β = α/2 helps us in obtaining the strict inequality < in the last line. Also,

y ∈ Vj, j > i : n(xi, y, Gi) > (1− α∗)3 · p3 · (X(i, j)(2− p)2

+ Y (i, j)(2− p) + Z(i, j)(2− p) + ninj),

where

X(i, j) =
∑

i+16l1<l26k, l1 6=j, l2 6=j
nl1 · nl2 ,

Y (i, j) =
∑

i+16l6k, l 6=j
nj · nl ,

Z(i, j) =
∑

i+16l6k, l 6=j
ni · nl .
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By assumption, we have ni > nj . Using this, we derive that

X(i, j) · (2− p)2 + Y (i, j) · (2− p) + Z(i, j) · (2− p) > Mi · (2− p)2.

Hence, we have

n(xi, y, Gi) > (1− α∗)3 · p3 · (Mi · (2− p)2 + ni · nj)
> (1− α/4)3 · p3 · (Mi · (2− p)2 + ni · nj)
> (1− α/2)3 · q3 · (Mi · (2− q)2 + ni · nj)
= (1− β)3 · q3 · (Mi · (2− q)2 + ni · nj)
> B(ni, . . . , nk, q).

Now, for a given xi, inequalities P1 and P2 hold for y 6= xi, with probability at least

1− e−Ω(np). Thus, with probability at least 1− e−Ω(min(np,n2p3)), the random graph G satisfies

Cond(G) with inequalities interchanged in their positions. Hence, by Remark 3.1, there

exists a polynomial time algorithm B(G, n, k) that k-colours G with probability at least

1− e−Ω(min(np,n2p3)).

3.3. Algorithms for the case of p > n−1+ε, ε > 1/4

We first design a.s. algorithms for the subcase of p(n) 6 n−1+ε2 where ε2 < 1/2 is a

constant. Then we extend this to p(n) > n−1+ε where ε > 1/4 is a constant. The algorithm

works by removing the colour classes one by one in increasing order of their sizes. Given

two vertices x and y such that x belongs to the smallest colour class, the algorithm

determines whether y belongs to the smallest colour class or not, by computing the

number of vertices in G which are adjacent to at least two vertices in N(x) ∪N(y).

Theorem 3.4. Let G ∈ G(n, p(n), k) be a random graph with p(n) > n−1+ε1 and p(n) 6
n−1+ε2 where ε1 and ε2 are positive constants such that 1/4 < ε1 < ε2 < 1/2. Then there

exists a polynomial time algorithm A for k-colouring G such that A succeeds with probability

at least 1− e−Ω(min(np,n3p4)).

Proof. As before, let Vi, ni, C,Wi, Gi, mi, C, q(G), m(G),M have their usual meanings. We

assume, without loss of generality, that n1 6 . . . 6 nk . For any two vertices x and y, let

n(x, y, G) be the size of the set

{v 6∈ NG(x) ∪NG(y) : v is adjacent to at least two vertices in NG(x) ∪NG(y)}.
Clearly, n(x, y, G) is a polynomial time computable function. By Theorem 3.2, it suffices to

prove the existence of k−1 fixed vertices xi ∈ Vi (1 6 i 6 k−1) and k−1 polynomial time

computable quantities B(ni, . . . , nk, q) such that G satisfies Cond(G) mentioned before, with

probability at least 1−e−Ω(min(np,n3p4)). For arbitrary S and w 6∈ S , let g(p, i, |S |) (1 6 i 6 |S |)
denote the probability that w is adjacent to at least i vertices of S , assuming that each

edge {w, s} (s ∈ S) is chosen with probability p.

Compute the positive value α such that, for all i = 1, . . . , k − 1,

nj · nj · ni > 4α(3 + α2) ·
(

(mi − ni)2ni +
∑
r>i

(mi − ni − nr)2nr

)
, for all j > i,
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and at least one of these inequalities is violated if we use 2α instead of α. α can be

computed in constant time from the values of n1, . . . , nk . Again, using ni > n/C for all

i, α exists and is bounded below by a sufficiently small positive constant α∗. Since α∗ is

assumed to be small, we have α > α/4 > α∗. Let β = α/2.

Define the quantities B(ni, . . . , nk, q) (i = 1, . . . , k − 1) as follows:

B(ni, . . . , nk, q) = 2(1− β)3 · q4 ·
(

(mi − ni)2ni +
∑
r>i

(mi − ni − nr)2nr

)
.

Consider any i (i = 1, . . . , k − 1) and any fixed vertex xi ∈ Vi. Let y ∈ Wi be any other

vertex. Now, with probability at least 1 − e−Ω(np), inequalities P1 and P2 hold. Assume

that inequalities P1 and P2 hold for xi and y. Also, since p(n) 6 n−1+ε2 and ε2 < 1/2, we

have np2 = o(1). Hence, for any w ∈ Vr (r > i),

Pr
(
w is adjacent to at least 2 vertices of ∪l>i,l 6=r Nl(xi, y)

)
(denote this by qr)

= g

(
p, 2,

∑
l>i,l 6=r

nl(xi, y)

)
=

( ∑
l>i,l 6=r

nl(xi, y)

)2

· p2 · [1− o(1)]/2, using Fact 2.2.

Write n(xi, y, Gi) =
∑

r>i n(xi, y, Gi)r where

n(xi, y, Gi)r = |{v ∈ Vr : v is adjacent to at least two vertices in ∪l>i,l 6=r Nl(xi, y)}|.
Given that inequalities P1 and P2 hold for xi and y, we prove that, with probability

at least 1 − e−Ω(n3p4), we have n(xi, y, Gi) > B(ni, . . . , nk, q) if y ∈ Vi, and n(xi, y, Gi) <

B(ni, . . . , nk, q) if y 6∈ Vi. In proving this assertion, we often use Facts 2.2 and 2.3 and the

fact q = p[1± o(1)] and hence p = q[1± o(1)], and also the assumption n1 6 . . . 6 nk .

Case y ∈ Vi . We have

qi =

(∑
l>i

nl(xi, y)

)2

· p2 · [1− o(1)]/2

> (1− α∗)2 · (mi − ni)2 · p4 · (2− p)2 · [1− o(1)]/2.

Hence

n(xi, y, Gi)i > (1− α∗)3 · (mi − ni)2 · ni · p4 · (2− p)2 · [1− o(1)]/2.

Similarly, for r > i,

qr =

( ∑
l>i,l 6=r

nl(xi, y)

)2

· p2 · [1− o(1)]/2

> (1− α∗)2 · (mi − ni − nr)2 · p4 · (2− p)2 · [1− o(1)]/2.

Hence, for r > i, we have

n(xi, y, Gi)r > (1− α∗)3 · (mi − ni − nr)2 · nr · p4 · (2− p)2 · [1− o(1)]/2.
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Hence,

n(xi, y, Gi)

=
∑
r>i

n(xi, y, Gi)r

> (1− α∗)3p4(2− p)2[1− o(1)]/2 ·
(

(mi − ni)2ni +
∑
r>i

(mi − ni − nr)2nr

)

> (1− β)3 · q4 · 2 ·
(

(mi − ni)2ni +
∑
r>i

(mi − ni − nr)2nr

)
= B(ni, . . . , nk, q).

Case y ∈ Vj, j > i. We have

qi =

(∑
l>i

nl(xi, y)

)2

· p2 · [1− o(1)]/2

6 (1 + α∗)2 · p4 · ((mi − ni − nj)(2− p) + nj)
2/2,

qj =

( ∑
l>i,l 6=j

nl(xi, y)

)2

· p2 · [1− o(1)]/2

6 (1 + α∗)2 · p4 · ((mi − ni − nj)(2− p) + ni)
2/2.

Hence,

n(xi, y, Gi)i 6 (1 + α∗)3 · p4 · ((mi − ni − nj)(2− p) + nj)
2 · ni/2,

n(xi, y, Gi)j 6 (1 + α∗)3 · p4 · ((mi − ni − nj)(2− p) + ni)
2 · nj/2.

