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In this paper, we study the multiplicity of positive solutions for the following
semilinear elliptic equation:

−∆u + λu = f(x)up−1 + h(x)uq−1 in R
N ,

u > 0 in R
N ,

u ∈ H1(RN ),

where 1 � q < 2 < p < 2∗ (2∗ = 2N/(N − 2) if N � 3 and 2∗ = ∞ if N = 1, 2),
λ > 0, h ∈ L2/(2−q)(RN ) \ {0} is non-negative and f ∈ C(RN ). We will show how the
shape of the graph of f(x) affects the number of positive solutions.

1. Introduction

In this paper, we study the multiplicity of positive solutions for the following semi-
linear elliptic equation:

−∆u + λu = f(x)up−1 + h(x)uq−1 in R
N ,

u > 0 in R
N ,

u ∈ H1(RN ),

⎫⎪⎬
⎪⎭ (Eλ)

where 1 � q < 2 < p < 2∗ (2∗ = 2N/(N − 2) if N � 3 and 2∗ = ∞ if N = 1, 2),
λ > 0, f ∈ C(RN ) and h ∈ L2/(2−q)(RN ) \ {0} is non-negative. Associated with
equation (Eλ), we consider the energy functional:

Jλ(u) = 1
2

∫
RN

|∇u|2 + λu2 − 1
p

∫
RN

f(x)|u|p − 1
q

∫
RN

h(x)|u|q.

It is well known that the functional Jλ ∈ C1(H1(RN ), R) and the solutions of
equation (Eλ) are the critical points of the energy functional Jλ in H1(RN ).

Under the assumption h �≡ 0, our equation (Eλ) can be regarded as a perturbation
problem of the following semilinear elliptic equation:

−∆u + λu = f(x)up−1 in R
N ,

u > 0 in R
N ,

u ∈ H1(RN ).

⎫⎪⎬
⎪⎭ (1.1)
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It is known that the existence of positive solutions of equation (1.1) is affected by
the shape of the graph of f(x). This has been the focus of a great deal of research by
several authors (see [6,7,9,10,18–20], etc.). Furthermore, if f is a positive constant,
then equation (1.1) has a unique positive solution (see [17]).

Some progress has been made for the case when q = 1, as follows. Zhu [27] and
Hirano [15] were mainly concerned with the following equation:

−∆u + λu = up−1 + h(x) in R
N ,

u > 0 in R
N ,

u ∈ H1(RN ),

⎫⎪⎬
⎪⎭ (1.2)

where h ∈ L2(RN ) \ {0} is non-negative. They succeeded in finding that (1.2) has
at least two positive solutions under ‖h‖L2 is sufficiently small and that h(x) decays
faster than exp(−c|x|) for some c > 0. Generalizations of the result of [15,27] were
made by Cao and Zhou [11], Jeanjean [16] and Adachi and Tanaka [1, 2]. In [2],
Adachi and Tanaka showed the existence of at least four positive solutions of the
equation

−∆u + λu = f(x)up−1 + h(x) in R
N ,

u > 0 in R
N ,

u ∈ H1(RN ),

under the assumptions that 0 < f(x) � f∞ = lim|x|→∞ f(x), h ∈ H−1(RN )\{0} is
non-negative and ‖H‖H−1 is sufficiently small. In [1, 11,16], the general equations

−∆u + λu = g(x, u) + h(x) in R
N ,

u > 0 in R
N ,

u ∈ H1(RN ),

were studied, where g satisfies some suitable conditions and h ∈ H−1(RN ) \ {0}
is non-negative, and the existence of at least two positive solutions when ‖H‖H−1

sufficiently small was proved.
The main purpose of this paper is to use the shape of the graph of f(x) to

prove the multiplicity of positive solutions for equation (Eλ). Moreover, we extend
q ∈ [1, 2) without assuming ‖H‖L2/(2−q) is sufficiently small. First, we consider the
following assumptions:

(Q1) f ∈ C(RN ) and f � 0 in R
N ;

(Q2) f(x) → f∞ > 0 as |x| → ∞;

(Q3) there exist some points x1, x2, . . . , xk in R
N such that f(xi) are strict maxima

and satisfy

f∞ < f(xi) = fmax ≡ max{f(x) | x ∈ R
N} for all i = 1, 2, . . . , k.

Then we have the following result.
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Theorem 1.1. Assume that conditions (Q1)–(Q3) hold. There then exists a λ0 > 0
such that, for λ > λ0, equation (Eλ) has at least k + 1 positive solutions.

For the other similarly problems, Ambrosetti et al . [4] investigated the following
equation:

−∆u = up−1 + λuq−1 in Ω,

u > 0 in Ω,

u ∈ H1
0 (Ω),

⎫⎪⎬
⎪⎭ (1.3)

where 1 < q < 2 < p � 2N/(N − 2), N � 3, and Ω is a bounded domain in R
N .

They found that there exists a λ0 > 0 such that equation (1.3) admits at least two
positive solutions for λ ∈ (0, λ0), a positive solution for λ = λ0 and no positive
solution exists for λ > λ0. Actually, Adimurthi et al . [3], Damascelli et al . [12],
Ouyang and Shi [22] and Tang [24] proved that there exists a λ0 > 0 such that
there are exactly two positive solutions of equation (Eλ) in the unit ball BN (0; 1)
for λ ∈ (0, λ0), exactly one positive solution for λ = λ0 and no positive solution
exists for λ > λ0. The result of equation (1.3) was generalized by Ambrosetti et
al . [5], de Figueiredo et al . [13] and Wu [26].

This paper is organized as follows. In § 2, we give some notation and preliminaries.
In § 3, we prove the existence of a local minimum. In § 4, we prove theorem 1.1.

