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Downscale energy fluxes in scale-invariant
oceanic internal wave turbulence
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We analyse analytically and numerically the scale-invariant stationary solution to the
internal-wave kinetic equation. Our analysis of the resonant energy transfers shows that
the leading-order contributions are given (i) by triads with extreme scale separation and
(ii) by triads of waves that are quasi-collinear in the horizontal plane. The contributions
from other types of triads is found to be subleading. We use the modified scale-invariant
limit of the Garrett and Munk spectrum of internal waves to calculate the magnitude of the
energy flux towards high wavenumbers in both the vertical and the horizontal directions.
Our results compare favourably with the finescale parametrization of ocean mixing that
was proposed in Polzin et al. (J. Phys. Oceanogr., vol. 25, issue 3, 1995, pp. 306–328).

Key words: internal waves, ocean processes, wave-turbulence interactions

1. Introduction

Internal waves are the gravity waves that oscillate in the bulk of the stratified ocean due
to the modulation of surfaces of constant density. Internal waves are ubiquitous in the
ocean, contain a large amount of energy and affect significantly the processes involved in
water mixing and transport. Understanding the role played by internal gravity waves in
the energy budget of the oceans represents a major challenge in physical oceanography,
intimately related to the quantification of ocean mixing (Ferrari & Wunsch 2008; Polzin
et al. 2014). Internal waves constitute a highly complex problem, involving scales from
few metres to hundreds of kilometres, and periods ranging from a few minutes up to
days. The processes that supply energy to and remove energy from internal waves include
interactions with surface gravity waves, mesoscale eddies, scattering of the tidal flow from
the bottom topography, overturning of wave fronts and wave breaking. These pumping
and damping processes are characterized by vastly different spatial and temporal scales.
Despite this enormous complexity, the spectral energy density of internal waves is thought
to be pretty universal, and is given by what is now called the Garrett and Munk spectrum of
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internal waves. First proposed in 1972 (Garrett & Munk 1972), then subject to subsequent
revisions (Garrett & Munk 1975; Cairns & Williams 1976; Garrett & Munk 1979), the
Garrett and Munk spectrum (GM, from now on referring to the 1976 version) has since
become the accepted default choice to quantify the oceanic internal wave field. Since
then substantial deviations, both seasonal and regional, were documented (notably near
boundaries (Wunsch & Webb 1979; Polzin 2004; Polzin & Lvov 2011), and at the equator
(Eriksen 1985)). Nonetheless, the GM spectrum has survived to our day as the standard for
intercomparison of different data sets, to the amazement of Chris Garrett and Walter Munk
themselves (von Storch & Hasselmann 2010), providing the baseline for generalizations
that try to account for the observed variability (Polzin & Lvov 2011).

The spectral energy fluxes in the oceanic internal wave field have been a subject of
intense investigation in the last four decades (Olbers 1973; McComas & Bretherton 1977;
Müller et al. 1986; Polzin, Toole & Schmitt 1995). Understanding these energy fluxes
is crucial for climate modelling and predictions, since internal waves are not resolved
in global circulation models (GCM) and they are replaced by simple phenomenological
formulas (MacKinnon et al. 2017). One of such broadly used expressions is the finescale
parametrization formula derived in Polzin et al. (1995).

In this paper, we use the wave-turbulence theory for internal gravity waves developed
in Lvov & Tabak (2001), Lvov & Tabak (2004), Lvov et al. (2010) and Lvov & Yokoyama
(2009) and reviewed in Polzin & Lvov (2011) to analyse these energy fluxes towards high
wavenumbers. We assume that the spectral energy density of internal waves is given by
a simple scale-invariant solution, that was found in Lvov et al. (2010), (hereafter, the
convergent stationary solution of the internal-wave kinetic equation, (3.9) in the body
of the paper). Interestingly, this scale-invariant spectrum is close to the scale invariant
limit of the famous GM spectrum of internal waves (Garrett & Munk 1972; Cairns
& Williams 1976; Garrett & Munk 1979), see (2.3) in the body of the paper. Thus,
slightly adjusting the GM spectrum so that its scale-invariant limit matches the power-law
behaviour of the convergent stationary solution, we compute the energy flux via the
collision integral of the wave kinetic equation. This collision integral contains complete
information concerning resonant spectral energy transfers. The computation of the flux is
performed numerically. Our expression for these energy fluxes compares favourably with
the finescale parametrization formula put forward in Polzin et al. (1995).

To characterize the energy fluxes towards high wavenumbers, we investigate the
formation of the stationary-wave spectra in the kinetic equation. We therefore analyse
and classify the contributions of the various resonant triads that contribute to the
kinetic equation. The importance of triads with extreme scale separation were previously
identified in the literature (McComas & Bretherton 1977) and named induced diffusion
(ID), parametric subharmonic instability (PSI) and elastic scattering (ES). In addition, we
point out an additional class of important interactions that are collinear, or almost so, in the
horizontal plane, which appear to contribute significantly to the formation of the stationary
state and the fluxes of energy.

The paper is written as follows. In § 2, we give the reader the relevant background
along with a necessarily brief literature review. In § 3, we analyse the convergence
conditions of the collision integral at the infrared and the ultraviolet limits. We perform a
rigorous numerical integration paying special attention to accurately integrate integrable
singularities of the kinetic equation kernel. We also analyse in detail the nature of the
interacting triads contributing to the stationary scale-invariant solution of the kinetic
equation. An analytical and numerical analysis of these various contributions is presented
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in § 4, highlighting the main physical mechanisms at play. In § 5, we compute the energy
fluxes toward the small scales and thereby quantify the total dissipated energy. Finally, we
summarize our results in § 6.