Similarly, for r > i, r 6= j,

qr =

( ∑
l>i,l 6=r

nl(xi, y)

)2

· p2 · [1− o(1)]/2

6 (1 + α∗)2 · p4 · ((mi − ni − nj − nr)(2− p) + ni + nj)
2/2.

Hence, for r > i, r 6= j, we have

n(xi, y, Gi)r 6 (1 + α∗)3 · p4 · ((mi − ni − nj − nr)(2− p) + ni + nj)
2 · nr/2

6 (1 + α∗)3 · p4 · ((mi − ni − nr)(2− p) + njp)
2 · nr/2, using ni 6 nj ,

6 (1 + α∗)3 · p4 · (mi − ni − nr)2 · (2− p)2[1 + o(1)]2 · nr/2
6 (1 + α/4)3 · q4 · (mi − ni − nr)2 · 2 · [1 + o(1)]6 · nr
6 (1 + β)3 · q4 · (mi − ni − nr)2 · nr · 2
6 (1− β)3 · q4 · (mi − ni − nr)2 · nr · 2

+ 4β(3 + β2) · q4 · (mi − ni − nr)2 · nr.
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Let

X(i, j) = ((mi − ni − nj)(2− p) + nj)
2 · ni

6 4(mi − ni)2 · ni + n2
j · ni − 4(mi − ni) · ninj ,

Y (i, j) = ((mi − ni − nj)(2− p) + ni)
2 · nj

6 4(mi − ni − nj)2 · nj + n2
i · nj + 4(mi − ni − nj) · ninj .

Hence, using ni 6 nj ,

X(i, j) + Y (i, j) 6 4(mi − ni)2 · ni + 4(mi − ni − nj)2 · nj − 2n2
j ni.

As a result,

n(xi, y, Gi)i + n(xi, y, Gi)j

6 (1 + α∗)3 · p4 · (X(i, j) + Y (i, j)) /2

6 (1 + α∗)3 · q4 · 2 · ((mi − ni)2 · ni + (mi − ni − nj)2 · nj − n2
j ni/2)[1 + o(1)]4

6 (1 + β)3 · q4 · 2 · ((mi − ni)2 · ni + (mi − ni − nj)2 · nj − n2
j ni/2)

6 (1− β)3 · q4 · 2 · ((mi − ni)2 · ni + (mi − ni − nj)2 · nj)− (1 + β)3 · q4 · n2
j ni

+ 4β(3 + β2) · q4 · ((mi − ni)2 · ni + (mi − ni − nj)2 · nj).
Hence,

n(xi, y, Gi) =
∑
r>i

n(xi, y, Gi)r

6 B(ni, . . . , nk, q)− (1 + β)3 · q4 · n2
j · ni

+ 4β(3 + β2) · q4 ·
(

(mi − ni)2 · ni +
∑
r>i

(mi − ni − nr)2 · nr
)

< B(ni, . . . , nk, q).

The last inequality follows from the choice of β. Now, for a given xi and y, inequalities P1

and P2 hold for xi and y with probability at least 1−e−Ω(np). Given that this happens, with

probability at least 1− e−Ω(min(np,n3p4)), the random graph G satisfies Cond(G) for y. Hence,

by Theorem 3.2, there exists a polynomial time algorithm B(G, n, k) which k-colours G

with probability at least 1− e−Ω(min(np,n3p4)).

Using the previous theorem, we can design a.s. algorithms for the case of p(n) > n−1+ε,

where ε is any constant greater than 1/4. The idea is to apply both polynomial time

algorithms for the cases of p(n) > n−3/5 (Section 3.2) and n−1+ε 6 p(n) 6 n−3/5 (Section 3.3).

Since these two ranges of p(n) are overlapping, at least one of the two algorithms will

almost surely succeed. Hence we have the following theorem.

Theorem 3.5. Let G ∈ G(n, p(n), k) be a random graph with p(n) > n−1+ε where ε is any

positive constant such that ε > 1/4. Then there exists a polynomial time algorithm A for k-

colouring G such that A succeeds with probability at least 1−e−Ω(min(np,n3p4)) if p(n) 6 n−1+2/5

and with probability at least 1− e−Ω(min(np,n2p3)) if p(n) > n−1+2/5.
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4. Polynomial average time algorithms for colouring random graphs

Here, we give p.av.t. algorithms for k-colouring random graphs from the G(n, p(n), k)

model for p(n) as low as p(n) > n−1+ε where ε is any positive constant greater than 1/4.

Our algorithms are based on a collection of different techniques.

4.1. The central ideas

We generalize the idea used in [3] further. This approach has also been used to design

p.av.t. algorithms for k-colouring semi-random graphs (see [16]). Let A be a polynomial

time algorithm for k-colouring random graphs such that A succeeds with probability

1− o(1). We introduce a sequence 〈A1, . . . , Ar〉 of one or more algorithms as intermediate

steps between the polynomial time algorithm A and the brute-force colouring method.

Each algorithm Ai is applied when all of the previous intermediate steps Aj, j < i, have

failed. The running times T (Ai, n) and failure probabilities pf(Ai, n) of successive algorithms

in the sequence are such that, for all i, T (Ai) = o(T (Ai+1)) and pf(Ai+1) =o(pf(Ai)).

We make sure that this idea works by properly choosing the sequence of intermediate

algorithms.

We present three different types of intermediate algorithms. Using these, we present

three different techniques for colouring random graphs in polynomial average time. There

is a common theme underlying the design of these intermediate algorithms. We first

describe this common theme in the next subsection. Then, in the subsequent subsections,

we present the three types of intermediate algorithms and show how they lead to p.av.t.

algorithms.

4.2. Outline of the intermediate algorithms

The different types of intermediate algorithms will all be referred to by the common

name FindColour(G, n, k, m). Each type of FindColour(G, n, k, m) takes O(n3·k·m) time. If m

satisfies certain constraints and p(n) lies in a suitable range (which vary for different types

of FindColour), then FindColour(G, n, k, m) succeeds with probability at least 1− e−Ω(m·nδ )

for some positive constant δ. In view of Theorem 3.1, it is enough to design an algorithm

ColSepSubset(G, n, k, (n′1, . . . , n′k), m, q) such that

C1: ColSepSubset takes O(n(2m+2)·k) time, and

C2: if n′i = ni for all i = 1, . . . , k and q = p[1 ± o(1)], then ColSepSubset succeeds in

k-colouring G with probability at least 1− e−Ω(m·nδ ) for some positive constant δ. Here,

as usual, n1, . . . , nk are the sizes of the k colour classes.

The idea behind the algorithm ColSepSubset is to separate the colour classes one by one

and it is similar to the idea used in Section 3. Suppose there exists some A ⊆ V1, |A| = m,

and a polynomial time computable quantity n(A, x, G) such that, for all but at most 2m

elements of V , we can correctly infer from n(A, x, G) whether x ∈ V1 or not. Then, by

enumerating all possible m-element subsets of V , we can separate the colour class V1.

Now apply the same procedure to the remaining graph. This idea is formally stated and

proved in the next theorem.
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Theorem 4.1. Let G ∈ G(n, p(n), k), p(n) > n−1+ε, ε > 0 be a random graph. Let Vi,Wi, ni,

Gi = G(Wi), m(G), q(G),M have their usual meanings. Let m be an integer such that 1 6
m 6 n. For an independent set A, and a vertex y 6∈ A, let n(A, y, G) be a polynomial time

computable function. Suppose there exist k−1 fixed subsets Ai ⊆ Vi and k−1 polynomial time

computable values B(n′i, . . . , n′k, q(G), m) (i = 1, . . . , k − 1) such that the condition Cond(G)

(described below ) holds with probability at least 1− f(n) (0 6 f(n) 6 1).

Cond(G). For all i (1 6 i 6 k − 1),

for all but at most m vertices y ∈ Vi − Ai,
we have n(Ai, y, Gi) > B(ni, . . . , nk, q(G), m);

for all but at most m vertices y ∈Wi − Vi,
we have n(Ai, y, Gi) < B(ni, . . . , nk, q(G), m).