2. Notation and preliminaries

By the change of variables η = 1/
√

λ, v(x) = η2/(p−2)u(ηx), the equation (Eλ) is
transformed to

−∆v + v = fηvp−1 + η2(p−q)/(p−2)hηvq−1 in R
N ,

v > 0 in R
N ,

v ∈ H1(RN ),

⎫⎪⎬
⎪⎭ (2.1)

where fη = f(ηx) and hη = h(ηx).
For u ∈ H1(RN ), c ∈ R, non-negative bounded function a ∈ C(RN ) and non-

negative function b ∈ L2/(2−q)(RN ), define

Ia,b(u) = 1
2‖u‖2

H1 − 1
p

∫
RN

a|u|p − η2(p−q)/(p−2) 1
q

∫
RN

b|u|q,

Ma,b(c) = {u ∈ H1(RN ) \ {0} | 〈I ′
a,b(u), u〉 = c},

αa,b(c) = inf{Ia,b(u) | u ∈ Ma,b(c)},

where

‖u‖H1 =
( ∫

RN

|∇u|2 + u2
)1/2

is a standard norm in H1(RN ) and I ′
a,b denotes the Fréchet derivative of Ia,b. We

will write Ma,b(0) and αa,b(0) as Ma,b and αa,b, respectively. It is well known
that the functional Ia,b ∈ C1(H1(RN ), R) and the solutions of equation (2.1) are
the critical points of the energy functional Ifη,hη

(see [23]). Moreover, we have the
following result.
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Lemma 2.1. Suppose ais a continuous bounded and non-negative function on R
N .

Then αa,0(c) = 1
2c for c > 0 and

αa,0 � αa,0(c) + αa,0(−c) − p − 2
2p

|c| for all c ∈ R.

Proof. See [10, lemma 2.2].

Define

ψη(u) = 〈I ′
fη,hη

(u), u〉 = ‖u‖2
H1 −

∫
RN

fη|u|p − η2(p−q)/(p−2)
∫

RN

hη|u|q.

Then, for u ∈ Mfη,hη
,

〈ψ′
η(u), u〉 = 2‖u‖2

H1 − p

∫
RN

fη|u|p − η2(p−q)/(p−2)q

∫
RN

hη|u|q

= (2 − q)‖u‖2
H1 − (p − q)

∫
RN

fη|u|p.

Using a similar method to that in [25], we split Mfη,hη into three parts:

M+
fη,hη

=
{

u ∈ Mfη,hη

∣∣∣∣ (2 − q)‖u‖2
H1 − (p − q)

∫
RN

fη|u|p > 0
}

,

M0
fη,hη

=
{

u ∈ Mfη,hη

∣∣∣∣ (2 − q)‖u‖2
H1 − (p − q)

∫
RN

fη|u|p = 0
}

,

M−
fη,hη

=
{

u ∈ Mfη,hη

∣∣∣∣ (2 − q)‖u‖2
H1 − (p − q)

∫
RN

fη|u|p < 0
}

.

Then we have the following result.

Lemma 2.2. There exists η1 > 0 such that M0
fη,hη

= ∅ for all η ∈ (0, η1).

Proof. Assume the contrary, that is that M0
fη,hη

�= ∅ for all η > 0. Then for
u ∈ M0

fη,hη
, we have

‖u‖2
H1 =

p − q

2 − q

∫
RN

fη|u|p (2.2)

and

η2(p−q)/(p−2)
∫

RN

hη|u|q = ‖u‖2
H1 −

∫
RN

fη|u|p =
p − 2
2 − q

∫
RN

fη|u|p. (2.3)

Moreover,(
p − 2
p − q

)
‖u‖2

H1 = ‖u‖2
H1 −

∫
RN

fη|u|p � η2(p−q)/(p−2)‖hη‖L2/(2−q)‖u‖q
H1

= η2(p−q)/(p−2)−(2−q)N/2‖H‖L2/(2−q)‖u‖q
H1 ,

which implies

‖u‖H1 �
[
η2(p−q)/(p−2)−(2−q)N/2

(
p − q

p − 2

)
‖H‖L2/(2−q)

]1/(2−q)

. (2.4)
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Let Kη : Mfη,hη → R be given by

Kη(u) = C(p, q)
( ‖u‖2(p−1)

H1∫
RN fη|u|p

)1/(p−2)

− η2(p−q)/(p−2)
∫

RN

hη|u|q,

where

C(p, q) =
(

2 − q

p − q

)(p−1)/(p−2)(
p − 2
2 − q

)
.

Then Kη(u) = 0 for all η > 0 and u ∈ M0
fη,hη

. Indeed, from (2.2) and (2.3) it
follows that, for u ∈ M0

fη,hη
, we have

Kη(u) =
(

2 − q

p − q

)(p−1)/(p−2)(
p − 2
2 − q

)(
((p − q)/(2 − q))p−1(

∫
RN fη|u|p)p−1∫

RN fη|u|p

)1/(p−2)

− p − 2
2 − q

∫
RN

fη|u|p

= 0. (2.5)

However, by (2.4), the Hölder and Sobolev inequalities and
( ‖u‖p

H1∫
RN fmax|u|p

)1/(p−2)

�
(

1
fmaxSp

)1/(p−2)

for all u ∈ Mfη,hη
,

where S is the best Sobolev constant, we have

Kη(u)

� C(p, q)
( ‖u‖2(p−1)

H1∫
RN fη|u|p

)1/(p−2)

− η2(p−q)/(p−2)−(2−q)N/2‖H‖L2/(2−q)‖u‖q
H1

> ‖u‖q
H1

(
C(p, q)

(
1

fmaxSp

)1/(p−2)

‖u‖1−q
H1 − η2(p−q)/(p−2)−(2−q)N/2‖H‖L2/(2−q)

)

� ‖u‖q
H1

[
C(p, q)

(
1

fmaxSp

)1/(p−2)

(η2(p−q)/(p−2)−(2−q)N/2)(1−q)/(2−q)

×
(

p − q

p − 2
‖H‖L2/(2−q)

)(1−q)/(2−q)

− η2(p−q)/(p−2)−(2−q)N/2‖H‖L2/(2−q)

]

for all u ∈ M0
fη,hη

. Since
1 − q

2 − q
� 0 and

2(p − q)
p − 2

− (2 − q)N
2

> 0

(see Appendix A), there exists η1 > 0 such that, for each η ∈ (0, η1) and u ∈ M0
fη,hη

,
we have Kη(u) > 0, which contradicts (2.5). We can thus conclude that M0

fη,hη
= ∅

for all η ∈ (0, η1).

By lemma 2.2, for η ∈ (0, η1) we write Mfη,hη = M+
fη,hη

∪ M−
fη,hη

and define

α±
fη,hη

= inf
u∈M±

fη,hη

Ifη,hη (u).

The following lemma shows that the minimizers on Mfη,hη are ‘usually’ critical
points for Ifη,hη .
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Lemma 2.3. For the case when η ∈ (0, η1), if u0 is a local minimizer for Ifη,hη on
Mfη,hη , then I ′

fη,hη
(u0) = 0 in H−1(RN ).

Proof. This is similar to the proof of [26, lemma 4].