2. Background material

2.1. Internal waves and the GM spectrum
Garrett and Munk have observed that the internal-wave spectrum is separable in
frequency-vertical wavenumbers. In other words, it can be accurately represented as a
product of a function of frequency and a function of vertical wavenumber. The GM energy
spectrum is therefore represented in the two-dimensional domain of vertical wavenumber
m with m ∈ [mmin, mmax] and frequency σ with σ ∈ [ f , N] as

eGM(m, σ ) = N0Nb2EA(m)B(σ ), (2.1)

A(m) = 2
π

m�

m2
� + m2 , B(σ ) = 2f

π

1

σ
√

σ 2 − f 2
, m�=3π

b
N
N0

, (2.2a,b)

normalized in such a way that
∫ mmax

mmin
A(m) dm � ∫∞

0 A(m) dm = 1,
∫ N

f B(σ ) dσ �∫∞
0 B(σ ) dσ = 1, and the total energy density (per unit mass) is therefore given by

N0Nb2E, in units of J kg−1. Here N and N0 = 0.00524 s−1 are, respectively, the buoyancy
frequency and the reference buoyancy frequency, f = 2 × 7.3 × 10−5 sin(l) s−1 is the
Coriolis parameter computed at latitude l = 32.5◦, b = 1300 m is the scale height of
the ocean, E = 6.3 × 10−5 is the GM specification of the non-dimensional energy level
and m� is a reference vertical wavenumber. Furthermore, mmin = 2π(2600 m)−1, mmax =
2π(10 m)−1 are the physical cutoffs imposed by the ocean depth and by wave breaking,
respectively.

2.2. Wave-turbulence interpretation of the GM spectrum
Despite the GM far reaching combination of simplicity and descriptive power of
available field measurements, its phenomenological nature does not necessarily provide
an explanation to the underlying physics. Since the 1970s, the concept of nonlinear
interactions has become the leitmotiv in the search for a physical interpretation of the GM
spectrum starting from the primitive equations of a stratified ocean (Olbers 1973, 1976;
McComas & Bretherton 1977; Pelinovsky & Raevsky 1977; Voronovich 1979; McComas
& Müller 1981; Holloway et al. 1986; Müller et al. 1986; Caillol & Zeitlin 2000; Lvov &
Tabak 2001). The quadratic nonlinearity in the primitive fluid equations and a dispersion
relation allowing for three-wave interactions imply that internal waves interact through
triads. In a weakly nonlinear regime, three-wave resonant interactions are responsible
for slow, net energy transfers between different wavenumbers (Davis et al. 2020). This
process can be described by a wave kinetic equation, the evolution equation of the action
spectrum of the internal wave field (Hasselmann 1966; Zakharov, L’vov & Falkovich 1992;
Nazarenko 2011). In the present paper, we use the three-dimensional wavenumber domain
p = (k, m), where k and m are the horizontal and the vertical wavenumbers, respectively.
Note that k is a two-dimensional horizontal wave vector and we define its norm as k := |k|.
The dispersion relation of internal gravity waves is given by σ 2

p = f 2 + N2(k2/m2), which
can be used to switch from one domain to the other, since only two of the three variables
k, m and σ are independent. The action spectrum n(k, m) is related to the energy spectrum
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e(k, m) (now both intended as three-dimensional spectra) via e(k, m) = σn(k, m), where
for simplicity we use the quantities in brackets to specify the domain of dependence
of the quantity of interest. We assume horizontal and vertical isotropy, so that we have
e(m, σ ) = 4πke(k, m)(dσ/dk)−1, after integrating over the horizontal azimuthal angle
and considering a positive definite m. Considering the scale-invariant (or non-rotating)
limit f � σ � N, which yields the scale-invariant dispersion relation (here defined as the
positive branch) σ = Nk/|m|, (2.1) transforms into

nGM(k, m) = 1
π3

Eb2N0 fm�

N
k−4, (2.3)

which represents the non-rotating limit of the GM three-dimensional action spectrum, in
the horizontal wavenumber–vertical wavenumber domain.

The wave-turbulence theory for internal waves was revisited with the generalized
random phase and amplitude formalism (Choi, Lvov & Nazarenko 2004, 2005; Nazarenko
2011) in the series of works (Lvov & Tabak 2001; Lvov, Polzin & Tabak 2004; Lvov
et al. 2010), where the internal-wave kinetic equation was derived starting from the
primitive equations of motion in hydrostatic balance by using isopycnal coordinates. A
detailed review is found in the introductory paragraphs of Lvov et al. (2010) and will
not be repeated here. The main steps can be schematized as follows: (i) the primitive
equations of a vertically stratified ocean in hydrostatic balance and with no background
rotation are rewritten in isopycnal coordinates under the Boussinesq approximation.
The scale-invariant limit of the dispersion relation in the new variables reads (with no
background rotation)

