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Three-dimensional wave distortion and
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Three-dimensional dilational and sinuous wave propagation on infinite or semi-
infinite thin planar sheets flowing into a gas of negligible density is investigated. The
assumption of thin sheets allows the reduction of the problem dimensionality by
integration across the sheet thickness. For finite-amplitude disturbances, the strongest
nonlinear effects occur when the cross-sectional wavenumber (l) is close to the
streamwise wavenumber (k). First, dilational wave propagation is considered. When
l is close to k for infinite sheets, higher harmonics are generated in the streamwise
direction, and the standing wave with finite amplitude in the cross-sectional plane
becomes flat. As time passes, the waves return to the initial wave shape. This process
is repeated in a cycle. A similar phenomenon is found in semi-infinite sheets with low
Weber number. When l is close to k for semi-infinite sheets and Weber number is
high, fluid accumulates into fluid lumps interspaced by one wavelength in the cross-
sectional direction as well as in the streamwise direction. This leads to the formation
of initially non-spherical ligaments or large droplets from the liquid sheet. Secondly,
sinuous wave propagation is considered. When l is close to k for semi-infinite sheets
and Weber number is high, fluid agglomerates in the edge of the sheet interspaced
by half a wavelength in the cross-sectional direction as well as in the streamwise
direction. A three-dimensional visualization of the computational results shows that
the disturbance at the nozzle exit induces fluid to agglomerate into half-spherical
lumps, which indicate the formation of ligaments or large droplets from the liquid
sheet. A similar phenomenon is found in the case of infinite sheets.

1. Introduction
Atomization is an important process in many applications such as spray combustion

and sprayers for agricultural or domestic usage. Also, atomization should be avoided
in other applications, e.g. curtain coating. Many atomization systems rely on large
liquid surface-to-volume ratio to increase the rate of disintegration. Thin sheets of
injected liquid are a very common mechanism for optimizing interface area.

The mechanism of liquid sheet instability and breakup has been investigated exper-
imentally and theoretically by numerous authors. Hagerty & Shea (1955) found that
only two types of waves are possible on a flat liquid sheet at any given frequency.
The first type is the antisymmetric (sinuous) mode where the two sheet surfaces are
in phase according to linear theory; the other type is the symmetric (dilational) mode
where linear theory predicts that the two sheet surfaces are out of phase. The sinuous
mode is more unstable than the dilational mode when the gas-to-liquid density ratio
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is low (Dombrowski & Hooper 1962; Li & Tankin 1991; Mansour & Chigier 1991);
conversely, the dilational mode is more unstable than the sinuous mode when the
density ratio is high (Rangel & Sirignano 1991).

Many theoretical investigations were based on linear temporal analyses on an
infinitely long liquid sheet. For thin sheets, Taylor (1959a), Lin & Roberts (1981),
and Mehring & Sirignano (1999) observed that linear dilational waves are dispersive;
conversely, linear sinuous waves are non-dispersive. These linear temporal analyses
predict that an optimal frequency exists where the growth rate is a maximum when the
gas-phase density is included in the analyses. However, Crapper, Dombrowski & Pyott
(1975) and Crapper & Dombrowski (1984) suggested and found experimentally that
dominant waves observed on a liquid sheet must be of a frequency imposed by some
external source. This finding suggests that investigations of liquid sheets modulated at
the nozzle exit are more important in practical applications than those of liquid sheets
with infinite length. However, rather few studies of the former have been done. In the
case of round jets, Bogy (1978) performed linear analysis of wave propagation and
instability (symmetric mode) in a round liquid jet of semi-infinite length harmonically
forced at the nozzle exit and issuing into a void. Later, for the sheet case, Mehring &
Sirignano (1999) performed linear analyses and nonlinear numerical analyses of wave
distortion and disintegration in two-dimensional planar liquid sheets of semi-infinite
length modulated at the nozzle exit and issuing in a void. Also, liquid sheets issuing
from air-blast atomizers can be treated as liquid sheets modulated at the nozzle exit.
From their experiments on the aerodynamic instability of liquid sheets issuing from
a two-dimensional air-assisted nozzle, Mansour & Chigier (1990, 1991) showed that
the effect of introducing air in the nozzle is similar to the effect of forced vibrations
at the nozzle exit.

Through linear analyses (of modulated or unmodulated sheets), one can find a
dispersion relationship between wavenumber and frequency for both the dilational
and sinuous modes. However, linear analyses do not predict sheet breakup due to the
sinuous mode. The reason is that the sinuous mode is decoupled from the dilational
mode when the governing equations are linearized (see § 4 in the present paper; Squire
1953; Taylor 1959b), and sheet breakup cannot occur without variation of the sheet
thickness.

A few nonlinear analyses have been reported. Clark & Dombrowski (1972) studied
the aerodynamic growth of sinuous waves on parallel-sided inviscid liquid sheets
through a second-order analysis and equations that describe the characteristics or the
fundamental mode and the first harmonic. They found that thinning of the sheet is
caused by the growth of the harmonic wave, and maximum thinning and subsequent
rupture occur at positions corresponding to 3/8 and 7/8 of the wavelength of the
fundamental wave. In other words, the sheet breaks up at half wavelengths of the
fundamental wave. Asare, Takhashi & Hoffman (1981) performed experiments on
planar sheet water issuing vertically downward from slit nozzles which were subjected
to transverse forced harmonic excitation. They found that, for large-amplitude nozzle
excitation, the waveform becomes highly nonlinear and non-sinusoidal and can re-
semble a sawtooth waveform in some cases. Rangel & Sirignano (1991) performed
a linear analysis and a nonlinear analysis using a vortex discretization method and
considered two-dimensional temporal dilational and sinuous instability of a sheet
of finite thickness including the complete range of density ratio (gas to liquid) and
thickness-to-wavelength ratio. They found that sinuous modes may result in liga-
ments interspaced by half a wavelength and dilational modes may result in ligaments
interspaced by one wavelength. Mehring & Sirignano (1999) analysed linear and
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nonlinear dilational and sinuous waves on thin inviscid infinite and semi-infinite
planar liquid sheets in a gas of negligible density by means of a method that reduces
the two-dimensional unsteady problem to a one-dimensional unsteady problem. They
found the same type of sheet breakup as Rangel & Sirignano (1991) did and a
sawtooth wave shape for the nonlinear sinuous mode as Asare et al. (1981) observed
experimentally.

All the nonlinear analyses mentioned above are restricted to two-dimensionality.
Practically, the breakup of a liquid sheet into the major ligaments and droplets can be
predicted only with a three-dimensional nonlinear representation. The objective of the
present paper is to examine three-dimensional effects on thin inviscid infinite planar
liquid sheets and modulated semi-infinite planar liquid sheets in a gas of negligible
density by means of a similar approach to that of Mehring & Sirignano (1999)
who reduced the two-dimensional unsteady problem to a one-dimensional unsteady
problem. In the following sections, results from three-dimensional computations are
compared with those from two-dimensional computations by Mehring & Sirignano
(1999). All the results for the cross-sectional wavenumber (l) equal to zero in this
paper correspond to those from two-dimensional computations.

As mentioned above, the gas density is neglected in the present paper. Rangel &
Sirignano (1991) showed that the Kelvin–Helmholtz instability is small compared to
the capillary force when the density ratio of gas to liquid is small as in the case that
water is injected into the air under normal atmospheric pressure. For example, the
density ratio of the air to water is 0.001.

The next section provides a mathematical description of the flow considered, the
governing equations, and the numerical solution procedure. In § 3, linear and nonlinear
analyses are performed for the dilational mode (§ 3.1 and § 3.2) and the sinuous mode
(§ 3.3 and § 3.4) on infinitely long liquid sheets. In § 4, linear and nonlinear analyses
are performed for the dilational mode (§ 4.1 and § 4.2) and the sinuous mode (§ 4.3
and § 4.4) on semi-infinitely long liquid sheets which are harmonically forced at the
nozzle exit. Section 5 provides a summary of the work.

2. Formulation and governing equations
A thin liquid sheet infinitely or semi-infinitely long in the flow direction (x) is

considered as shown in figure 1. The liquid sheet is initially injected into a gas of
negligible density compared to the liquid density with the undisturbed velocity uo and
the undisturbed thickness ao. The liquid is assumed inviscid, incompressible, and free
of gravity force. Then, the continuity and momentum equations governing the liquid
motion are

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1)

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
+

1

ρ

∂p

∂x
= 0, (2)

∂w

∂t
+
∂uw

∂x
+
∂vw

∂y
+
∂w2

∂z
+

1

ρ

∂p

∂z
= 0, (3)

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
+
∂vw

∂z
+

1

ρ

∂p

∂y
= 0. (4)

The upper boundary of the liquid sheet is given by y+(x, z, t) while the lower boundary
is described as y−(x, z, t). A surface tension σ exists at the boundaries and affects
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y

x

z

Figure 1. Flow geometry and coordinates.

the force balance at the interfaces. The boundary conditions at the upper and lower
surfaces are

v± =
∂y±
∂t

+ u±
∂y±
∂x

+ w±
∂y±
∂z

, (5)

p± = σ

(
1

R1±
+

1

R2±

)
=

±σ
(1 + y2

x + y2
z )

3/2
±

[yxx (1 + y2
z ) + yzz (1 + y2

x)− 2yxyzyxz ]±, (6)

where the subscripts + and − denote values at the upper and lower sheet surfaces,
respectively, and R1± and R2± are the principal radii of curvature of the surface. The
subscripts x and z denote derivatives with respect to x and z, respectively. Equations
(5) and (6) are called kinematic and dynamic boundary conditions, respectively.