For each u ∈ H1(RN ) \ {0}, we define

tmax =
( ‖u‖2

H1

(p − 1)
∫

RN fη|u|p

)1/(p−2)

> 0.

We then have the following lemma.

Lemma 2.4. For each u ∈ H1(RN ) \ {0},

(i) there exists a unique t− = t−(u) > tmax > 0 such that

t−u ∈ M−
fη,hη

and Ifη,hη
(t−u) = max

t�tmax
Ifη,hη

(tu),

(ii) t−(u) is a continuous function for non-zero u,

(iii) M−
fη,hη

=
{

u ∈ H1(RN ) \ {0}
∣∣∣∣ 1

‖u‖H1
t−

(
u

‖u‖H1

)
= 1

}
,

(iv) if ∫
RN

h|u|q > 0,

then there exists a unique 0 < t+ = t+(u) < tmax such that t+u ∈ M+
fη,hη

and
Ifη,hη (t+u) = min0�t�t− Ifη,hη (tu).

Proof. This is similar to the proof of [26, lemma 5].

3. Existence of a local minimum

In this section, we will establish the existence of a local minimum for Ifη,hη
on

Mfη,hη . Let

d =
2(p − q)
p − 2

− (2 − q)N
2

> 0

(see Appendix A). Then we have the following results.

Lemma 3.1.

(i) For each u ∈ M+
fη,hη

we have ∫
RN

hη|u|q > 0

and Ifη,hη
(u) < 0. In particular, αfη,hη

� α+
fη,hη

< 0.

(ii) Ifη,hη is coercive and bounded below on Mfη,hη for all

η ∈
(

0,

(
p − 2
p − q

)1/d)
.
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Proof. (i) For each u ∈ M+
fη,hη

, (2 − q)‖u‖2
H1 − (p − q)

∫
RN fη|u|p > 0 and

‖u‖2
H1 =

∫
RN

fη|u|p + η2(p−q)/(p−2)
∫

RN

hη|u|q,

we have

η2(p−q)/(p−2)
∫

RN

hη|u|q = ‖u‖2
H1 −

∫
RN

fη|u|p >
p − 2
2 − q

∫
RN

fη|u|p > 0

and

Ifη,hη
(u) =

(
1
2

− 1
p

) ∫
RN

fη|u|p −
(

1
q

− 1
2

)
η2(p−q)/(p−2)

∫
RN

hη|u|q

< − (p − q)(p − 2)
2pq

∫
RN

fη|u|p < 0.

(ii) For u ∈ Mfη,hη , we have

‖u‖2
H1 =

∫
RN

fη|u|p + η2(p−q)/(p−2)
∫

RN

hη|u|q.

Then, by the Hölder and Young inequalities,

Ifη,hη
(u) �

(
p − 2
2p

)
‖u‖2

H1 −
(

p − q

pq

)
ηd‖H‖L2/(2−q)‖u‖q

H1

�
[
p − 2
2p

− ηd

(
p − q

2p

)]
‖u‖2

H1 − ηd

(
(p − q)(2 − q)

2pq

)
‖H‖2/(2−q)

L2/(2−q)

=
1
2p

[(p − 2) − ηd(p − q)]‖u‖2
H1 − ηd

(
(p − q)(2 − q)

2pq

)
‖H‖2/(2−q)

L2/(2−q) .

Thus, Ifη,hη is coercive and bounded below on

Mfη,hη
for all η ∈

(
0,

(
p − 2
p − q

)1/d)
.

Furthermore, we have the following theorem.

Theorem 3.2. For each positive number

η < η∗ = min
{

η1,

(
p − 2
p − q

)1/d}

equation (2.1) has a positive solution uη ∈ M+
fη,hη

such that Ifη,hη (uη) = α+
fη,hη

=
αfη,hη

and Ifη,hη
(uη) → 0 as η → 0.

Proof. This is similar to the proof of [26, proposition 9]. There exists a sequence
{un} ⊂ Mfη,hη

such that

Ifη,hη (un) = αfη,hη + o(1),

I ′
fη,hη

(un) = o(1) in H−1(RN ).

https://doi.org/10.1017/S0308210506001156 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210506001156


654 T.-F. Wu

Then by lemma 3.1(ii), there exist a subsequence {un} and uη ∈ H1(RN ) is a
solution of equation (2.1) such that

un ⇀ uη weakly in H1(RN ) and un → uη a.e. in R
N .

Moreover, by h ∈ L2/(2−q)(RN ), the Egorov theorem and the Hölder inequality,
we have ∫

RN

hη|un|q →
∫

RN

hη|uη|q.

Now we prove that ∫
RN

hη|uη|q �= 0.

If we suppose otherwise, then

‖un‖2
H1 =

∫
RN

fη|un|p + o(1)

and (
1
2

− 1
p

) ∫
RN

fη|un|p = 1
2‖un‖2

H1 − 1
p

∫
RN

fη|un|p

− η2(p−q)/(p−2) 1
q

∫
RN

hη|un|q + o(1)

= αfη,hη
+ o(1),

which contradicts the condition αfη,hη < 0. Thus,∫
RN

hη|uη|q �= 0.

In particular, uη is a non-trivial solution of equation (2.1). Now we prove that
un → uη strongly in H1(RN ). Otherwise ‖uη‖H1 < lim infn→∞ ‖un‖H1 and so

αfη,hη � Ifη,hη (uη) =
(

1
2

− 1
p

)
‖uη‖2

H1 −
(

1
q

− 1
p

)
η2(p−q)/(p−2)

∫
RN

hη|uη|q

< lim
n→∞

Ifη,hη (un)

= αfη,hη
,

which is a contradiction. Consequently, un → uη strongly in H1(RN ) and

Ifη,hη (uη) = αfη,hη .

Moreover, we have uη ∈ M+
fη,hη

. In fact, if uη ∈ M−
fη,hη

, by lemma 2.4, there
exist unique t+0 and t−0 such that t+0 uη ∈ M+

fη,hη
and t−0 uη ∈ M−

fη,hη
, and we have

t+0 < t−0 = 1. Since

d
dt

Ifη,hη (t+0 uη) = 0 and
d2

dt2
Ifη,hη (t+0 uη) > 0,

there exists t̄ ∈ (t+0 , t−0 ] such that Ifη,hη (t+0 uη) < Ifη,hη (t̄uη). By lemma 2.4,

Ifη,hη (t+0 uη) < Ifη,hη (t̄uη) � Ifη,hη (t−0 uη) = Ifη,hη (uη),
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which is a contradiction. Thus,

Ifη,hη (uη) = αfη,hη = α+
fη,hη

,

since Ifη,hη (uη) = Ifη,hη (|uη|) and |uη| ∈ M+
fη,hη

. By lemma 2.3 and the maximum
principle, we may assume that uη is a positive solution of equation (2.1). Moreover,
by lemma 3.1 we have

0 > Ifη,hη (uη) � −ηd

(
(p − q)(2 − q)

2pq

)
‖H‖2/(2−q)

L2/(2−q) ,

since d > 0. We obtain Ifη,hη (uη) → 0 as η → 0.