σ(k, m) = g
ρ0N

k
|m| , (2.4)

where g is the acceleration of gravity, ρ0 is the reference density and the vertical
wavenumber m is now an inverse density. (ii) In the isopycnal formulation, the equations
of motion are reduced to Hamiltonian form for the two conjugate fields φ and Π , the
velocity potential and the normalized differential layer thickness. (iii) The machinery of
wave turbulence is applied by switching to Fourier space and introducing the complex
canonical normal variables cp and c∗−p, representing complex amplitudes of the normal
modes of the system. Under the assumption of spatial homogeneity, the action spectral
density is defined as

〈cp1c∗
p2

〉 = np1δp1−p2, (2.5)

where δ(·) is a Dirac delta, and the angular brackets denote averaging on a suitably
defined statistical ensemble: under the standard assumptions of random phases and
amplitudes (Zakharov et al. 1992; Nazarenko 2011), in the joint limit of large box and
small nonlinearity the following wave kinetic equation is derived, assuming isotropy in
the horizontal plane (for simplicity, here written in the non-rotating limit):

∂np

∂t
= 8π

k

∫ (
f p
12|Vp

12|2δm−m1−m2δσp−σ1−σ2

kk1k2

Δp12
− (0 ↔ 1) − (0 ↔ 2)

)

× dk1 dk2 dm1 dm2, (2.6)

where np = n(k, m; t) is the three-dimensional action spectrum defined in (2.5), f p
12 =

n1n2 − np(n1 + n2), Vp
12 is the matrix element describing the magnitude of nonlinear

interactions between the triad of wavenumbers p, p1 and p2, given below by (3.3).
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Furthermore, the two delta functions impose the conservation of vertical momentum and
energy in each three-wave interaction. The Δp12, given by (3.2), is a factor coming from
integration of the horizontal momentum delta function, proportional to the area of the
triangle with sides k, k1 and k2. (iv) The wave kinetic equation (2.6) with dispersion
relation (2.4) is fully scale-invariant and the consequent theory of power-law spectra
(Zakharov et al. 1992) was worked out in Lvov et al. (2010). Assuming a solution of type

np ∝ k−a|m|−b, (2.7)

the stationary solution corresponding to constant energy flux, i.e. the Kolmogorov–
Zakharov (KZ) spectrum, can be derived by Zakharov–Kuznetsov conformal mapping
(Zakharov et al. 1992) yielding a = 7/2, b = 1/2:

nPR(k, m) = k−(7/2)m−(1/2). (2.8)

Such a solution was derived in Pelinovsky & Raevsky (1977) and again in Lvov & Tabak
(2001) and is known as the Pelinovski–Raevski (PR) spectrum. (v) A KZ spectrum is
a valid solution of the wave kinetic equation if and only if the locality conditions are
satisfied, i.e. when the collision integral on the right-hand side of the wave kinetic equation
converges. It turns out that this is not the case for the PR spectrum; more precisely, in
the a − b power-law space Lvov et al. (2010) found that the collision integral converges
only on the segment b = 0, 3.5 < a < 4. (vi) On this convergence segment, it was shown
by direct numerical integration that the collision integral is zero for a � 3.7, locating the
scale-invariant stationary solution of the wave kinetic equation at the point a = 3.7, b = 0.
Since this is not far from the a = 4, b = 0 point of (2.3), such a solution has therefore been
put forward as the possible theoretical explanation of the GM spectrum provided by wave
turbulence.

In the present work. we use the wave-turbulence kinetic equation to analyse how
the stationary scale-invariant internal-wave spectrum is formed, and we calculate
the corresponding energy fluxes related to this spectrum. This quantity is modelled
phenomenologically, as interpretation of the available data, by what is known as the
finescale parametrization of the oceanic turbulent mixing (Polzin et al. 1995, 2014;
Whalen, Talley & MacKinnon 2012; MacKinnon et al. 2017; Liang et al. 2018), and
represents a fundamental building block of the GCM.

3. The convergent stationary solution of the wave kinetic equation

Our starting point is the scale-invariant wave kinetic equation (2.6). In Lvov et al. (2010),
the locality conditions on the exponents a, b of (2.7) were computed, yielding convergence
conditions b = 0, 3.5 < a < 4. We repeated those calculations, confirming that for b /= 0
the collision integral is divergent, i.e. corresponds to interactions that are non-local in
Fourier space, because of divergence in the infrared or the ultraviolet limits, or both. In
the present paper, we focus our attention to the case b = 0. We recompute the leading
order of the integrand at the boundaries of the kinematic box, showing that the infrared
convergence condition gives a < 4 and the ultraviolet convergence condition gives a > 3.
The combination of the two conditions yields a convergence segment 3 < a < 4, different
from the condition 3.5 < a < 4 found in Lvov et al. (2010). The correction to the previous
result is due to a second exact cancellation in the ultraviolet divergence, previously
undetected. We use a rigorous numerical procedure, with details in the supplementary
materials available at https://doi.org/10.1017/jfm.2021.99 (Dematteis & Lvov 2020), to
compute the integrable singularities accurately by exploiting the analytical knowledge of
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the leading-order terms. By direct numerical computation, we numerically confirm that
on the convergence segment the collision integral tends to −∞ as a → 3+, due to the
ultraviolet divergence, and it tends to +∞ as a → 4−, due to the infrared divergence.
Moreover, it is monotonically increasing with a, crossing zero at a = 3.69. Numerical
convergence is checked to a high degree of accuracy. The independent computation of
the convergent stationary spectrum a = 3.69, b = 0 is the first important result of the
paper, confirming the previous result in Lvov et al. (2010), although a correction to the
convergence segment has been made.

