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For c ∈ (0, 1) let Pn(c) denote the set of n-vertex perfect graphs with density c and let Cn(c) denote
the set of n-vertex graphs without induced C5 and with density c.

We show that

lim
n→∞

log2 |Pn(c)|/
(
n

2

)
= lim

n→∞
log2 |Cn(c)|/

(
n

2

)
= h(c)

with h(c) = 1
2 if 1

4 � c � 3
4 and h(c) = 1

2H(|2c − 1|) otherwise, where H is the binary entropy
function.

Further, we use this result to deduce that almost all graphs in Cn(c) have homogeneous sets of
linear size. This answers a question raised by Loebl and co-workers.

AMS 2010 Mathematics subject classification: Primary 05C30; 05C69, 05C17

1. Introduction and results

In this paper we investigate classes of graphs that are defined by forbidding certain substructures.
Let H be such a class. We focus on two related goals: to approximate the cardinality of H and
to determine the structure of a typical graph in H. In particular, we add the additional constraint
that all graphs in H must have the same density c and would like to know how the answer to
these questions depends on the parameter c.

The quantity |Hn|, where Hn := {G ∈ H : V (G) = [n]}, is also called the speed of H. Often
exact formulas or good estimates for |Hn| are out of reach. In these cases, however, one might
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still ask for the asymptotic behaviour of the speed of H. One prominent result in this direction
was obtained by Erdős, Frankl and Rödl [9] who considered properties Forb(F) defined by a
single forbidden (weak) subgraph F . They proved that, for each graph F with χ(F) � 3, the
class Forbn(F) of n-vertex graphs that do not contain F as a subgraph satisfies |Forbn(F)| =

2ex(F,n)+o(n2), where ex(F, n) := (χ(F) − 2)
(
n
2

)
/(χ(F) − 1). In other words, if χ(F) � 3 then the

speed of Forb(F) asymptotically only depends on the chromatic number of F .
In this paper we are interested in features of the picture at a more fine-grained scale. More

precisely, we fix a density 0 < c < 1 and are interested in the number |Hn(c)| of graphs on n

vertices with property H and density c. Let Forbn(F, c) = Forbn(F) ∩ Gn(c), where Gn(c) is the
set of all graphs on vertex set [n] with �c

(
n
2

)
� edges. Here �x� denotes the nearest integer to x.

For the sake of readability, we will always assume in the following that c
(
n
2

)
is an integer, since

rounding issues would not affect our asymptotic considerations.
Straightforward modifications of the proof of the theorem of Erdős, Frankl and Rödl [9] yield

the following bounds for |Forbn(F, c)| (we will sketch this argument in Section 2.3). Let F be a
graph with χ(F) = r. For all c ∈ (0, r−2

r−1
), we have

lim
n→∞

log |Forbn(F, c)|(
n
2

) = r−2
r−1

H
(
r−1
r−2

c
)
, (1.1)

where H(x) is the binary entropy function, that is, for x ∈ (0, 1) we set H(x) := −x log x − (1 −
x) log(1 − x). Here we denote by log the logarithm to base 2. Notice that

lim
n→∞

log |Forbn(F, c)|/
(
n

2

)
= 0

for c > r−2
r−1

, by the theorem of Erdős and Stone [11].
The analogous problem for a graph class Forb∗(F), characterized by a forbidden induced sub-

graph F , is more challenging and was first considered by Prömel and Steger [20]. They specified a
graph parameter, the so-called colouring number χ∗(F) of F , that serves as a suitable replacement
of the chromatic number in the theorem of Erdős, Frankl and Rödl. More precisely, they showed
that |Forb∗

n(F)| = 2ex∗(F,n)+o(n2) with ex∗(F, n) :=
(
χ∗(F) − 2

)(
n
2

)
/
(
χ∗(F) − 1

)
, where χ∗(F) is

defined as follows. A generalized r-colouring of F with r′ ∈ [0, r] cliques is a partition of V (F)

into r′ cliques and r − r′ independent sets. The colouring number χ∗(F) is the largest integer
r + 1 such that there is an r′ ∈ [r] for which F has no generalized r-colouring with r′ cliques.
For example, we have χ∗(C5) = 3 and χ∗(C7) = 4.

This naturally extends to hereditary graph properties, i.e., classes of graphs H which are
closed under isomorphism and taking induced subgraphs (and may therefore be characterized
by possibly infinitely many forbidden induced subgraphs). Let F(r, r′) denote the family of all
graphs that admit a generalized r-colouring with r′ cliques. Then the colouring number of H is

χ∗(P) := max{r + 1: F(r, r′) ⊆ H for some r′ ∈ [0, r]},

and we set

ex∗(H, n) :=
(
χ∗(H) − 2

)(n

2

)
/
(
χ∗(H) − 1

)
.

https://doi.org/10.1017/S0963548312000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000181


Perfect Graphs of Fixed Density 663

Observe that this definition implies χ∗(Forb∗(F)
)

= χ∗(F). And indeed Alekseev [1] and
Bollobás and Thomason [6] generalized the result of Prömel and Steger to arbitrary hereditary
graph properties H and showed that |Pn| = 2ex∗(H,n)+o(n2).

More precise estimates for the speed were given for monotone properties H (properties that
are closed under isomorphisms and taking subgraphs) by Balogh, Bollobás and Simonovits [5],
who showed that 2ex∗(H,n) � |Hn| � 2ex∗(H,n)+cn log n for some constant c, and for hereditary prop-
erties H by Alon, Balogh, Bollobás and Morris [2], who proved 2ex∗(H,n) � |Hn| � 2ex∗(H,n)+n2−ε

for some ε = ε(H) > 0 and n sufficiently large. Prömel and Steger [18, 19] gave even more
precise results for the speed of Forb∗

n(C4) and Forb∗
n(C5), which they determined up to a factor

of 2O(n). In fact, they showed in [19] that almost all graphs in Forb∗
n(C5) are generalized split

graphs, that is, graphs of a rather simple structure which are defined as follows. We say that a
graph G = (V , E) admits a generalized clique partition if there is a partition V = V1∪̇ · · · ∪̇Vk of
its vertex set such that G[Vi] is a clique and for i > j > 1 we have e(Vi, Vj) = e(Vj, Vi) = 0. A
graph G is a generalized split graph if G or its complement admit a generalized clique partition.

It is illustrative to compare this result to the celebrated strong perfect graph theorem [8]. A
graph G is perfect if χ(G′) equals the clique number ω(G′) for all induced subgraphs G′ of G.
The strong perfect graph theorem asserts that all graphs without induced copies of odd cycles
C2i+1, i > 1 and without induced copies of their complements C2i+1 are perfect. Using this
characterization, it is easy to see that generalized split graphs are perfect. Consequently the result
of Prömel and Steger implies that almost all graphs without induced C5 are perfect (observe that
C5 is self-complementary).

In this paper, we consider induced C5-free graphs of density c and provide bounds for their
number. In the spirit of the result by Prömel and Steger, we also relate this quantity to the number
of n-vertex perfect graphs and generalized split graphs with density c.

Definition 1.1. We define the following graph classes:

C(n, c) := Forb∗
n(C5, c) := Forb∗

n(C5) ∩ Gn(c),

P(n, c) := {G ∈ Gn(c) : G is perfect},
S(n, c) := {G ∈ Gn(c) : G is a generalized split graph}.

Observe that for all n and c ∈ [0, 1] we have S(n, c) ⊆ P(n, c) ⊆ C(n, c). Our first main result
now bounds the multiplicative error term between |S(n, c)| and |C(n, c)|. In order to state this we
define the following function. Let

h(c) :=

⎧⎪⎪⎨
⎪⎪⎩

H(2c)/2 if 0 < c < 1
4
,

1/2 if 1
4

� c � 3
4
,

H(2c − 1)/2 otherwise .