Define the sheet thickness, ỹ(x, z, t), and the displacement of the sheet, ȳ(x, z, t), to be

ỹ(x, z, t) = y+ − y−, ȳ(x, z, t) = (y+ + y−)/2. (7)

Also define ∆p and p̄ in a similar fashion. They are related to ỹ and ȳ by using (6)
and (7) to yield

∆p = p+ − p− = −σ
[
(f1+ + f1−)

∂2ȳ

∂x2
+ 1

2
(f1+ − f1−)

∂2ỹ

∂x2
+ (f2+ + f2−)

∂2ȳ

∂z2

+ 1
2
(f2+ − f2−)

∂2ỹ

∂z2
+ (f3+ + f3−)

∂2ȳ

∂x∂z
+ 1

2
(f3+ − f3−)

∂2ỹ

∂x∂z

]
, (8)

p̄ = (p+ + p−)/2 = −σ
2

[
(f1+ − f1−)

∂2ȳ

∂x2
+ 1

2
(f1+ + f1−)

∂2ỹ

∂x2
+ (f2+ − f2−)

∂2ȳ

∂z2

+ 1
2
(f2+ + f2−)

∂2ỹ

∂z2
+ (f3+ − f3−)

∂2ȳ

∂x∂z
+ 1

2
(f3+ + f3−)

∂2ỹ

∂x∂z

]
, (9)

where f1+, f1−, f2+, f2−, f3+, and f3− are defined as

f1± =
1 + (ȳz ± 1

2
ỹz)

2

[1 + (ȳx ± 1
2
ỹx)2 + (ȳz ± 1

2
ỹz)2]3/2

, (10a)

f2± =
1 + (ȳx ± 1

2
ỹx)

2

[1 + (ȳx ± 1
2
ỹx)2 + (ȳz ± 1

2
ỹz)2]3/2

, (10b)

f3± =
−2(ȳx ± 1

2
ỹx)(ȳz ± 1

2
ỹz)

[1 + (ȳx ± 1
2
ỹx)2 + (ȳz ± 1

2
ỹz)2]3/2

. (10c)
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We also define ∆φ and φ̄ for later use as

∆φ = 2∆p/σ, φ̄ = 2p̄/σ. (11)

For a sheet whose thickness is small compared to the wavelength of a disturbance,
we can consider u, ∂v/∂y, w and ∂p/∂y to be nearly constant with variation of y.
For the two-dimensional disturbance, Mehring & Sirignano (1999) showed that these
behaviours were predicted as the leading behaviour in an asymptotic representation
for long wavelengths. The problem can therefore be reduced to a two-dimensional, un-
steady formulation. We define average velocities ū(x, z, t), v̄(x, z, t), and w̄(x, z, t) to be

ū(x, z, t) =
1

ỹ

∫ y+

y−
u dy, v̄(x, z, t) =

1

ỹ

∫ y+

y−
v dy, w̄(x, z, t) =

1

ỹ

∫ y+

y−
w dy. (12)

Average pressure p̄(x, z, t) is defined in a similar manner. Equations (1)–(4) can be
integrated term-by-term from y− to y+ and incorporated into the kinematic and
dynamic boundary conditions ((5) and (6)) and the above definitions. The results are

∂ỹ

∂t
+
∂ỹū

∂x
+
∂ỹw̄

∂z
= 0, (13)

∂ū

∂t
+ ū

∂ū

∂x
+ w̄

∂ū

∂z
= −1

ρ

(
∂p̄

∂x
− ∆p

ỹ

∂ȳ

∂x

)
, (14)

∂w̄

∂t
+ ū

∂w̄

∂x
+ w̄

∂w̄

∂z
= −1

ρ

(
∂p̄

∂z
− ∆p

ỹ

∂ȳ

∂z

)
, (15)

∂v̄

∂t
+ ū

∂v̄

∂x
+ w̄

∂v̄

∂z
= −1

ρ

∆p

ỹ
. (16)

Equations (13)–(16) show that the number of unknowns is five (ȳ, ỹ, u, v, and w) but
the number of equations is four. An additional equation is obtained by combining the
kinematic boundary conditions for v+ and v−, and by using v̄ = (v+ + v−)/2. Mehring
& Sirignano (1999) showed that v can be expressed by a polynomial expansion in
terms of y or (y − ȳ). As a consequence, v can be expressed as a linear function of
y by the first-order approximation. Thus, the expression v̄ = (v+ + v−)/2 is consistent
with (12) by the first-order approximation:

v̄ =
∂ȳ

∂t
+ ū

∂ȳ

∂x
+ w̄

∂ȳ

∂z
. (17)

For two-dimensional planar sheet distortion, (13)–(17) agree with the results of
Mehring & Sirignano (1999).

The system of equations (13) to (17) is solved by finite-difference computations.
The finite-difference technique employed in this paper is the Richtmyer splitting of
the Lax–Wendroff method (Ferziger 1981). For example, (14) can be re-written as

∂ū

∂t
+ ū

∂ū

∂x
+ w̄

∂ū

∂z
= f(t, x, z).

The discretization of this equation involves two steps as follows:

u
n+1/2
j,k − (unj+1,k + unj−1,k + unj,k+1 + unj,k−1)/4

∆t/2
+unj,k

unj+1,k − unj−1,k

2∆x
+wnj,k

unj,k+1 − unj,k−1

2∆z
= fnj,k,

un+1
j,k − unj,k

∆t
+ u

n+1/2
j,k

(uj+1,k − uj−1,k)
n+1/2

2∆x
+ w

n+1/2
j,k

(uj,k+1 − uj,k−1)
n+1/2

2∆z
= f

n+1/2
j,k ,
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where the spatial derivatives with respect to x or z in f(t, x, z) as indicated by (8)–
(10) are discretized with the second-order central-difference scheme. This Richtmyer’s
method can be regarded as a predictor-corrector method with a first-order Lax
predictor and a second-order leapfrog corrector (Ferziger 1981).

The magnitudes of mesh size and time step employed in the computation are given
in each section. Accuracy of the numerical solutions has been examined by successive
refinement of mesh size and time step.

3. Liquid sheet with infinite length
For the motion of infinitely long thin liquid sheets, we introduce the Galilean

transformation in the x-direction as

X = x− uot, Y = y, Z = z, τ = t, (18)

and define ū1 ≡ ū − uo. Furthermore, all the variables are normalized using the
undisturbed sheet thickness ao as the characteristic length and

√
σ/(2ρao) as the

characteristic velocity. Taylor (1959a) derived that the wave speeds of the dilational
mode and the sinuous mode of infinitely long (not necessarily thin) liquid sheets are
proportional to

√
σ/(2ρao). Then equations (13)–(16) are transformed to

∂ỹ∗

∂τ∗
+
∂ỹ∗ū∗1
∂X∗

+
∂ỹ∗w̄∗

∂Z∗
= 0, (19)

∂ū∗1
∂τ∗

+ ū∗1
∂ū∗1
∂X∗

+ w̄∗
∂ū∗1
∂Z∗

= −
(
∂φ̄∗

∂X∗
− ∆φ∗

ỹ∗
∂ȳ∗

∂X∗

)
, (20)

∂w̄∗

∂τ∗
+ ū∗1

∂w̄∗

∂X∗
+ w̄∗

∂w̄∗

∂Z∗
= −

(
∂φ̄∗

∂Z∗
− ∆φ∗

ỹ∗
∂ȳ∗

∂Z∗

)
, (21)

∂v̄∗

∂τ∗
+ ū∗1

∂v̄∗

∂X∗
+ w̄∗

∂v̄∗

∂Z∗
= −∆φ∗

ỹ∗
, (22)

v̄∗ =
∂ȳ∗

∂τ∗
+ ū∗1

∂ȳ∗

∂X∗
+ w̄∗

∂ȳ∗

∂Z∗
, (23)

where ∗ denotes the dimensionless quantity and will be dropped in the rest of the
paper.

Equations (19)–(23) can be linearized as follows. Let ỹ = 1 + ỹ′, ȳ = ȳ′, ū1 = ū′,
v̄ = v̄′, and w̄ = w̄′. Insert these into (19)–(23) and assume that the primed quantities
are small. After neglecting the higher-order terms, we get

∂ỹ′

∂τ
+

∂

∂X
(ỹ′ + ū′) +

∂w̄′

∂Z
= 0, (24)

∂ū′

∂τ
+
∂ū′

∂X
=

∂

∂X

(
∂2ỹ′

∂X2
+
∂2ỹ′

∂Z2

)
, (25)

∂w̄′

∂τ
+
∂w̄′

∂X
=

∂

∂Z

(
∂2ỹ′

∂X2
+
∂2ỹ′

∂Z2

)
, (26)

∂v̄′

∂τ
+
∂v̄′

∂X
= 4

(
∂2ȳ′

∂X2
+
∂2ȳ′

∂Z2

)
, (27)

∂ȳ′

∂τ
+
∂ȳ′

∂X
= v̄′. (28)
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Equations (24)–(28) show that the sinuous mode ((27) and (28)) related to variations
of v̄′ and ȳ′ is decoupled from the dilational mode ((24)–(26)) in the linear analysis.

3.1. Linear analysis for the dilational mode

Equations (24)–(26) are the governing equations for the linear dilational mode of
liquid sheets with infinite length and can be combined into one equation as

∂2ỹ′

∂τ2
+
∂4ỹ′

∂X4
+ 2

∂4ỹ′

∂X2∂Z2
+
∂4ỹ′

∂Z4
= 0. (29)

Let us assume as a solution of (29) a wave travelling in the X-direction and standing
in the Z-direction:

ỹ′ = yo cos lZ exp [i(ωτ− kX)] (30)

where k is the dimensionless wavenumber in the X-direction, l is the dimensionless
wavenumber in the Z-direction, and ω is the dimensionless frequency of the wave.
Now, we perform a temporal stability analysis by assuming that ω can be complex.
Insert (30) into (29) and solve for ω. Then, we get the three-dimensional dispersion
relationship as

ω = k2 + l2 (31)

which shows that ω has only a real part. Therefore, the dilational waves on three-
dimensional planar liquid sheets with infinite length are neutrally stable by a linear
analysis. From (31), the wave speed is computed as Vd = k + (l2/k). The dilational
mode is dispersive since the wave speed Vd depends upon k and l.

3.2. Nonlinear numerical results for the dilational mode

For the dilational mode, v̄ = 0, ȳ = 0, and ∆p = 0, and thus, equations (19)–(21)
without the ∆φ term become a set of the governing equations.

For the dilational mode of the two-dimensional (reduced to one-dimensional)
unsteady case, an analytical solution for a limit cycle exists for (19)–(20) with zero
values of w̄ and ∆φ (Mehring & Sirignano 1999). The analytical solution shows that
the product of wave speed and wavelength is dependent on the amplitude of the
wave. When the amplitude of the dispersive wave is small, the wave speed Vd equals
2π/λ which can be predicted from a linear theory, where λ is the wavelength in the
streamwise direction.