Then there exists an algorithm FindColour(G, n, k, m) such that FindColour takes O(n3·k·m)

time and it succeeds in k-colouring G with probability at least 1− (f(n) + e−n·log n).

Proof. As explained before, it is enough to design an algorithm ColSepSubset(G, n, k,

(n′1, . . . , n′k), q, m) such that ColSepSubset satisfies conditions C1 and C2 with q = q(G) =

p[1± o(1)]. Once we have such an algorithm, the algorithm FindColour(G, n, k, m) can be

constructed easily as explained in the proof of Theorem 3.1. ColSepSubsetis given below.

ColSepSubset(H, n, i, (n′k−i+1, . . . , n
′
k), q, m).

(1) if i = 1 then

(2) if H has no edge then return V (H) /* success */

/* else failure */

(3) for all independent subsets A ⊆ V (H) such that |A| = m do

(4) CC = { v ∈ V (H) | n(A, v, H) > B(n′k−i+1, . . . , n
′
k, q, m) };

(5) for all subsets Y1 ⊆ CC and Y2 ⊆ V (H)− CC of size at most m each do

(6) if (CC ∪ Y2)− Y1 is an independent set of size n′k−i+1 then

(6a) CC = (CC ∪ Y2)− Y1;

(6b) Apply ColSepSubset(H − CC, n, i− 1, (n′k−i+2, . . . , n
′
k), q, m).

(6c) if ColSepSubset succeeds in obtaining a (i− 1)-colouring {Cj} of H − CC ,

then

(6d) output the i-colouring {CC} ∪ {Cj} of H .

end /* for loop */

end /* for loop */

end /* of ColSepSubset */

It is clear from the description of the algorithm that, if G satisfies Cond(G) and if n′i = ni for

all i and q = q(G), then ColSepSubset succeeds in k-colouring G. By assumption, G satisfies

Cond(G) with probability at least 1−f(n). Also, q(G) = p[1±o(1)] with probability at least

1− e−n·(log n). Hence, by Theorem 3.1, there exists an algorithm FindColour(G, n, k, m) for

k-colouring G which succeeds with probability at least 1− (f(n)+e−n·(log n)). Also, it is clear
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from its description that ColSepSubset takes O(n(2m+2)k) time and FindColour(G, n, k, m)

takes O(n3km) time.

Remark 4.1. In the above theorem we can interchange the positions of the two in-

equalities (> and <) appearing in the definition of Cond(G). That is, n(Ai, y, G) <

B(ni, . . . , nk, q, m) for all but at most m vertices of Vi and n(Ai, y, G) > B(ni, . . . , nk, q, m) for

all but at most m vertices of Vj, j > i

We choose three different types of polynomial time computable functions n(A, y, G)

yielding three different types of FindColour, namely, FindColour1, FindColour2 and

FindColour3. In the following subsections we describe these and analyse their failure

probabilities. Before that, we explain some notation and inequalities which will be used

frequently in the rest of this section. As before, using the note given after Theorem 3.1,

we can assume that all of our algorithms know the values of ni for all i and also the value

of q.

Additional notation and facts. For any set A of size m, 1 6 m 6 n, for any l, 1 6 l 6 k,

let Nl(A) = { v ∈ Vl : v is adjacent to some vertex of A }; nl(A) = |Nl(A)|. Also, for

any A ⊆ Vi, w 6∈ Vi, Pr (w is adjacent to some vertex of A) = 1− (1− p)|A|.
Let α∗ be any positive constant. Using Chernoff bounds, and also Fact 2.2, we deduce

that the following hold in the random graph G.

P4: For any fixed independent set A of size m such that m · (log n) 6 (1/p(n)), and for

any l = 1, . . . , k such that A ∩ Vl = ∅, we have, with probability at least 1− e−Ω(mnp),

(1− α∗) · m · nl · p 6 nl(A) 6 (1 + α∗) · m · nl · p.
P5: Let A be any fixed independent set of size m such that m · (log n) 6 (1/p(n)) and

y 6∈ A be any fixed vertex. Then, given that A satisfies inequality P4, we have for any

l = 1, . . . , k such that y 6∈ Vl and A ∩ Vl = ∅, with probability at least 1− e−Ω(np),

(1− α∗) · nl · p 6 |Nl(y)−Nl(A)| 6 (1 + α∗) · nl · p.

4.3. Intermediate algorithm FindColour1(G, n, k,m)

Theorem 4.2. Let G ∈ G(n, p(n), k), p(n) > n−1+ε, ε > 0. Let γ2 be any positive constant.

Then there exists a positive constant δ (depending on only ε and γ2) and an algorithm

FindColour1(G, n, k, m) (1 6 m 6 n) running in O(n3·k·m) time such that,

if m · (log n) 6 1/p(n) and nγ2 6 m · n · p(n)2, then FindColour1(G, n, k, m) succeeds in

k-colouring G with probability at least 1− e−Ω(m·nδ ).

Proof. Let m be any integer satisfying the conditions mentioned above. Let δ be the

constant defined by δ = min(γ2, ε). For an arbitrary independent set A of size m and

a vertex y such that y 6∈ A, let n(A, y, G) denote the number of neighbours of y in

NG(A). Clearly, given A and y, the quantity n(A, y, G) is polynomial time computable. By

Theorem 4.1, it suffices to prove the existence of k − 1 fixed subsets Ai ⊆ Vi (1 6 i 6
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k − 1) and k − 1 quantities B(ni, . . . , nk, q, m) such that G satisfies Cond(G) mentioned in

Theorem 4.1, with probability at least 1− e−Ω(m·nδ ).

Compute the positive value α such that, for all i = 1, . . . , k − 1,

(1− α)2 · nj > 4α · (mi − ni − nj), for all j > i,

and at least one inequality is violated if we use 2α instead of α. α can be computed in

constant time from the values of n1, . . . , nk . Also, using ni > n/C for all i, α is bounded

below by a sufficiently small positive constant α∗. Since α∗ is assumed to be small, we have

α > α/4 > α∗. Let β = α/2.

Define the quantities B(ni, . . . , nk, q, m) (i = 1, . . . , k − 1) as follows:

B(ni, . . . , nk, q, m) = (1− β)2 · q2 · m · (mi − ni).
Consider any i (i = 1, . . . , k − 1) and any fixed subset Ai ⊆ Vi. Let y ∈ Wi − Ai be any

vertex. Assume that inequality P4 holds. Given that this happens, using Fact 2.3 and the

fact q = p[1± o(1)] and also the assumption nγ2 6 m · n · p2, we deduce that the following

hold with probability at least 1− e−Ω(nγ2 ). If y ∈ Vi, then

n(Ai, y, Gi) > (1− α∗)2 · p2 · (mi − ni) · m
> (1− β)2 · q2 · (mi − ni) · m
> B(ni, . . . , nk, q, m).

If y ∈ Vj , where j > i, then

n(Ai, y, Gi) 6 (1 + α∗)2 · p2 · (mi − ni − nj) · m
6 (1 + β)2 · q2 · (mi − ni − nj) · m
6 (1− β)2 · q2 · (mi − ni) · m

+ 4β · q2 · (mi − ni − nj) · m
− (1− β)2 · q2 · nj · m

< B(ni, . . . , nk, q, m) by the choice of β.

Thus, for any y ∈ Vi, Pr (n(Ai, y, Gi) > B(ni, . . . , nk, q, m)) 6 e−Ω(nγ2 ). These probabilities

are independent for different vertices of Vi. Hence, with probability at least 1− e−Ω(m·nγ2 ),

there are at most m vertices of Vi − Ai that violate the inequality mentioned in the

description of Cond(G). Similarly, with probability at least 1− e−Ω(m·nγ2 ), there are at most

m vertices of Wi − Vi that violate the corresponding inequality in Cond(G). Now, for a

given fixed Ai ⊆ Vi of size m, inequality P4 holds with probability at least 1 − e−Ω(m·nε).
Hence, with probability at least 1−e−Ω(m·nδ ), the random graph G satisfies Cond(G). Hence,

by Theorem 4.1, there exists an algorithm FindColour1(G, n, k) which k-colours G with

probability at least 1− e−Ω(m·nδ ).