(1.2)

Note that the classes of all generalized split graphs, all perfect graphs, and all graphs without
induced C5 are closed under taking complements. Hence, for example, |C(n, c)| = |C(n, 1 − c)|
for all c ∈ (0, 1) and h is in fact symmetric in (0, 1). Further, note that H(|2c − 1|)/2 = h(c) for
c < 1/4 or c > 3/4.
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Theorem 1.2. For all c ∈ (0, 1) we have

lim
n→∞

log2 |C(n, c)|(
n
2

) = lim
n→∞

log2 |P(n, c)|(
n
2

) = lim
n→∞

log2 |S(n, c)|(
n
2

) = h(c).

The proof of this theorem uses Szemerédi’s regularity lemma and is given in Section 2.
We remark that Bollobás and Thomason [7] studied related questions of a more general type

(see also the references in [7] for earlier results in this direction). They were interested in
the probability PH := P[G(n, p) ∈ H] of an arbitrary hereditary property H in the probability
space G(n, p), and showed that for any H there are very simple properties H∗ which closely
approximate H in the probability space G(n, p). In this context, our Theorem 1.2 estimates
the probability of H = Forb∗

n(C5) in the probability space G(n, m) with m = c
(
n
2

)
, and states

that H = Forb∗
n(C5) is approximated by the property H∗ of being a generalized split graph in

G(n, m). The actual value of the probability PH was estimated by Marchant and Thomason in [17]
for several properties H, such as H = Forb∗

n(C5) (see [17, 22]). The probabilities P[G(n, p) ∈
H] and P[G(n, m = p

(
n
2

)
) ∈ H] are related (but not identical), and we discuss their relation in

Section 4.

Let us now move from the question of approximating cardinalities to determining the structure
of a typical element in Forb∗

n(C5). A well-known conjecture by Erdős and Hajnal [10] states that
any family of graphs that does not contain a certain fixed graph F as an induced subgraph must
contain a homogeneous set, i.e., a clique or a stable set, which is of size at least some positive
power of the number of vertices.

The conjecture is known to be true for certain graphs F , but is open, among others, for F = C5

(see [12]). However, Loebl, Reed, Scott, Thomason and Thomassé [16] recently showed that for
any graph F , almost all graphs in Forb∗

n(F) have a homogeneous set of size at least some positive
power of n. Moreover, they ask for which graphs F it is true that almost all graphs in Forb∗

n(F)

do indeed have a linearly sized homogeneous set.
It may seem at first sight that our estimates derived in Theorem 1.2, carrying an o(n2) term in

the exponent, are too rough to tell us much about the structure of almost all graphs in Forb∗
n(C5)

or Forb∗
n(C5, c). However, we can combine them with the ideas of [16] to answer the question of

Loebl, Reed, Scott, Thomason and Thomassé in the affirmative for the case F = C5. In fact, we
can prove this assertion even in the case where we again restrict the class to graphs with a given
density.

Theorem 1.3. For η > 0, let Forb∗
n,η(F, c) denote the set of graphs G ∈ Forb∗

n(F, c) with
hom(G) := max{α(G), ω(G)} < ηn. Then, for every 0 < c < 1 there exists η > 0 such that

|Forb∗
n,η(C5, c)|

|Forb∗
n(C5, c)|

→ 0 (n → ∞).

We provide the proof of this theorem in Section 3.
Statements similar to those in Theorem 1.2 and 1.3, for forbidden graphs F other than C5,

seem to require more work.
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2. The proof of Theorem 1.2

In this section we prove Theorem 1.2. In Section 2.1 we start with the lower bound, by estimating
the number of generalized split graphs with a given density. For the upper bound we need some
preparations. We shall apply Szemerédi’s regularity lemma, which is introduced in Section 2.2.
In Section 2.3 we illustrate how this lemma can be used for counting graphs without a fixed (not
necessarily induced) subgraph. In Section 2.4 we explain how to modify these ideas in order
to deal with forbidden induced subgraphs. In Section 2.5, finally, we prove the upper bound of
Theorem 1.2.

2.1. The lower bound of Theorem 1.2
In this section we estimate the number of generalized split graphs with density c and prove the
following lemma, which constitutes the lower bound of Theorem 1.2.

Lemma 2.1. For all c, γ ∈ (0, 1) there is an n0 such that, for all n � n0, we have

|S(n, c)| � 2h(c)(
n
2)−γ(n2).

We will use the following bound for binomial coefficients (see, e.g., [14]). For every γ > 0

there exists n0 such that, for every integer m � n0 and for every real c ∈ (0, 1), we have

2mH(c)−γm �
(
m

cm

)
� 2mH(c). (2.1)

We call the term −γm in the first exponent the error term of equation (2.1).

Proof of Lemma 2.1. We prove this lower bound by constructing an adequate number of
generalized split graphs. Choose n0 sufficiently large such that (2.1) holds for m = 1

2

(
n
2

)
and

error term γm. Observe that it suffices to prove the lemma for c � 1
2
, since the complement of a

split graph with density c is a split graph with density (1 − c).
We distinguish two cases. First, assume c � 1

4
. To obtain a lower bound for |S(n, c)| in this

case, we simply count bipartite graphs with density c and with colour classes of size n/2. There
are at least ( n2

4

c
(
n
2

)) �
( 1

2

(
n
2

)
c
(
n
2

))
� 2

1
2 (

n
2)H(2c)−γ(n2)

such graphs.
Now assume that 1

4
< c � 1

2
. In this case we construct suitable k-partite graphs. For this

purpose choose k such that

x := c

(
n

2

)
− (k − 2)( n

2
− k + 2) −

(
k − 2

2

)
∈

[
n2

8
− n,

n2

8
+ n

]
. (2.2)

Indeed such a k exists since x monotonically decreases from c
(
n
2

)
for k = 2 to c

(
n
2

)
− (n2 − 2n −

8)/8 � (n2 + 8)/8 for k = n/2 in steps of size at most n/2.
Now, construct k (independent) vertex sets V1, . . . , Vk with |V1| = n

2
, |V2| = n

2
− k + 2 and

|Vi| = 1 for i = {3, . . . , k} and insert all edges between Vi and Vj with i, j ∈ [k] \ {1}, i �= j. Call
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the resulting graph G0. By (2.2) we obtain a generalized split graph with density c from G0, if
we insert x edges between V1 and V2 ∪ · · · ∪ Vk. Since this can be done in at least( n2

4

n2

8
− n

)
� 2

1
2 (

n
2)−γ(n2)

ways, we obtain at least 2
1
2 (

n
2)−γ(n2) generalized split graphs with exactly c

(
n
2

)
edges.

2.2. Regularity
In order to prove the upper bound from Theorem 1.2, i.e.,

|C(n, c)| � 2h(c)(
n
2)+γ(n2),

we will analyse the structure of graphs in C(n, c) by applying a variant of the regularity lemma
suitable for our purposes.

Let G=(V , E) be a graph. For disjoint non-empty vertex sets A,B ⊆ V , the density d(A,B) :=

e(A,B)/(|A||B|) of the pair (A,B) is the number of edges that run between A and B divided by the
number of possible edges between A and B. In the following let ε, d ∈ [0, 1]. The pair (A,B) is
ε-regular if, for all A′ ⊆ A and B′ ⊆ B with |A′| � ε|A| and |B′| � ε|B|, it is true that |d(A,B) −
d(A′, B′)| � ε. An ε-regular pair (A,B) is called (ε, d)-regular if it has density at least d.

A partition V0∪̇V1∪̇ · · · ∪̇Vk of V is an equipartition if |Vi| = |Vj | for all i, j ∈ [k]. An (ε, d)-
regular partition of G with reduced graph R = (VR, ER) is an equipartition V0∪̇V1∪̇ · · · ∪̇Vk

of V with |V0| � ε|V |, and VR = [k] such that (Vi, Vj) is an (ε, d)-regular pair in G if and
only if {i, j} ∈ ER . In this case we also call R an (ε, d)-reduced graph of G. An (ε, 0)-regular
partition V0∪̇V1∪̇ · · · ∪̇Vk which has at most ε

(
k
2

)
pairs that are not ε-regular is also called an

ε-regular partition. The partition classes Vi with i ∈ [k] are called clusters of G and V0 is the
exceptional set.

With this terminology at hand we can state the celebrated regularity lemma of Szemerédi.