For the present three-dimensional (reduced to two-dimensional) unsteady case, an
analytical solution does not exist, and (19)–(21) with zero value of ∆φ are solved
numerically. The computational domain is chosen as 0 6 X 6 Xa and 0 6 Z 6 b,
where b is the width of the liquid sheet. In the X-direction, the periodic boundary
condition is imposed on each of the independent variables at X = 0 and at Xa = nλx,
where n is any integer and λx is the wavelength of the disturbance in the X-direction.
In the Z-direction, as in the X-direction, the periodic boundary condition is imposed
on each of the independent variables at Z = 0 and b. As initial conditions, we assume
a sinusoidal wave travelling in the X-direction and standing in the Z-direction so
that

ỹ(X,Z, τ = 0) = α0 + α1 cos (kX) cos (lZ) (32)

where k = 2π/λx and l = 2π/λz . The initial conditions for ū1 and w̄ are assumed to
be

ū1(X,Z, τ = 0) = α2α1(ω/k)(cos (kX) cos (lZ)− ψ)/ỹ, (33)

w̄(X,Z, τ = 0) = (α2 − 1)α1(ω/l)(sin (kX) sin (lZ))/ỹ (34)
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Figure 2. ỹ (sheet thickness) versus X in the plane of Z = 0 at: (a) 0 6 τ 6 T ; (b) 0 6 τ 6 3T ;
(c) 3T 6 τ 6 6T ; and (d) 6T 6 τ 6 8T with αo = 1.37, α1 = −0.717, and α2 = 0.5, where T is the
period.

where ω = 2π/T and ψ = (1− αo)/α1 which is obtained by assuming initially ū1 = 0
at ỹ = 1. The expressions for ū1 and w̄ are suggested by the continuity equation
(19). The initial conditions of ū1 and w̄ can be arbitrary. However, arbitrary initial
conditions can introduce large wave wobbling when it propagates due to a standing
wave added effectively to the propagation wave in the streamwise direction (Mehring
& Sirignano 1999). The initial conditions given by (32)–(34) satisfy the continuity
equation (19).

Now we solve (19)–(21) with the initial conditions given by (32)–(34) and the
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periodic boundary conditions mentioned earlier. λx = 10, λz = 10, n = 2, and b = 20
with α0 = 1.37, α1 = −0.717, and α2 = 0.5 are used in the following computations.
The values of α0 and α1 are chosen as the first and second Fourier coefficients,
respectively, of the two-dimensional (reduced to one-dimensional) analytical solution
for the integration constant C = 2.5 by Mehring & Sirignano (1999); α2 = 0.5 is
chosen such that the magnitudes of ū1 and w̄ are close to each other. Since the period
of the wave (or frequency ω = 2π/T ) is not known in advance, a trial and error
method is used to find the period. A value of T is chosen and (19)–(21) are solved
with that value of T . Then, a new value of T can be found by examining the solutions
as a function of time. This process continues until a correct value of T is found.
T = 6.85 is the result.

Figure 2(a–d) displays ỹ versus X in the plane of Z = 0 at: (a) 0 6 τ 6 T ; (b)
0 6 τ 6 3T ; (c) 3T 6 τ 6 6T ; and (d) 6T 6 τ 6 8T . The initially sinusoidal
disturbance propagates in the X-direction with large deformation for 0 6 τ 6 T . As
more time elapses, two higher-harmonic waves are generated during T 6 τ 6 3T .
However, these higher-harmonic waves disappear and there is a return to the initial
wave during 3T 6 τ 6 6T . Results for τ > 6T indicate that this process is repeated
in a cycle.

Figure 3(a–d) describes ỹ versus Z in the plane of X = 0 with the same parameters
as in figure 2. Initially the sinusoidal disturbance oscillates standing in the Z-direction
during 0 6 τ 6 T . As more time elapses, the standing wave is nearly flat during
2T 6 τ 6 3T , while figure 2(b) shows that two higher harmonic waves are generated
in the X-direction during that time. However, the nearly flat wave returns to a
wave with finite amplitude during 5T 6 τ 6 6T , while figure 2(c) shows that the
two higher-harmonic waves return to the initial wave in the X-direction during that
time. Results for τ > 6T indicate that this process is repeated in a cycle. Of course,
this cyclic exchange is inherently three-dimensional and is not captured by a two-
dimensional approximation. Also, it is nonlinear and cannot be displayed by linear
theory.

This periodic exchange of energy between the transverse oscillations and the stream-
wise oscillations does not occur when the two wavenumbers, 2π/λx = k and 2π/λz = l
are disparate or the initial amplitude α1 is small. For example, we investigated the
behaviours of wave propagation for two other combinations of λx and λz with other
parameters the same as before: (i) λx = 10, λz = 5, (ii) λx = 10, λz = 20. In both cases,
the initially sinusoidal wave propagates in the X-direction and oscillates standing
in the Z-direction with only a little deformation, and there are no higher-harmonic
waves generated.

Figure 4(a) illustrates ū versus X at τ = 0 and 8T in the plane of Z = 0 with
the same parameters as in figure 2. It is shown that higher harmonics in streamwise
velocity ū are generated in the streamwise direction when higher-harmonic waves
are generated in the same direction. Figure 4(b) displays w̄ versus Z at τ = 6T ,
6T + T/4, 6T + T/2, and 6T + 3T/4 in the plane of X = 0. It is shown that w̄
oscillates standing. It is found that the profile of w̄ along Z is nearly flat during the
time the standing wave is nearly flat, for example, during 2T 6 τ 6 3T .

Figures 5(a) and 5(b) show three-dimensional views at τ = 0 and τ = 3T , re-
spectively. Again, they illustrate that higher-harmonic waves are generated in the
X-direction and the standing wave in the Z-direction becomes nearly flat.

For liquid sheets with infinite length, the total wave energy over a wavelength in
each X- and Z-direction is conserved since there is no external force acting on the
sheet. The wave energy consists of two types: one is the kinetic energy and the other
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Figure 3. ỹ (sheet thickness) versus Z in the plane of X = 0 at: (a) 0 6 τ 6 T ; (b) 0 6 τ 6 3T ;
(c) 3T 6 τ 6 6T ; and (d) 6T 6 τ 6 8T with the same parameters as in figure 2, where T is the
period.

is the surface energy. The kinetic energy is expressed by

KE = KEx + KEz = ρ

∫ λz

0

∫ λx

0

1
2
(ū2

1 + w̄2)ỹ dX dZ

=
σa2

o

4

∫ λ∗z

0

∫ λ∗x

0

[(ū∗1)
2 + (w̄∗)2]ỹ∗ dX∗ dZ∗ (35)

where KEx and KEz denote the kinetic energy in the X- and Z-directions, respectively.
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Figure 4. (a) ū versus X at τ = 0 and 8T in the plane of Z = 0, (b) w̄ versus Z at τ = 6T ,
6T +T/4, 6T +T/2, and 6T + 3T/4 in the plane of X = 0 with the same parameters as in figure
2, where T is the period.

The surface energy is related to the variation of the sheet surface area and given by

SE = SEx + SEz

= 2σ

∫ λz

0

∫ λx

0

√
1 +

(
∂Y+

∂X

)2

+

(
∂Y+

∂Z

)2

dX dZ − 2σ

∫ λz

0

∫ λx

0

dX dZ

≈ 2σ

∫ λz

0

∫ λx

0

1

2

[(
∂Y+

∂X

)2

+

(
∂Y+

∂Z

)2
]

dX dZ

=
σa2

o

4

∫ λ∗z

0

∫ λ∗x

0

[(
∂ỹ∗

∂X∗

)2

+

(
∂ỹ∗

∂Z∗

)2
]

dX∗ dZ∗ (36)

where SEx and SEz denote the surface energy in the X- and Z-directions, respectively.
It can be shown from (19)–(21) with f1+ = f1− = f2+ = f2− = 1 that the total wave
energy over a wavelength in each direction is a time-invariant.

Next, we examine the energy of the waves computed numerically in figure 2. Figure
6 shows KEx, KEz , SEx and SEz normalized by σa2

o/4 as a function of time. KEx and
SEx increase during the generation of the higher-harmonic waves in the streamwise
direction; on the other hand, KEz and SEz decrease during the same period since the
standing wave in the cross-sectional direction is flat during that time.

Figure 7 illustrates the kinetic, surface, and total energies as a function of time.
The total energy is a time-invariant as mentioned above, and the kinetic and surface
energies are out of phase in time with each other. Higher harmonics appear on
the curves of the kinetic and surface energies as a function of time. These higher
harmonics in the kinetic and surface energies as well as in the sheet thickness (ỹ) and
in the streamwise velocity (ū) are generated by nonlinear effects.
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Figure 5. Three-dimensional views of ỹ at (a) τ = 0 and (b) τ = 3T with the same parameters as
in figure 2, where T is the period.
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Figure 6. Kinetic energy in the X-direction (KEx), kinetic energy in the Z-direction (KEz), surface
energy in the X-direction (SEx), and surface energy in the Z-direction (SEz) normalized by σa2

o/4
as a function of time.
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Figure 7. Kinetic, surface, and total energies normalized by σa2
o/4 as a function of time.

The numbers of grid points per wavelength in the X- and Z-directions are Nx = 100
and Nz = 100, respectively, and the time step is ∆τ = 2× 10−3. We have checked that
the accuracy of our numerical simulation does not affect the results. For instance,
the maximum amplitude (ỹ) at τ = 41.1 (6T ) is 1.94 at X = 6.1 and Y = 0. Using a
doubled time step with the same number of grids results in the same amplitude 1.94
at the same time and location. Using a doubled spatial resolution in both the X- and
Z-directions gives the amplitude 1.92 at the same time and location.