4.4. Intermediate algorithm FindColour2(G, n, k,m)

Theorem 4.3. Let G ∈ G(n, p(n), k), p(n) > n−1+ε, ε > 1/3. Then there exists a positive

constant δ (depending only on ε) and an algorithm FindColour2(G, n, k, m) (1 6 m 6 n)

running in O(n3·k·m) time such that,
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if m · (log n) 6 1/p(n), then FindColour2(G, n, k, m) succeeds in k-colouring G with prob-

ability at least 1− e−Ω(m·nδ ).

Proof. Assume, without loss of generality, that n1 > . . . > nk . Let m be any integer satisfy-

ing the conditions mentioned above. Let δ be the constant defined by δ = min(ε,−1+3ε).

For an arbitrary independent set A of size m and a vertex y such that y 6∈ A, let n(A, y, G)

denote the number of edges of the form {u, v} where u ∈ NG(A) and v ∈ NG(y)−NG(A).

Clearly, given A and y, the quantity n(A, y, G) is polynomial time computable. By Theo-

rem 4.1, it suffices to prove the existence of k− 1 fixed subsets Ai ⊆ Vi (1 6 i 6 k− 1) and

k− 1 quantities B(ni, . . . , nk, q, m) such that G satisfies Cond(G) mentioned in Theorem 4.1,

with probability at least 1− e−Ω(m·nδ ).

Compute the positive value α such that, for all i = 1, . . . , k − 1,

(1− α)3 · ni · nj > 2α(3 + α2) ·Mi, for all j > i,

and at least one inequality is violated if we use 2α instead of α. α can be computed

in constant time from the values of n1, . . . , nk . Again, α > α∗ for some sufficiently small

positive constant α∗. Since α∗ is assumed to be small, we have α > α/4 > α∗. Let β = α/2.

Define the quantities B(ni, . . . , nk, q, m) (i = 1, . . . , k − 1) as follows:

B(ni, . . . , nk, q, m) = (1− β)3 · q3 · m · (Mi + nink).

Consider any i (i = 1, . . . , k − 1) and any fixed subset Ai ⊆ Vi. Let y ∈ Wi − Ai be

any vertex. Assume that inequality P4 and P5 are satisfied by A and y. Given that this

happens, using Fact 2.3 and the fact q = p[1 ± o(1)], we deduce that the following hold

with probability at least 1− e−Ω(m·n2·p3). If y ∈ Vi, then

n(Ai, y, Gi) 6 (1 + α∗)3 · p3 · m ·Mi

6 (1 + β)3 · q3 · m ·Mi

6 B(ni, . . . , nk, q, m)− q3 · m · ((1− β)3 · ni · nk − 2β(3 + β2) ·Mi

)
< B(ni, . . . , nk, q, m).

If y ∈ Vj , where j > i, then

n(Ai, y, Gi) > (1− α∗)3 · p3 · m · (X(i, j) + Y (i, j) + Z(i, j) +U(i, j)) ,

where

X(i, j) =
∑

i<l1<l26k, l1 ,l2 6=j
nl1 · nl2 ,

Y (i, j) =
∑

i<l6k,l 6=j
nl · nj ,

Z(i, j) =
∑

i<l6k,l 6=j
nl · ni,

U(i, j) = ni · nj .
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Using ni > nj > nk , we deduce that X(i, j) +Y (i, j) +Z(i, j) +U(i, j) > Mi + ni · nk . Hence

we have

n(Ai, y, Gi) > (1− α∗)3 · p3 · m · (Mi + ni · nk)
> (1− β)3 · q3 · m · (Mi + ni · nk)
> B(ni, . . . , nk, q, m).

Thus, given that Ai satisfies inequality P4, we have with probability at least 1− e−Ω(m·n2·p3)

that n(Ai, y, Gi) > B(ni, . . . , nk, q, m) (or n(Ai, y, Gi) < B(ni, . . . , nk, q, m)) if y 6∈ Vi (or y ∈ Vi),
for every y ∈ Wi − Ai such that y satisfies inequality P5. Now, given that Ai satisfies

inequality P4, with probability at least 1 − e−Ω(m·np), there are at most m vertices that

do not satisfy inequality P5. Also, Ai satisfies inequality P4 with probability at least

1 − e−Ω(mnp). Hence, with probability at least 1 − e−Ω(m·nδ ), the random graph G satisfies

Cond(G). Hence, by Theorem 4.1, there exists an algorithm FindColour2(G, n, k) that

k-colours G with probability at least 1− e−Ω(m·nδ ).

4.5. Intermediate algorithm FindColour3(G, n, k,m)

Theorem 4.4. Let G ∈ G(n, p(n), k), with n−1+ε1 6 p(n) 6 n−1+ε2 where ε1 and ε2 are

positive constants such that 1/4 < ε1 < ε2 < 1/2. Then there exists a positive constant δ

(depending on only ε1) and an algorithm FindColour3(G, n, k, m) (1 6 m 6 n) running in

O(n3·k·m) time such that,

if m · n · p2 6 1/(log n), then FindColour3(G, n, k, m) succeeds in k-colouring G

with probability at least 1− e−Ω(m·nδ ).

Proof. Assume, without loss of generality, that n1 6 . . . 6 nk . Let m be any integer satisfy-

ing the conditions mentioned above. Let δ be the constant defined by δ = min(ε1,−1+4ε1).

For an arbitrary independent set A of size m and a vertex y such that y 6∈ A, let n(A, y, G)

denote the number of vertices u 6∈ A ∪ {y} such that u is adjacent to some vertex of

NG(A) and some vertex of NG(y)−NG(A). Clearly, given A and y, the quantity n(A, y, G)

is polynomial time computable. By Theorem 4.1, it suffices to prove the existence of k− 1

fixed subsets Ai ⊆ Vi (1 6 i 6 k − 1) and k − 1 quantities B(ni, . . . , nk, q, m) such that G

satisfies Cond(G) mentioned before, with probability at least 1− e−Ω(m·nδ ).

Compute the positive value α such that, for all i = 1, . . . , k − 1,

nj · nj · ni > 2α(3 + α2) ·
(

(mi − ni)2ni +
∑
r>i

(mi − ni − nr)2nr

)
, for all j > i,

and at least one inequality is violated if we use 2α instead of α. α can be computed in

constant time from the values of n1, . . . , nk . Also, α > α∗ for some sufficiently small positive

constant α∗. Since α∗ is assumed to be small, we have α > α/4 > α∗. Let β = α/2.

Define the quantities B(ni, . . . , nk, q, m) (i = 1, . . . , k − 1) as follows:

B(ni, . . . , nk, q, m) = (1− β)3 · q4 · m ·
(

(mi − ni)2ni +

(∑
r>i

(mi − ni − nr)2nr

))
.
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Consider any i (i = 1, . . . , k − 1) and any fixed subset Ai ⊆ Vi. Let y ∈ Wi − Ai be any

vertex. Assume that inequalities P4 and P5 are satisfied by A and y.

Now, since p(n) 6 n−1+ε2 and ε2 < 1/2, we have np2 = o(1). Hence, for any w ∈ Vr
(r > i), we have that

Pr
(
w is adjacent to some vertex of NGi(y)−NGi(Ai)

)
(denote this by qr(y, Ai))

=

( ∑
l>i,l 6=j,l 6=r

|Nl(y)−Nl(Ai)|
)
· p · [1− o(1)], using Fact 2.2.

Also, since, by assumption, m · n · p2 6 1/(log n) we have m · n · p2 = o(1). Hence, for any

w ∈ Vr (r > i), we have that

Pr
(
w is adjacent to some vertex of NGi(Ai)

)
(denote this by qr(Ai))

=

( ∑
l>i,l 6=r

|Nl(Ai)|
)
· p · [1− o(1)], using Fact 2.2.

