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SUMMARY
To fully utilize the information from the sensors, this paper
proposes a new sensor-fusion technique where the data sets
for the previous moments are properly transformed and
fused into the current data sets to enable an accurate
measurement. Exploration of an unknown environment is an
important task for the new generation of mobile service
robots. The mobile robots may navigate by means of a
number of monitoring systems such as the sonar-sensing
system or the visual-sensing system. Note that in the
conventional fusion schemes, the measurement is dependent
on the current data sets only. Therefore, more of sensors are
required to measure a certain physical parameter or to
improve the accuracy of the measurement. However, in this
approach, instead of adding more sensors to the system, the
temporal sequence of the data sets are stored and utilized for
the accurate measurement. The theoretical basis is illus-
trated by examples and the effectiveness is proved through
the simulations and experiments. The newly proposed,
STSF (Space and Time Sensor Fusion) scheme is applied to
the navigation of a mobile robot in an unstructured
environment, as well as in structured environment, and the
experimental results show the performance of the system.
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1. INTRODUCTION
Much research has been done on the spatial fusion
technique, i.e. multiple sensor data are utilized either for the
purpose of providing complementary or redundant data for
measuring physical parameters; all of the current data from
the sensors are integrated and fused to obtain a correct set of
measurement.1 In recent years interest has been growing in
the synergistic use of multiple sensors to increase the
capabilities of intelligent machines and systems. For these
systems to use multiple sensors effectively, a strategy to
integrate the information provided by these sensors into the
operations of the system is necessary. While in many multi-
sensor systems the information from each sensor serves as a
separate input to the system, the actual combination or
fusion of information prior to its use in the system has been
a particularly active area of research. Typical applications
that can benefit from the use of multiple sensors are

industrial tasks like an assembly, a military command and
control for battlefield management, mobile robot naviga-
tion, multi-target tracking, and aircraft navigation. In all of
these applications, the system needs to intelligently interact
with the human and operates in an unstructured environ-
ment with the human operator’s assistant.

Fusing temporal information recursively is crucial to
many applications, such as navigation, robotics, target
identification, and multi-target tracking. There are algo-
rithms that can be used to integrate temporal information.2

Among them, the distributed Kalman filtering2 and the
Bayesian approach3 are adopted for many applications.
However, these algorithms require substantial prior infor-
mation, such as initial values and initial covariance matrices
for the distributed Kalman filtering and prior probabilities
for the Bayesian approach. In many cases, the prior
information is either not available or not known precisely.
Theoretically, some estimated values could be used as the
prior information if the models are correct and consistent
measurements are provided. However, it takes some time for
the systems to converge to the correct values. On the
contrary, the Dempster-Shafer technique has the strong
capability of handling the information uncertainty, at the
cost of more expensive computation.4,5 Note that the
technique has been employed mostly for spatial information
fusion6,7 and for temporal information fusion when the data
structure is disjoint.8

In this paper, as a general approach of sensor fusion, a
STSF (Space and Time Sensor Fusion) scheme is proposed
for the joint and disjoint data structure and applied to the
landmark identification and a mobile robot’s navigation
problem. This newly proposed STSF is inevitable for the
complementary case where unless there is the sensor fusion,
the measurement cannot be completed. Therefore the
effectiveness is very clear and the utilization method will be
determined by the sensory data structure. However, for the
redundant case where some sensor data are not essential for
the measurement, it is required to define that how to fuse the
previous data sets to the current data set. The minimum
square solution is generally adopted for the redundant case
fusion without considering the error variance in the
measurement.9,10

The paper is organized as follows: Section II first presents
basic concepts of the conventional fusion, and the concept
of STSF is derived. Section III represents a typical example
of STSF. And the application of STSF to the mobile robot
navigation is illustrated, and the experimental results are
shown in Section IV. Finally, Section V summarizes the
current research and proposes further topics.
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2. CONCEPT OF STSF

2.1 A general pattern of sensor fusion
Multi-sensor fusion refers to any stage in the integration
process where there is an actual combination (or fusion) of
different sources of sensory information into one repre-
sentational format. Figure 1 shows a general pattern of
multi-sensor integration and fusion in a system. While the
fusion of information tasks place at the nodes in the figure,
the entire network structure together with the integration
functions, shown as part of the system, are parts of the
multi-sensor integration process. In the figure, n sensors are
integrated to provide the measurement to the system. The
output X1 and X2 from the first two sensors are fused at the
lower left-hand node into a new representation X1,2. The
output X3 from the third sensor could then be fused with X1,2

at the next node, resulting in the representation X1,2,3 that
might then be fused at a higher node in the structure. In a
similar manner, the output from all n sensors could be
integrated into the overall network structure. The dashed
lines from the system to each node represent any of the
possible signals sent from the integration functions within
the system.