3.3. Linear analysis for the sinuous mode

Equations (27) and (28) are the governing equations for the linear sinuous mode of
liquid sheets with infinite length and can be combined into one equation as

∂2ỹ′

∂τ2
+ 4

∂2ỹ′

∂X2
+
∂2ỹ′

∂Z2
. (37)
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Let us assume as a solution of (37) a wave travelling in the X-direction and standing
in the Z-direction:

ỹ′ = yo cos lZ exp [i(ωτ− kX)] (38)

where k is the dimensionless wavenumber in the X-direction, l is the dimensionless
wavenumber in the Z-direction, and ω is the dimensionless frequency of the wave.
Now, we perform a temporal stability analysis by assuming that ω can be complex.
Insert (38) into (37) and solve for ω. Then, we get the three-dimensional dispersion
relationship as

ω = 2
√
k2 + l2 (39)

which shows that ω has only a real part. Therefore, the sinuous waves on three-
dimensional planar liquid sheets with infinite length are neutrally stable as are the
dilational waves. From (39), the wave speed is computed as Vs = 2

√
1 + (l/k)2, which

indicates that the wave is dispersive when l 6= 0. Note that Mehring & Sirignano
(1999) showed through a linear analysis that the wave speed Vs equals 2 and the wave
is therefore non-dispersive for the two-dimensional sinuous mode (l = 0).

3.4. Nonlinear numerical results for the sinuous mode

For the sinuous mode, (19)–(23) are the governing equations and show that an initial
transverse velocity v̄(X,Z, τ = 0) induces changes not only in the sheet centreline ȳ
but also in the sheet thickness ỹ, which means that the sinuous and dilational modes
are coupled in a nonlinear analysis. Note that (24)–(28) showed that the sinuous and
dilational modes are decoupled in a linear analysis.

Equations (19)–(23) are solved numerically for the present three-dimensional (re-
duced to two-dimensional) unsteady case. The computational domain is chosen as
0 6 X 6 Xa and 0 6 Z 6 b, where b is the width of the liquid sheet. Similarly as
in § 3.2, the periodic boundary conditions are imposed on each of the independent
variables in the X- and Z-directions. For initial conditions, we assume a sinuous wave
travelling in the X-direction and standing in the Z-direction. That is,

ȳ(X,Z, τ = 0) = A cos (kX) cos (lZ), (40)

ỹ(X,Z, τ = 0) = 1 (41)

where k = 2π/λx, l = 2π/λy and ω = 2π/T . The initial condition for v̄ is obtained
from (23). Then, the initial conditions for ū1, w̄, and v̄ are

ū1(X,Z, τ = 0) = w̄(X,Z, τ = 0) = 0, (42)

v̄(X,Z, τ = 0) = Aω sin (kX) cos (lZ). (43)

Now we solve equations (19)–(23) with the initial conditions given by equations
(40)–(43) and the periodic boundary conditions mentioned earlier. λx = 50, λz = 50,
Xa = 100, and b = 100 are used in the following computations.

Figure 8(a–d) displays Y+ (upper surface) and Y− (lower surface) versus X in
the plane of Z = 0 at (a) τ = 0; (b) 118; (c) 128; and (d) 140 with A = 1.375
and ω = 0.32. This figure shows that, as time passes, fluid accumulates in the edge
of the sheet interspaced by half a wavelength, indicating that an initial sinuous
disturbance induces not only a wave that is sinuous but also the variation of the
sheet thickness (dilational mode). Figure 9(a–d) displays Y+ and Y− versus Z in the
plane of X = 0 at the same times with the same parameters as in figure 8(a–d). This
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Figure 8. Y+ (upper surface) and Y− (lower surface) versus X in the plane of Z = 0 at (a) τ = 0;
(b) 118; (c) 128; and (d) 140 with A = 1.375 and ω = 0.32.
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Figure 9. Y+ (upper surface) and Y− (lower surface) versus Z in the plane of X = 0 at (a) τ = 0;
(b) 118; (c) 128; and (d) 140 with the same parameters as in figure 8.

figure shows that as time passes, fluid accumulates in the cross-sectional direction as
well as in the streamwise direction. As a whole, an initial sinuous disturbance with
the cross-sectional wavenumber (l) close to the streamwise wavenumber (k) has fluid
agglomerated in a half-spherical shape, indicating the formation of large spherical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

78
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099007879


162 I. Kim and W. A. Sirignano

–0.2
0 50 100

(c)

Z

0

0.2

w

–0.2
0 50 100

(b)

X

0

0.2

u

–0.5
0 50 100

(a)

X

0

0.5

v

Figure 10. Velocity profiles: (a) v̄ versus X in the plane of Z = 0; (b) ū versus X in the plane
of Z = 0; and (c) w̄ versus Z in the plane of X = 0 at t = 140 with the same parameters as in
figure 8.

droplets from the liquid sheet. This phenomenon will be seen more clearly in the
case of modulated semi-infinitely long thin liquid sheets with sinuous disturbances
(§ 4.4).

Figure 10(a–c) illustrates velocity profiles (a) v̄ versus X in the plane of Z = 0;
(b) ū versus X in the plane of Z = 0; and (c) w̄ versus Z in the plane of X = 0 at
t = 140 with the same parameters as in figures 8 and 9. It shows that v̄ oscillates in
sinuous motion in the streamwise direction; ū and w̄ are initially zero, but non-zero
ū and w̄ appear as time passes. As a result, the dilational mode is generated.

As mentioned in § 3.2, for liquid sheets with infinite length, the total wave energy
over a wavelength in each X- and Z-direction is conserved since there is no external
force acting on the sheet. The kinetic energy is expressed by

KE =
σa2

o

4

∫ λ∗z

0

∫ λ∗x

0

[(ū∗1)
2 + (v̄∗)2 + (w̄∗)2]ỹ∗ dX∗ dZ∗. (44)
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The surface energy is related to the variation of the sheet surface area and given by

SE =
σa2

o

2

∫ λ∗z

0

∫ λ∗x

0

[(
∂Y ∗+
∂X∗

)2

+

(
∂Y ∗−
∂X∗

)2

+

(
∂Y ∗+
∂Z∗

)2

+

(
∂Y ∗−
∂Z∗

)2
]

dX∗ dZ∗. (45)

It can be shown from (19)–(23) with f1+ = f1− = f2+ = f2− = 1 that the total
wave energy over a wavelength in each direction is a time-invariant. Since no higher-
harmonic waves are generated in this case (figure 8), the surface energy exchange in
the X- and Z-directions as in § 3.2 is not observed.

The numbers of grid points per wavelength in the X- and Z-directions are Nx = 150
and Nz = 150, respectively, and the time step is ∆τ = 2× 10−3. We have checked that
the accuracy of our numerical simulation does not affect the results. For instance,
when the same parameters are used as in figure 8, the maximum thickness amplitude
(ỹ) at τ = 140 is 2.21 at X = 1 and Z = 0. Using a doubled time step with the
same number of grids results in the same amplitude 2.21 at the same time and
location. Using a doubled spatial resolution in both the X- and Z-directions gives
the amplitude 2.19 at the same time and location.

4. Modulated semi-infinitely long liquid sheet
Consider a liquid sheet injected from x = 0 (jet exit) into the positive x-direction

surrounded by a gas of negligible density. This case is more practical than the case
of the liquid sheet with infinite length. The physical domain in x can be assumed
as semi-infinite. Note that the Galilean transformation should not be used in this
case because x = 0 should be a boundary surface of the domain. Normalize all
the variables of (13)–(17) using ao as the characteristic length and the undisturbed
velocity uo as the characteristic velocity. Equations (13)–(17) are transformed to

∂ỹ+

∂t+
+
∂ỹ+ū+

∂x+
+
∂ỹ+w̄+

∂z+
= 0, (46)

∂ū+
1

∂t+
+ ū+ ∂ū

+

∂x+
+ w̄+ ∂ū

+

∂z+
= − 1

2We

(
∂φ̄+

∂x+
− ∆φ+

ỹ+

∂ȳ+

∂x+

)
, (47)

∂w̄+

∂t+
+ ū+ ∂w̄

+

∂x+
+ w̄+ ∂w̄

+

∂z+
= − 1

2We

(
∂φ̄+

∂z+
− ∆φ+

ỹ+

∂ȳ+

∂z+

)
, (48)

∂v̄+

∂t+
+ ū+ ∂v̄

+

∂x+
+ w̄+ ∂v̄

+

∂z+
= − 1

2We

∆φ+

ỹ+
, (49)

v̄+ =
∂ȳ+

∂t+
+ ū+ ∂ȳ

+

∂x+
+ w̄+ ∂ȳ

+

∂z+
, (50)

where + denotes the dimensionless quantity and will be dropped in the rest of the
paper, and We is Weber number defined by We = (ρu2

oao)/σ. We also define ε for
convenience as

ε =
1√

2We
. (51)

In order to obtain basic information such as a dispersion relationship and the
appropriate setting of boundary conditions, we perform a linear analysis before a
nonlinear numerical analysis. Let ỹ = 1 + ỹ′, ȳ = ȳ′, ū = 1 + ū′, v̄ = v̄′, and w̄ = w̄′.
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Insert these into (46)–(50) and assume that the primed quantities are small. After
neglecting the higher-order terms, we get

∂ỹ′

∂t
+

∂

∂x
(ỹ′ + ū′) +

∂w̄′

∂z
= 0, (52)

∂ū′

∂t
+
∂ū′

∂x
= ε2 ∂

∂x

(
∂2ỹ′

∂x2
+
∂2ỹ′

∂z2

)
, (53)

∂w̄′

∂t
+
∂w̄′

∂x
= ε2 ∂

∂z

(
∂2ỹ′

∂x2
+
∂2ỹ′

∂z2

)
, (54)

∂v̄′

∂t
+
∂v̄′

∂x
= 4ε2

(
∂2ȳ′

∂x2
+
∂2ȳ′

∂z2

)
, (55)

∂ȳ′

∂t
+
∂ȳ′

∂x
= v̄′. (56)

Equations (52)–(56) show that the sinuous mode ((55) and (56)) related to variations
of v̄′ and ȳ′ is decoupled from the dilational mode ((52)–(54)) in the linear analysis.