Write n(Ai, y, Gi) =
∑

l>i n(Ai, y, Gi)l , where

n(Ai, y, Gi)l = |{v ∈ Vl : v is adjacent to some vertex in NGi(Ai)

and some vertex in NGi(y)−NGi(Ai)}|.
Now, using Fact 2.2 and the fact q = p[1±o(1)], and also the assumption n1 6 . . . 6 nk ,

we deduce the following.

Case y ∈ Vi . We have

qi(y, Ai) =

(∑
l>i

|Nl(y)−Nl(Ai)|
)
· p · [1− o(1)]

> (1− α∗) · (mi − ni) · p2 · [1− o(1)],

qi(Ai) =

(∑
l>i

|Nl(Ai)|
)
· p · [1− o(1)]

> (1− α∗) · (mi − ni) · m · p2 · [1− o(1)].

Hence, with probability at least 1− e−Ω(m·n3p4),

n(Ai, y, Gi)i > (1− α∗)3 · (mi − ni)2 · m · p4 · ni · [1− o(1)].

Similarly, for r > i,

qr(y, Ai) =

( ∑
l>i,l 6=r

|Nl(y)−Nl(Ai)|
)
· p · [1− o(1)]

> (1− α∗) · (mi − ni − nr) · p2 · [1− o(1)],

qr(Ai) =

( ∑
l>i,l 6=r

|Nl(Ai)|
)
· p · [1− o(1)]

> (1− α∗) · (mi − ni − nr) · m · p2 · [1− o(1)].
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Hence, for r > i, with probability at least 1− e−Ω(m·n3p4), we have

n(Ai, y, Gi)r > (1− α∗)3 · (mi − ni − nr)2 · m · p4 · nr · [1− o(1)].

Hence

n(Ai, y, Gi)

=
∑
r>i

n(Ai, y, Gi)r

> (1− α∗)3 · m · p4 · [1− o(1)] ·
(

(mi − ni)2ni +
∑
r>i

(mi − ni − nr)2nr

)

> (1− β)3 · m · q4 ·
(

(mi − ni)2ni +
∑
r>i

(mi − ni − nr)2nr

)
= B(ni, . . . , nk, q, m).

Case y ∈ Vj, j > i. We have

qi(y, Ai) =

( ∑
l>i,l 6=j

|Nl(y)−Nl(Ai)|
)
· p · [1− o(1)]

6 (1 + α∗) · (mi − ni − nj) · p2,

qi(Ai) =

(∑
l>i

|Nl(Ai)|
)
· p · [1− o(1)]

6 (1 + α∗) · (mi − ni) · m · p2,

qj(y, Ai) =

( ∑
l>i,l 6=j

|Nl(y)−Nl(Ai)|
)
· p · [1− o(1)]

6 (1 + α∗) · (mi − nj) · p2,

qj(Ai) =

( ∑
l>i,l 6=j

|Nl(Ai)|
)
· p · [1− o(1)]

6 (1 + α∗) · (mi − ni − nj) · m · p2.

Hence, with probability at least 1− e−Ω(m·n3p4),

n(Ai, y, Gi)i 6 (1 + α∗)3 · m · p4 · (mi − ni) · (mi − ni − nj) · ni,
n(Ai, y, Gi)j 6 (1 + α∗)3 · m · p4 · (mi − nj) · (mi − ni − nj) · nj .

Similarly, for r > i, r 6= j,

qr(y, Ai) =

( ∑
l>i,l 6=j,l 6=r

|Nl(y)−Nl(Ai)|
)
· p · [1− o(1)]

6 (1 + α∗) · (mi − nj − nr) · p2,
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qr(Ai) =

( ∑
l>i,l 6=r

|Nl(Ai)|
)
· p · [1− o(1)]

6 (1 + α∗) · (mi − ni − nr) · m · p2.

Hence, for r > i, r 6= j, using ni 6 nj , we have

n(Ai, y, Gi)r 6 (1 + α∗)3 · m · p4 · (mi − ni − nr) · (mi − nj − nr) · nr
6 (1 + α∗)3 · m · p4 · (mi − ni − nr)2 · nr
6 (1 + β)3 · m · q4 · (mi − ni − nr)2 · nr
6 (1− β)3 · m · q4 · (mi − ni − nr)2 · nr

+2β(3 + β2) · m · q4 · (mi − ni − nr)2 · nr.
Let

X(i, j) = (mi − ni) · (mi − ni − nj) · ni
= (mi − ni)2 · ni − (mi − ni) · nj · ni,

Y (i, j) = (mi − nj) · (mi − ni − nj) · nj
= (mi − ni − nj)2 · nj + (mi − ni − nj) · ni · nj .

Hence,

X(i, j) + Y (i, j) = (mi − ni)2 · ni + (mi − ni − nj)2 · nj − n2
j · ni.

As a result,

n(Ai, y, Gi)i + n(Ai, y, Gi)j

6 (1 + α∗)3 · m · p4 · (X(i, j) + Y (i, j))

6 (1 + β)3 · m · q4 · (X(i, j) + Y (i, j))

6 (1− β)3 · m · q4 · ((mi − ni)2 · ni + (mi − ni − nj)2 · nj)− (1 + β)3 · m · q4 · n2
j ni

+ 2β(3 + β2) · m · q4 · ((mi − ni)2 · ni + (mi − ni − nj)2 · nj) .
Hence,

n(Ai, y, Gi) =
∑
r>i

n(Ai, y, Gi)r

6 B(ni, . . . , nk, q, m)− (1 + β)3 · m · q4 · n2
j · ni

+ 2β(3 + β2) · m · q4 ·
(

(mi − ni)2 · ni +
∑
r>i

(mi − ni − nr)2 · nr
)

< B(ni, . . . , nk, q, m).

The last inequality follows from the choice of β. Thus, given that Ai satisfies inequality

P4, we have with probability at least 1 − e−Ω(m·n3·p4) that n(Ai, y, Gi) > B(ni, . . . , nk, q, m)

(or n(Ai, y, Gi) < B(ni, . . . , nk, q, m)) if y ∈ Vi (or y 6∈ Vi ), for every y ∈ Wi − Ai such that

y satisfies inequality P5. Now, given that Ai satisfies inequality P4, with probability at

least 1 − e−Ω(mnp), there are at most m vertices that do not satisfy inequality P5. Also, Ai
satisfies inequality P4 with probability at least 1−e−Ω(mnp). Hence, with probability at least
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1 − e−Ω(m·nδ ), the random graph G satisfies Cond(G). Hence, by Theorem 4.1, there exists

an algorithm FindColour3(G, n, k) that k-colours G with probability at least 1− e−Ω(m·nδ ).

Remark 4.2. For each of Theorems 4.2, 4.3 and 4.4, its proof actually guarantees larger

success probability than is given in its statement:

(i) FindColour1 succeeds with probability at least 1− e−Ω(m2np2);

(ii) FindColour2 succeeds with probability at least 1− e−Ω(min(mnp,mn2p3));

(iii) FindColour3 succeeds with probability at least 1− e−Ω(min(mnp,mn3p4)).

We have given the probabilities in terms of a constant δ so that the theorems become

more convenient to use in the analysis of p.av.t. algorithms that follow.

In the following subsections, we show how to use the three FindColour() algorithms

to design three different techniques for constructing p.av.t. algorithms for k-colouring

G(n, p(n), k). One intermediate algorithm, called Colour2(G, n, k, m, m), has already been

introduced in [16] to k-colour semi-random graphs in p.av.t. It also works for random

graphs, since random graphs form a special class of semi-random graphs. Each of

our techniques for p.av.t. algorithms works by using Colour2() and some FindColour().

For a description of Colour2(), see [16]. We will only be using the following facts

about Colour2. It runs in O(n3km) time and has failure probability at most e−nk for

m > (log n · log log n)/p(n). Also, the following theorem from [16] regarding Colour2() will

be used in our proofs.