Lemma 2.2 (regularity lemma [21]). For all ε > 0 and k0 there is a k1 such that every graph
G=(V , E) on n � k1 vertices has an ε-regular partition V =V0∪̇V1∪̇ · · · ∪̇Vk with k0 � k � k1.

The strength of this lemma becomes apparent when it is complemented with corresponding
embedding lemmas, such as the following (see, e.g., [15]). A homomorphism from a graph H =

(VH, EH ) to a graph R = (VR, ER) is an edge-preserving mapping from VH to VR .

Lemma 2.3 (embedding lemma). For every d > 0 and every integer k there exists ε > 0 with
the following property. Let H be a graph on k vertices v1, . . . , vk. Let G be a graph. Let V1, . . . , Vk

be clusters of an (ε, d)-regular partition of G with reduced graph R = ([k], ER). If there is a
homomorphism from H to R, then H is a subgraph of G.

2.3. Regular partitions and counting
As a warm-up (and for the sake of completeness) we consider the problem of counting graphs
of a fixed density without a given (not necessarily induced) subgraph F , and prove (1.1). For
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this purpose we mimic the proof given by Erdős, Frankl and Rödl in [9] for the corresponding
problem without fixed density.

Proof of (1.1). Let F be a graph with χ(F) = r and c ∈ (0, r−2
r−1

). Let γ > 0 be given. For large
enough n the lower bound

|Forbn(F, c)| � 2
r−2
r−1H( r−1

r−2 c)(
n
2)−γ(n2)

can easily be obtained by counting subgraphs with c
(
n
2

)
edges of the complete (r − 1)-partite

graph with n/(r − 1) vertices in each part, and by applying (2.1).
It remains to show the upper bound

|Forbn(F, c)| � 2
r−2
r−1H( r−1

r−2 c)(
n
2)+γ(n2)

for n sufficiently large. We choose d such that

0 < d � min

{
1

16
,

1

4
γ2,

(
−2

r − 1

r − 2
log

(
1 − c

r − 1

r − 2

))−2}
.

Since the entropy function is concave, we have for each d̂ ∈ [0, d] that

H
(
(c − 2d̂

)
r−1
r−2

) � H(c r−1
r−2

) − 2d̂ r−1
r−2

H ′(c r−1
r−2

)

� H(c r−1
r−2

) − 2d̂ r−1
r−2

log(1 − c r−1
r−2

) � H(c r−1
r−2

) +
√

d̂,
(2.3)

which we shall use later. Next, let ε be the constant returned from Lemma 2.3 for input d and
with k replaced by r. Set k0 = 10/d� and let k1 be the constant returned by Lemma 2.2 for
input k0 and ε. Further let n � k1.

Now we use the regularity lemma, Lemma 2.2, with parameters ε, k0 for each graph G in
Forbn(F, c). For each such application the regularity lemma produces an ε-regular partition
with at most k1 clusters, for which we can construct the corresponding (ε, d)-reduced graph R.
Since k1 is finite there is only a finite number of different reduced graphs R resulting from these
applications of the regularity lemma. Hence we can partition Forbn(F, c) into a finite number of
classes R(R, ε, d, n, F, c) of graphs with (ε, d)-reduced graph R. Accordingly, it suffices to show
that for each R we have

|R(R, ε, d, n, F, c)| � 2
r−2
r−1H( r−1

r−2 c)(
n
2)+γ(n2). (2.4)

Let R = (VR, ER) be any graph such that R(R, ε, d, n, F, c) is non-empty, let k = |VR |, let G ∈
R(R, ε, d, n, F, c) and let P be an ε-regular partition of G corresponding to R. By the choice
of k0 at most k

(
n/k
2

)
� d

2

(
n
2

)
edges of G are inside clusters of P , at most d

(
n
2

)
edges of G are in

regular pairs of P with density less than d, and at most 2εn2 � d
2

(
n
2

)
edges of G are in irregular

pairs of P or have a vertex in the exceptional set. We conclude that at least (c − 2d)
(
n
2

)
edges

of G lie in (ε, d)-regular pairs of P . In addition, by the choice of ε and since F has chromatic
number r, Lemma 2.3 implies that Kr �⊆ R. It follows from Turán’s theorem that |ER | � r−2

r−1

(
k
2

)
.

Summarizing, we can bound the number of graphs in R(R, ε, d, n, F, c) by bounding the number
of ways to distribute at least (c − 2d)

(
n
2

)
edges to at most r−2

r−1

(
k
2

)
regular pairs (corresponding to

edges of R) with clusters of size at most n/k, and distributing at most 2d
(
n
2

)
edges arbitrarily. By
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the choice of n, the first of these two factors can be bounded by

max
0�d̂�d

( r−2
r−1

(
n
2

)
(c − 2d̂)

(
n
2

)) (2.1)

� max
0�d̂�d

2
r−2
r−1 (

n
2)H( r−1

r−2 (c−2d̂))

(2.3)

� max
0�d̂�d

2
r−2
r−1 (

n
2)H(c r−1

r−2 )+
√

d̂(n2)

� 2
r−2
r−1 (

n
2)H(c r−1

r−2 )+
√
d(n2),

and the second by � 22d(n2). Since 2d +
√
d � γ this implies (2.4) as desired.

2.4. Embedding induced subgraphs
In the last section we showed how the regularity lemma and a corresponding embedding lemma
can be used to count graphs with forbidden subgraphs. In this section we provide the tools that
will allow us to adapt this strategy to the setting of forbidden induced subgraphs.

We remark that the concepts and ideas presented in this section are not new. They have been
used for various similar applications, e.g., by Bollobás and Thomason [7] and Loebl, Reed, Scott,
Thomason and Thomassé [16], as well as for different applications such as property testing, e.g.,
by Alon, Fischer, Krivelevich and Szegedy [3] and Alon and Shapira [4].

We start with an embedding lemma for induced subgraphs, which allows us to find an induced
copy of a graph F in a graph G with reduced graph R if F is an induced subgraph of R (see, e.g.,
[3]).

Lemma 2.4 (injective embedding lemma for induced subgraphs). For every d>0 and every
integer k there exists ε > 0 such that for all f � k the following holds. Let V1, . . . , Vf be clusters
of an ε-regular partition of a graph G such that for all 1 � i < j � f the pair (Vi, Vj) is ε-regular.
Let F = (VF, EF ) be a graph on f vertices and let g : VF → [f] be an injective mapping from F to
the clusters of G such that for all 1 � i < j � f we have d(Vi, Vj) � d if {g−1(i), g−1(j)} ∈ E(F)

and d(Vi, Vj) � 1 − d if {g−1(i), g−1(j)} �∈ E(F). Then G contains an induced copy of F .

In contrast to Lemma 2.3, this lemma allows us to embed only one vertex per cluster of G.
Our goal in the following will be to describe an embedding lemma for induced subgraphs which
allows us to embed more than one vertex per cluster. Observe first that for this purpose we must
have some control over the existence of edges respectively non-edges inside clusters of a regular
partition of G. This can be achieved by applying the following lemma to each of these clusters. It
is not difficult to infer this lemma from the regularity lemma (Lemma 2.2) by applying Turán’s
theorem and Ramsey’s theorem (see, e.g., [3]).

We use the following definition. A (µ, ε, k)-subpartition of a graph G = (V , E) is a family
of pairwise disjoint vertex sets W1, . . . ,Wk ⊆ V with |Wi| � µ|V | for all i ∈ [k] such that each
pair (Wi,Wj) with {i, j} ∈

(
k
2

)
is ε-regular. A (µ, ε, k)-subpartition W1, . . . ,Wk of G is dense if

d(Wi,Wj) � 1
2

for all {i, j} ∈
(
k
2

)
, and sparse if d(Wi,Wj) <

1
2

for all {i, j} ∈
(
k
2

)
.