3.1. Locality conditions
Let us consider the wave kinetic equation of internal gravity waves in a non-rotating frame,
in hydrostatic balance, and in the scale-invariant limit. This is described by (2.6), with the
dispersion relation (2.4), expressed in isopycnal coordinates. By integrating analytically
the two remaining Dirac deltas, we simplify the collision integral, reducing it to a double
integral. The wave kinetic equation thus takes the following form:

∂tnp = I(k, m; a, b) :=
∫ ∞

0
dk1 dk2J (k, k1, k2, m),

J (k, k1, k2, m) = 8π

k
(Rp

12 f p
12 − R1

p2 f 1
p2 − R2

p1 f 2
p1),

Rp
12 = kk1k2|Vp

12|2/(|gp
12

′|Δp12).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.1)

Here f p
12 = n1n2 − np(n1 + n2) and the area of the triangle of sides k, k1, k2, coming from

integration over angles under the assumption of isotropy, is given by

Δp12 = 1
2

√
2(k2k2

1 + k2k2
2 + k2

1k2
2) − k4 − k4

1 − k4
2. (3.2)

The expression of the matrix elements reads (Lvov et al. 2010)

Vp
p1p2

=
√

kk1k2

(
k2 + k2

1 − k2
2

2kk1

√∣∣∣∣ m�
2

mm�
1

∣∣∣∣+ k2 + k2
2 − k2

1
2kk2

√∣∣∣∣ m�
1

mm�
2

∣∣∣∣
+k2 − k2

1 − k2
2

2k1k2

√∣∣∣∣ m
m�

1m�
2

∣∣∣∣
)

, (3.3)

gp
12

′ = sign(m�
1)k1

(m�
1)

2 − sign(m�
2)k2

(m�
2)

2 , (3.4)

where m�
1, m�

2 are given by the solution of the resonance conditions, i.e. the joint
conservation of momentum and energy in each triadic interaction. Thus, in the
four-dimensional space spanned by k1, k2, m1, m2, the problem is now restricted to the
resonant manifold, parametrized by two independent variables k1 and k2 as summarized in
table 1.

Note the symmetries of the resonant manifold: the solution (Ia) is obtained from solution
(Ib) through permutation of the indices 1 ↔ 2. We also notice that solutions (IIa), (IIb)

reduce to solutions (IIIa), (IIIb), respectively, under permutation of the indices 1 ↔ 2.

915 A129-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

99
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.99


Downscale energy fluxes in oceanic internal wave turbulence

Label Resonance condition Solutions

(Ia), (Ib)

⎧⎨
⎩

p = p1 + p2
k

|m| = k1

|m1| + k2

|m − m1|

{
m�

1 = m
2k

[k ± k1 ± k2 ±
√

(k ± k1 ± k2)2 ∓ 4kk1]

m�
2 = m − m�

1

(IIa), (IIb)

⎧⎨
⎩

p1 = p + p2
k1

|m1| = k
|m| + k2

|m1 − m|

{
m�

2 = − m
2k

[k ∓ k1 − k2 +
√

(k ∓ k1 − k2)2 + 4kk2]

m�
1 = m + m�

2

(IIIa), (IIIb)

⎧⎨
⎩

p2 = p + p1
k2

|m2| = k
|m| + k1

|m2 − m|

{
m�

1 = − m
2k

[k − k1 ∓ k2 +
√

(k − k1 ∓ k2)2 + 4kk1]

m�
2 = m + m�

1

Table 1. The six independent solutions to the resonance conditions (Lvov et al. 2010).

Based on the condition b = 0 in (2.7), we consider a scale invariant solution which is
horizontally isotropic and independent of the vertical wavenumber:

np = n(p) ∝ k−a. (3.5)

Since the collision integral is scale invariant in k, it is sufficient to calculate it for a fixed
value (e.g. k = 1 for simplicity), and then retrieve the solution for any value of k by using
the scale-invariance relation involving the homogeneity degree of the collision integral.

Integration is performed in the kinematic box, defined by the three triangular relations:
k + k1 ≥ k2, k1 + k2 ≥ k, k + k2 ≥ k1. We differentiate three different regions of the
kinematic box: near-collinear region (AC and BC), extreme scale-separated region (the
infrared region IR and the ultraviolet region UV), and the region of unclassified triads,
denoted as (AU and BU), as shown in figure 1. Here, AC and BC are named near-collinear
regions since the resonant triads tend to the collinear limit approaching their boundary
given by k2 = |k1 − k|, a relationship that can be fulfilled only by degenerate triangles
with their sides lying on the same line. The thickness of the regions AC and BC is
given by the parameter kIR: small values of kIR imply that the resonant triads inside
these regions are close to the collinear limit. We refer to IR and UV as the extreme
scale-separated regions: for the triads in IR, two wavenumbers have finite horizontal
momentum, and one wavenumber has vanishing horizontal momentum. For the triads
in UV, two wavenumbers have very large horizontal momentum, and one wavenumber
has a much smaller horizontal momentum. All the possible resonances in IR and UV
constitute the so-called named triads. Finally, AU and BU include all the non-collinear,
unclassified triads.Exploiting symmetries, the right-hand side of (2.6), which we denote
by I(k, m; a, b) after introducing the ansatz (2.7), can be reorganized as follows:

I(k, m; a, b) =
[∫

AC

+
∫

AU

+2
(∫

BC

+
∫

BU

+
∫

IR
+
∫

UV

)]
J (k, k1, k2, m) dk1 dk2,

(3.6)

where a sum over the six solutions to the above resonance conditions is implicit. With
b = 0, the conditions on the exponent a for convergence of the collision integral on the
right-hand side of (3.1) come from the infrared (IR, red in figure 1) and the ultraviolet
(UV, dark blue in figure 1) regions of integration. The details for the computation of the
following results are given in the supplementary materials (Dematteis & Lvov 2020). Both
singularities involve a first and a second cancellation between equal and oppositely signed
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0 1

AU
AC

IR

UV

BU

BC

2 3 4 5 6 7

1

2

3

k1

k2 4

5

6

7

Figure 1. The kinematic box is split into subregions: AC (light blue), AU (yellow), BC (green), BU (orange), IR
(red), UV (blue). Here, AC and BC are the near-collinear regions, IR and UV are the extreme scale-separated
regions, and AU and BU are the unclassified regions. A suitable Zakharov–Kraichnan transformation, see
(4.1a,b), maps the regions BC and BU into AC and AU , respectively.

leading terms. For the infrared contribution, we obtain

IIR � −16πak−2a+4m
∫ kIR/k

0
dx
∫ x

−x
dy x−a−1 y2( y2 − x2)√

x2 − y2
= 2π2 a

4 − a
mk−ak−a+4

IR ,

(3.7)

where kIR is the (small) height of the red region in figure 1. The integral converges if
a < 4. Also notice that the integral is positive. For the ultraviolet contribution, we obtain

IUV � −32πak−2a+4m
∫ k/kUV

0
dx
∫ x

0
dy

k2

x3 xa−8
[
(x − y)4 + x2(x − y)2

]
/
√

(2x − y)y

� −14π2 a
a − 3

k−a+1mk3−a
UV , (3.8)

where kUV is the k1 coordinate of the left boundary of the ultraviolet region. The integral
converges when a > 3. Note that this contribution is negative, providing possibility for this
contribution to balance the positive contribution from (3.7). This observation will later be
exploited in § 4.2 to find the steady-state solution composed of a balance of infrared and
ultraviolet contributions. The contribution (3.7) is given by the resonance conditions (Ia)
and (IIa), the infrared ID resonances, while the contribution (3.7) is given by the resonance
conditions (IIb) and (IIIc), the ultraviolet ID resonances. Both ES and PSI resonances turn
out to be subleading.

3.2. Numerical solution: a = 3.69
Straightforward numerical integration can be performed only in AU and BU , since close to
the boundaries the integrand contains integrable singularities. For this reason, numerical
integration is performed adopting the following technique for integrable singularities
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(Heath 2002). We take the leading-order singularity of the integrand, integrate it
analytically and add the numerical integral of the difference between the integrand and the
leading-order singularity. This way, the integrable singularities are integrated analytically
rather than numerically, ensuring accurate results. Notice that a singular behaviour is found
not only in the infrared and ultraviolet regions, but also in the collinear regions, due to the
vanishing denominator Δp12. The vanishing of denominator occurs because the area of a
triangle with collinear sides tends to zero. The detail of the procedure for each of the five
regions is found in the supplementary materials (Dematteis & Lvov 2020).

To convince the reader that the numerical integration is performed accurately, we show
that the discretized integral is independent of the step size of the discretization grid for
sufficiently fine grid. This is demonstrated in the supplementary materials (Dematteis
& Lvov 2020).The width of the regions around k2 = 0 is determined by the parameter
kIR, while the cut at large k’s is performed at k1 = kUV. For the result to be general, it
must be independent of the choice of kIR and kUV, as long as they are finite numbers, kIR
being sufficiently small and kUV sufficiently large. It turns out this is indeed the case in
our numerics. In the supplementary materials (Dematteis & Lvov 2020), we show how
convergence is reached as kUV increases, as the neglected contribution in UV vanishes.
Independence of the result upon variations of kIR is even more robust.

According to our results, the stationary spectrum of internal waves is given by

n(k, m) ∝ k−a0, a0 � 3.69. (3.9)

The result in figure 2, obtained with a choice kUV = 1/kIR = 16, confirms convergence of
the collision integral for 3 < a < 4: divergence of the integral is found both as a → 3+ and
a → 4−. In figure 2, we show the contributions of each region of the kinematic box. The
a = 3 divergence is negative and due to the region UV (ultraviolet). The contribution of
UV is always negative and tends to zero as a → 4. On the other hand, the a = 4 divergence
is positive and due to the region IR. The contribution of IR is always positive and tends
to zero as a → 3. At the stationary solution a = a0, the contributions of IR, AU , BU , UV
are close to zero, while the contributions of AC (positive) and BC (negative) are large and
cancel out. Notice that the results are obtained for AC and BC being thin slices of width
1/16: the points in the collinear region correspond to triads of wave vectors that have
angles between each other’s horizontal components of 3◦ or less!