4.1. Linear analysis for the dilational mode

Equations (52)–(54) are the governing equations for the linear dilational mode of
liquid sheets with semi-infinite length. Let us assume as a solution of (52)–(54) a wave
travelling in the x-direction and standing in the z-direction:

ỹ′ = yo cos lz exp [i(ωt− kx)], (57a)

ũ′ = uo cos lz exp [i(ωt− kx)], (57b)

w̃′ = wo sin lz exp [i(ωt− kx)], (57c)

where ω is the non-dimensional forcing frequency at the nozzle exit, k is the non-
dimensional wavenumber in the x-direction, and l is the non-dimensional wavenumber
in the z-direction. Insert the above expressions for ỹ′, ũ′, and w̃′ into (52)–(54). Then,
we get the three-dimensional dispersion relationship as

−ω2 + 2ωk − k2 + ε2(k4 + 2k2l2 + l4) = 0 (58a)

or equivalently

ω = k ± ε(k2 + l2). (58b)

The non-dimensional phase velocity of the wave is obtained from (58b) as Vd =
ω/k = 1± ε(k2 + l2)/k and can be also expressed as

Vd ≈ 1 for We� 2ω2 if l 6 O(k). (59)

Since velocities are normalized by the unperturbed sheet velocity uo, the non-
dimensional x-wavenumber k approximates the non-dimensional forcing frequency ω
for the same condition as given in (59). In other words, the dimensional x-wavenumber
k = 2π/λx can be obtained from the relationship Vd = ω/k ≈ uo in dimensional form,
where uo and ω are known.

Since ω is prescribed as a forcing frequency at the nozzle exit, we solve (58a) for
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the x-wavenumber k and get

k1,2 =
1

2ε
(1±√1− 4ε2l2 − 4εω), (60a)

k3,4 =
1

2ε
(−1±

√
1− 4ε2l2 + 4εω). (60b)

Bogy (1978) in his round liquid jet studies and Mehring & Sirignano (1999) for
two-dimensional planar thin liquid sheets indicate that a wavenumber whose group
velocity is negative should be discarded because it travels upstream from the location
of disturbance at the nozzle exit. Also, negative group velocity means that the energy
travels upstream from positive infinity which is not possible in the present problem.
Therefore, we derive the group velocities (Cg(k) = dω/dk) of k1, k2, k3, and k4 and get

Cg(k2, k3) =
√

1− 4ε2l2 ∓ 4εω, (61)

Cg(k1, k4) = −√1− 4ε2l2 ∓ 4εω. (62)

The group velocities of k1 and k4 are negative. Therefore, the k1 and k4 solutions are
discarded. Then, admissible solutions are k2 and k3. Equation (57a) shows that the
wave related to k2 is always stable because k2 never has a positive imaginary part. The
wave related to k3 grows exponentially in the x-direction when l >

√
1 + 4εω/(2ε).

However, in that case, it can be shown that the group velocity, defined as Cg(k) =
dω/dkR , is −∞ which is not acceptable. The subscript R denotes the real part of a
complex number. Therefore, the dilational mode of a three-dimensional semi-infinite
sheet is stable by a linear analysis.

Note that under the same condition as given in (59), the group velocities of k2 and
k3 are also nearly unity:

Cg(k2, k3) ≈ 1 for We� 2ω2 if l 6 O(k). (63)

Since velocities are normalized by the unperturbed sheet velocity uo, (63) indicates
that disturbance waves generated at the nozzle exit travel on the liquid sheet with a
speed similar to uo.

Now, we seek the general solution to (52)–(54) by superposing linearly the two
admissible solutions when the group velocities for k2 and k3 are positive:

ỹ′ =

3∑
j=2

yj cos lz exp [i(ωt− kjx)].

Also, ū′ and w̄′ are assumed in a similar fashion by following the forms of (57b)
and (57c). By applying the boundary conditions for ỹ′, ū′, and w̄′ at the nozzle exit
(x = 0) as ỹ′(x = 0, z, t) = 0; ū′(x = 0, z, t) = U(cos lz) exp (iωt); w̄′(x = 0, z, t) =
W (sin lz) exp (iωt), we get

ỹ′(x, z, t) =
k2

2 + l2

(k3 − k2)(k2ω + l2)
(Uk3+iWl) cos lz {exp [i(ωt− k2x)]− exp [i(ωt− k3x)]}

(64)

where U and W are complex numbers and the normalized amplitudes of ū′ and w̄′,
respectively, and k2 and k3 are given by (60a) and (60b), respectively. The amplitude
of ỹ′ is large when k2 and k3 are close to each other, and it is proportional to U and
W .
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Figure 11. y+ (upper surface) and y− (lower surface) versus x in the z = 0 plane from the linear
analysis for four cross-sectional wavenumbers (a) l = 0, (b) l = π/5, (c) l = 2π/5, (d) l = 2π with
We = 900, ω = π/5, U = W = −0.015i (solid line) and U = W = −0.025i (dashed line), where

i =
√−1.

Equations (60a) and (60b) indicate that k2 and k3 are close to each other when εω
and ε2l2 are small. Then, the two waves related to k2 and k3 combine and form a wave
with a long-wavelength (4π/(k2 − k3)) envelope of a short-wavelength (4π/(k2 + k3))
phase, and (64) shows that the maximum amplitude of the combined wave is large.
For the two-dimensional analysis (l = 0), Mehring & Sirignano (1999) illustrated the
behaviour of ỹ′ with variation of the forcing frequency ω. Thus, we focus on the
behaviour of ỹ′ with variation of the cross-sectional wavenumber l in the present
paper.

Figure 11(a–d) displays the upper surface (y+ = 0.5ỹ) and lower surface (y− = −y+)
versus x for four cross-sectional wavenumbers (a) l = 0, (b) l = π/5, (c) l = 2π/5,
(d) l = 2π with We = 900 (ε = 0.0236), ω = π/5, U = W = −0.015i (solid line)
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Figure 12. y+ (upper surface) and y− (lower surface) versus x in the z = 0 plane at t = 180
from the nonlinear numerical solution (solid line) and the linear analysis (dashed line) for the same
parameters used in figure 11(b).

and U = W = −0.025i (dashed line), where i =
√−1. As l increases from zero,

the maximum amplitude of the wave becomes smaller and the length of envelope
becomes shorter. With U = W = −0.015i, the liquid sheet pinches off at x = 155 for
l = 0, but no zero sheet thickness occurs at this amplitude for l > 0. With higher
amplitude U = W = −0.025i, pinch-off of the sheet occurs for both l = 0 and l = π/5
but at a shorter distance from the nozzle for l = π/5 (x = 55) than for l = 0 (x = 75).
This occurs because even if the maximum amplitude of the wave is larger for l = 0
than for l = π/5, it is sustained for a longer x-distance for l = 0 than l = π/5 due to
the longer envelope for l = 0 than for l = π/5. It will be shown in the next subsection
that nonlinear effects are greater for finite l than for l = 0 due to the interactions
between the velocity components and pressure gradients in the x- and z-directions.

4.2. Nonlinear numerical results for the dilational mode

For liquid sheets with semi-infinite length, the differential equations (46)–(48) have
been solved with the boundary conditions given by equations (65), (66) and (67). The
liquid sheet is assumed to be initially undisturbed:

ỹ(x = 0, z, t) = 1, (65)

ū(x = 0, z, t) = 1 +U cos (lz) sin (ωt), (66)

w̄(x = 0, z, t) = W sin (lz) sin (ωt), (67)

where U and W are the normalized amplitudes of ū and w̄, respectively. The periodic
boundary condition is imposed on ỹ, ū and w̄ at z = 0 and z = λz = 2π/l. The
mesh size employed is ∆x = 0.0625 and ∆z = 0.1, and the time step is ∆t = 0.0125.
The boundary of the computational domain is chosen such that the propagating
disturbance waves do not reach the downstream boundary within the simulation time.
Accuracy of the numerical solutions has been examined by successive refinement of
mesh size and time step.

First of all, we compare nonlinear numerical results with the linear analysis for a
case of small amplitudes U and W . Figure 12 illustrates the upper surface (y+) and
lower surface (y−) versus x in the z = 0 plane at t = 180 from the nonlinear numerical
solution (solid line) and the linear analysis (dashed line) for the same parameters used
in figure 11(b) (U = W = 0.015, We = 900, ω = π/5, and l = π/5). The linear
analysis predicts well the nonlinear solution for this small-amplitude case.

In the following figures, a higher amplitude is used in order to see nonlinear effects.
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Figure 13. y+ (upper surface) and y− (lower surface) versus x in the z = 0 plane for four
cross-sectional wavenumbers (a) l = 0, (b) l = π/5, (c) l = 2π/5, (d) l = 2π at t = 50 except for (c)
at t = 40 with We = 900, ω = π/5, and U = W = 0.04, where the dashed lines represent solutions
from the linear analysis.

Figure 13(a–d) displays the upper and lower sheet surfaces versus x in the z = 0 plane
at t = 50 except for figure 13(c) at t = 40. Four cross-sectional wavenumbers (a)
l = 0, (b) l = π/5, (c) l = 2π/5, and (d) l = 2π with We = 900 (ε = 0.0236), ω = π/5,
and U = W = 0.04 are considered, where the dashed lines represent solutions from
the linear analysis. In figure 13(a) for l = 0, the nonlinear analysis illustrates that
fluid accumulates into fluid lumps interspaced by one wavelength (λx).

Figure 13(b) shows that more fluid accumulates into fluid lumps for l = π/5 than
for l = 0, and the fluid lumps are larger than those for l = 0 due to nonlinear
interactions between the streamwise and cross-sectional directions. To understand the
effect of fluid motion in the cross-sectional direction on the fluid lumps, we examined
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Figure 14. Cross-sectional view of figure 13(b) at four different x locations (a) x = 11,
(b) x = 21, (c) x = 31, and (d) x = 41.

the cross-sectional views (figure 14a–d) and velocity profiles (figures 17a and 17b).
Figure 17(b) displays the velocity component in the cross-sectional direction w̄ versus
z in the plane of x = 41 where the largest fluid lump occurs: w̄ behaves such that
it causes fluid to accumulate in both edges of the sheet in the z-direction as shown
in the cross-sectional view of figure 14(d). This is the reason why the fluid lumps are
larger for l = π/5 than those for l = 0.

As l becomes larger than π/5 (as in figures 13c and 13d), the amplitude of the wave
becomes smaller, and also less fluid accumulates in the streamwise and cross-sectional
directions. The streamwise wavenumber k can be obtained from the linear theory as
will be explained in the following paragraph, and k is computed as π/5. As indicated
in § 3, figure 13(a–d) shows that the strongest nonlinear effects occur when l is close
to k.

Note that the wave front of the disturbance for all cases of figure 13 propagates
downstream with a speed of nearly unity. The reason is that as predicted in the linear
theory (§ 4.1), the group velocity of the disturbance for all these cases is nearly unity
as predicted in the linear theory (equation (63)) since We� 2ω2. The phase velocity
of the disturbance is also nearly unity when We� 2ω2. Therefore, the dimensionless
streamwise wavenumber k = 2π/λx can be obtained from ω/k = 1.