Lemma 2.5. For every k and ε there exists µ > 0 such that every graph G = (V , E) with n �
µ−1 vertices either has a sparse or a dense (µ, ε, k)-subpartition.
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The idea for the embedding lemma for induced subgraphs F of G is now as follows. We first
find a regular partition of G. By Lemma 2.4, if a regular pair (Vi, Vj) in this partition is very dense
then we can embed edges of F into (Vi, Vj), if it is very sparse then we can embed non-edges
of F , and if its density is neither very small nor very big then we can embed both edges and
non-edges of F . Moreover, Lemma 2.5 asserts that each cluster either has a sparse or a dense
subpartition. In the first case we can embed non-edges inside this cluster, in the second case we
can embed edges.

This motivates us to tag the reduced graphs with some additional information. For this purpose
we colour an edge of the reduced graph white if the corresponding regular pair is sparse, grey
if it is of medium density, and black if it is dense. Moreover, we colour a cluster white if it has
a sparse subpartition and black otherwise. We call a cluster graph that is coloured in this way a
type. The following definitions make this precise.

Definition 2.6 (coloured graph, type). A coloured graph R is a triple (VR, ER, σ) such that
(VR, ER) is a graph and σ : VR ∪ ER → {0, 1

2
, 1} is a colouring of the vertices and the edges of

this graph where σ(VR) ⊆ {0, 1}. Vertices and edges with colour 0, 1
2
, and 1 are also called white,

grey, and black, respectively.
Let G = (V , E) be a graph and let V = V0∪̇V1∪̇ · · · ∪̇Vk be an ε-regular partition of G with

reduced graph ([k], ER). The (ε, ε′, d, k′)-type R corresponding to the partition V0∪̇V1∪̇ · · · ∪̇Vk is
the coloured graph R = ([k], ER, σ) with colouring

σ({i, j}) =

⎧⎪⎪⎨
⎪⎪⎩

0 if d(Vi, Vj) < d,

1 if d(Vi, Vj) > 1 − d,
1
2

otherwise,

for all {i, j} ∈ ER , and

σ(i) =

{
0 if G[Vi] has a sparse (µ, ε′, k′)-subpartition,

1 if G[Vi] has a dense (µ, ε′, k′)-subpartition,

for all i ∈ [k], where µ is the constant from Lemma 2.5 for input k′ and ε′. In this case we also
simply say that G has (ε, ε′, d, k′)-type R.

By the discussion above a combination of the regularity lemma, Lemma 2.2, and Lemma 2.5
gives the following.

Lemma 2.7 (type lemma). For every ε, ε′ ∈ (0, 1
2
) and for all integers k′, k0, there are integers

k1 and n0 such that, for every d > 0, every graph G on at least n0 vertices has an (ε, ε′, d, k′)-type
R = ([k], ER, σ) with k0 � k � k1 and with at most εk2 non-edges.

Proof. Given ε, ε′ and k′, k0, we let k1 be the constant returned from Lemma 2.2 for input ε and
k0, and let µ be the constant returned from Lemma 2.5 for input ε′ and k′. Set n0 := 2µ−1k1.

Now let d be given and let G be a graph on at least n0 vertices. By Lemma 2.2 the graph G has
an ε-regular partition V = V0∪̇V1∪̇ · · · ∪̇Vk such that k0 � k � k1. By definition at most ε

(
k
2

)
�

εk2 pairs (Vi, Vj) are not ε-regular. Let R′ = ([k], ER) be the ε-reduced graph of V0∪̇V1∪̇ · · · ∪̇Vk.
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It follows that R′ has at most εk2 non-edges. Let i ∈ [k]. Since |Vi| � (1 − ε)n/k � n/(2k1) �
µ−1, we can apply Lemma 2.5 and conclude that Vi either has a sparse or a dense (µ, ε′, k′)-
subpartition. Accordingly we obtain an (ε, ε′, d, k′)-type R = ([k], ER, σ) for G by colouring the
edges and vertices of R′ as specified in Definition 2.6.

For formulating our embedding lemma we need one last preparation. We generalize the
concept of a graph homomorphism to the setting of coloured graphs.

Definition 2.8 (coloured homomorphism). Let F = (VF, EF ) be a graph and let R = (VR,

ER, σ) be a coloured graph. A coloured homomorphism from F to R is a mapping h : VF → VR

with the following properties.

(a) If u, v ∈ VF and h(u) �= h(v) then {h(u), h(v)} ∈ ER .
(b) If {u, v} ∈ EF then h(u) = h(v) and σ(h(u)) = 1, or h(u) �= h(v) and σ

(
{h(u), h(v)}

)
∈ { 1

2
, 1}.

(c) If {u, v} /∈ EF then h(u) = h(v) and σ(h(u)) = 0, or h(u) �= h(v) and σ
(
{h(u), h(v)}

)
∈ {0, 1

2
}.

If there is a coloured homomorphism from F to R we also write F
σ→ R.

The following embedding lemma states that a graph F is an induced subgraph of a graph G

with type R if there is a coloured homomorphism from F to R. This lemma is inherent in [4], for
example. For completeness we provide its proof below.

Lemma 2.9 (embedding lemma for induced graphs). For every pair of integers k, k′ and for
every d ∈ (0, 1) there are ε, ε′ > 0 such that the following holds. Let f � k′ and G be a graph
on n vertices with (ε, ε′, d, k′)-type R on k vertices. Let F be an f-vertex graph such that there is
a coloured homomorphism from F to R. Then F is an induced subgraph of G.

Proof. Let k, k′ ∈ N and d ∈ (0, 1) be given. Let ε′ be given by Lemma 2.4 for input d
2

and k′.
Let µ be the constant from Lemma 2.5 for input k′ and ε′. Set ε := min{d/2, µε′}.

Let G, R = ([k], ER, σ) and F be as required, let V0∪̇V1∪̇ · · · ∪̇Vk be an ε-regular partition
of G corresponding to R and let h : F

σ→ R be a coloured homomorphism from F to R. For
each i ∈ [k] we have by definition that if σ(Vi) = 0 then Vi has a sparse (µ, ε′, k′)-subpartition
Wi,1, . . . ,Wi,k′ , and if σ(Vi) = 1 then Vi has a dense (µ, ε′, k′)-subpartition Wi,1, . . . ,Wi,k′ .

Observe that
⋃

i∈[k],j∈[k′] Wi,j has the following properties, since ε′ � ε/µ and ε � d/2. If
{i, i′} ∈ ER , then for all j, j ′ ∈ [k′] the pair

(Wi,j ,Wi′ ,j′) is ε′-regular, (2.5)

and has density

d(Wi,j ,Wi′ ,j′) ∈

⎧⎪⎪⎨
⎪⎪⎩

[0, 2d) if σ({i, i′}) = 0,

(1 − 2d, 1] if σ({i, i′}) = 1,

( d
2
, 1 − d

2
) if σ({i, i′}) = 1

2
.

(2.6)

Moreover, for all i ∈ [k] and all j, j ′ ∈ [k′] with j �= j ′ the pair

(Wi,j ,Wi,j′ ) is ε′-regular, (2.7)
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and has density

d(Wi,j ,Wi,j′ ) ∈
{

[0, 1
2
) if σ(i) = 0,

[ 1
2
, 1] if σ(i) = 1.

(2.8)

Now, we define an injective mapping g : V (F) → [k] × [k′] as follows. For i ∈ [k] let Fi :=

{x ∈ V (F) : h(x)= i} and name the vertices in Fi arbitrarily by {xi,1, . . . , xi,fi}=Fi. Set g(xi,j) :=

(i, j) for all j ∈ [fi]. This is well-defined since |Fi| = fi � f � k′. Let I ⊆ [k] with |I | � f be
the set of indices i ∈ [k] such that Fi �= ∅.