Let us consider an arbitrary reference number k = 1. The sign of the integrand in
figure 2(b) indicates the direction of the energy transfers. We see from figure 2 that the
contribution from the wavenumbers with k1 < 1 is positive. Therefore, there is a net
energy flow from wavenumbers smaller than reference number k = 1 to the reference
wavenumber k = 1. On the other hand, the contribution from the wavenumbers with
k1 > 1 is negative. Consequently the wavenumber k = 1 constantly pumps energy towards
higher wavenumbers. Therefore, we conclude that the energy transfer is directed towards
high horizontal wavenumbers. We elaborate on this further in § 5.

The outflowing energy from the small-wavenumber near-collinear triads is balanced by
the inflowing energy at the large-wavenumber near-collinear triads, implying a stationary
flow mediated by k = 1, which is represented as a thick arrow in figure 2. The outflowing
energy from the infrared region is balanced by the inflowing energy entering the ultraviolet
region, giving a stationary energy flow between these two regions mediated by k = 1. This
energy transfer is represented as a thin directed arrow connecting the two regions. The
quantitative justification of the balance is given by figure 2(a).

The value of the exponent appears to be characterized importantly by a balance of the
regions AC and BC. This suggests that a suitable transformation mapping one region into
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Figure 2. (a) Contributions of each subregion (as split in (3.6)) to the integral for b = 0 and varying a. (b) The
base-10 logarithm of the magnitude of the integrand is shown, for the solution a = 3.69, b = 0. The colourmap
labelled by the left colourbar indicates negative values, and the right colourbar indicates positive values. Also,
we show here the schematic representation of the downscale energy transfers. The thicker arrow represents the
stationary transfer between near-collinear regions, and the thinner arrow between regions with extreme scale
separation. The fluxes of energy are explained in § 5.

the other could potentially make the search for the steady self-similar spectrum amenable
to analytical treatment. This task is addressed in the next section.

4. Analysis of the contributions to the stationary solution

We consider the reorganized expression of the collision integral in (3.1). Let us introduce
the following Zakharov–Kraichnan transformations:

{
k1 = k2

k̃1
k2 = kk̃2

k̃1
,

{
k2 = k2

k̃2
k1 = kk̃1

k̃2
, (4.1a,b)

and notice that under the first transformation the regions BC and BU are mapped into AC
and AU , respectively, if the choice kUV = k2/kIR is made. In the following, we consider
the contributions from the three types of regions (near-collinear, extreme scale-separated
and unclassified) separately, with the goal of locating the regions and the resonances that
matter the most and the ones that are negligible.

4.1. Collinear limit
We start by analysing the contributions in the regions AC and BC by decomposing them
into separate subcontributions from the three resonance types (I), (II) and (III) (see
table 1). The different contributions are plotted in figure 3. We realize that in the region
AC the leading contribution is given by the resonance condition (I), while in region BC the
leading contribution is given by the resonance condition (II). Let us consider only these
two contributions, naming them the main collinear contributions:

IAC + 2IBC �
∫ 1−kIR

kIR

dk2

∫ kIR

0
dx

Tk
k1,k−k1√

2kk1(k − k1)x
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Figure 3. The contributions from AC (a), and BC (b) (the latter multiplied by 2 to account for its symmetric B′
C

by permutation k1 ↔ k2) are split into their subcontributions from the three resonance types, showing that AC
is dominated by the contribution (I), while BC is dominated by the contribution (II). Computing the balance
between these two contributions leads to a theoretical estimate a = 7/2.

−
∫ kUV

1+kIR

dk2

∫ kIR

0
dx

Tk1
k,k1−k√

2kk1(k1 − k)x

−
∫ kUV

1+kIR

dk2

∫ kIR

0
dx

Tk2
k,k2−k√

2kk2(k2 − k)x
, (4.2)

where T0
12 = kk1k2|V0

12|2f 0
12/|g0

12
′|. Transforming the integral into an integral in the region

AC, by using the symmetries of (4.1a,b) (with kUV = k2/kIR) and the scale-invariant
properties of the integrand, we obtain (renaming k̃1 → k1, k̃2 → k2)

IAC + 2IBC �
∫ kIR

0
dx
∫ 1−kIR

kIR

dk2
Tk

k1,k−k1√
2kk1(k − k1)x

[
1 −

(
k
k1

)r+3

−
(

k
k2

)r+3
]

,

(4.3)

where r is the degree of homogeneity of the integrand: r = 3 − 2a (same dependence
on k as in the computation of the PR spectrum). We used the property of the
Zakharov–Kraichnan transformation for an homogeneous function of degree r with respect
to horizontal wave numbers:

J (k1, k, k2, m) = J
(

k

k̃1
k,

k

k̃1
k̃1,

k

k̃1
k̃2, m

)
=
(

k

k̃1

)r

J (k̃, k̃1, k̃2, m), (4.4)

and a factor (k/k̃1)
3 appeared due to the Jacobian of the coordinate change. Now, we

notice that if r + 3 = −1, the integrand contains a factor [k − k1 − k2]. Since we are
considering the near-collinear region, horizontal momentum conservation implies that
such a factor vanishes (more precisely, it would vanish in the limit kIR → 0): AC is a
thin slice lying on the line k2 = k − k1. Therefore, we have that IAC + 2IBC = 0 for
6 − 2a = −1, which determines the value of a = 7/2 as the critical exponent. We have
therefore found analytically the steady-state solution for the reduced kinetic equation
dominated by the balance between the contribution of type (I) in the region AC and the
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Figure 4. (a) The net contribution of the three types of triads, showing that each type balances to zero
independently at the convergent stationary solution. (b) Relative error of (3.8) with respect to the fully
numerically integrated contribution of region UV. Around a = 3.7, we see that a choice of kUV = 16 (y = 4)
implies an error of approximately 2 %, which we consider acceptable. Thus, we consider kUV = 16 as a
reasonable delimitation of the ultraviolet region, as well as kIR = 1/16 as the delimitation of the infrared
region.

