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Estimation of efficiency of a tree structured
hierarchical wavelet representation of
synthetic database applied to
non-cooperative target recognition

christian brousseau

In this paper, problem of efficient representation of large database of target radar cross section (RCS) is investigated in order to
minimize memory requirements and recognition search time, using a tree structured hierarchical wavelet representation.
Synthetic RCS of large aircrafts, in the High Frequency (HF)–Very High Frequency (VHF) bands, are used as experimental
data. Hierarchical trees are built using wavelet multiresolution representation and K-means clustering algorithm. Criteria
used to define these hierarchical trees are described and the obtained performances are presented.
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I . I N T R O D U C T I O N

Requirements for future air defence radar systems are detec-
tion, localization, but also identification of aircrafts. With
the increasing resolution of modern radar systems, it is theor-
etically possible to store much information, like aspect,
elevation, pulse width, etc., of a complex target and use
them in the field of target identification.

The advantage of increasing resolution of radar systems is the
opportunity to have more characteristic details of a specific target.
The disadvantage is that these detailed characteristics require
much computer memory to be stored, computer resources, and
increase the search time to non-cooperative target recognition
(NCTR) association. It is therefore important to develop efficient
methods to reduce the size of high-resolution data of radar
targets. One way to compress these data is to use tree structured
representation based on clustering algorithm coupled with a mul-
tiresolution wavelet representation to reduce the data size and the
number of radar cross section (RCS) signature [1].

In this paper, we investigate the problem of efficient rep-
resentation of large database of radar range profiles in order
to minimize memory requirements and recognition search
time, using a tree structured hierarchical wavelet representation.

The paper is organized as follows. In a first step, the used
synthetic RCS database of large aircrafts is described. In a
second step, after a brief review of wavelet transform theory

and unsupervised clustering theory, the method of building
hierarchical trees is presented. Finally, in a third step, effi-
ciency of an example of tree structured hierarchical wavelet
representation using wavelet transform and K-means cluster-
ing algorithm are discussed regarding some criteria, like prob-
ability of false classification (Pfc) as a function of
signal-to-noise ratio (SNR), minimum SNR to obtain a Pfc
smaller than 1% and search computational time (Sct) for a
fixed SNR. Then, a comparison to other data compression
techniques is performed.

I I . D E S C R I P T I O N O F T H E
S Y N T H E T I C R C S D A T A B A S E

A) Introduction
The synthetic RCS database has been developed during the
MOSAR project [2, 3] with the support of the French Ministry
of Defence (DGA – Direction Générale de l’Armement).

The objectives of MOSAR project are to improve knowl-
edge of frequency response of targets in resonance region by
measurements, and to test efficiency of recognition methods.
These studies led to:

– Development of a coherent, pulsed, quasi-monostatic, mul-
tifrequency, HF–VHF radar using the 20–100 MHz fre-
quency band and horizontal and vertical polarizations.

– Development and validation of a simulated RCS database
using numerical models of aircrafts in the 20–100 MHz
frequency band.

– Development and tests of NCTR algorithms.
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B) Description of the synthetic RCS database
To study aircraft RCS, several possibilities exist. One can
perform:

– Anechoic chamber measurements on real aircrafts or scaled
models.

– In-flight measurements with a radar system.
– Simulations using a computational model.

Anechoic chamber measurements are not well suited to
collect data at various angles of a target but they are useful
to validate numerical models. To perform in-flight measure-
ments, it is necessary to use a calibrated radar system and to
wipe out propagation effects. The simulation of RCS behavior,
using a computational model, is a very attractive scheme but
the model must be validated.

To be able to use a small computer like a PC, the simulation
of RCS has been made with the free Numerical
Electromagnetic Code NEC2 that is based on the method of
moments [4, 5]. In this case, the aircraft structure is con-
sidered as a perfect electric conducting body. An example of
wiregrid model is presented in Fig. 1. Currently, the synthetic
database is constituted of eight mid-range airplanes: Airbus
A320, BAe 146-200, Boeing 727-200, 737-200, 737-300,
747-200, 757-200, and Fokker 100.

For each aircraft, RCS has been determined using the fol-
lowing parameters:

– Frequency band: 20–100 MHz with a 1 MHz frequency
step.

– Azimuth angle: 2 10 to + 1908 with a step of 28.
– Elevation angle: 0–908 with a step of 18.
– Polarization: HH, HV, VH, VV.