4. Proof of theorem 1.1

First, we use the graph of the coefficient f to find some Palais–Smale sequences
which are used to prove theorem 1.1. For a > 0, let Ca(xi) denote the hypercube

N∏
j=1

(xi
j − a, xi

j + a)

centred at xi = (xi
1, x

i
2, . . . , x

i
N ) for i = 1, 2, . . . , k. Let Ca(xi) and ∂Ca(xi) denote

the closure and the boundary of Ca(xi), respectively. By conditions (Q1) and (Q3),
we can choose numbers K, l > 0 such that Cl(xi) are disjoint, f(x) < f(xi) for
x ∈ ∂Cl(xi) for all i = 1, 2, . . . , k and

⋃k
i=1 Cl(xi) ⊂

∏N
i=1(−K, K).

Define φη ∈ C(R, R), gη ∈ C(H1(RN ), RN ) by

φη(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2K

η
, t >

2K

η
,

t, −2K

η
� t � 2K

η
,

−2K

η
, t < −2K

η
,

gj
η(u) =

∫
RN φη(xj)|u|p∫

RN |u|p for j = 1, 2, . . . , N

and

gη(u) = (g1
η(u), g2

η(u), . . . , gN
η (u)).

Let Ci
l/η ≡ Cl/η(xi/η),

N i
η = {u ∈ M−

fη,hη
| u � 0 and gη(u) ∈ Ci

l/η},

∂N i
η = {u ∈ M−

fη,hη
| u � 0 and gη(u) ∈ ∂Ci

l/η}

for i = 1, 2, . . . , k. It is easy to verify that N i
η and ∂N i

η are non-empty sets for all
i = 1, 2, . . . , k. For i = 1, 2, . . . , k, consider the minimization problems in N i

η and
∂N i

η for Ifη,hη
,

γi
η = inf

u∈Ni
η

Ifη,hη (u), γ̃i
η = inf

u∈∂Ni
η

Ifη,hη (u).
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Let w be a unique positive radial solution of

−∆u + u = fmaxu
p−1 inR

N ,

u > 0 in R
N ,

u ∈ H1(RN ),

such that Ifmax,0(w) = αfmax,0. By condition (Q3) and routine computations, we
have

αfmax,0 < αf∞,0. (4.1)

For small η > 0 satisfying 2
√

η < 1, we define a function ψη ∈ C1(RN , [0, 1]) such
that

ψη(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, |x| <
1

2
√

η
− 1,

0, |x| >
1

2
√

η
− 1,

and |∇ψη| � 2 in R
N . Let

xη =
1

2
√

η
(1, 1, . . . , 1) ∈ R

N and wη(x) = t−η w

(
x − xi

η
+ xη

)
ψη

(
x − xi

η
+ xη

)
,

where t−η > 0 are selected such that wη ∈ M−
fη,hη

. We then have the following
results.

Lemma 4.1. We have

(i) η2(p−q)/(p−2)
∫

RN

hηwq

(
x − xi

η
+ xη

)
ψq

η

(
x − xi

η
+ xη

)
→ 0 as η → 0.

(ii) t−η → 1 as η → 0.

Proof. (i) Since
2(p − q)
p − 2

− (2 − q)N
2

> 0,

we have

0 � η2(p−q)/(p−2)
∫

RN

hηwq

(
x − xi

η
+ xη

)
ψq

η

(
x − xi

η
+ xη

)

� η2(p−q)/(p−2)−(2−q)N/2‖H‖L2/(2−q)

∥∥∥∥w

(
x − xi

η
+ xη

)
ψη

(
x − xi

η
+ xη

)∥∥∥∥
q

H1

and ∥∥∥∥w

(
x − xi

η
+ xη

)
ψη

(
x − xi

η
+ xη

)∥∥∥∥
2

H1

→ 2p

p − 2
αfmax,0 as η → 0.

Thus,

η2(p−q)/(p−2)
∫

RN

hηwq

(
x − xi

η
+ xη

)
ψq

η

(
x − xi

η
+ xη

)
→ 0 as η → 0.
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(ii) Since wη ∈ M−
fη,hη

, we have

(t−η )2
[ ∫

RN

∣∣∣∣∇
(

w

(
x − xi

η
+ xη

)
ψη

(
x − xi

η
+ xη

))∣∣∣∣
2

+
(

w

(
x − xi

η
+ xη

)
ψη

(
x − xi

η
+ xη

))2]

= (t−η )p

∫
RN

fηwp

(
x − xi

η
+ xη

)
ψp

η

(
x − xi

η
+ xη

)

+ η2(p−q)/(p−2)(t−η )q

∫
RN

hηwq

(
x − xi

η
+ xη

)
ψq

η

(
x − xi

η
+ xη

)
.

Since ‖w‖2
H1 =

∫
RN fmaxw

p, from (i) we have that

(t−η )2‖w‖2
H1 = (t−η )2

∥∥∥∥w

(
x − xi

η
+ xη

)
ψη

(
x − xi

η
+ xη

)∥∥∥∥
2

H1

= (t−η )p

∫
RN

fηwp

(
x − xi

η
+ xη

)
ψp

η

(
x − xi

η
+ xη

)
+ o(η)

= (t−η )p

∫
RN

f(ηx + xi − ηxη)wp + o(η),

where o(η) → 0 as η → 0. Moreover, ηxη → 0 as η → 0 and

t−η > tmax

=
( ‖w(x − (xi/η) + xη)ψη(x − (xi/η) + xη)‖2

H1

(p − 1)
∫

RN fη|w(x − (xi/η) + xη)ψη(x − (xi/η) + xη)|p

)1/(p−2)

= (p − 1)1/(2−p) + o(η).

Thus, t−η → 1 as η → 0.

Let

η∗ = min
{

η1,

(
p − 2
p − q

)1/d}

as in theorem 3.2. We then have the following result.