contribution of type (II) in the region BC, which are the largest contributions from the
near-collinear regions. This solution is therefore given by

n(k, m) = k−(7/2)m0. (4.5)

Since this solution is close to the PR spectrum (2.8), we propose to call this solution
the modified PR spectrum. The difference between (4.5) and (2.8) is that the latter is
the formal solution, corresponding to a non-local spectrum (i.e. implying a divergent
collision integral). The former solution, on the other hand, is a physically relevant solution
corresponding to a local action spectrum (i.e. whose collision integral is finite). Note,
however, that a part of the resonances have been neglected.

The result a = 7/2 coming from the collinear limit of (4.3) involves only the two leading
contributions in figure 3. This observation provides an intuition on how the exponent a is
determined by the kinetic equation. The sum of the subdominant contributions in figure 3
is negative and almost independent of a. When added to the main contribution crossing
zero at a = 7/2, this negative contribution makes the zero-crossing point shift toward the
right and in figure 4(a) the total collinear contribution is shown to cross zero at a � 3.69.

4.2. Extreme scale-separated triads
In this section, we consider the contribution that comes from the extreme scale-separated
triads, the sum of the infrared and the ultraviolet contributions. The former is positive
and tends to +∞ as a → 4−; the latter is negative and tends to −∞ as a → 3+. In
figure 4(a), we show the total contribution of the extreme scale-separated resonances and
we observe numerically that it crosses zero around a � 3.69, too.In § 3.1, we proposed
a balance between positive infrared (3.7) and negative ultraviolet (3.8) contributions as
a way to form the steady-state spectrum of internal waves. This balance hinges upon the
choice kUV = k2/kIR, as explained in § 4.1.

In figure 4, we show the relative error of the leading-order analytical expression
(3.8), with respect to the numerically computed contribution, as a function of kUV.
The result is shown for a = 3.5 and a = 3.7. Using the expression kUV = 2y, with
k = 1, we observe that the analytical approximation is good starting from values of
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y between 4 and 5. We choose y (and therefore kUV and kIR) large enough for an accurate
approximation with the leading-order expression (3.8) (or (3.7)), yet small enough so that
all extreme scale-separated triads (3.8) and (3.7) are actually included in the ultraviolet
and infrared regions. We make an arbitrary choice y = 4 (kUV = 1/kIR = 16) so that the
leading-order error of (3.7) and (3.8) is approximately 2 % (see figure 4). Our results are
insensitive to this specific choice. The balance between the two expressions gives

2π2 a
4 − a

k4−a
IR = 14π2 a

a − 3
1

k3−a
IR

hy(a) := (2a − 7)y log 2 = log 7 + log
(

4 − a
a − 3

)
=: g(a).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.6)

First, we notice that the presence of a factor 7 on the right-hand side breaks the symmetry
that would imply the two contributions balance out at a = 7/2, in the middle of the
convergence interval (3, 4). Secondly, we notice that the function g(a) has an inflection
point at a = 7/2, making its Taylor expansion of first order have an error of third order.
Using linear interpolation centred at a = 7/2, g7/2(a) = log 7 − 2(2a − 7), as an accurate
approximation to g(a), demanding that hy(a) = g7/2(a), we obtain

a = 7
2

+ log 7
2y log 2 + 4

. (4.7)

If we adopt y = 4, as chosen throughout the paper, we obtain the solution a � 3.70. Using
y = 5 would yield a solution a � 3.68.

In this section, we have shown how the formation of the stationary solution of the wave
kinetic equation can be interpreted via two independent balances, between near-collinear
triads and between the ID triads of the extreme scale-separated regions. This is consistent
with recent results from direct numerical simulations where the dominating interactions
were located in the ID regime but also throughout all of the interval k1 ∈ [0, 1.4k] (Pan
et al. 2020). Despite the latter effect was investigated in Pan et al. (2020) as a broadening of
ID due to large nonlinearity, we find that it may be consistent with the collinear resonances
depicted in figure 2(b).

5. Downscale energy transfers

5.1. Physical dimensions and energy conservation
Using the scale-invariant properties of the collision integral, the right-hand side of (3.1)
can be rewritten considering the appropriate physical dimensions as

I(k, m) = |m|−2b+1k−2a+4(V0A)2I(k = 1, m = 1; a, b), (5.1)

where I(k = 1, m = 1; a, b) is non-dimensional, V0 is the dimensional prefactor of the
matrix element defined below in (5.5) and A is the prefactor of the GM spectrum defined
in (2.2a,b) above. A simple way to check the dimensional consistency of the prefactor in
(5.1) is to consider the contribution from the extreme scale-separated region, (4.6), which
is analytically tractable:

2π2 a
4 − a

k−ak4−a
IR − 14π2 a

a − 3
k−a+1

k3−a
IR

= mk−2a+4
(

2π2 a
4 − a

x4−a
IR − 14π2 a

a − 3
xa−3

IR

)
, (5.2)
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where xIR = kIR/k and the term in brackets is a non-dimensional function of the exponent
a that vanishes at a = a0. The factor (V0A)2 comes from having both the matrix elements
and the spectrum to the second power in the collision integral, and by introducing
the appropriate dimensional constants that have been omitted so far. The dimensional
properties of the collision integral are indeed the same also in the other integration regions.