The range profile is estimated from the 61 samples of the
frequency response using an inverse fast Fourier transform
with a zero padding on 256 points. So, the range step is
0.6 m. Then, a Hamming windowing is applied on the esti-
mated range profile. The synthetic database is finally consti-
tuted of around 300 000 range profiles. Figure 2 shows an
example of estimated range profile.

I I I . A P P L I C A T I O N O F T R E E
S T R U C T U R E D H I E R A R C H I C A L
W A V E L E T R E P R E S E N T A T I O N T O
D A T A B A S E C O M P R E S S I O N

A) Introduction
Wavelet transforms and clustering algorithms are useful in a
variety of applications. Wavelets provide the analyst with an
approximation of the signal and a detail of the signal as
well. Clustering aims at finding a structure in a collection of
unlabeled data.

These methods have powerful efficiencies. Nevertheless,
each of them has its own limitations. In this case, it should
be interesting to merge them to built multiresolution hierarch-
ical trees.

For a complete description of wavelet analysis and cluster-
ing algorithms, the reader should refer to [6–14]. A brief
summary of how wavelets and clustering were used is pre-
sented below.

B) Multiresolution wavelet representation
of RCS database
The discrete wavelet transform of finite sequences analyzes a
signal S by decomposing it into approximations Ai and
details Di by quadrature filter systems [6, 7], where i is the
decomposition level.

The approximations and details are, respectively, obtained
by a low-pass filter and a high-pass filter. At each level, filter-
ing process is followed by decimation by 2 that decreases the
data size. Figure 3 presents the scheme of the filter system.
Finally, the approximation and detail signatures at each level
are pre-processed from the original signal and placed in the
training data set. Figure 4 plots an example of range profile
and its wavelet decomposition computed in four levels using
the Haar mother wavelet.

A previous work [15] has shown that there is no statisti-
cally significant difference in performance of the classifier
when different wavelets are chosen. Thus, in the next sections,
only results obtained with the Haar wavelet are presented.Fig. 1. Example of aircraft modeling using a wiregrid model – BAe 146-200.

Fig. 2. Example of estimated range profile – BAe 146-200 – HH polarization –
frequency band: 20–100 MHz.
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C) Unsupervised clustering of RCS database
Clustering can be considered as the most important unsuper-
vised learning problem. It deals with finding a structure in a
collection of unlabeled data. Clustering is the classification
of objects according to similarities among them, and organiz-
ing of data in groups.

A popular measure to determine this similarity is the
Minkowski metric [10]:

m(xi, xj) =
∑dim

k=1

|xi,k − xj,k|P
( )1/P

, (1)

where dim is the dimensionality of the data, and P ≥ 1 is a
control of the distance growth of patterns. In our case, we
have chosen to use the Euclidean distance where P ¼ 2.

Two types of clustering methods can be defined [9]:

– Hard clustering techniques where data are set into C speci-
fied number of mutually exclusive subsets.

– Fuzzy clustering techniques where data can be assigned to
several clusters simultaneously, with different degrees of
membership.

Data membership to a partition is usually defined by an
appropriate matrix U whose factors are equal to 0 or 1 in
the case of hard clustering method, or a number between
0 and 1 in the case of fuzzy clustering method. For a complete
description of these unsupervised clustering algorithms, the
reader should refer to [8–14].

Previous results [15] have shown that better performances are
obtained with a hard clustering algorithm, like K-means, in NCTR
applications. Thus, in the next sections, only results obtained with
the K-means hard partitioning method are presented.

The K-means hard partitioning method is simple and
popular [11]. From an N × n dimensional data set, K-means
algorithm allocates each data point to one of C clusters to
minimize the following objective function:

J =
∑C

i=1

∑
k[Ai

‖xk − ci‖2, (2)

where Ai is a set of objects (data points) in the ith cluster and ci

is the mean for those points over cluster i.
Thus, ci are called the cluster centers (centroids) and are

defined as

ci =
∑Ni

k=1 xk

Ni
, xk [ Ai, (3)

where Ni is the number of objects in Ai.

D) Multiresolution hierarchical tree
representation of RCS database
These previous techniques are very useful in many appli-
cations. These methods give powerful efficiencies but each
of them has its own limitations [15, 16].

Application of wavelets representation to NCTR application
slightly decreases recognition search time but with a low degra-
dation of false identification probability. At the opposite, use of
clustering algorithm gives a very low decrease of recognition
search time but with an important degradation of false identi-
fication probability. A way to improve these techniques is their
association in a multiresolution hierarchical tree.