Figure 14(a–d) shows the cross-sectional view of figure 13(b) at four different
x-locations (a) x = 11, (b) x = 21, (c) x = 31, and (d) x = 41. It shows that fluid
accumulates into fluid lumps interspaced by one wavelength (λz) in the cross-sectional
direction also.

Figure 15 provides us with an overall three-dimensional view of the liquid sheet for
the case of figure 13(b). It displays the formation of initially non-spherical ligaments
or large droplets from the liquid sheet. The Weber number based upon the dimension
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Figure 15. Three-dimensional view of the liquid sheet for the case of figure 13(b).
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Figure 16. ỹ (sheet thickness) versus time that is obtained by following a constant phase of
θ1/ω = t1 − x1/Vd = 50 − 38.13 = 11.9 (solid line) and θ2/ω = t2 − x2/Vd = 50 − 40.25 = 9.75
(dashed line) for the case of figure 13(b).

of the agglomerate will still be quite large so that further breakup into smaller droplets
is conceivable.

In figures 13–15, we have illustrated the spatial dilational behaviour of the sheet
surface at t = 50 just before the sheet is pinched off. It would be interesting to examine
the time behaviour of the sheet thickness as well. The sheet thickness as a function of
time in figure 16 is obtained by following a constant phase as follows. The smallest
thickness occurs at x = 38.13 and t = 50 (see figure 13b), and the phase of this point is
θ1/ω = t1− x1/Vd = 50− 38.13 = 11.9. Thus, the sheet thickness following this phase
is ỹ(x(t), z = 0, t), where x(t) = t − 11.9. The largest thickness occurs at x = 40.25
and t = 50, and the phase of this point is θ2/ω = t2 − x2/Vd = 50 − 40.25 = 9.75.
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Figure 17. Velocity profiles: (a) ū versus x in the plane of z = 0; and (b) w̄ versus z in the plane of
x = 41 at t = 50 with the same parameters as in figure 13(b).

Thus, the sheet thickness following this phase is ỹ(x(t), z = 0, t), where x(t) = t− 9.75.
The solid line displays a time history of the point at which the smallest thickness
occurs in the plane of z = 0; the dashed line displays a time history of the point
at which the largest thickness occurs in the plane of z = 0 for the same parameters
as used in figure 13(b). As time passes ỹ (solid line) at a constant phase θ1 becomes
zero algebraically from unity. On the other hand, ỹ (dashed line) at a constant phase
θ2 reaches its maximum about at t = 50, which also indicates that the amplitude of
the wave envelope reaches its maximum. As explained in the previous section, for a
liquid sheet dilationally modulated at the nozzle exit, the two waves are generated at
the nozzle exit and form a wave with a long-wavelength envelope.

The droplet size (Dd) due to the dilational disturbance can be related to the
forcing frequency (ω). For two-dimensional disturbance (l = 0), the volume of a
ligament is πr2

l ∼ λxao ∼ 1/ω. The diameter of drops produced from the ligament
is Dd = 3.78rl according to Rayleigh (1879). Therefore, Dd ∼ ω−m, where m = 1/2.
For a three-dimensional disturbance where l = k, the volume of a large droplet is
πD3

d/6 ∼ λ2
xao ∼ 1/ω2. Therefore, Dd ∼ ω−m, where m = 2/3. Thus, the droplet size is

inversely proportional to the frequency. However, the exponent m could be different
from the value above when the gas density and (or) the sheet attenuation are included
in the analysis.

Figures 17(a) and 17(b) display velocity profiles (a) ū versus x in the plane of z = 0,
and (b) w̄ versus z in the plane of x = 41 at t = 50 with the same parameters as
in figure 13(b). In the plane of z = 0, ū oscillates in the streamwise direction, and
its gradient is large at the x location where the sheet thickness is near zero. This
x location would be the pinch-off position by thinning as more time passes. In the
plane of x = 41, w̄ behaves such that fluid accumulates in both edges of the sheet in
the z-direction as shown in figure 14(d).

Wave propagation at low Weber number is examined in the following paragraphs.
Equation (60a) in § 4.1 for linear analysis shows that k2 has a negative imaginary
part and thus the k2 solution decays exponentially when (1− 4ε2l2 − 4εω) < 0. Then,
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Figure 18. y+ (upper surface) and y− (lower surface) versus x in the z = 0 plane at t = 32T for
We = 1, T = 6.4, and U = W = 0.5 with λz = 11.4 (l = 0.551).
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Figure 19. Cross-sectional views of figure 18 at three different x locations (a) x = 27, (b) x = 85,
and (c) x = 178.

the beat (wave envelope) phenomenon does not occur and the k3 solution produces
sinusoidal waves on the liquid sheet as long as (1− 4ε2l2 + 4εω) > 0. We have found
that nonlinear solutions corresponding to this case lead to a similar phenomenon
as occurs in the case of three-dimensional dilational distortion of infinite thin liquid
sheets (§ 3.2). In the following figure 18, the mesh size ∆x = ∆z = 0.1 and the time
step ∆t = 0.005 are employed.

Figure 18 illustrates the upper and lower sheet surfaces versus x in the z = 0 plane
at t = 32T for We = 1 (ε = 0.707), T = 6.4 (ω = 0.982), and U = W = 0.5 with
λz = 11.4 (l = 0.551). With these parameters, the linear solutions (60a) and (60b)
show that k2 has a negative imaginary part and k3 = 0.551. Note that l is selected as
equal to k3. The dilational disturbance given by equations (66) and (67) with T = 6.4
at the nozzle exit propagates along the liquid sheet with λx = 11.4 (k = 0.551) as
predicted in the linear theory up to x ≈ 40. As it propagates downstream, two higher-
harmonic waves are generated for 40 < x < 140. However, these higher-harmonic
waves disappear and there is a return to the initial wave further downstream after
x > 140.

Figure 19(a–c) displays the cross-sectional views of figure 18 at three different x
locations (a) x = 27, (b) x = 85, and (c) x = 178. The dilational disturbance oscillating
in time and standing in the z-direction at the nozzle exit generates a standing wave in
the cross-sectional (y, z)-plane of the liquid sheet as shown in figure 19(a) up to some
distance (0 < x < 40) from the nozzle exit. As the wave propagates downstream,
the standing wave is nearly flat as shown in figure 19(b), while figure 18 shows
that a higher-harmonic wave component is generated at that location. As the wave
propagates further downstream, the nearly flat wave returns to a standing wave with

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

78
79

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099007879


Distortion and disintegration of thin planar liquid sheets 173

finite amplitude as shown in figure 19(c), while figure 18 shows that the waveform
with higher-harmonic component returns to the initial wave shape. It is noted that
the amplitudes shown in figure 19(a–c) at three different x locations are the maximum
at each location during 31T 6 t 6 32T . So some similarity with the temporal case is
seen when λx and λz are equal. However, since continuous forced periodic oscillations
in the x- and z-directions occur at the nozzle exit, we did not detect the same out-of-
phase oscillations of the kinetic energies and the surface energies associated with the
x- and z-directions as we did in the temporal case.

4.3. Linear analysis for the sinuous mode

Since the sinuous mode is decoupled from the dilational mode, (55) and (56) consist
of a set of governing equations for the linear sinuous mode of liquid sheets with
semi-infinite length. Let us assume as a solution of (55)–(56) a wave travelling in the
x-direction and standing in the z-direction:

ȳ′ = yo cos lz exp [i(ωt− kx)], (68a)

v̄′ = vo cos lz exp [i(ωt− kx)], (68b)

where ω is the non-dimensional forcing frequency at the nozzle exit, k is the non-
dimensional wavenumber in the x-direction, and l is the non-dimensional wavenumber
in the z-direction. Insert the above expressions for ȳ′ and v̄′ into (55) and (56). Then,
we get the three-dimensional dispersion relationship as

−ω2 + 2ωk − (1− 4ε2)k2 + 4ε2l2 = 0 (69a)

or equivalently

ω = k ± 2ε
√
k2 + l2. (69b)

The non-dimensional phase velocity of the wave is obtained from (69b) as Vs =
1± 2ε

√
1 + (l/k)2 and can be also expressed as

Vs ≈ 1 for We� 4 if l 6 O(k). (70)

The three-dimensional sinuous wave is dispersive but becomes non-dispersive in the
two-dimensional limit and also in theWe→∞ limit. Since velocities are normalized by
the unperturbed sheet velocity uo, the non-dimensional x-wavenumber k approximates
the non-dimensional forcing frequency ω for the same condition as given in (70). In
other words, the dimensional x-wavenumber k = 2π/λx can be obtained from the
relationship Vs = ω/k ≈ uo in dimensional form, where uo and ω are known.

Since ω is prescribed as a forcing frequency at the nozzle exit, we solve (69a) for
the x-wavenumber k and get

k5,6 =
1

1− 4ε2
[ω ± 2ε

√
ω2 + (1− 4ε2)l2]. (71)

As mentioned in § 4.1, a wavenumber whose group velocity is negative should be
discarded because it travels upstream from the location of disturbance which is the
nozzle exit. Therefore, we compute the group velocities (Cg(k) = dω/dk) of k5 and k6

when they are real numbers and get

Cg(k5,6) = 1∓ 2ε
k√

k2 + l2
. (72)

The group velocity of k6 is positive and thus k6 is always acceptable when it is
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a real number. On the other hand, the group velocity of k5 is negative when ε >
(1/2)

√
1 + (l/k5)2 (i.e. We < 2/[1 + (l/k5)

2]). Thus, (for large value of ε) k5 is not
acceptable, and only one solution (for k6) exists under that condition.

Equation (71) shows that k5 and k6 become complex numbers when (i) ε > 1/2
and (ii) l2 > ω2/(4ε2 − 1). Under these two conditions, the wave related to k5 grows
exponentially and the wave related to k6 decays exponentially. We compute the group
velocities of k5 and k6 when they are complex numbers and get

Cg(k5,6) =
dω

dkR
= 1− 4ε2.