One of the simplest and most intuitive sensor fusion is to
take a weighted average of the measurements provided by a
group of sensors and to use this as the fused value. While
this method allows a real-time processing of dynamic low-
level data in the most cases, a higher-level sensor fusion is
required to achieve a reliable and accurate measurement in
the unstructured environment. For the case, the Kalman
filter is preferred because it provides a method that does not
require heavy computation compared to the weighted
average and results in the estimated fused measurements
that are optimal in a statistical sense. A weighted average
has been used for the multi-sensor fusion in the mobile

robot navigation by HILARE,11 where the sensory informa-
tion is preprocessed by the threshold operation to eliminate
spurious measurements.

Let us define the kth moment data provided by ith sensor
as, zi(k), which is transformed into a measurement, xi(k).
Then the conventional sensor fusion, that is, a spatial fusion
technique provides the measurement as

x̂(k)= �n

i=1

Wixi(k) (1)

where �n
i=1 Wi =1, xi(k)=Hizi(k) � Rm, n is the number of

sensors, Hi represents a transformation from the sensory
data to the m dimensional measurement vector, and
Wi � Rm�m represents the weight for ith sensor.

Note that in obtaining zi(k), the low-level fusion might be
applied with multiple sets of data with known statistics.12

The transformation Hi is purely dependent on the sensor
type and the decision of Wi can be done through the sensor
fusion process. Later these data are provided to the linear
model of the control/measurement system as current state
vector, x(k).

2.2 STSF (Space and Time Sensor Fusion)
The STSF (Space and Time Sensor Fusion) scheme
combines the sensory information acquired at different
instants from different sensors to determine the measure-
ment. It may expend its applicability to the systems where
the states at each instant can be predicted, as shown in
Figure 2.

Estimation of parameter block may provide the measure-
ment vector at each sampling moment. The blocks of verify
the significance and adjust weight are pre-processing stages
for the sensor fusion. After these steps, the previous data set
will be fused with the current data set, which provides a
reliable and accurate data set as the result of multi-sensor
temporal fusion. In the figure, the significance implies that
how much the previous data set is related to the current data.

Fig. 1. General pattern of the multi-sensor integration and fusion.

Fig. 2. Data  processing for STSF.
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An arbitrary value of significance may cause the problem to
be complex. Therefore, some may consider whether it
corresponds to the same data or not, that is, 1 or 0. When the
significance is 0, the weight can be adjusted simply to 0.
However, when the significance equals 1, the adjustment of
weight should be properly performed to provide reliable and
accurate data. In the next sub-section, we will introduce a
simple methodology for the weight adjustment and sig-
nificance decision. The STSF can be represented
mathematically as follows:

x̂(k)= �n

i=1

Wi��k

j=1

PjTSi(j)� (2)

where �k
j=1 Pj =1.

Note that when each of sensor information can provide
the measurement vector, that is, the redundant case TSi(j)
can be expanded as

TSi(j)=Tij +Hizi(j) (3)

where Tij represents the homogeneous transformation from
the location of the jth measurement to the ith measurement.

However, when the multi-sensors are utilized in the
complementary mode, the transformation relationship can-
not be defined uniquely; instead, it will be defined
depending on the data constructing algorithm from the
measurements. For an example, a single image frame
captured by a camera on a mobile robot cannot provide the
distance to an object until the corresponding object image is
provided from a different location.

2.3 Use of Spectral Estimation Techniques
(Auto-correlation)
Each previous data set is transformed to the kth (current)
sampling location, and represented by the measurement
vector, TSi(j). Now how can we fuse the k data sets into a
reliable and accurate data set? In the Equation (2), Wi can be
determined by the geometrical relationship among sensors,
in other words, by the spatial sensor fusion considering the
noise. While the image frame is tracking a feature, the
sensor generates a stream of measurements. In analyzing the
measurements from the sensor, the grey values g and image
f over time can be treated as random processes. If there is no
relative motion between the feature being tracked and the
sensor, then the random processes can be viewed as
stationary. When there is a relative motion between the
feature and the sensor, the processes then cease to be
stationary. As an illustration of low-level sensor fusion, we
shall only consider the stationary case. In other words, we
assume that there is no motion between the sensor and the
feature being tracked in the image. The interest in the
proceeding analysis lies only in determining whether the
process noise is white or not.