Lemma 4.2. For each ε > 0, there exists ηε ∈ (0, η∗] such that

α−
fη,hη

� γi
η < min{αfmax,0 + ε, αfη,hη

+ αf∞,0} for i = 1, 2, . . . , k and η ∈ (0, ηε).

Proof. First, we show that gη(wη) ∈ Ci
l/η, since

gj
η(wη) =

∫
RN φη(xj)wp(x − (xi/η) + xη)ψp

η(x − (xi/η) + xη)∫
RN wp(x − (xi/η) + xη)ψp

η(x − (xi/η) + xη)

and

ψη

(
x − xi

η
+ xη

)
= 0 if

∣∣∣∣xj −
xi

j

η

∣∣∣∣ >
1

√
η
.
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By the definition of ψη, we have

gj
η(wη) =

∫
Ci

l/η
φη(xj)wp(x − (xi/η) + xη)ψp

η(x − (xi/η) + xη)∫
Ci

l/η
wp(x − (xi/η) + xη)ψp

η(x − (xi/η) + xη)

provided that 1/
√

η < l/η. From the definition of φη we conclude that gη(wη) ∈
Ci

l/η. Thus, wη ∈ N i
η. Moreover, by lemma 4.1,

Ifη,hη
(wη) =

(t−η )2

2

[ ∫
RN

∣∣∣∣∇
(

w

(
x − xi

η
+ xη

)
ψη

(
x − xi

η
+ xη

))∣∣∣∣
2

+
(

w

(
x − xi

η
+ xη

)
ψη

(
x − xi

η
+ xη

))2]

−
(t−η )p

p

∫
RN

fηwp

(
x − xi

η
+ xη

)
ψp

η

(
x − xi

η
+ xη

)

− η2(p−q)/(p−2)(t−η )q

∫
RN

hηwq

(
x − xi

η
+ xη

)
ψq

η

(
x − xi

η
+ xη

)

= 1
2

∫
RN

|∇w|2 + w2 − 1
p

∫
RN

f(ηx + xi − ηxη)wp + o(η), (4.2)

where o(η) → 0 as η → 0. Since ηxη → 0 as η → 0, from (4.2), we have

Ifη,hη (wη) = Ifmax,0(w) + o(η) = αfmax,0 + o(η).

Therefore, for any ε > 0 there exists η2 > 0 such that

γi
η < αfmax,0 + ε for i = 1, 2, . . . , k and η ∈ (0, η2).

Moreover, if αfmax,0 < αf∞,0 and αfη,hη → 0 as η → 0, then there exists η3 > 0
such that

γi
η < αfη,hη + αf∞,0 for i = 1, 2, . . . , k and η ∈ (0, η3).

We take ηε = min{η2, η3}. This implies that

γi
η < min{αfmax,0 + ε, αfη,hη + αf∞,0} for i = 1, 2, . . . , k and η ∈ (0, ηε).

This completes the proof.

Lemma 4.3. There are positive numbers δ and ηδ ∈ (0, η∗] such that, for i =
1, 2, . . . , k,

γ̃i
η > αfmax,0 + δ for all η ∈ (0, ηδ).

Proof. Fix i ∈ {1, 2, . . . , k}. Assume the contrary. There then exists a sequence {ηn}
with ηn → 0 as n → ∞ such that γ̃i

ηn
→ c � αfmax,0. Consequently, there exists a

sequence {un} ⊂ ∂N i
ηn

such that gηn(un) ∈ ∂Ci
l/ηn

,∫
RN

|∇un|2 + u2
n =

∫
RN

fηn |un|p + η2(p−q)/(p−2)
n

∫
RN

hηn |un|q (4.3)
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and
Ifηn ,hηn

(un) → c � αfmax,0 as n → ∞.

It follows that {un} is uniformly bounded in H1(RN ). Since un ∈ M−
fηn ,hηn

,
we deduce from the Sobolev imbedding theorem that ‖un‖H1 > ν > 0 for some
constant ν and for all n. Applying the concentration-compactness principle of
Lions [19, 20] to |un|p, there exist positive constants R, θ and {yn} ⊂ R

N such
that ∫

BN (yn;R)
|un|p � θ for all n,

where BN (yn; R) = {x ∈ R
N | |x − yn| < R}. Let ũn = un(x + yn). Then there

exists a non-zero u0 ∈ H1(RN ) such that

ũn ⇀ u0 in H1(RN ),

ũn → u0 a.e. in R
N ,∫

BN (0;R)
|ũn|p →

∫
BN (0;R)

|u0|p � θ.

Set wn = ũn − u0. By the Brézis–Lieb lemma [8] we obtain
∫

RN

f(ηnx+ηnyn)|ũn|p =
∫

RN

f(ηnx+ηnyn)|u0|p +
∫

RN

f(ηnx+ηnyn)|wn|p +o(1).

(4.4)
Since {un} is uniformly bounded and ũn ⇀ u0, we have

η2(p−q)/(p−2)
n

∫
RN

hηn |un|q → 0 as n → ∞ (4.5)

and ∫
RN

|∇ũn|2 + ũ2
n =

∫
RN

|∇u0|2 + u2
0 +

∫
RN

|∇wn|2 + w2
n + o(1). (4.6)

Moreover, from (4.3) and (4.5) we have that
∫

RN

|∇ũn|2 + ũ2
n =

∫
RN

f(ηnx + ηnyn)|ũn|p + o(1). (4.7)

Combining (4.4), (4.6) and (4.7), we have

∫
RN

|∇wn|2 + w2
n −

∫
RN

f(ηnx + ηnyn)|wn|p

= −
( ∫

RN

|∇u0|2 + u2
0 −

∫
RN

f(ηnx + ηnyn)|u0|p
)

+ o(1). (4.8)

We distinguish the following cases:

(I) ‖wn‖H1 → 0;

(II) ‖wn‖H1 → c > 0.
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Case I. By condition (Q3) we can choose s > 0 such that

f(x) < fmax for x ∈ C̄i
l+s \ Ci

l−s.

We complete the proof by establishing the contradiction

lim
n→∞

Ifηn ,hηn
(un) > αfmax,0.

Choose the sequence {ηnyn}. By passing to a subsequence if necessary, we may
assume that one of the following cases occurs:

(I1) {ηnyn} ⊂ C̄i
l+s \ Ci

l−s;

(I2) {ηnyn} ⊂ C̄i
l−s;

(I3) {ηnyn} ⊂ R
N \ Ci

l+s, and {ηnyn} is bounded;

(I4) {ηnyn} is unbounded.