Theorem 4.5. Let G ∈ G(n, p(n), k) where p(n) > n−1+ε for some positive constant ε. Let A

be any polynomial time (worst-case) deterministic algorithm that k-colours G with probability

at least 1 − e−(log n)3/p(n). Then we can construct another algorithm B(G, n, k) which always

k-colours G and whose running time is polynomial on average.

4.6. First technique for designing polynomial average time algorithms

Each of the algorithms FindColour?(G, n, k, m) succeeds only when m satisfies the corre-

sponding inequality involving m and p(n). But the only restriction we impose on p(n) is

that p > n−1+ε. So, p can vary between as high as a constant value and as low as n−1+ε

even for successive values of n. This leads to some difficulties in analysis. However, we

overcome this difficulty by dividing the range [n−1+ε, 1] into smaller subranges and then

proving the result for each smaller subrange.

Theorem 4.6. Let G ∈ G(n, p(n), k), p = p(n) > n−1+ε, ε > 0 be a random graph. Let A be

a deterministic polynomial time (worst-case) algorithm such that A succeeds in k-colouring

G with probability at least 1 − e−Ω(nγ ·max(1,1/(np2))), where γ is some positive constant. Then

there exists another deterministic algorithm B1(G, n, k) which always k-colours G and whose

running time is polynomial on average.

Proof. The algorithm B1(G, n, k) works as follows.
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(1) Apply algorithm A over the input random graph G; if A succeeds, then exit.

(2) for m = 1 to n/(log n)3 do

(2a) Apply Colour2(G, n, k, m, m); if Colour2 succeeds, then exit.

(2b) Apply FindColour1(G, n, k, m); if FindColour1 succeeds, then exit.

(3) Apply brute-force colouring method over G.

It is clear that algorithm B1 always k-colours G. Now we prove that algorithm B1(G, n, k)

has polynomial average running time for all sufficiently large values of n.

Let τ be a sufficiently small constant. Divide the interval [ε, 1] into subintervals [ε +

lτ,min(1, ε+ (l+ 1)τ)] (l > 0). Now, using this division of [ε, 1], divide the range [n−1+ε, 1]

into subranges Il = [n−1+ε+lτ,min(1, n−1+ε+(l+1)τ)], l > 0. Since ε and τ are constants,

there is only a constant number of subranges Il . Hence it is enough to prove that

algorithm B1(G, n, k) has polynomial running time for all sufficiently large values of n, as

long as p(n) ∈ Il for some l > 0. Hence, in the rest of the proof we assume that p(n) ∈ Il
for some l > 0. Let plow = n−1+ε+lτ and pup = min(1, n−1+ε+(l+1)τ). Using Theorem 4.5,

without loss of generality, we assume that p(n) is not in the last subrange corresponding

to pup = 1.

Let f(n, p)=nγ ·max(1, 1/(np2)). Since p ∈ Il , we have f(n, p) > flow(n, p) where flow(n, p)=

nγ ·max(1, n1−2ε−2(l+1)τ) and f(n, p) 6 fup(n, p) where fup(n, p)=nγ ·max(1, n1−2ε−2lτ). We also

have flow(n, p) > nγ . For all m such that m > flow(n, p)/(nτ · (log n)6), we have m ·n ·p2 > nγ2

for some constant γ2 > 0. Let δ = min(ε, γ2) be the constant mentioned in the statement

and proof of Theorem 4.2 and let δ1 = δ/2. Since τ is sufficiently small, we have δ1 > τ.

First, we note that, if flow(n, p) > (log n)3/plow, then we can apply Theorem 4.5 and

deduce that, for all sufficiently large values of n, B1(G, n, k) has polynomial average

running time. Hence, in the rest of the proof we assume that flow(n, p) 6 (log n)3/plow.

We use the following notation.

• Let m1(n) be a function defined as m1(n) = dflow(n, p)/(nτ ·(log n)6)e. Let nf = n/(log n)3.

• Define β0 = 0. Let r be a nonnegative integer constant and let β1 6 . . . 6 βr+1 be a

sequence of positive real constants such that

(i) 0 < βj+1 − βj 6 δ1, for all j 6 r;

(ii) m1(n) · nβr · (log n)3 6 1/pup and (1/plow) · (log n)3 6 m1(n) · nβr+1 .

Since δ1 and τ are constants, and since τ < δ1, such constants r and {βj} always

exist. The reason for choosing such constants is the following argument. FindColour1

(G, n, k, m) is useful for the analysis only when m ‘lies’ between the two barriers 1/(np2)

and 1/p. Also, Colour2(G, n, k, m, m) is useful for the analysis only when m is ‘above’ the

barrier 1/p [16].

• For 0 6 j 6 r + 1, define nj = m1(n) · nβj .
• Let TA(n), Tbf(n), Ti(n) denote the worst-case running times of algorithms A, brute-force

colouring and the ith iteration of step (2), respectively. E(TB1(n)) denotes the average

running time of algorithm B1 over G.

• q(A) = Pr (A fails on G). We have q(A) 6 e−Ω(f(n,p)) 6 e−Ω(flow(n,p)).

• For all m, q(A,m) denotes the probability that algorithm A fails on G and for each

m′ < m, the m′th iteration of step (2) fails to obtain a k-colouring of G.
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From the earlier results we have the following.

• For all values of m such that m > m1(n) and m 6 nr , FindColour1(G, n, k, m) succeeds on

G with probability at least 1− e−Ω(m·nδ ). Hence, for j 6 r, we have q(A, nj + 1)6e−nj ·nδ .
• For all values of m such that m > nr+1, Colour2(G, n, k, m, m) succeeds in k-colouring G

with probability at least 1− e−nk [16]. Hence, for j > r, we have q(A, nj + 1)6e−nk .
Hence we have

E(TB1(n)) 6 TA(n) +
∑

16m6nf

( ∑
16m′6m

Tm′(n)

)
· q(A,m)

+

(
Tbf(n) +

∑
16m′6nf

Tm′(n)

)
· q(A, nf + 1),

E(TB1(n)) 6 TA(n) +

[ ∑
16m6n0

m · Tm(n)

]
· q(A)

+
∑

16j6r+1

[ ∑
nj−1<m6nj

m · Tm(n)

]
· q(A, nj−1 + 1)

+

[ ∑
nr+1<m6nf

m · Tm(n) + Tbf(n)

]
· q(A, nr+1 + 1),

E(TB1(n)) 6 TA(n) + O(n2
0 · n3·k·n0 ) · e−Ω(flow(n,p))

+
∑

16j6r+1

O(n2
j · n3·k·nj ) · e−nj−1·nδ + O(n2kn) · e−nk.

Substituting the values of nj for various values of j, 1 6 j 6 r+ 1, we can verify that each

of the last three terms on the right-hand side of the inequality is less than 1. Hence we

have E(TB1(n)) 6 2 ·TA(n). Thus the algorithm B1 has polynomial expected running time.

Also, algorithm B1 always k-colours G since the brute-force colouring method always

succeeds on G. This completes the proof of the theorem.

4.7. Second technique for designing polynomial average time algorithms

In this subsection, we describe the second technique for designing p.av.t. algorithms for

colouring random graphs. It works by repeatedly calling Colour2 and FindColour2. Unlike

the first technique, this technique works for much higher failure probabilities, namely any

exponentially low failure probability. However, it works only for a smaller range of edge

probabilities, namely p(n) > n−1+ε, ε > 1/3.

Theorem 4.7. Let G ∈ G(n, p(n), k), p = p(n) > n−1+ε, ε > 1/3 be a random graph. Let A

be a deterministic polynomial time (worst-case) algorithm such that A succeeds in k-colouring

G with probability at least 1− e−Ω(nγ), where γ is some positive constant. Then there exists a

deterministic algorithm B2(G, n, k) which always k-colours G and which runs in polynomial

average time.
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Proof. The algorithm B2(G, n, k) is the same as B1(G, n, k) except that we apply Find-

Colour2(G, n, k, m) instead of FindColour1() in step (2b).