Determination of the significance Pj is the final step for
the temporal sensor fusion. Note that this expands the
dimension of sensor fusion from one to two. As one of solid
candidate, we propose here to use the auto-correlation as an
index for the significance adjustment and have the form,

�j = ��

k=��

TSi(k)TSi(j+k). (4)

Depending on the correlation, Pj will be determined as:

Pj =
�j

�k
j=1 �j

. (5)

2.4 Related Fusion Methods
Most of the similar approaches among the general multi-
sensor fusion methods to the STSF are surveyed in this
subsection. Most methods of multi-sensor fusion make
explicit assumptions concerning the nature of the sensory
information. The most common assumptions include the use
of a measurement model for each sensor that includes a
statistically independent additive Gaussian error or noise
term (i.e. location data) and an assumption of statistical
independence among the error terms for each sensor. The
difference in the fusion methods exits in their techniques of
calibration and threshold to transform the raw sensory data
into a particular form. Also the above assumptions are
utilized reasonably in achieving the mathematically tracta-
ble fusion methods. The conceptually inherent issues in any
fusion method that is based on these common assumptions
have been reviewed completely by Richardson and Marsh.13

Their paper provides a proof that the inclusion of additional
redundant sensory information almost always improves the
performance of any fusion method based on the optimal
estimation.

Among the works similar to the STSF approach, there is
a research result by M. Rombaut,14 which is associated
within the framework of the European project, Prometheus.
As a typical sensor for navigation, an active camera is
placed on an automobile. There exist blind zones for the
camera such as the leftmost, rightmost sides, and the
behind. However, the blind zones do not cause any trouble
since the role of automobile is following the road mostly.
The STSF concept is proved to be very suitable for
predicting the curved road by matching the road images
with the road image database. A. Nifle15 also has utilized the
STSF concept in classifying the missiles by analyzing their
dynamic behaviors. However, the recognition is based on
the observation of known events.

3. A TYPICAL STSF
In this STSF approach, the data obtained by the sensors are
utilized until they do not have any efficiency for the
measurement decision. The data set can be either redundant
to improve the accuracy or complementary for the complete
measurement. For the latter case, this STSF scheme is
essential for the measurement. For example, a single camera
system is not capable of measuring the distance to an object.
However, if we utilize this STSF scheme, the distance
measurement is possible by only a single camera. Note that
human keeps the image only about 1/15 seconds on his
retina and he cannot measure the distance by the single eye.
However, the robot is capable of keeping the image for a
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couple of hours. This enables a single camera to take over
the function of stereo camera system that measures the
distance using the images captured by the two cameras
separated by d Cm.

3.1 Landmark Design for Template Matching
The proposed landmark is made of square patterns with
symmetric and repetitive arrangement of black and white
patches, as shown in Figure 3. Such arrangement of black
and white patterns in the landmark is robust against
geometric distortions in indoor environments. Even if the
landmark rotates and changes its scale in the image frame,
the grey histogram and its projection characteristics do not
change very much.

To recognize the landmarks, this paper describes a system
for landmark tracking by a template matching approach. An
adaptive template matching approach based on a Bayesian
decision technique3 is used for self-localization.

As a measure, how well an arbitrary pattern of grey-
values, a template g(m,n), matches to a given image f (i, j ),
the distance function, d, is defined as,

d=�
G

( f�g)2 or max
G

� f�g �. (6)

The minima of these measures imply the best match. In the
discrete case, this takes the form as,

M(i, j)= �
m
�

n

f(i+m, j+n)·g(m, n), (7)

where the maximum of M(i, j ) corresponds to the best
match. This “cross-correlation” yields a result only if the
integral is computed over the whole area G.

To detect the landmark in the cluttered scene robustly, the
landmark should show invariant characteristics under some
distortions. Invariance under geometric distortions is related
to the shape and gray pattern of the landmark, and
invariance under the photometric distortions is related to the
size and shape in which processing is preformed. Shape and
gray pattern of the landmark is also important for robust
detection and tracking.

3.2 Fuse of Two Image Frames
Let us consider a short scenario for the mobile robot
localization. If a camera captures and stores an image for an
object, it moves d Cm to the right, and captures another
image for the same object. That is, two image frames are

captured for an object by a single camera. This is the same
as capturing two image frames by two cameras, d Cm apart
at the same time.