Let ε > 0 and Rε > 0 be such that∫
|x|�Rε

|ũn|p∫
RN |ũn|p � ε. (4.9)

In case (I1), we may assume that ηnyn → ỹ ∈ C̄i
l+s \ Ci

l−s and f(ỹ) < fmax.
Consequently,

lim
n→∞

Ifηn ,hηn
(un) = lim

n→∞

{
1
2

∫
RN

|∇ũn|2 + ũ2
n − 1

p

∫
RN

f(ηnx + ηnyn)|ũn|p

− η2(p−q)/(p−2)
n

∫
RN

hηn |un|q
}

= 1
2

∫
RN

|∇u0|2 + u2
0 − 1

p

∫
RN

f(ỹ)|u0|p

> αfmax,0,

which is a contradiction.

In case (I2),

gj
ηn

(un) =

∫
RN φηn(xj + (yn)j)|ũn|p∫

RN |ũ|p

=

∫
|x|�Rε

φηn(xj + (yn)j)|ũn|p +
∫

|x|�Rε
φηn(xj + (yn)j)|ũn|p∫

RN |ũn|p .

In the region |xj | � Rε, we have

xj + (yn)j ∈
(

xi
j − (l − s)

ηn
− Rε,

xi
j + (l − s)

ηn
+ Rε

)

⊂
(

− 2K

ηn
,
2K

ηn

)
for n sufficiently large.
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It then follows from (4.9) and the definition of φηn that

gj
ηn

(un) >

(
xi

j − (l − s)
ηn

− Rε

)
(1 − ε) − 2K

ηn
ε,

gj
ηn

(un) <

(
xi

j + (l − s)
ηn

+ Rε

)
(1 − ε) +

2K

ηn
ε.

From the above inequalities it is clear that we can choose s > ε > 0, sufficiently
small such that

gj
ηn

(un) ∈
(

xi
j − l

ηn
,
xi

j + l

ηn

)
for n sufficiently large.

This contradicts gηn
(un) ∈ ∂Ci

l/ηn
.

In the case (I3), we may assume that ηnyn → ỹ ∈ C̄i
l+s as n → ∞, ỹi � xi

j + l + s
for some i and

(yn)j >
xi

j + l + s/2
ηn

for all n.

For |xj | � Rε we have

xj + (yn)j >
xi

j + l + s/2
ηn

− Rε

and

gj
ηn

(un) >

(
xi

j − (l − s)
ηn

− Rε

)
(1 − ε) − 2K

ηn
ε

for sufficiently small ε > 0, s < ε and sufficiently large n. This contradicts gηn(un) ∈
∂Ci

l/ηn
.

The case (I4) is excluded by assuming ηnyn → ∞ as n → ∞, and using a similar
argument to case (I1).

Case II. Set ∫
RN

|∇u0|2 + u2
0 −

∫
RN

f(ηnx + ηnyn)|u0|p = A + o(1).

Then, by (4.8),
∫

RN

|∇wn|2 + w2
n −

∫
RN

f(ηnx + ηnyn)|wn|p = −A + o(1).

Without loss of generality, we may assume that A > 0 (A < 0 can be considered
similarly). We can find a sequence {tn} with tn → 1 as n → ∞ such that vn = tnwn

satisfies ∫
RN

|∇vn|2 + v2
n −

∫
RN

f(ηnx + ηnyn)|vn|p = −A.
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Since u0 ∈ Mf(ηnx+ηnyn),0(A + o(1)), by (4.4)–(4.6) and lemma 2.1 we have

Ifηn ,hηn
(un) = 1

2

∫
RN

|∇u0|2 + u2
0 − 1

p

∫
RN

f(ηnx + ηnyn)|u0|p

+ 1
2

∫
RN

|∇wn|2 + w2
n − 1

p

∫
RN

f(ηnx + ηnyn)|wn|p + o(1)

� A + o(1)
2

+ 1
2

∫
RN

|∇vn|2 + v2
n

− 1
p

∫
RN

f(ηnx + ηnyn)|vn|p + o(1)

= αf(ηnx+ηnyn),0(A) + αf(ηnx+ηnyn),0(−A) + o(1)

> αf(ηnx+ηnyn),0 +
(

p − 2
4p

)
A + o(1)

� αfmax,0 +
(

p − 2
4p

)
A + o(1),

which is a contradiction. If A = 0, we can find sn, tn > 0, sn → 1 as n → ∞ such
that w̄n = tnwn, v̄n = snu0 satisfy∫

RN

|∇w̄n|2 + w̄2
n =

∫
RN

f(ηnx + ηnyn)|w̄n|p,
∫

RN

|∇v̄n|2 + v̄2
n =

∫
RN

f(ηnx + ηnyn)|v̄n|p.

Hence,

lim
n→∞

Ifηn ,hηn
(un) = lim

n→∞

[
1
2

∫
RN

|∇v̄n|2 + v̄2
n − 1

p

∫
RN

f(ηnx + ηnyn)|v̄n|p

+ 1
2

∫
RN

|∇w̄n|2 + w̄2
n − 1

p

∫
RN

f(ηnx + ηnyn)|w̄n|p
]

> αfmax,0.

This completes the proof.

Throughout this section, take η0 = min{ηε, ηδ}; ηε and ηδ are as in lemmas 4.2
and 4.3. Using the idea of Ni and Takagi [21] and Wu [26], we have the following
result.

Lemma 4.4. For each η ∈ (0, η0) and u ∈ N i
η, there exist ε > 0 and a differentiable

function t∗ : B(0; ε) ⊂ H1(RN ) → R
+ such that t∗(0) = 1, t∗(v)(u − v) ∈ N i

η for all
v ∈ B(0; ε) and

〈(t∗)′(0), v〉 =
2

∫
RN ∇u∇v + uv − p

∫
RN fη|u|p−2uv − η2(p−q)/(p−2)

∫
RN hη|u|q−2uv∫

RN |∇u|2 + u2 − (p − 1)
∫

RN fη|u|p

for all v ∈ H1(RN ).
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Proof. For u ∈ N i
η, define a function Fu : R × H1(RN ) → R by

Fu(t, w) = 〈I ′
fη,hη

(t(u − w)), t(u − w)〉

= t2
∫

RN

|∇(u − w)|2 + (u − w)2 − |t|p
∫

RN

fη|u − w|p

− η2(p−q)/(p−2)|t|q
∫

RN

hη|u − w|q.