We claim that G,
⋃

i∈I,j∈[fi]
Wi,j , F , and g satisfy the conditions of Lemma 2.4 with paramet-

ers d/2, k′, ε′, and f. Indeed, by (2.7) each cluster pair (Wi,j ,Wi,j′ ) with i ∈ I and j, j ′ ∈ [k′],
j �= j ′ is ε′-regular. Moreover, for each i, i′ ∈ I with i �= i′ we have that there are x ∈ Fi and
y ∈ Fi′ . By the definition of a coloured homomorphism (Definition 2.8) we have that {Vi, Vi′ } =

{h(x), h(y)} ∈ ER . Hence (2.5) implies that (Wi,j ,Wi′ ,j′) is ε′-regular too. It remains to show that
if x, y are two vertices in V (F) and (i, j) = g(x) and (i′, j ′) = g(y), then d(Wi,j ,Wi′ ,j′) � d/2

if {x, y} ∈ E(F) and d(Wi,j ,Wi′ ,j′) � 1 − d/2 otherwise. To see this, assume first that {x, y} ∈
E(F). Then, by the definition of a coloured homomorphism, either h(x) = h(y) and σ(h(x)) = 1,
which implies d(Wi,j ,Wi′ ,j′) � 1

2
� d/2 by (2.8). Or h(x) �= h(y) and σ({h(x), h(y)}) � 1

2
, and

hence we have d(Wi,j ,Wi′ ,j′ ) � d/2 by (2.6). If {x, y} �∈ E(F), on the other hand, then either
h(x) = h(y) and σ(h(x)) = 0, and so d(Wi,j ,Wi′ ,j′) � 1

2
� 1 − d/2 by (2.8). Or h(x) �= h(y) and

σ({h(x), h(y)}) � 1
2

and thus d(Wi,j ,Wi′ ,j′) � 1 − d/2 by (2.6).
It follows that we can indeed apply Lemma 2.4 and conclude that F is an induced subgraph

of G as desired.

2.5. The upper bound of Theorem 1.2
Now we are ready to prove the upper bound of Theorem 1.2, that is, we establish the following
lemma.

Lemma 2.10. For all c, γ ∈ (0, 1), there is an n0 such that for all n � n0 we have

|C(n, c)| � 2h(c)(
n
2)+γ(n2).

The idea of the proof of Lemma 2.10 is as follows. We proceed in three steps. Firstly, as in the
proof of (1.1) in Section 2.3, we start by applying the regularity lemma to all graphs in C(n, c). For
each of the regular partitions obtained in this way there is a corresponding type, and in total we
only get a constant number K of different types. Secondly, we continue with a structural analysis
of the possible types R for graphs from C(n, c) and infer from Lemma 2.9 that R cannot contain
a triangle all of whose edges are grey (see Lemma 2.11). Thirdly, we prove that a coloured graph
without such a grey triangle can only serve as a type for at most UB(n) graphs on n vertices (see
Lemma 2.12). Multiplying UB(n) with K then gives the desired bound.

We start with the second step.

Lemma 2.11. For every integer k′ � 5 and every d > 0, there exist εL2.11, ε
′
L2.11 > 0 such that

for every 0 < ε � εL2.11 and every 0 < ε′ � ε′
L2.11 the following is true. If G is a graph whose

(ε, ε′, d, k′)-type R contains three grey edges forming a triangle, then G has an induced C5.
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Proof. Given d > 0 and k′ � 5, set k := 3 and let εL2.11, ε
′
L2.11 > 0 be the constants given by

Lemma 2.9 for d, k, and k′. Let positive constants ε � εL2.11 and ε′ � ε′
L2.11 be given. Let G be a

graph with (ε, ε′, d, k′)-type R such that R contains a triangle T with three grey edges.
By Lemma 2.9 the graph G contains an induced C5 if there exists a coloured homomorphism

from C5 to T , in which case we are done. We claim that such a coloured homomorphism h

always exists (regardless of the colours of the vertices of T ). Indeed, if T has at least two black
vertices V1, V2 then we can construct h by mapping a pair of adjacent vertices of C5 to V1, a
disjoint pair of adjacent vertices of C5 to V2, and the remaining vertex of C5 to the remaining
vertex of T . If T has at least two white vertices V1, V2, on the other hand, then we can construct h
by mapping one pair of non-adjacent vertices of C5 to V1, a disjoint pair of non-adjacent vertices
of C5 to V2 and the remaining vertex of C5 to the remaining vertex of T .

Next, we show an upper bound on the number of graphs on n vertices with a fixed type R,
where R does not contain a triangle with three grey edges. We use the following definition:

R(R, ε, ε′, d, k′, n, c) := {G ∈ G(n, c) : G has (ε, ε′, d, k′)-type R}. (2.9)

We stress that R(R, ε, ε′, d, k′, n, c) and R(R′, ε, ε′, d, k′, n, c) may have non-empty intersection for
R �= R′.

Lemma 2.12. For every c with 0 < c � 1
2
, and every γ > 0, there exist εL2.12, d0 > 0 and in-

tegers nL2.12, k0 such that for all positive d � d0, ε � εL2.12, ε′, and all integers k � k0, k′,
n � max{k, nL2.12}, the following holds. If R is a coloured graph of order k which has at most
εk2 non-edges and does not contain a triangle with three grey edges, then

|R(R, ε, ε′, d, k′, n, c)| � 2h(c)(
n
2)+γ(n2).

Proof. Let c, γ be given. Choose εL2.12, d0, k0 such that

max

{
4εL2.12, H(d0),

1

k0

}
� γ

5
.

Let nL2.12 be large enough to guarantee log(nL2.12 + 1) � γ
5
(nL2.12 − 1). Let ε � εL2.12, ε′, d � d0,

k � k0, k′, n � max{nL2.12, k} be given.
Let R = ([k], ER, σ) be a coloured graph which has at most εk2 non-edges and does not contain

a triangle with three grey edges. We shall count the graphs in R(R, ε, ε′, d, k′, n, c) by estimating
the number of equipartitions V0∪̇ · · · ∪̇Vk of [n], the number of choices for edges with one end
in the exceptional set V0 and edges in pairs (Vi, Vj) such that {i, j} �∈ ER , the number of choices
for edges in clusters Vi such that i is white or black in R, and the number of choices for at most
c
(
n
2

)
edges in pairs (Vi, Vj) such that {i, j} is a white, black, or grey edge of R.

The number of equipartitions V0∪̇ · · · ∪̇Vk of [n] is bounded by

(k + 1)n = 2n log(k+1) � 2n log(n+1) � 2
γ
5 (

n
2). (2.10)

Let us now fix such an equipartition. There are at most εn2 possible edges that have at least one
end in V0 and at most ε

2
n2 possible edges in pairs (Vi, Vj) such that {i, j} �∈ ER . Thus there are at

https://doi.org/10.1017/S0963548312000181 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548312000181


Perfect Graphs of Fixed Density 673

most

2
3
2 εn

2 � 24ε(n2) (2.11)

possible ways to distribute such edges. In addition, the number of ways to distribute edges in
clusters Vi corresponding to white or black vertices of R is at most

2k(
n/k
2 ) � 2

1
k (

n
2). (2.12)

By definition, white edges of an (ε, ε′, d, k′)-type correspond to pairs with density at most d and
black edges correspond to pairs with density at least (1 − d). Hence, by the symmetry of the
binomial coefficient the number of ways to distribute edges in pairs (Vi, Vj) such that {i, j} is a
white or a black edge of R is at most

( (
n
k

)2

d
(
n
k

)2

)(k2)

� 2(k2)(
n
k )2H(d) � 2H(d)(n2). (2.13)

For later reference we now sum up the estimates obtained so far. The product of (2.10)–(2.13)
gives less than

2( γ
5 +4ε+H(d)+ 1

k )(
n
2) � 2

4
5 γ(

n
2) (2.14)

choices for the partition V0∪̇ · · · ∪̇Vk and for the distribution of edges inside such a partition,
except for the pairs (Vi, Vj) corresponding to grey edges of R.

It remains to take the grey edges Eg of R into account. By assumption, Eg does not contain a
triangle. Hence, by Turán’s theorem (see, e.g., [23]) we have |Eg| � k2

4
. It follows that there are at

most k2

4

(
n
k

)2
= n2

4
possible places for edges in Eg-pairs (Vi, Vj), i.e., pairs such that {i, j} ∈ Eg .