This equation shows that the group velocities of k5 and k6 are always negative when k5

and k6 are complex numbers because then ε > 1/2. Thus, k5 and k6 are not acceptable
due to negative group velocities when they are complex numbers. When (i) and
(ii) above both apply, no linear sinuous solutions are found. When large-amplitude
modulations at the nozzle exit are applied in this parameter range, the nonlinear
numerical solutions yield practically undisturbed flow of the liquid away from the
nozzle exit. Therefore, there are no exponentially growing or decaying waves in the
sinuous mode. Thus, the sinuous mode of a three-dimensional semi-infinite sheet is
neutrally stable by a linear analysis when both conditions (i) and (ii) do not apply.
Note that under the same condition as given for (70), the group velocities of k5 and
k6 are nearly unity:

Cg(k5,6) ≈ 1 for We� 4 if l 6 O(k). (73)

Since velocities are normalized by the unperturbed sheet velocity uo, (73) indicates
that disturbance waves generated at the nozzle exit travel on the liquid sheet with a
speed similar to uo.

Now, we seek the general solution to (55) and (56) by superposing linearly the two
admissible solutions as

ȳ′ =

6∑
j=5

yj cos lz exp [i(ωt− kjx)].

Also, v̄′ is assumed in a similar fashion by following the form of (68b). By apply-
ing the boundary conditions for ỹ′ and v̄′ at the nozzle exit as ȳ′(x = 0, z, t) =
Y (cos lz) exp (iωt) and v̄′(x = 0, z, t) = V (cos lz) exp (iωt), we get

ȳ′ =
cos lz

(k5 − k6)
{[(ω− k6)Y + iV ] exp [i(ωt− k5x)] + [(k5−ω)Y − iV ] exp [i(ωt− k6x)]}

(74)
where Y and V are the normalized amplitudes of ȳ′ and v̄′, respectively.

Equation (71) indicates that k5 and k6 are close to each other when εω and εl are
small compared to ω. When k5 and k6 are close to each other, the two waves related to
k5 and k6 combine and form a wave with a long-wavelength (4π/(k5−k6)) envelope of
a short-wavelength (4π/(k5 + k6)) phase, and (74) shows that the maximum amplitude
of the combined wave is large. For two-dimensional analysis (l = 0), Mehring &
Sirignano (1999) illustrated the behaviour of ȳ′ for various forcing frequencies ω.
Thus, we focus on the behaviour of ȳ′ for various cross-sectional wavenumbers l in
the present paper.

Figure 20(a–c) displays the upper surface (y+ = ȳ + 0.5) and lower surface (y− =
ȳ − 0.5) versus x for three cross-sectional wavenumbers (a) l = 0, (b) l = π/5, and
(c) l = 2π/5 with We = 2000 (ε = 0.0158), ω = π/5, V = 0.01 and Y = 0. As l
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Figure 20. y+ (upper surface) and y− (lower surface) versus x from the linear analysis for three
cross-sectional wavenumbers (a) l = 0, (b) l = π/5, and (c) l = 2π/5 with We = 2000, ω = π/5,
V = 0.01 and Y = 0, where the dashed line in (b) represents a solution from the nonlinear numerical
solution.

becomes larger, the maximum amplitude of the wave becomes smaller and the length
of envelope becomes shorter since the two wavenumbers (k5 and k6) of the two waves
generated at the nozzle exit move apart from each other (see (71) and (74)). However,
k5 and k6 are close enough to each other that the beat phenomenon is observed in
all three cases (a), (b), and (c). It will be shown in the next subsection that nonlinear
effects are greater for finite l than for l = 0 due to the interactions between the
velocity components and pressure gradients in the x- and z-directions.

4.4. Nonlinear numerical results for the sinuous mode

For liquid sheets with semi-infinite length, the differential equations (46)–(50) have
been solved with the boundary conditions

ỹ(x = 0, z, t) = 1, (75)

ȳ(x = 0, z, t) = Y cos (lz) sin (ωt), (76)

ū(x = 0, z, t) = 1, (77)

v̄(x = 0, z, t) = V cos (lz) sin (ωt), (78)

w̄(x = 0, z, t) = 0, (79)
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Figure 21. y+ (upper surface) and y− (lower surface) versus x at t = 100 for three cross-sectional
wavenumbers (a) l = 0, (b) l = π/5, and (c) l = 2π/5 with We = 2000, ω = π/5, V = 0.06, and
Y = 0, where the dashed lines represent solutions from the linear analysis.

where Y and V are the normalized amplitudes of ȳ and v̄, respectively. The periodic
boundary condition is imposed on ȳ, ū, v̄ and w̄ at z = 0 and λz = 2π/l. The liquid
sheet is assumed to be initially undisturbed. The mesh size employed is ∆x = ∆z =
0.05, and the time step is ∆t = 0.0125. The boundary of the computational domain
is chosen such that the propagating disturbance waves do not reach the downstream
boundary within the simulation time. Accuracy of the numerical solutions has been
examined by successive refinement of mesh size and time step.

First of all, we compare nonlinear numerical results with the linear analysis for a
case of a small amplitude V . The dashed line in figure 20(b) illustrates the nonlinear
numerical solution at t = 160 for the same parameters used for the linear analysis
result (V = 0.01, We = 2000, ω = π/5, and l = π/5). The linear analysis predicts well
the nonlinear solution for this small-amplitude case. In addition, the linear analysis
showed in the previous section that a vertical disturbance (Y or V ) induces only a
wave that is sinuous. Figure 20(b) displays that the same is true for the nonlinear
solution of the small-amplitude case.

In the following figures, a higher amplitude is used in order to see nonlinear effects.
Figure 21(a–c) displays the upper and lower sheet surfaces versus x at t = 100 for
three cross-sectional wavenumbers (a) l = 0, (b) l = π/5, and (c) l = 2π/5 with
We = 2000 (ε = 0.0158), ω = π/5, V = 0.06, and Y = 0, where the dashed lines
represent solutions from the linear analysis. In figure 21(a) for l = 0, the nonlinear
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Figure 22. Cross-sectional view of figure 21(b) at four different x locations (a) x = 28, (b) x = 48,
(c) x = 68, and (d) x = 88.

solution shows that fluid agglomerates in the edge of the sheet interspaced by half a
wavelength (λx/2). This fact indicates that a vertical disturbance induces not only a
wave that is sinuous but also the variation of the sheet thickness (dilational mode).

Figure 21(b) illustrates that more fluid agglomerates in the edge of the sheet for
l = π/5 than for l = 0, and the sheet looks like a sawtooth. To understand the
effect of fluid motion in the cross-sectional direction on the fluid agglomeration, we
examined the cross-sectional views (figure 22) and velocity profiles (figure 25). Figure
25(d) displays the velocity component in the cross-sectional direction w̄ versus z in the
plane of x = 88 where the largest fluid agglomeration occurs. There is no disturbance
velocity in the cross-sectional direction at the nozzle exit, i.e. w̄ is equal to zero at
the nozzle exit, but downstream at later time w̄ is generated and behaves such that
it causes fluid to accumulate near the middle and at both edges of the sheet in the
z-direction as shown in the cross-sectional view of figure 22(d). This is the reason
why the fluid agglomerations are larger for l = π/5 than those for l = 0.

When l is larger than π/5 (figure 21c), the amplitude of the wave is smaller, and
also less fluid agglomerates in the streamwise and cross-sectional directions. The
streamwise wavenumber k can be obtained from the linear theory as will be explained
in the following paragraph, and k is computed as π/5. As indicated in § 3, figure
21(a–c) shows that the strongest nonlinear effects occur when l is close to k.

It should be noted that the wave front of the disturbance for all cases of figure 21
propagates downstream with a speed of nearly unity. The reason is that as predicted
in the linear theory (§ 4.3), the group velocity of the disturbance for all these cases is
nearly unity (equation (73)) since We � 4. The phase velocity of the disturbance is
also nearly unity when We� 4. Therefore, the dimensionless streamwise wavenumber
k = 2π/λx can be obtained from ω/k = 1.
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Figure 23. Three-dimensional view of the liquid sheet for the case of figure 21(b).

Figure 22(a–d) shows the cross-sectional view of figure 21(b) at four different x
locations (a) x = 28, (b) x = 48, (c) x = 68, and (d) x = 88. They show that fluids
agglomerate interspaced by half a wavelength (λx/2) in the cross-sectional direction
also. Figure 23 provides us with an overall three-dimensional view of the liquid
sheet for the case of figure 21(b). This three-dimensional view displays that the fluid
agglomeration looks like a half-sphere. One can speculate that each agglomeration will
eventually be distorted into a free-standing droplet. These droplets would be separated
at half-wavelength intervals in both the x- and z-directions. However, the Weber
number based upon the agglomerate dimension is still large so that further breakup
into smaller droplets is feasible. Thin sheets connecting the half-spheres in figure 23
can be regarded as membranes which were observed experimentally by Mansour &
Chigier (1990). The thin sheets are much thinner than the initial sheet, and they would
contribute to the formation of smaller droplets due to viscous shear stresses.

The classical description of atomization is based on two-dimensional sinuous dis-
turbances (l = 0); first, ligaments are produced separated by half-wavelengths and
then these ligaments break into large droplets which would experience the second
atomization later. The present paper has illustrated that the large droplets can be
formed directly from the sheet when the magnitude of the disturbance at the nozzle
changes sinusoidally in the cross-sectional direction. These large droplets will be pro-
duced earlier than they are with l = 0. Even though an experimental investigation is
performed with an intention of making a two-dimensional disturbance at the nozzle
exit, a three-dimensional disturbance can be introduced due to noise from the jig hold-
ing the nozzle, non-uniformity of the two-dimensional nozzle exit, or other causes.
Thus, the three-dimensional pattern of figure 23 could be observed experimentally
rather than two-dimensional ligaments, as shown in figures 10 and 13 of the paper
by Mansour & Chigier (1990).
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Figure 24. ỹ (sheet thickness) versus time that is obtained by following a constant phase of
θ1/ω = t1 − x1/Vs = 104 − 94.6 = 9.4 (solid line) and θ2/ω = t2 − x2/Vs = 104 − 96.3 = 7.7
(long-dashed line); ȳ (sheet displacement) versus time that is obtained by following a constant
phase of θ3/ω = t3 − x3/Vs = 104− 71.5 = 32.5 (short-dashed line).