Then Fu(1, 0) = 〈I ′
fη,hη

(u), u〉 = 0 and

d
dt

Fu(1, 0) = 2
∫

RN

|∇u|2 + u2 − p

∫
RN

fη|u|p − η2(p−q)/(p−2)q

∫
RN

hη|u|q

=
∫

RN

|∇u|2 + u2 − (p − 1)
∫

RN

fη|u|p < 0.

According to the implicit function theorem, there exist ε > 0 and a differentiable
function t∗ : B(0; ε) ⊂ H1(RN ) → R such that t∗(0) = 1,

〈(t∗)′(0), v〉 =
2

∫
RN ∇u∇v + uv − p

∫
RN fη|u|p−2uv − η2(p−q)/(p−2)

∫
RN hη|u|q−2uv∫

RN |∇u|2 + u2 − (p − 1)
∫

RN fη|u|p

and
Fu(t∗(v), v) = 0 for all v ∈ B(0; ε),

which is equivalent to

〈I ′
fη,hη

(t∗(v)(u − v)), t∗(v)(u − v)〉 = 0 for all v ∈ B(0; ε).

Furthermore,∫
RN

|∇t∗(v)(u − v)|2 + [t∗(v)(u − v)]2 − (p − 1)
∫

RN

fη|t∗(v)(u − v)|p < 0

and
gη(t∗(v)(u − v)) ∈ Ci

l/η

still holds if ε is sufficiently small by the continuity of the maps gη and t∗.

Proposition 4.5. For each η ∈ (0, η0) we have

α−
fη,hη

� γi
η < min{αfη,hη + αf∞,0, γ̃

i
η}

and there exists a sequence {un} ⊂ N i
η such that

Ifη,hη
(un) = γi

η + o(1),

I ′
fη,hη

(un) = o(1) ∈ H−1(RN )

for all i = 1, 2, . . . , k.

Proof. If N̄ i
η denotes the closure of N i

η, then first we note that N̄ i
η = N i

η ∪ ∂N i
η for

each i = 1, 2, . . . , k. It then follows from lemmas 4.2 and 4.3 that, for a positive
number ε � δ and taking η0 = min{ηε, ηδ}, we obtain

γi
η < min{αfη,hη

+ αf∞,0, γ̃
i
η} for i = 1, 2, . . . , k, η ∈ (0, η0). (4.10)
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Hence,
γi

η = inf{Ifη,hη
(u) | u ∈ N̄ i

η} for i = 1, 2, . . . , k. (4.11)

Now we fix i ∈ {1, 2, . . . , k}. Applying the Ekeland variational principle [14],
there exists a minimizing sequence {un} ⊂ N̄ i

η such that

Ifη,hη
(un) < γi

η +
1
n

(4.12)

and

Ifη,hη
(un) � Ifη,hη

(w) +
1
n

‖w − un‖H1 for all w ∈ N̄ i
η. (4.13)

Using (4.10) we may assume that un ∈ N i
η for n sufficiently large. Applying

lemma 4.4 with u = un, we obtain the function t∗n : B(0; εn) → R for some εn > 0
such that t∗n(w)(un − w) ∈ N i

η. Let 0 < δ < εn and u < H1(RN ) with u �≡ 0. We
set

wδ =
δu

‖u‖H1

and zδ = t∗n(wδ)(un − wδ). Since zδ ∈ N i
η, we deduce from (4.13) that

Ifη,hη (zδ) − Ifη,hη
(un) � − 1

n
‖zδ − un‖H1 .

By the mean-value theorem, we obtain

〈I ′
fη,hη

(un), zδ − un〉 + o(‖zδ − un‖) � − 1
n

‖zδ − un‖H1 .

Therefore,

〈I ′
fη,hη

(un),−wδ〉 + (t∗n(wδ) − 1)〈I ′
fη,hη

(un), (un − wδ)〉

� − 1
n

‖zδ − un‖H1 + o(‖zδ − un‖). (4.14)

Now we observe that t∗n(wδ)(un − wδ) ∈ N i
η and consequently we get from (4.14)

that

− δ

〈
I ′
fη,hη

(un),
u

‖u‖H1

〉
+

(t∗n(wδ) − 1)
t∗n(wδ)

〈I ′
fη,hη

(zδ), t∗n(wδ)(un − wδ)〉

+ (t∗n(wδ) − 1)〈I ′
fη,hη

(un) − I ′
fη,hη

(zδ), (un − wδ)〉

� − 1
n

‖zδ − un‖H1 + o(‖zδ − un‖).

Then we write the above inequality in the following form

〈
I ′
fη,hη

(un),
u

‖u‖H1

〉
� ‖zδ − un‖H1

δn
+

o(‖zδ − un‖H1)
δ

+
(t∗n(wδ) − 1)

δ
〈I ′

fη,hη
(un) − I ′

fη,hη
(zδ), (un − wδ)〉. (4.15)
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Since we can find a constant C > 0, independent of δ such that

‖zδ − un‖H1 � δ + C(|t∗n(wδ) − 1|)

and

lim
δ→0

|t∗n(wδ) − 1|
δ

� ‖(t∗n)′(0)‖ � C.

For a fixed n, let δ → 0 in (4.15). Using the fact that

lim
δ→0

‖zδ − un‖H1 = 0,

we obtain 〈
I ′
fη,hη

(un),
u

‖u‖H1

〉
� C

n
.

This implies

Ifη,hη (un) = γi
η + o(1)

and

I ′
fη,hη

(un) = o(1) in H−1(RN ).

We need the following proposition to provide the precise description of the Palais–
Smale sequences for Ifη,hη

.

Proposition 4.6. Assume that {un} ⊂ M−
fη,hη

is a sequence satisfying

Ifη,hη
(un) = β + o(1),

I ′
fη,hη

(un) = o(1) in H−1(RN ),

where β < αfη,hη + αf∞,0. There then exist a subsequence {un} and u0 in H1(RN )
such that un → u0 strongly in H1(RN ) and Ifη,hη (u0) = β.

Proof. By lemma 3.1(ii), there exist a subsequence {un} and u0 in H1(RN ) such
that

un ⇀ u0 weakly in H1(RN ).

First, we claim that u0 �≡ 0. Otherwise, by h ∈ L2/(2−q)(RN ), the Egorov theorem
and the Hölder inequality, we have

‖un‖2
H1 =

∫
RN

f∞|un|p + o(1) (4.16)

and (
1
2

− 1
p

) ∫
RN

f∞|un|p = 1
2‖un‖2

H1 − 1
p

∫
RN

fη|un|p

− 1
q
η2(p−q)/(p−2)

∫
RN

hη|un|q + o(1)

= β + o(1).
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Moreover, {un} ⊂ M−
fη,hη

and

‖un‖H1 > c for some c > 0.