It is clear that algorithm B2 always k-colours G. We prove that algorithm B2() has

polynomial average running time for all sufficiently large values of n.

Let τ be a sufficiently small constant. Divide the interval [ε, 1] into subintervals [ε +

lτ,min(1, ε+ (l + 1)τ)], l > 0. Now, using this division of [ε, 1], divide the range [n−1+ε, 1]

into subranges Il = [n−1+ε+lτ,min(1, n−1+ε+(l+1)τ)], l > 0. Since ε and τ are constants,

there is only a constant number of subranges Il . Hence it is enough to prove that

algorithm B2(G, n, k) has polynomial running time for all sufficiently large values of n, as

long as p(n) ∈ Il for some l > 0. Hence, in the rest of the proof we assume that p(n) ∈ Il
for some l > 0. Let plow = n−1+ε+lτ and pup = min(1, n−1+ε+(l+1)τ). As before, we can

assume that p(n) is not in the last subrange.

Let f(n) = nγ . Let δ = min(ε,−1 + 3ε) be the constant mentioned in the proof of

Theorem 4.3 and let δ1 = δ/2. Since τ is sufficiently small, we have δ1 > τ. First, we

note that if f(n) > (log n)3/plow, then we can apply Theorem 4.5 and deduce that for all

sufficiently large values of n, B2(G, n, k) has polynomial average running time. Hence, in

the rest of the proof we assume that f(n) 6 (log n)3/plow.

We use the same meanings (as used in the proof of Theorem 4.6) for TA(n), Ti(n), Tbf(n),

q(A), q(A,m). For the rest, their new meanings are given below.

• Let m1(n) be defined as m1(n) = df(n)/(nτ · (log n)6)e. Let nf = n/(log n)3. For 0 6 j 6
r + 1, define nj = m1(n) · nβj where βj are constants defined below. E(TB2(n)) denotes

the average running time of algorithm B2 over G.

• Define β0 = 0. Let r be a nonnegative integer constant and let β1 6 . . . 6 βr+1 be a

sequence of positive real constants such that

(i) 0 < βj+1 − βj 6 δ1, for all j 6 r;

(ii) m1(n) · nβr · (log n)3 6 1/pup and (1/plow) · (log n)3 6 m1(n) · nβr+1 .

Since δ1 and τ are constants, and since τ is assumed to be sufficiently small, such

constants r and {βj} always exist. The reason for choosing such constants is the

following argument. FindColour2 (G, n, k, m) is useful for the analysis only when m is

‘below’ the barrier 1/p. Also, Colour2(G, n, k, m, m) is useful for the analysis only when

m is ‘above’ the barrier 1/p.

From the earlier results we have the following.

By assumption, q(A) 6 e−Ω(f(n)).

• For all values of m such that m > m1(n) and m 6 nr , FindColour2(G, n, k, m) succeeds on

G with probability at least 1− e−Ω(m·nδ ). Hence, for j 6 r, we have q(A, nj + 1)6e−nj ·nδ .
• For all values of m such that m > nr+1, Colour2(G, n, k, m, m) succeeds in k-colouring G

with probability at least 1− e−n·k . Hence, for j > r, we have q(A, nj + 1)6e−nk .
As before, we have

E(TB2(n)) 6 TA(n) + O(n2
0 · n3·k·n0 ) · e−Ω(f(n))

+
∑

16j6r+1

O(n2
j · n3·k·nj ) · e−nj−1·nδ + O(n2kn) · e−nk.
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Substituting the values of nj for various values of j, 1 6 j 6 r + 1, we can verify that

each of the last three terms on the right-hand side of the inequality is less than 1. Hence

we have E(TB2(n)) 6 2 · TA(n). Thus the algorithm B2 has polynomial expected running

time.

Corollary 4.1. Let G ∈ G(n, p(n), k) where p(n) > n−1+ε for some positive constant ε > 1/3.

Then G can be k-coloured in polynomial average time. (This follows from Theorem 3.3.)

4.8. Third technique for designing polynomial average time algorithms

In this subsection, we describe the third technique for designing p.av.t. algorithms. It works

by repeatedly calling Colour2, FindColour1, FindColour2 and FindColour3. Like the

second technique, this technique also works for any exponentially low failure probability.

However, this technique works for a larger range of edge probabilities, p(n) > n−1+ε,

ε > 1/4.

Theorem 4.8. Let G ∈ G(n, p(n), k), p = p(n) > n−1+ε, ε > 1/4 be a random graph. Let A

be a deterministic polynomial time (worst-case) algorithm such that A succeeds in k-colouring

G with probability at least 1− e−Ω(nγ), where γ is some positive constant. Then there exists a

deterministic algorithm B3(G, n, k) which always k-colours G and which runs in polynomial

average time.

Proof. The algorithm B3(G, n, k) works as follows.

(1) Apply algorithm A over the input random graph G; if A succeeds, then exit.

(2) for m = 1 to n/(log n)3 do

(2a) Apply Colour2(G, n, k, m, m); if Colour2 succeeds, then exit.

(2b) Apply FindColour1(G, n, k, m); if FindColour1 succeeds, then exit.

(2c) Apply FindColour2(G, n, k, m); if FindColour2 succeeds, then exit.

(2d) Apply FindColour3(G, n, k, m); if FindColour3 succeeds, then exit.

(3) Apply brute-force colouring method over G.

It is clear that algorithm B3 always k-colours G. We prove that algorithm B3(G, n, k) has

polynomial average running time for all sufficiently large values of n.

First, we note that, if ε > 1/3, then by Theorem 4.7 algorithm B3(G, n, k) has polynomial

average running time for all sufficiently large values of n. Hence, we assume that ε is such

that 1/4 < ε 6 1/3. Again, again by Theorem 4.7, we assume that p = p(n) is such that

p(n) > n−1+ε and p(n) 6 n−1+2/5. In the notation of Theorem 4.4, we have ε1 = ε and

ε2 = 2/5.

Let τ be a sufficiently small constant. Divide the interval [ε, 2/5] into subintervals

[ε+ lτ,min(2/5, ε+ (l + 1)τ)], l > 0. Now, using this division of [ε, 2/5], divide the range

[n−1+ε, n−1+2/5] into subranges Il = [n−1+ε+lτ,min(n−1+2/5, n−1+ε+(l+1)τ)], l > 0. Since ε and

τ are constants, there is only a constant number of subranges Il . Hence it is enough

to prove that algorithm B3(G, n, k) has polynomial running time for all sufficiently large

values of n, as long as p(n) ∈ Il for some l > 0. Hence, in the rest of the proof we assume

that p(n) ∈ Il for some l > 0. Let plow = n−1+ε+lτ and pup = min(n−1+2/5, n−1+ε+(l+1)τ). As

before, we assume that p(n) is not in the last subrange, without loss of generality.
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Let f(n) = nγ and g(n, p) = max(1, 1/(np2)). Since p(n) 6 n−1+2/5, we have g(n, p) =

1/(np2). Also, since p ∈ Il , we have g(n, p) > glow(n, p) where glow(n, p) = n1−2ε−2(l+1)τ

and g(n, p) 6 gup(n, p) where gup(n, p) = n1−2ε−2lτ. Since τ is sufficiently small, we have

gup(n, p) · n4τ · (log n)3 6 1/pup.

We note that if f(n) > (log n)3/plow, then we can apply Theorem 4.5 and deduce that,

for all sufficiently large values of n, algorithm B3(G, n, k) has polynomial average running

time. Hence, in the rest of the proof we assume that f(n) 6 (log n)3/plow.

If gup(n, p)·nτ 6 f(n), then it implies that the polynomial time algorithm A succeeds on G

with probability at least 1−e−Ω(nτ·max(1,1/(np2))). Hence, by Theorem 4.6, algorithm B3(G, n, k)

runs in polynomial average time, for all sufficiently large values of n. Hence we assume

that gup(n, p) > f(n)/nτ and hence glow(n, p) > f(n)/n3τ. As a result, for any value of m

such that m 6 f(n)/(n3τ · (log n)3) 6 glow/(log n)3, we have m · n · p2 6 1/(log n)3.