Hence the number Ng of possible ways to distribute at most c
(
n
2

)
edges to Eg-pairs is at most

c
(
n
2

)(n2/4

c(n2)

)
. If c < 1

4
, then this gives

Ng � 2
1
2 (

n
2)H(2c)+γ(n2), (2.15)

and if 1
4

� c � 1
2

then

Ng � 2
n2

4 � 2
1
2 (

n
2)+

γ
5 (

n
2). (2.16)

Combining (2.15) and (2.16) and recalling the definition of h(c) in (1.2) gives

Ng � 2h(c)(
n
2)+

γ
5 (

n
2). (2.17)

Multiplying (2.14) and (2.17) gives the desired upper bound

|R(R, ε, ε′, d, k′, n, c)| � 2h(c)(
n
2)+

γ
5 (

n
2)+

4
5 γ(

n
2) = 2h(c)(

n
2)+γ(n2).

With this we are in position to prove Lemma 2.10.

Proof of Lemma 2.10. Observe first that it suffices to prove the lemma for c � 1
2
, as the

complement of a graph without induced C5 is induced C5-free and hence |C(n, c)| = |C(n, 1 − c)|.
Now let c ∈ (0, 1

2
] and γ > 0 be given. Set k′ = 5. Lemma 2.12 with input c and γ/2 provides

constants εL2.12, d0, nL2.12, k0. Set d = d0. From Lemma 2.11 with input d we obtain constants
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εL2.11 and ε′
L2.11. Set ε := min{εL2.12, εL2.11} and ε′ := ε′

L2.11. The type lemma, Lemma 2.7, finally,
with input ε, ε′, and k0, k′ gives constants k1 and nL2.7. We set n0 = max{nL2.7, nL2.12,

3√
γ
k1}.

Now, for each graph G ∈ C(n, c) we apply the type lemma, Lemma 2.7, with parameters ε, ε′,
k0, k′ and d and obtain an (ε, ε′, d, k′)-type R of G on k � k1 vertices and with at most εk2 non-
edges. Let R̃ be the set of types obtained from these applications of Lemma 2.7. It follows that

|R̃| � 4(
k1
2 )2k1 � 2k

2
1 . By Lemma 2.11 applied with d, ε, and ε′, no coloured graph in R̃ contains

a triangle with three grey edges. Hence, by Lemma 2.12 applied with c, γ/2, ε, ε′ and d we have
|R(R, ε, ε′, d, 5, n, c)| � 2h(c)(

n
2)+

1
2 γ(

n
2). Since, by Lemma 2.7,

C(n, c) ⊆
⋃
R∈R̃

R(R, ε, ε′, d, 5, c, n).

We conclude from the choice of n0 that

|C(n, c)| � 2k
2
1 · 2h(c)(

n
2)+

1
2 γ(

n
2) � 2h(c)(

n
2)+γ(n2).

3. The proof of Theorem 1.3

Our proof of Theorem 1.3 consists of the following steps. We start, as in the proof of Theorem 1.2,
by constructing for each graph G in Forb∗

n,η(C5, c) a type R of size independent of n with the
help of the type lemma, Lemma 2.7. Next, we consider each cluster Vi of a partition of V (G)

corresponding to R separately. We shall show that the fact that G does not contain homogeneous
sets of size ηn implies that G[Vi] has many vertex-disjoint induced copies of P3, the path on
three vertices, or many vertex-disjoint induced copies of the anti-path P 3, the complement of P3

(see Lemma 3.1). Many induced copies of P3 or P 3 in two clusters Vi and Vj , however, limit
the number of possibilities for inserting edges between Vi and Vj without inducing a C5 (see
Lemma 3.2). Combining this with the proof strategy from Theorem 1.2 will give us an upper
bound for the number of graphs from Forb∗

n,η(C5, c) with type R (see Lemma 3.3). Finally,
comparing this upper bound with the lower bound on |Forb∗

n(C5, c)| from Theorem 1.2 will lead
to the desired result.

We start by proving that graphs without big homogeneous sets contain many vertex-disjoint
induced P3 or P 3.

Lemma 3.1. Let G be a graph of order n with hom(G) � n/6. Then one of the following is
true:

(i) G contains n/6 vertex-disjoint induced copies of P3, or
(ii) G contains n/6 vertex-disjoint induced copies of P 3.

Proof. Let G be an n-vertex graph with hom(G) � n/6. Select a maximal set of disjoint copies
of P3. If this set consists of less than n/6 paths then there is a subgraph G′ ⊆ G with v(G′) = n/2

that has no induced P3 and thus is a vertex-disjoint union of cliques Q1, . . . , Q�. We claim that
in G′ we can find n/6 vertex-disjoint induced P 3, which proves the lemma.
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Indeed, since hom(G) � n/6 we have � � n/6, and for each i ∈ [�] we have qi := |Qi| � n/6.
This implies ∑

i∈[�]

�qi/2� � 1

2

(
n

2
− n

6

)
= n/6.

It follows that we can find a set of n/6 vertex-disjoint edges E = {e1, . . . , en/6} in these cliques
in the following way. We first choose as many vertex-disjoint edges in Q1 as possible, then in Q2,
and so on, until we have chosen n/6 edges in total. Let Qk be the last clique used in this process.
Then, for each clique Qi with i < k at most one vertex was unused in this process, and in Qk

possibly several vertices were unused. Let X be the set of all these unused vertices together with
all vertices from

⋃
k<i�� Qi. Clearly |X| = n/6.

We consider the auxiliary bipartite graph B = (X ∪ E,EB) with {x, e} ∈ EB for x ∈ X and
e ∈ E if and only if x and e do not lie in the same clique of G′. We verify Hall’s condition for B.
So let Y ⊆ X. If Y �⊆ Qi for all i we have |N(Y )| = |E| = |X| � |Y |. Otherwise, if Y ⊆ Qi for
some i, then |N(Y )| � |E| − (|Qi| − |Y |)/2 � n/6 − n/12 + |Y |/2 � |Y | since |Y | � n/6. It
follows that B has a perfect matching, which means that there are n/6 vertex-disjoint induced P 3

in G′, as claimed.

Now suppose we are given a graph G with vertex set V1∪̇V2 and no edges between V1 and V2.
Further, let H1 and H2 be such that for i ∈ [2] the graph Hi induces a copy of P3 or P 3 in G[Vi].
Observe that, no matter which combination of P3 or P 3 we choose, we can create an induced C5

in G by adding appropriate edges between H1 and H2. Since we are interested in graphs without
induced C5, this motivates us to call (H1, H2) a dangerous pair of (V1, V2).

Our next goal is to use these dangerous pairs in order to derive an upper bound on the number
of possibilities for inserting edges between V1 and V2 without creating an induced copy of C5

if we know that (V1, V2) contains many dangerous pairs. In order to quantify this upper bound,
in Lemma 3.2 we use the following technical definition. We define R(c) = c4(1 − c)4 and the
function r : (0, 1) → R

+ with

r(c) =
1

72

⎧⎪⎪⎨
⎪⎪⎩

R(2c) if c < 1
4
,

(1/4)4 if c ∈ [ 1
4
, 3

4
],

R(2c − 1) otherwise.

(3.1)

Recall in addition the definition of the function h(c) from (1.2).

Lemma 3.2. For every 0 < c0 � 1
2

there is an n0 such that, for all c with c0 � 2c � 1 − c0 and
n � n0, the following holds. Let G1 = (V1, E1) and G2 = (V2, E2) be two n-vertex graphs, each
of which contains n/6 vertex-disjoint induced copies of P3 or n/6 vertex-disjoint induced copies
of P 3. Let G = (V1∪̇V2, E) be the disjoint union of G1 and G2. Then there are at most

22n2(h(c)−r(c))

ways to add exactly 2cn2 edges to G that run between V1 and V2 without inducing a C5 in G.

We remark that in the proof of this lemma we are going to make use of the following prob-
abilistic principle: we can count the number of elements in a finite set X which have some
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property P , by determining the probability that an element which is chosen from X uniformly at
random has property P .