We get β � αf∞,0, this contradicts the condition β < αfη,hη
+ αf∞,0. Thus,

u0 is a non-trivial solution of equation (2.1) and Ifη,hη (u0) � αfη,hη . We write
un = u0 + vn with vn ⇀ 0 weakly in H1(RN ). By the Brézis–Lieb lemma [8], we
have ∫

RN

fη|un|p =
∫

RN

fη|u0|p +
∫

RN

fη|vn|p + o(1)

=
∫

RN

fη|u0|p +
∫

RN

f∞|vn|p + o(1).

Since {un} is a bounded sequence in H1(RN ) and so {vn} is also a bounded
sequence in H1(RN ). Moreover, by h ∈ L2/(2−q)(RN ), the Egorov theorem and the
Hölder inequality, we have

∫
RN

hη|vn|q =
∫

RN

hη|un|q −
∫

RN

hη|u0|q + o(1) = o(1).

Hence, for n large enough, we can conclude that

αfη,hη
+ αf∞,0 > Ifη,hη

(u0 + vn)

= Ifη,hη (u0) + 1
2‖vn‖2

H1 − 1
p

∫
RN

f∞|vn|p + o(1)

� αfη,hη
+ 1

2‖vn‖2
H1 − 1

p

∫
RN

f∞|vn|p + o(1)

or
1
2‖vn‖2

H1 − 1
p

∫
RN

f∞|vn|p < αf∞,0 + o(1). (4.17)

Also, from I ′
fη,hη

(un) = o(1) in H−1(RN ), with {un} uniformly bounded and u0 a
solution of equation (2.1), we obtain

o(1) = 〈I ′
fη,hη

(un), un〉 = ‖vn‖2
H1 −

∫
RN

f∞|vn|p + o(1). (4.18)

We claim that (4.17) and (4.18) can hold simultaneously only if {vn} admits
a subsequence {vni} which converges strongly to zero. Otherwise, the ‖vn‖H1 is
bounded away from zero, that is

‖vn‖H1 � c for some c > 0.

From (4.18), it follows that
∫

RN

f∞|vn|p �
(

2p

p − 2

)
αf∞,0 + o(1).
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By (4.17) and (4.18), for n large enough,

αf∞,0 �
(

1
2

− 1
p

) ∫
RN

f∞|vn|p + o(1)

= 1
2‖vn‖2

H1 − 1
p

∫
RN

f∞|vn|p + o(1)

< αf∞,0,

which is a contradiction. Therefore, un → u0 strongly in H1(RN ) and Ifη,hη
(u0) =

β.

Proof of theorem 1.1. By propositions 4.5 and 4.6 for each η ∈ (0, η0), there exist
sequences {ui

n} ⊂ N i
η and ui

0 ∈ H1(RN ) \ {0} such that

Ifη,hη (ui
n) = γi

η + o(1),

I ′
fη,hη

(ui
n) = o(1) in H−1(RN ),

and
ui

n → ui
0 strongly in H1(RN ).

Obviously, the function ui
0 is a solution of the equation (2.1) and Ifη,hη (ui

0) = γi
η.

It is clear that ui
0 is non-negative, by the maximum principle ui

0 is positive. Since
gi

η(ui
0) ∈ Cl/η(xi),

uη ∈ M+
fη,hη

and ui
0 ∈ M−

fη,hη
,

where uη is a positive solution of equation (2.1) as in theorem 3.2. This implies that
uη and ui

0 are different. Letting λ0 = η−2
0 , Uη(x) = λ1/(p−2)uη(

√
λx) and Ui(x) =

λ1/(p−2)ui
0(

√
λx), we find that Uη and Ui are positive solutions of the equation

(Eλ).

Appendix A.

Lemma A.1.
2(p − q)
p − 2

− (2 − q)N
2

> 0,

where 1 � q < 2 < p < 2∗ and N � 1.

Proof.

Case I. 1 � q < 2 < p < 2∗ and N = 1. Since q < 2 < p we have

6q − 4
2 + q

< 2 < p.

Thus,

2(p − q) >
(p − 2)(2 − q)

2
and so

2(p − q)
p − 2

− (2 − q)
2

> 0.
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Case II. 1 � q < 2 < p < 2∗ and N = 2. Since 4 − (4/q) < 2 < p we have

4q − 4 < pq.

Thus,
2(p − q) > (p − 2)(2 − q)

and so
2(p − q)
p − 2

− (2 − q) > 0.

Case III. 1 � q < 2 < p < 2∗ and N � 3. We need only to show that

p[4 − N(2 − q)] > 4q − 2N(2 − q), (A 1)

since it is equivalent to
2(p − q)
p − 2

− (2 − q)N
2

> 0.

(a) q = 1 and N � 3. Then (A 1) becomes

p(4 − N) > 4 − 2N. (A 2)

Clearly, (A 2) holds for N = 3, 4. Since

p <
2N

N − 2
<

2N − 4
N − 4

for N � 5,

(A 2) holds for N � 5.

(b) 1 < q < 2 < p < 2∗ and N = 3, 4. Since q < 2, we have

4q − 2N(2 − q) < 8 − 4N + 2qN.

Moreover,

q > 1 � 2 − 4
N

for N = 3, 4.

Thus,
2q − 2N(2 − q)
4 − N(2 − q)

< 2 < p for N = 3, 4.

(c) q = 2 − (4/N) and N � 5. Since

4q − 2N(2 − q) = 4
(

2 − 4
N

)
− 8 < 0

and 4 − (2 − q)N = 0, we have

p(4 − N(2 − q)) = 0 < 4q − 2N(2 − q).

(d) q ∈ (1, 2 − (4/N)) and N � 5. Since

2N [N(2 − q) − 4] < (N − 2)[2N(2 − q) − 4q]

and N(2 − q) − 4 > 0, we have

p <
2N

N − 2
<

2N(2 − q) − 4q

N(2 − q) − 4
for N � 5.
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(e) q ∈ (2 − (4/N), 2) and N � 5. Since

2[4 − N(2 − q)] > 4q − 2N(2 − q)

and 4 − N(2 − q) > 0, we have

p > 2 >
4q − 2N(2 − q)
4 − N(2 − q)

.

This completes the proof.
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