I V . T R E E S T R U C T U R E D E S I G N

In the case of clustering algorithm applied to NCTR, best effi-
ciencies are obtained for an optimum number of clusters [16].
For a multiresolution hierarchical tree, problem is quite differ-
ent. Number of clusters must be large to decrease computational
time, but false identification probability must not be degraded.

Number of clusters on each decomposition level can be
defined as a function of the distortion on the entire population
of data vectors [1]. This distortion can be determined using a
mean squared distance metric and is computed using the
finest representation of the data vectors. It is defined as

d(jc,0) =
nc

M

∑nc

i=1

‖C(jc,0) − S0
i ‖2, (4)Fig. 4. Example of range profile and its wavelet transform computed in four

levels using the Haar mother wavelet.

Fig. 3. Filter system of the wavelet transform (where S is the original signal, Ai

the approximations, Di the details, and i the decomposition level).
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where j is the decomposition level, nc the number of data
vectors in cluster c, C( jc,0) the centroid of the cluster
re-sampled at the finest resolution (0), Si

0 the ith data vector
at resolution 0, and M the number of all data vectors.

For the entire tree, total distortion TD can be computed as

TD =
∑J

j=1

∑k

c=1

d(jc,0), (5)

where J is the maximum decomposition level and k the
number of clusters.

Then, to design the multiresolution hierarchical tree, pro-
cessing steps are the following:

– Step 1: Loading of complete target database.
– Step 2: Wavelet decomposition of target database on the

different levels.
– Step 3: Computation of clustering database on the lowest

(coarsest) decomposition level using the d(jc,0) criterion.
– Step 4: Computation of clustering database using the next

finer resolution based on the previous subpartition and
the d(jc,0) distortion criterion.

– Repeat step 4 until the decomposition level 0 corresponding
to the finest resolution (original signals).

Once tree is built, a pruning is realized by inspecting the
contents of the different clusters. If a cluster contains only sig-
natures of one aircraft or if on the upper level, the node has no
leaves, then the branch is pruned.

To evaluate the consistency of the hierarchical tree, the
total distortion TD and the entropy of the final partition E
can be determined as a function of the number of clusters.
Entropy is a measure of randomness of the population of a
cluster and is defined as

E = −
∑J

j=1

∑k

c=1

nc

M
log

nc

M

( )
. (6)

V . P E R F O R M A N C E E S T I M A T I O N
M E T H O D

A) Introduction
To test efficiency of database compression using multiresolu-
tion hierarchical trees, many criteria can be used:

– Probability of false classification (Pfc) as a function of
signal-to-noise ratio (SNR).

– Minimum SNR to obtain a Pfc smaller than 1%.
– Search computational time (Sct) for a fixed SNR.

B) Probability of false classification
Probability of false classification Pfc is defined for M target
classes as

Pfc = 1
M

∑M

i=1

mi

ni
, (7)

where mi is the number of classification error and ni the
number of element in the class i.

The nearest-neighbor algorithm [17] is used to recognize
the target. It is a simple algorithm and is useful to test the effi-
ciency of database compression using multiresolution hier-
archical trees. The distance used to find the nearest neighbor
is the Euclidean distance dT

k,r,s between the RCS magnitudes Aj:

dk,r,s
T =

�������������������∑N

j=1

|Ak,r,s
j − AT

j |
2

√√√√ , (8)

where j is the sample index, N the length of the signal, Aj
T the

magnitude of measured RCS, and Aj
k,r,s a database element (air-

craft k, azimuth angle r, elevation angle s).
Then, minimal distances to each aircraft are computed and

the nearest neighbor kT for the measure T is extracted like

kT = arg
k

min
r,s

(dk,r,s
T ). (9)

C) Signal-to-noise ratio
To see the effect of random noise, zero-mean white Gaussian
noise has been added to the signal. The signal-to-noise ratio
(SNR) is defined as

SNR (dB) = 10 log10

∑N
j=1 s2

j

Ns2
, (10)

where sj is the sampled signal, N the length of the signal, and
s2 the variance of Gaussian noise.

D) Search computational time
In computing, to estimate the “search computational time”
(Sct), a standard parameter is the number of MFLOPs
(Million FLoating point Operations) with which comparison
between efficiencies of different processing algorithms can
be easily performed.