However in this scenario, the control of camera motion
needs to be accurate enough. If there exist uncertainties in
the position control, this will directly affect the measure-
ment error. Even though this error can be minimized
through the multi-sensor fusion process, this is a drawback
for this method. All the other drawbacks, such as consuming
a lot of memory space and requiring a lot of computation in
real time, can be released by the rapid improvement of
computer technologies.

As a typical geometrical model for a camera, a pinhole
model is widely used in vision application fields as shown in
Figure 4. At the kth sampling moment, a scene point
O(X,Y,Z) is captured by a camera on the mobile robot. The
vectors from the object point to the kth and (k�1)th camera
lens center are represented by Vk and Vk�1 respectively. The
motion of mobile robot from (k�1)th moment to kth
moment is represented by V. Now we can write the vector
relationship as:

Vk�1 =Vk �V. (8)

This can be represented as a matrix form,

�

xk�1

yk�1

� f
=�

r11

r21

r31

r12

r22

r32

r13

r23

r33

xk

yk

� f
�

v1

v2

v3

(9)

where (xk,yk,� f ) and (xk�1,yk�1,� f ) represent the projec-
tion of the object point onto the camera image planes, V(v1,
v2, v3) represents the translational motion of the mobile
robot, rij is an element of the rotation matrix, R represents
the relative rotation between the two camera frames, and �
and � are scaling constants.

Now consider the reference base plane passing through
the scene point P with a normal vector N(n1, n2, n3), then the
range value, D, can be represented as:

D=Vk · N. (10)

This can be represented again as:

D=�(n1xk +n2 yk �n3 f ). (11)

Fig. 3. Landmark pattern and size used by IRL-2001.

Fig. 4. Transformation of camera coordinates.
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Now, Equation (8) is reformulated as:

�

xk�1

yk�1

� f
=�

r11

r21

r31

r12

r22

r32

r13

r23

r33

xk

yk

� f

�
�

D

v1

v2

v3

[n1 n2 n3]

xk

yk

� f

(12)

(�/�)

xk�1

yk�1

� f
=

a11

a21

a31

a12

a22

a32

a13

a23

a33

xk

yk

� f

(13)

where aij =rij � (vi · nj /D).
In Equation (11), expanding the matrices and dividing

rows one and two by row three gives:

xk�1 =� f
a11xk +a12yk �a13f
a31xk +a32yk �a33f

(14)

yk�1 =� f
a21xk +a22yk �a23f
a31xk +a32yk �a33f

. (15)

Equations (12) and (13) can be written more compactly as:

D(R3xk�1 +R1f)=C3xk�1 +C1f (16)

D(R3yk�1 +R2f)=C3yk�1 +C2f (17)

where Ri =ri1xk +ri2yk �ri3f and Ci =vi(n1xk +n2yk �n3f).
In matrix form, these equations can be expressed as:

AD=B (18)

where AT =[a b], BT =[c d], a=R3x k�1 +R1 f, b=R3yk�1 +R2 f,
c=C3x k�1 +C1 f, and d=C3yk�1 +C2 f.

The pseudo-inverse matrix enables computation of the
range value, D that is associated with image point (xk, yk),
and is written as:

D=(ATA)�1ATB. (19)

The calculation result is:

D=
(ac+bd)

a2 +b2 . (20)

So far, we have shown that using the consecutive two image
frames, the distance information of the scene point can be
obtained as using the stereo images at a certain moment.
This is an example of the complementary sensor fusion.

Since the camera captures multiple image frames for the
same object consecutively, the extra image frames from the
third can be utilized for the better localization of the mobile
robot by the STSF.

3.3 STSF Filter
We represent a single observation of an object as a two
dimensional Gaussian distribution in Figure 5. The center,
or mean of the distribution is the estimated location of the
object and the standard deviations along the maximum and
minimum axes of the distribution correspond to the

estimates of the uncertainty (or noise) in the observation
along the corresponding axis. The value of the distribution
at any point corresponds to the probability that the object is
actually in that location.

For the given observations, we need to determine the
mean, standard deviations, and angle of the merged
distribution to estimate object position and characterize the
quality of the estimate. We compute the mean, standard
deviations, and angle of measurement distributions from
sensor readings (mean and angle) and models of sensor
error (deviations). Thus, we require a method of determin-
ing combined parameters from those of individual
distributions.

The matrix form of Kalman filtering adopted by Smith
and Cheeseman makes this computation relatively simple.16

Because the mean standard deviations and orientation of the
major axis are independent of scaling, they can be extracted
from the merged covariance matrices without considering
scaling factors.