Proof of Lemma. 3.2. Given c0 ∈ (0, 1
2
], let n0 be sufficiently large that

n0e
−2r(c0/2)n2

0 � 2−2r(c0/2)n
2
0 . (3.2)

Now let c be such that c0 � 2c � 1 − c0. Observe first that it suffices to prove the lemma for
2c � 1

2
, since induced C5-free graphs are self-complementary and P3 is the complement of P 3.

Hence, we assume from now on that 2c � 1
2
. Observe moreover that (3.2) remains valid if c0 is

replaced by c, since r(c) is monotone increasing in [0, 1
2
]. Let G1, G2, and G be as required.

Our first goal is to estimate the probability P ∗ of inducing no C5 in G when choosing uniformly
at random exactly 2cn2 edges between V1 and V2. Instead of dealing with P ∗ directly, we consider
the following binomial random graph G(V1, V2, p) with p = 2c: we start with G and add each edge
between V1 and V2 independently with probability p.

Now, let A be the event that G(V1, V2, p) contains exactly 2cn2 edges between V1 and V2, and
let B be the event that G(V1, V2, p) contains no induced C5. Observe that each graph with 2cn2

edges between V1 and V2 is equally likely in G(V1, V2, p), and thus

P ∗ = P[B|A] � P[B]

P[A]
. (3.3)

Hence it suffices to estimate P[A] and P[B].
We first bound P[B]. By assumption there are at least n2/36 dangerous pairs in (V1, V2). Now

fix such a dangerous pair (H1, H2). The probability that (H1, H2) induces a C5 in G(V1, V2, p) is
at least p2(1 − p)4 unless H1 and H2 are both P 3, and at least p4(1 − p)2 unless H1 and H2 are
both P3. Thus (H1, H2) induces a copy of C5 with probability at least

p4(1 − p)4 = (2c)4(1 − 2c)4
(3.1)

� 72 · r(c).

Since we can upper-bound the probability of B by the probability that none of the n2/36 danger-
ous pairs in (V1, V2) induces a C5 in G(V1, V2, p), we obtain

P[B] �
(
1 − 72 · r(c)

)n2/36 � e−2r(c)n2

.

Note that the number of edges between V1 and V2 in G(V1, V2, p) is binomially distributed. Thus,
by Stirling’s formula, P[A] � 1/(

√
2πp(1 − p)n) � 1/n. By the choice of n0, combining this

with (3.3) gives

P ∗ � n e−2r(c)n2 (3.2)

� 2−2r(c)n2

. (3.4)

It remains to estimate the number N of ways to choose exactly 2cn2 edges between V1 and V2.
We have

N �
(

n2

2cn2

)
(2.1)

� 22h(c)n2

. (3.5)
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This implies that the number of ways to add exactly 2cn2 edges to G that run between V1 and V2

without inducing a C5 is

P ∗ · N
(3.4),(3.5)

� 2−2r(c)n2 · 22h(c)n2

.

Next, we want to show that Lemma 3.2 allows us to derive an upper bound on the number
of graphs G such that (a) G has no large homogeneous sets and (b) G has a fixed type R which
does not contain a triangle with three grey edges. Our aim is to obtain an upper bound which is
much smaller than the bound provided in Lemma 2.12 for the corresponding problem without
restriction (a). Lemma 3.3 states that this is possible. Recall for this purpose the definition of
R(R, ε, ε′, d, k′, n, c) from (2.9).

Lemma 3.3. For every c with 0 < c � 1
2
, and every γ > 0, there exist ε0, d0 > 0 and an integer

k0 such that, for all integers k1 � k0, k′, there is an integer n0 such that, for all positive d � d0,
ε � ε0, ε′, and all integers n � n0 and k0 � k � k1, the following holds. If R is a coloured graph
of order k which has at most εk2 non-edges and does not contain a triangle with three grey edges,
and η = 1/(6k1), then

|R(R, ε, ε′, d, k′, n, c) ∩ Forb∗
n,η(C5, c)| � 2(h(c)−r(c))(n2)+γ(n2).

In the proof of this lemma we combine the strategy of the proof of Lemma 2.12 with an
application of Lemma 3.1 to all clusters of a partition corresponding to R, and an application of
Lemma 3.2 to regular pairs of medium density. We shall make use of the following observation.

Using the definition of r(c) from (3.1), it is easy to check that f(c) := h(c) − r(c) is a concave
function for c ∈ (0, 1). Thus f enjoys the following property, which is a special form of Jensen’s
inequality (see, e.g., [13]).

Proposition 3.4 (Jensen’s inequality). Let f be a concave function, 0 < c < 1, 0 < ci < 1 for
i ∈ [m] and let

∑m
i=1 ci = mc. Then

m∑
i=1

f(ci) � m · f(c).

Proof of Lemma 3.3. Let c, γ > 0 be given and choose ε0, d0, k0 and n0 as in the proof of
Lemma 2.12. Let d � d0 and k1 be given, and possibly increase n0 so that n0 � 2k1nL3.2, where
nL3.2 is the constant from Lemma 3.2 with parameter d, and so that

3

4
k2

1 log n0 + 2n0 � γ

10

(
n0

2

)
. (3.6)

If necessary decrease ε0 so that

3ε0 log
1

c
� γ

10
. (3.7)

Let ε � ε0, ε′, n � n0, and k with k0 � k � k1 be given.
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Let R = ([k], ER, σ) be a coloured graph which has at most εk2 non-edges and does not contain
a triangle with three grey edges. In the proof of Lemma 2.12 we counted the number of graphs in
R(R, ε, ε′, d, k′, n, c) by estimating the number of equipartitions V0∪̇ · · · ∪̇Vk of [n], the number
of choices for edges with one end in the exceptional set V0 and edges in pairs (Vi, Vj) such
that {i, j} �∈ ER , the number of choices for edges inside clusters Vi (such that i is white or black
in R), and the number of choices for at most c

(
n
2

)
edges in pairs (Vi, Vj) such that {i, j} is a white,

black, or grey edge of R. Now we are interested in the number of graphs in R(R, ε, ε′, d, k′, n, c) ∩
Forb∗

n,η(C5, c). Clearly we can use the same strategy, and it is easy to verify that the estimates in
(2.10)–(2.13) and thus in (2.14) from the proof of Lemma 2.12 remain valid in this setting. From
now on, as in the proof of Lemma 2.12, we fix a partition V0∪̇ · · · ∪̇Vk of [n] and observe that also
mg := |Eg| � k2

4
still holds for the grey edges Eg in R. However, we shall now use Lemma 3.2 to

obtain an improved bound on the number of possible choices for edges in Eg-pairs (Vi, Vj), and
use this to replace (2.17) by a smaller bound on the number Ng of possible ways to distribute at
most c

(
n
2

)
edges to Eg-pairs. Since in the following we do not rely on any interferences between

different Eg-pairs, clearly Ng will be maximal if mg is maximal, and hence we assume from now
on that

mg = k2

4
. (3.8)

Let s := |V1| = · · · = |Vk| and observe that

n

k
� s � (1 − ε)

n

k
� nL3.2. (3.9)

By Lemma 3.1, for each cluster Vi of a partition P of a graph in

R(R, ε, ε′, d, k′, n, c) ∩ Forb∗
n,η(C5, c)

such that P corresponds to R, we have that Vi contains either s/6 copies of P3 or s/6 copies
of P 3. Hence we will assume from now on that in our fixed partition the clusters Vi have this
property.

We now upper-bound Ng by multiplying the possible ways A to assign at most c
(
n
2

)
edges to

one Eg-pair each, and the maximum number B of ways to choose all these assigned edges in the
corresponding pairs, without inducing a C5. First observe that we have

A �
(
c

(
n

2

))mg+1

� n3mg
(3.8)

� 2
3
4 k

2 log n. (3.10)

For estimating B, we now assume that we have fixed an assignment in which each pair (Vi, Vj)

with {i, j} ∈ Eg is assigned 2ci,js
2 edges. Let ĉ be such that

∑
{i,j}∈Eg

2ci,js
2 =: ĉn2 � c

(
n

2

)
. (3.11)

Observe further that, since {i, j} ∈ Eg is a grey edge of R, and we are interested in counting
graphs with a partition corresponding to R, we can assume that d � 2ci,j � (1 − d). Hence,
by (3.9) we can apply Lemma 3.2 with c0 = d to infer that for each {i, j} ∈ Eg there are at
most

Bij � 22s2(h(ci,j )−r(ci,j )) (3.12)
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possible ways to choose the 2ci,js
2 edges in (Vi, Vj) without inducing a C5. Now let 2c̃ :=∑

{i,j}∈Eg
2ci,j/mg and observe that

c̃
(3.11)
= ĉ

n2

2s2mg

(3.9)

� ĉ
k2

2(1 − ε)2mg

(3.8)

� 2(1 + 3ε)ĉ
(3.11)

� (1 + 3ε)c � 3

4
.