V I . A P P L I C A T I O N O F
M U L T I R E S O L U T I O N H I E R A R C H I C A L
T R E E T O T A R G E T R E C O G N I T I O N

A) Introduction
Different multiresolution hierarchical trees have been
designed from different beginning decomposition levels,
from 1 to 4. An example of tree built from the decomposition
level 4, using Haar wavelet and K-means hard partitioning
algorithm, is shown in Fig. 5.

This tree has 21 final clusters, an average distortion of 0.56,
and a partition entropy of 2.9. In this figure, the clusters are
designated by Cl,j, where l is the cluster number at resolution j.
The number in each circle is the percentage of data in the
cluster.

Total distortion and entropy are presented in Figs 6 and 7.
A decrease of total distortion and an increase of entropy as a
function of the number of clusters are observed which con-
firms the validity of the tree designing method.

In Figs 8 and 9, examples of range profiles contained in
some clusters are shown. We can see that range profiles are
associated according to aspect.
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Figure 10 presents an estimation of Pfc as a function of SNR
for different multiresolution hierarchical trees designed from
different beginning decomposition levels, from 1 to 4. This
figure reveals that higher is the beginning decomposition
level, lower is the Pfc.

Figures 11 and 12 show, respectively, the variation of
minimum SNR to obtain a Pfc smaller than 1%, and the
search computational time Sct for a fixed SNR as a function
of the beginning decomposition level used to design the multi-
resolution hierarchical tree. We observe a degradation of the
minimum SNR to have a Pfc , 1% of 8 dB, but Sct is
divided by a factor of 13.

Thus, multiresolution hierarchical trees are a good solution
to compress high-resolution data of radar targets. Nevertheless,
other methods exist such as the use of wavelet decomposition or

the unsupervised data clustering [15, 16]. It must be interesting
to compare these techniques as a function of probability of false
classification and computational time of search.

Finally, Figs 11 and 12 compare the efficiencies of different
techniques (multiresolution hierarchical trees, K-means clus-
tering algorithm, multiresolution Haar wavelet decompo-
sition). The lowest Sct is obtained for clustering algorithm
but with the most important degradation of minimum SNR
to obtain a Pfc smaller than 1%. Use of approximation
signals of wavelet decomposition to NCTR application
makes it possible to obtain the weakest SNR to have a Pfc
smaller than 1%, in particular for the first (finer) decompo-
sition levels (1 and 2). Use of multiresolution hierarchical
trees, designed from the coarser decomposition levels (3 and
4), is a good compromise between the data clustering and

Fig. 5. Example of multiresolution hierarchical tree built from the level decomposition 4, using Haar wavelet and K-means clustering algorithm.

Fig. 6. Estimation of total distortion as a function of the number of clusters. Fig. 7. Estimation of total distortion as a function of entropy.
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the wavelet decomposition, because better performances are
obtained for the minimum SNR to obtain a Pfc smaller than
1%, with a similar search computational time.

V I I . C O N C L U S I O N

The aim of this paper was to present a method to design tree
structured hierarchical wavelet representations and to evalu-
ate the efficiency of these trees to minimize the computational
search time to NCTR association, compared to unsupervised

algorithms and multiresolution wavelet decomposition. The
hierarchical designing method based on the use of approxi-
mation signals of the wavelet decomposition coupled with
the K-means unsupervised clustering algorithm, is described.
A criterion is presented to determine the number of clusters
on each level of the tree with a hierarchical dependence.

For a hierarchical tree designed from the decomposition
level 4, Sct is divided by a factor of 13, with a degradation of
the minimum SNR to have a Pfc ,1% of 8 dB. Comparison
with other database compression methods (wavelet decompo-
sition, hard clustering) shows that multiresolution

Fig. 8. Example of range profiles in each cluster at decomposition level 4.

Fig. 9. Example of range profiles in each cluster at decomposition level 3.
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hierarchical trees are a good compromise as a function of Sct
and Pfc, if they are designed from the upper (coarser)
decomposition levels.
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Fig. 10. Example of probability of false classification Pfc as a function of SNR
for the original set and the multiresolution hierarchical trees designed from
different beginning decomposition levels, from 1 to 4, using a Haar wavelet
and K-means algorithm.

Fig. 11. Minimum SNR to obtain a Pfc smaller than 1% as a function of
decomposition level for the multiresolution hierarchical trees, K-means
algorithm (C ¼ 50), and Haar wavelet decomposition.

Fig. 12. Search computational time Sct as a function of the beginning
decomposition level for the multiresolution hierarchical trees, K-means
algorithm (C ¼ 50), and Haar wavelet decomposition.
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