The canonical form of the two-dimensional Gaussian
distribution depends on standard deviation, �, a covariance
matrix, C, and the mean.16 The covariance matrix of an
observation, C, is initially determined from the major and
minor axis standard deviations as:

C
� 2

max

0
0

� 2
min

. (21)

Since the observation may be oriented arbitrarily with
respect to the global coordinate frame, it must first be
rotated to align with this frame:

C=R(�	)TCR(�	) (22)

where 	 is the angle of the distribution’s principal axis with
respect to the global x-axis. This rotation accomplishes the
transformation from observation parameters to the canoni-
cal form. Once the observations are in the canonical form,
we continue to merge the observations into one.

The covariance matrices of two distributions, C1 and C2,
can be combined into a single covariance matrix, C, as:

C=C1 �C1[C1 +C2]
�1C1. (23)

Fig. 5. Gaussian distribution parameter definition: mean (X, Y),
standard deviations along maximum and minimum axes �max and
�min, and distance to the object, V.
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Now the mean of the resulting merged distribution, X, is
computed from the individual distribution means and
covariance matrices as follows:

X̂-X̂1 +C1[C1 +C2]
�1(X̂2 � X̂1). (24)

4. EXPERIMENTS

4.1 Experimental Environment
The mobile robot used in the experiment is IRL-2001
developed in the IRL (Intelligent Robot Laboratory), PNU.
Initially, it was designed as an intelligent service robot. This
robot is shown in Figure 6 along with some of its sensory
components. Its main controller is made of Pentium IV
Processor that has the system clock 1.0 GHz. The sensors,
16-ultrasonic and a robust odometer system, are installed on
the mobile robot. Ultrasonic sensors and infrared sensors in
eight sides (25°) detect the obstacles, and the main
controller processes this information. For the visual infor-
mation, a two d.o.f CCD camera is mounted on the top of
the mobile robot in order to sense obstacles or landmarks
near the mobile robot. And DC servomotors are used for
steering and driving of the IRL-2001 robot.

Experiments were performed in the corridor shown in
Figure 7. The conventional sensor fusion and STSF have
been tested and compared by experiments to show the
usefulness of STSF. The walls in the artificial environment
are drawn based on the real map. There are eight landmarks

on the wall along the navigation path so that at any time the
CCD camera on the mobile robot can capture the image of
one landmark during the navigation.

4.2 Preliminary STSF Experiments
In the middle of the corridor path, there is a landmark on the
wall, which is captured by the CCD camera on the robot.

To begin with, the 2-D landmark used by IRL-2001
experiments is shown in Figure 3. The primary patterns of
landmark are 5cm white square blocks on the black
background. The major reasons for choosing the square
blocks are provides as follows:17,18

• The projection of a square block in the image plane can
always be approximated by an ellipsoid, which makes it
easy to recognize the landmark using the elliptical Hough
transformation technique.

• A square pattern is more robust to noise and occlusoon
than circular/polygonal patterns during template matching
process, even though all these patterns can be detected by
using Hough transformation technique.

Figure 8 shows six different images for the same landmark
captured by the moving service robot. Using the consecutive
two image frames, the position/orientation of the camera is
calculated based on the Equation (20). Each camera
position/orientation is represented by a pyramid in Figure 9
where the position is indicated by the vertex and the
orientation is shown by the direction of the pyramid.

In obtaining the relative distance of the landmark from
the mobile robot based on the Equation (20), the predefined
values of the landmark are given as follows: the origin of
coordinates is equal to the origin of mobile robot, a Y-axis
is fit to face the mobile robot and an X-axis is perpendicular
to the Y-axis.

This experiment investigates and compares the perform-
ances of the conventional sensor fusion and STSF with
respect to the number of image planes (more precisely, the
number of landmark images captured by the mobile robot).
When the mobile robot finds the landmark, it may capture
the landmark images consecutively. In this experiment, at
six different locations, the CCD camera captured the
landmark images as shown in Figure 8 (1)–(6). For each
location, ten image frames are captured and matched to theFig. 6. IRL-2001 robot.

Fig. 7. Corridor environment of the IRL.
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reference images to measure the relative position and
orientation. In the extracting the feature points of the
landmark, the noise characteristics were estimated that the
mean was zero and the standard deviation was 0.5 pixels in
the image frame.