Let δ1 be a constant which is less than but sufficiently close to the constant min(ε,−1+4ε)

used in the proof of Theorem 4.4. Since τ is sufficiently small, we have δ1 > 6τ. Let δ2 be

a positive constant which is less than but sufficiently close to the constant min(4τ, ε) used

in the proof of Theorem 4.2. Since τ is small, we have δ2 > 3τ. Also, for future reference

within this proof, we denote the constants min(ε,−1 + 4ε) and min(4τ, ε) by δ and δ′,
respectively.

We use the same meaning (as used in the proof of Theorem 4.6) for each of TA(n),

Ti(n), Tbf(n) and q(A), q(A,m). For the rest and some new notation, we use the following

meanings.

• Let m1(n) be defined as m1(n) = df(n)/(n3τ · (log n)3)e. Let nf = n/(log n)3. For 0 6 j 6
r + 1 + s + 1, define nj = m1(n) · nβj where βj are constants defined below. E(TB3(n))

denotes the average running time of algorithm B3 over G.

• Define β0 = 0. Let r, s be nonnegative integer constants and β1 6 . . . 6 βr+1 6 . . . 6
βr+1+s+1 be a sequence of positive real constants such that

(i) 0 < βj+1 − βj 6 δ1 for all j 6 r;

(ii) m1(n) · nβr · (log n)3 6 glow(n, p) and gup(n, p) 6 m1(n) · nβr+1 ;

(iii) 0 < βj+1 − βj 6 δ2 for all j > r + 1;

(iv) m1(n) · nβr+1+s · (log n)3 6 1/pup and 1/plow · (log n)3 6 m1(n) · nβr+1+s+1 .

Since δ1, δ2 and τ are constants, and since τ is assumed to be sufficiently small, such

constants r, s and βj always exist. The reason for choosing such constants is the following

argument. FindColour3(G, n, k, m) is useful for the analysis only when m is ‘smaller’ than

the ‘barrier’ 1/(np2). Similarly, FindColour1 (G, n, k, m) is useful for the analysis only

when m ‘lies’ between the two barriers 1/(np2) and 1/p. Also Colour2(G, n, k, m, m) is

useful for the analysis only when m is ‘above’ the barrier 1/p.

From the earlier results we have the following.

By assumption, q(A) 6 e−Ω(f(n)).

• For all values of m such that m > m1(n) and m 6 nr , FindColour3(G, n, k, m) succeeds on

G with probability at least 1− e−Ω(m·nδ ). Hence, for j 6 r, we have q(A, nj + 1)6e−nj ·nδ .
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• For all values of m such that m > nr+1 and m 6 nr+1+s, FindColour1(G, n, k, m) succeeds

on G with probability at least 1− e−Ω(m·nδ′ ). Hence, for j > r and j 6 r+ 1 + s, we have

q(A, nj + 1)6 e−nj ·nδ
′

where δ′ was defined before as δ′ = 4τ.

• For all values of m such that m > nr+1+s+1, Colour2(G, n, k, m, m) succeeds in k-colouring

G with probability at least 1− e−n·k . Hence, for j > r+ 1 + s, we have q(A, nj + 1)6e−nk .
Hence we have

E(TB3(n)) 6 TA(n) +

[ ∑
16m6n0

m · Tm(n)

]
· q(A)

+
∑

16j6r+1

[ ∑
nj−1<m6nj

m · Tm(n)

]
· q(A, nj−1 + 1)

+
∑

r+1<j6r+1+s+1

[ ∑
nj−1<m6nj

m · Tm(n)

]
· q(A, nj−1 + 1)

+

[ ∑
nr+1+s+1<m6nf

m · Tm(n) + Tbf(n)

]
· q(A, nr+1+s+1 + 1),

E(TB3(n)) 6 TA(n) + O(n2
0 · n3·k·n0 ) · e−Ω(f(n))

+
∑

16j6r+1

O(n2
j · n3·k·nj ) · e−nj−1·nδ

+
∑

r+1<j6r+1+s+1

O(n2
j · n3·k·nj ) · e−nj−1·nδ′ + O(n2kn) · e−nk.

Substituting the values of nj for various values of j (1 6 j 6 r + 1 + s+ 1), we can verify

that each of the last three terms on the right-hand side of the inequality is less than 1.

Hence we have E(TB3(n)) 6 2 · TA(n). Thus the algorithm B3 has polynomial expected

running time.

Theorem 4.9. Let G ∈ G(n, p(n), k), p(n) > n−1+ε where ε is a positive constant greater

than 1/4. Then G can be k-coloured in polynomial average time.

Proof. By Theorem 3.5, there exists a polynomial time algorithm A for k-colouring G

such that A succeeds with probability at least 1−e−Ω(min(np,n3p4)) or with probability at least

1− e−Ω(min(np,n2p3)), depending on the value of p(n). In either case, algorithm A succeeds on

G with probability at least 1− e−Ω(nγ) for some positive constant γ (since ε > 1/4). Hence,

by the previous theorem, there exists another algorithm B3(G, n, k) such that B3(G, n, k)

always k-colours G and runs in polynomial average time.

In each of Theorems 4.5, 4.6, 4.7 and 4.8, we require that A is a deterministic polynomial

time (worst-case) algorithm that succeeds with probability 1 − f(n) for suitable f(n). A

close look at the proofs shows that we can weaken this requirement, thereby strengthening

each of these theorems as follows. We state the strengthened version only for Theorem 4.5

(for others it is similar).
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Theorem 4.10. Let G ∈ G(n, p(n), k) where p(n) > n−1+ε for some positive constant ε.

Let A be any deterministic polynomial time (average case) algorithm that k-colours G with

probability at least 1 − e−(log n)3/p(n). Then we can construct another algorithm B(G, n, k)

which always k-colours G and whose running time is polynomial on average. (The difference

between A and B is that B always k-colours, but A need not.)

5. Conclusions and open problems

We have obtained the following results. If G ∈ G(n, p(n), k), p(n) > n−1+ε, ε > 1/4, then

(i) G can be k-coloured in polynomial time with exponentially low failure probability;

(ii) G can be k-coloured in polynomial average time.

Even though our a.s. algorithms work only for p(n) > n−1+ε, ε > 1/4, they have provably

exponentially low failure probability, which is crucial in designing p.av.t. algorithms. We

have shown how, by using the running time-failure probability trade-off, we can design

p.av.t. algorithms. Our p.av.t. algorithms for k-colouring work for a much larger range of

values of p(n) than previously known algorithms. Both of our results can also be extended

to the GUC(n, p(n), k) model for the same range of values of p(n). The details are given in

[15].

One natural question related to these results is as follows. Given a random k-colourable

graph, can we find a χ(G)-colouring in p.av.t.? With respect to worst-case measure, the two

problems of k-colouring and χ(G)-colouring are not equivalent. However, we have shown

that χ(G)-colouring can be done in p.av.t. for both random and semi-random k-colourable

graphs for certain ranges of values of p(n) and the results have been submitted. We suggest

the following related open problems.

1. To design p.av.t. algorithms for k-colouring the G(n, p(n), k) and GUC(, , ) models with

p(n) > n−1+ε, where ε is any positive constant.

2. To design p.av.t. algorithms for χ(G)-colouring random graphs from the G(n, p) model

for constant p. Here every one of the
(
n
2

)
edges is chosen with equal probability p. An

easier problem is to design approximation algorithms with performance ratio bounded

by a constant less than 2, and whose running time is polynomial on average. As

mentioned in Section 1, the greedy colouring is an a.s. algorithm with a performance

ratio of 2 [7].
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Note (added in proof)

The results on χ(G)-colouring appear in J. Algorithms 33 (1999) 112–123. The results of

this paper have been improved further and are going to appear in a future paper.
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