Therefore, since f(x) := h(x) − r(x) is a concave function for x ∈ (0, 1), which is moreover
non-decreasing for x � 3

4
, we can infer from Lemma 3.4 that

∑
{i,j}∈Eg

f(ci,j) � mg · f(c̃) � mg · f
(
c(1 + 3ε)

) (3.8)
=

k2

4
f
(
c(1 + 3ε)

)
. (3.13)

As h(x) is a convex function with h′(x) � log(1/x) and r(x) is non-decreasing for x � 3/4, we
have

f
(
c(1 + 3ε)

)
� h(c + 3ε) − r(c) � h(c) + 3εh′(c) − r(c)

(3.7)

� h(c) − r(c) +
γ

10
.

Together with (3.12) and (3.13), this implies

B =
∏

{i,j}∈Eg

Bij � 22s2(k2/4)(h(c)−r(c)+γ/10)
(3.9)

� 2(n2/2)(h(c)−r(c)+γ/10),

which in turn, together with (3.10), gives

Ng � 2
3
4 k

2 log n · 2(n2/2)(h(c)−r(c)+γ/10)
(3.6)

� 2(h(c)−r(c))(n2)+(γ/5)(n2).

By multiplying this with (2.14) from the proof of Lemma 2.12, we obtain

|R(R, ε, ε′, d, k′, n, c) ∩ Forb∗
n,1/6k(C5, c)| � 2(h(c)−r(c))(n2)+γ(n2),

as claimed.

Lemma 3.3 with the type lemma, Lemma 2.7, implies an upper bound on |Forb∗
n,η(C5, c)|. Now

we can combine this with the lower bound on |Forb∗
n(C5, c)|, which follows from Lemma 2.1, in

order to prove Theorem 1.3.

Proof of Theorem 1.3. Observe first that, since C5 is self-complementary, it suffices to prove
Theorem 1.3 for c � 1/2. Hence we assume c � 1/2 from now on.

We first need to set up some constants. Given c ∈ (0, 1
2
], we choose γ > 0 such that 2γ < r(c).

For input c and γ Lemma 2.1 supplies us with a constant nL2.1. We apply Lemma 3.3 with input c
and γ/2 to obtain εL3.3, d0, and k0. Next, we apply Lemma 2.11 with input d0 and obtain constants
εL2.11 and ε′. Let ε := min{εL3.3, εL2.11}. For input ε, ε′, and k0, Lemma 2.7 returns constants k1

and nL2.7. With this parameter k1 we continue the application of Lemma 3.3 and obtain nL3.3.
Choose n0 := max{nL2.1, nL2.7, nL3.3,

3√
γ
k1}, assume that n � n0, and set η := 1/(6k1).

Now, for each graph G ∈ Forb∗
n,η(C5, c) we apply the type lemma, Lemma 2.7, with parameters

ε, ε′, k0, k′ and d, and obtain an (ε, ε′, d, k′)-type R of G on k vertices with k0 � k � k1 and with
at most εk2 non-edges. Let R̃ be the set of types obtained from these applications of Lemma 2.7.

It follows that |R̃| � 4(
k1
2 )2k1 � 2k

2
1 . By Lemma 2.11 applied with d0, ε, and ε′, no coloured graph

in R̃ contains a triangle with three grey edges. Hence, by Lemma 3.3 applied with c, γ/2, ε, ε′,
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n, and k we have

|R(R, ε, ε′, d, k′, n, c) ∩ Forb∗
n,η(C5, c)| � 2(h(c)−r(c))(n2)+

1
2 γ(

n
2).

Since, by Lemma 2.7,

Forb∗
n,η(C5, c) ⊆

⋃
R∈R̃

(
R(R, ε, ε′, d, k′, c, n) ∩ Forb∗

n,η(C5, c)
)
,

we conclude from the choice of n0 that

|Forb∗
n,η(C5, c)| � 2k

2
1 · 2(h(c)−r(c))(n2)+

1
2 γ(

n
2) � 2(h(c)−r(c))(n2)+γ(n2).

On the other hand, by Lemma 2.1 and the choice of n0 we have

|Forb∗
n(C5, c)| � 2h(c)(

n
2)−γ(n2).

Since 2γ < r(c), by the choice of γ, this implies that almost all graphs in Forb∗
n(C5, c) satisfy

hom(G) � ηn.

4. Concluding remarks

G(n, m) versus G(n, p)

Our counting results can be interpreted as probabilities in the random graph model G(n, m =

c
(
n
2

)
). We can reformulate Theorem 1.2 as

P

[
G
(
n, m = c

(
n

2

))
∈ Forb∗

n(C5)

]
=

|Forb∗
n(C5, c)|

|G(n, c)| = 2(h(c)−H(c)+o(1))(n2).

We now compare G(n, m = c
(
n
2

)
) to the standard Erdős–Rényi model studied by Marchant and

Thomason in [17]. They showed that

P[G(n, p) ∈ Forb∗
n(C5)] = 2cp(

n
2),

where cp = 1
2
max{log p, log(1 − p)}. We can now derive the same estimate via Theorem 1.2.

Obviously P[G(n, p) ∈ Forb∗
n(C5)] equals

max
c

P

[
e(G(n, p)) = c

(
n

2

)]
· P

[
G
(
n, m = c

(
n

2

))
∈ Forb∗

n(C5)

]
· 2o(n

2).

Setting gp(c) = H(c) + c log p + (1 − c) log(1 − p), we obtain

P

[
e(G(n, p)) = c

(
n

2

)]
= 2(g(c)+o(1))(n2),

and thus, by Theorem 1.2,

P[G(n, p) ∈ Forb∗
n(C5)] = 2(maxc gp(c)+h(c)−H(c)+o(1))(n2).

The maximum is attained at c = p/2 for p < 1/2 and c = (p + 1)/2 for p > 1/2. For p = 1/2

all values c ∈ [1/4, 3/4] are optimal. Inserting the optimal value for c shows that the exponent is
indeed equal to cp as computed in [22]. This indicates that, for example, a graph from G(n, 1/4)

that happens to be induced C5-free will a.a.s. have (1/8 + o(1))
(
n
2

)
edges. Thus the G(n, m) model

can also be used to derive that a typical element having a certain property might be far from a
typical element in G(n, p).
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Extensions
The final thing to consider is whether more can be said about Forb∗

n(F, c) in the G(n, m) model.
Indeed, there are at least three natural ways to enhance our results. First one might want to count
Forb∗

n(F, c) for graphs F other than C5. But already the case of a forbidden induced C7 is more
challenging, as tight upper bounds as in Lemma 2.12 are not so easy to derive. Furthermore, h(c)
does not seem to be unimodal for C7.

Second, it would be interesting to obtain even sharper asymptotic bounds for the speed of
Forb∗

n(F, c). Alon, Balogh, Bollobás and Morris [2] determine the speed of some hereditary
properties up to a subquadratic term in the exponent. We believe their techniques can be extended
to the case of restricted density.

Finally one might want to prove a much better constant in the size of the linear homogeneous
sets that can be found in almost all graphs in Forb∗

n(C5, c). It easily follows from the fact that
almost all graphs in Forb∗

n(C5) are generalized split graphs (see [19]) that almost all of them also
have a homogeneous set of size (1/2 − o(1))n. We believe that the same is true for the density-
restricted case, and that this can be proved as in Theorem 1.3 combined with a stability-type
argument. We plan to return to this in the near future.
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