Table I compares the distance measurement errors in the
conventional sensor fusion and STSF. For the conventional
sensor fusion, two consecutive image frames are utilized to

calculate the distance, while for the STSF, all of the
previous image frames are utilized. Therefore, it is clear that
the distance error in the STSF decreases by the number of
frames that are utilized as shown in Table I.

4.3 Effectiveness of STSF Using Images
The effectiveness of using images is verified by the
experiments shown in Figure 10. The circles indicate the
robot trajectory when it utilizes only the odometer data,
while the triangles represent the robot trajectory when it
utilizes the STSF scheme with images. For both cases of
experiment, the mobile robot moves along the X-axis with
the velocity of 12.2 cm/sec.

The tracking by only odometer data has an approximately
40cm deflection error after 10 m navigation along the Y-
axis. It took 84 seconds. The robot position error comes
from wheel slippage, a rough surface, and sensor error. The
further the robot moves from the start point, the greater the
error becomes in real experiments. The smallest error in the
X-axis was 0.2 cm and in the Y-axis was 0.13 cm at the start
point. And the biggest error in the X-axis and Y-axis were
21.2cm and 40.53cm, respectively.

To overcome the navigation proportional error problem,
STSF scheme is used, which utilizes the landmark to
recognize the current position of the mobile robot. In the

Fig. 8. Landmark locations detected by the camera.

Fig. 9. Mobile robot position and orientation.

Table I. Result of the distance measurement.

Conventional sensor fusion STSF

World Coordinate Image Coordinate Error Image Coordinate Error
Frame Distance (m) Distance (m) (m) Distance (m) (m)

1 7.81 8.24 0.43 8.24 0.43
2 7.02 7.36 0.34 7.30 0.28
3 6.28 6.53 0.25 6.48 0.20
4 5.06 4.89 0.17 4.92 0.14
5 5.52 5.39 0.13 5.63 0.11
6 6.32 6.46 0.14 6.43 0.11
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STSF experiments, the average time spent to judge the
existence of a landmark was 0.127 sec and to localize was
0.332 sec. The experimental data with the STSF have
20–30 cm drift errors after the 4 m navigation. However the
navigation error is reduced to 10 cm at the 5 m navigation
and kept below the value later on, which explicitly shows
the effectiveness of the STSF. The navigation took 92
seconds that is 8 seconds longer than the previous case. The
reason is not because of image processing time but because
of the frequent orientation change of the mobile robot to
keep the desired path.

4.4 Navigation Experiments
The navigation is planned to follow the path from the start
point to the goal using the IRL-2001 mobile robot, as shown
in Figure 6. Three different localization schemes are utilized
for the estimation of the mobile robot position during the
navigation: the odometer based estimation, the conventional
sensor fusion, and the STSF.

Fig. 10. Trajectories of the mobile robot by the encoder data and
by the STSF.

Fig. 11. Position/orientation errors in the navigations.
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The navigation characteristics are illustrated by the
position/orientation error in Figure 11. In the experiment
with the odometer based estimation, the mobile robot
stopped at 17 m location by colliding to the wall as the
result of the accumulated error in reading the encoder. For
the latter two schemes, the navigations were successfully
completed to the goal utilizing the landmarks to localize the
mobile robot. However, in the navigation with the conven-
tional sensor fusion, the position/orientation error increases
gradually along with the traveling distance since the
uncertainties in measuring the relative distance becomes
bigger and bigger.19,20 The STSF has the best performance,
especially in the latter part of the path. The matching rate of
landmarks is about 22% higher for the STSF than for the
conventional sensor fusion, which provides the better
localization performance.

5. CONCLUSIONS
In this paper, a new sensor fusion concept, STSF (Space and
Time Sensor Fusion), was introduced. The effectiveness of
STSF was demonstrated through the preliminary and
navigation experiments. To follow the navigation trajecto-
ries without a priori information on the environment, not
only the data from the sensors located at different places but
also the previous sensor data are inevitably necessary. This
scheme may require more memory space and computing
power in the navigation system. However, it becomes non-
poisonous with the rapid price drop of I.C.s. Sonar and
vision systems can be cooperatively utilized for collision
avoidance based upon STSF such that a mobile robot
successfully navigates in an unstructured environment, as
well as in a structured environment. Although we have used
an active CCD camera system for landmark recognition and
navigation in indoor environment, the results from the
experiments clearly show that by utilizing the mobile robot
and by applying the active sensing to adapt to different
situations, a high level of competent collision avoidance
behavior can be achieved by the STSF.

Based on these results, further experiments will aim at
applying the STSF to the control of a mobile robot in an
unstructured environment with various sensors.
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