In figures 21–23, we have illustrated the spatial sinuous behaviour of the sheet
surface at t = 100 just before the sheet is pinched off. We can examine the time
behaviour of the sheet thickness ỹ and displacement ȳ as well. The sheet thickness
and displacement as a function of time in figure 24 are obtained by following a
constant phase as follows. The smallest thickness occurs at x = 94.6 and t = 104 (see
figure 21b), and the phase of this point is θ1/ω = t1 − x1/Vs = 104 − 94.6 = 9.4.
Thus, the sheet thickness following this phase is ỹ(x(t), z = 0, t), where x(t) = t− 9.4.
The largest thickness occurs at x = 96.3 and t = 104, and the phase of this point is
θ2/ω = t2−x2/Vs = 104−96.3 = 7.7. Thus, the sheet thickness following this phase is
ỹ(x(t), z = 0, t), where x(t) = t− 7.7. The largest displacement occurs at x = 71.5 and
t = 104, and the phase of this point is θ3/ω = t3 − x3/Vs = 104− 71.5 = 32.5. Thus,
the sheet displacement following this phase is ȳ(x(t), z = 0, t), where x(t) = t − 32.5.
The solid line displays a time history of the point at which the smallest thickness
occurs in the plane of z = 0; the long-dashed line displays a time history of the point
at which the largest thickness occurs in the plane of z = 0; the short-dashed line
displays a time history of the point at which the largest displacement of the wave
occurs in the plane of z = 0 for the same parameters as used in figure 21(b). As time
passes ỹ (solid line) of a constant phase θ1 becomes zero algebraically from unity;
ỹ (long-dashed line) of a constant phase θ2 continues to increase until the sheet is
pinched off. On the other hand, ȳ (short-dashed line) of a constant phase θ3 reaches
its maximum about at t = 104, which also indicates that the amplitude of the wave
envelope reaches its maximum. As explained in the previous section, for a liquid sheet
sinusoidally modulated at the nozzle exit, the two waves are generated at the nozzle
exit and form a wave with a long-wavelength envelope.

The droplet size (Ds) due to the sinuous disturbance can be related to the forcing
frequency (ω). For two-dimensional disturbance (l = 0), the volume of a ligament
is πr2

l ∼ λxao/2 ∼ 1/ω. The diameter of drops produced from the ligament is
Ds = 3.78rl according to Rayleigh (1879). Therefore, Ds ∼ ω−m, where m = 1/2.
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Figure 25. Velocity profiles (a) v̄ versus x in the plane of z = 0; (b) ū versus x in the plane of
z = 0; (c) v̄ versus z in the plane of x = 88; and (d) w̄ versus z in the plane of x = 88 at t = 100
(10T ) with the same parameters as in figure 21(b).

For a three-dimensional disturbance where l = k, the volume of a large droplet is
πD3

s /6 ∼ λ2
xao/4 ∼ 1/ω2. Therefore, Ds ∼ ω−m, where m = 2/3. Thus, the droplet

size is inversely proportional to the frequency. However, the exponent m could be
different from the value above when the gas density and (or) the sheet attenuation
are included in the analysis.

Figure 25(a–d) displays velocity profiles (a) v̄ versus x in the plane of z = 0; (b)
ū versus x in the plane of z = 0; (c) v̄ versus z in the plane of x = 88; and (d)
w̄ versus z in the plane of x = 88 at t = 100 (10T ) with the same parameters as
in figure 21(b). In the plane of z = 0 at t = 10T , v̄ oscillates in the streamwise
direction with its magnitude diminishing in the downstream direction; ū in the plane
of z = 0 is initially unity. As time elapses, ū oscillates in the streamwise direction
with its magnitude increasing in the downstream direction, and its maximum gradient
becomes larger near the x location where the sheet thickness is zero. v̄ in the plane
of x = 88 at t = 10T is nearly flat along the cross-sectional direction; w̄ in the plane
of x = 88 at t = 10T behaves such that fluid agglomerates near the middle and at
both edges of the sheet in the cross-sectional direction as shown by figure 22(d).

Wave propagation at low Weber number is examined in the following paragraphs.
Figures 26(a) and 26(b) illustrate the upper and lower sheet surfaces versus x in
the plane of z = 0 at t = 120 (6T ) for the cross-sectional wavenumbers l = 0
and l = 0.393, respectively, with We = 10 (ε = 0.2236), ω = π/10, V = 0.2, and
Y = 0, where the dashed lines represent solutions from the linear analysis. For low
Weber number cases such as figures 26(a) and 26(b), the linear analysis in § 4.3 shows
that two waves are generated at the nozzle exit if We > 2/[1 + (l/k5)

2], and the
group velocities of the two waves are very different from each other. The group
velocities for k5 and k6 in figure 26(a) are 0.553 and 1.447, respectively, from (72).
(The wavenumbers k5 and k6 can be obtained from (71) and are 0.568 and 0.217,
respectively.) Thus, the second wave propagates much faster than the first wave.
The distance over which the second wave travels is L(k6) = Cg(k6)t = 174 and can
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Figure 26. y+ (upper surface) and y− (lower surface) versus x in the plane of z = 0 at t = 120 (6T )
for the cross-sectional wavenumbers (a) l = 0 and (b) l = 0.393 with We = 10, ω = π/10, V = 0.2,
and Y = 0, where the dashed lines represent solutions from the linear analysis.

be identified in figure 26(a). On the other hand, the distance over which the first
wave travels is L(k5) = Cg(k5)t = 66. As a consequence, over the first part of the
sheet 0 6 x 6 66, the first and second waves are combined, but over the other part
66 < x 6 174, only the second wave appears as shown in figure 26(a). Note that the
solution from the linear analysis is a steady solution so that it shows the two waves
combined over the whole length of the sheet. A similar phenomenon occurs in figure
26(b), where the group velocities for k5 and k6 are 0.86 and 1.14, respectively. (The
wavenumbers k5 and k6 are 0.656 and 0.129, respectively.) The distance over which
the second wave travels is L(k6) = Cg(k6)t = 137. On the other hand, the distance
over which the first wave travels is L(k5) = Cg(k5)t = 103. As a consequence, over
the first part of the sheet 0 6 x 6 103, the first and second waves are combined,
but over the other part 103 < x 6 137, only the second wave appears as shown in
figure 26(b).

5. Conclusions
Three-dimensional effects on thin inviscid infinite planar liquid sheets or modulated

semi-infinite planar liquid sheets in a gas of negligible density have been examined
by means of a similar approach to that of Mehring & Sirignano (1999) who reduced
the two-dimensional unsteady problem to a one-dimensional unsteady problem. Four
different cases are considered: (i) dilational mode and (ii) sinuous mode on infinite
sheets, and (iii) dilational mode and (iv) sinuous mode on modulated semi-infinite
sheets. In all four cases, the strongest nonlinear effects occur when the cross-sectional
wavenumber (l) is close to the streamwise wavenumber (k) for finite-amplitude dis-
turbances.

For infinitely long sheets, the governing equations are transformed by the Galilean
transformation in the streamwise direction and normalized using the undisturbed sheet
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thickness ao as the characteristic length and
√
σ/(2ρao) as the characteristic velocity.

Weber number does not appear in the final dimensionless governing equations as a
dimensionless parameter. Conversely, for modulated semi-infinite sheets, the Galilean
transformation should not be used because the nozzle exit (x = 0) should be a
boundary surface of the domain. The governing equations are normalized using ao
as the characteristic length and the undisturbed velocity uo as the characteristic
velocity. Weber number appears in the final dimensionless governing equations as a
dimensionless parameter.

First, dilational (symmetric) wave propagations are considered. When l is close to
k for infinite sheets, higher-harmonic waves are generated in the streamwise direction,
and the standing wave with finite amplitude in the cross-sectional plane becomes flat.
As time passes, the higher-harmonic waves return to the initial wave shape, while the
flat wave returns to a standing wave with finite amplitude. This process is repeated
in a cycle. This periodic exchange of kinetic energy (or surface energy) between the
streamwise and cross-sectional oscillations does not occur when the two wavenumbers
are disparate. A similar phenomenon is found when l is close to k for semi-infinite
sheets with low Weber number.

When l is close to k for semi-infinite sheets with high Weber number, fluid accumu-
lates into fluid lumps interspaced by one wavelength in the cross-sectional direction
as well as in the streamwise direction. The fluid lumps are larger than those for l = 0
due to nonlinear interactions between the streamwise and cross-sectional directions.
The velocity disturbance w̄ in the cross-sectional direction oscillates sinusoidally at
the nozzle exit. However, due to the nonlinearity, w̄ behaves such that it causes fluid
to accumulate in the fluid lumps in the cross-sectional direction in the downstream
flow at later time. This accumulation leads to the formation of initially non-spherical
ligaments or large droplets from the liquid sheet.

Secondly, sinuous (anti-symmetric) wave propagations are considered. Nonlinear
numerical simulations show that at later time not only sinuous waves propagate along
the sheet, but also dilational waves are generated on the sheet. When l is close to
k for semi-infinite sheets with high Weber number, fluid agglomerates in the edge
of the sheet interspaced by half a wavelength not only in the streamwise direction
but also in the cross-sectional direction. The fluid agglomeration is larger than for
l = 0. There is no velocity disturbance w̄ in the cross-sectional direction at the nozzle
exit. However, w̄ is generated downstream at later time and behaves such that it
causes fluid to agglomerate in fluid lumps in the cross-sectional direction. The fluid
agglomeration resembles a half-sphere, which indicates the formation of ligaments or
large droplets from the liquid sheet. A similar phenomenon is found in the case of
three-dimensional sinuous distortion of infinite thin liquid sheets.

When Weber number is low for semi-infinite sheets, two waves are generated at
the nozzle exit if We > 2/[1 + (l/k5)

2], and the group velocities (and wavenumbers)
of the two waves are very different from each other. The second wave propagates
much faster than the first wave. As a consequence, over the upstream part of the
sheet, the first and second waves are combined, but only the second wave appears
downstream.

For modulated semi-infinite sheets with high Weber number, the droplet size (Ds)
can be related to the forcing frequency (ω). For a two-dimensional disturbance
(l = 0), Ds ∼ ω−m, where m = 1/2. For a three-dimensional disturbance where l = k,
Ds ∼ ω−m, where m = 2/3. Thus, the droplet size is inversely proportional to the
frequency. However, the exponent m could be different from the value above when
the gas density and (or) the sheet attenuation are included in the analysis.
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