Next, we compute the spectral energy fluxes, recalling that the energy density is given
by

e(k, m) = 2πkσ(k, m)n(k, m), σ (k, m) = α
k

|m| , with α = g
ρ0N

, (5.3a,b)

where the scale-invariant dispersion relation (2.4) is used. Using (5.1), the stationary-wave
kinetic equation for the energy density assumes the simple form

ė(k, m) = 2π(AV0)
2k−2a+6m−2bI(k = 1, m = 1; a, b) = 0. (5.4)

5.2. Dimensional prefactors
The dimensional factor coming from the matrix elements in (5.1) is given by

|V0|2 = N
32ρ0

. (5.5)

The factor A is the dimensional prefactor of the GM spectrum, our observational input
for the oceanic wave field. The procedure to obtain A is explained in the rest of this
paragraph. The non-rotating limit of the GM spectrum in k − m coordinates is given by
(2.3). However, in isopycnal coordinates the spectrum needs to be multiplied by a factor
N2ρ0/g, which gives

nGM(k, m) = 1
π3g

Eb2N0Nρ0fm�k−4, m�=3π
N

bN0
, (5.6)

where E = 6.3 × 10−5 is the non-dimensional energy level, b = 1300 m, ρ0 = 1000 kg
m−3, N0 = 0.00524 s−1 and f = 2 · 7.3 × 10−5 sin(l) (at latitude l = 32.5◦). (A prefactor
of 4 instead of 3 is known to imply a more accurate asymptotic fit in the large-wavenumber
regime (Polzin & Lvov 2011). However, for simplicity here we keep the factor appearing
in the original 1976 GM parametrization as is. We will see that the choice does not affect
the order of magnitude of the estimate of the flux.) The values given here are the ones of
the standard GM parametrization. Since for the GM spectrum we have a = 4 instead of
a = 3.69, we introduce the modified version of (5.6):

nGM,c(k, m) = 1
π3g

Eb2N0Nρ0f
m�

k�
(1−s)/2 k−(4−(1−s)/2), k�=m�/r, (5.7)

where s = 2a − 7 = 0.38. This is a slightly less steep, dimensionally consistent version.
The non-dimensional parameter r = N/f quantifies the horizontal-to-vertical anisotropy
(Polzin & Lvov 2011). Now, the GM spectrum is normalized so that the total energy is
expressed in units of J/kg, as usual in physical oceanography. On the other hand, in the
wave-turbulence formalism, the total energy is expressed as a density per unit of volume
of the physical space. Here, the physical space has units of kg m−1, given by an area in the
horizontal directions times a density in the vertical. It is, therefore, possible to switch from
one representation to the other multiplying by the appropriate density, which in this case
is the characteristic density of the isopycnal coordinates, Π = g/N2, in units of metres
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(normalized differential thickness of an isopycnal layer). So, we obtain the equivalence:
nWKE = nGM · g/N2, which applied to (5.7) finally gives the dimensionally consistent
factor

A = 1
π3 Eb2ρ0 f

N0

N
m�

k(1−s)/2
�

. (5.8)

5.3. Dissipated power at high wavenumbers
In order to compute the energy flux towards high wavenumbers, we need to consider the
physical cutoffs of the problem. Natural cutoffs are imposed on the vertical wavenumber
by the depth of the ocean and by the wave breaking cutoff, and on the frequency by the
inertial frequency and the buoyancy frequency,

mmin = 2πg
ρ0N2 × (2600 m)−1, mmax = 2πg

ρ0N2 × (10 m)−1, σmin = f , σmax = N.

(5.9a–d)
These limiting values define a rectangle in σ − m space that translates into a trapezoid in
k − m space, with inclined sides given by

kmin(m) = f
α

m, kmax(m) = N
α

m. (5.10a,b)

The collision integral contains all of the necessary information on the spectral energy
transfers. In the following, we compute numerically the outflowing power at high
wavenumbers from computation of the contribution of the resonant triads with an output
wavenumber such that m > mmax or k > kmax(m), i.e. assuming that the production of
a wave beyond the physical high wavenumber cutoff results in complete dissipation of
its energy. At the same time, it is assumed that the region within the physical cutoffs is
an inertial range with no sources nor sinks, where energy is transferred exclusively via
resonant interactions.

Let us define the part of the collision integral which contributes to the dissipation of
energy by transferring it beyond the dissipation cutoffs:

Idiss(k, m; kmax) := N2

g
(V0A)2α−1|m|−2b+1k−2a+4Idiss(κ),

Idiss(κ) =
∫

Ωh(κ)

J (k = 1, k1, k2, m = 1)dk1 dk2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.11)

where κ = kmax/k and Ωh(κ) is the set of triads transferring energy to output waves
beyond the horizontal dissipation cutoff kmax, and is defined in table 2. Moreover, a factor
N2/g is added to account for transition to isopycnal coordinates, the inverse of the factor
in (5.8). Here, Idiss(k, m; kmax) quantifies the amount of wave action that wavenumber p
sends via resonant interactions beyond the dissipation threshold kmax, per unit time and
per unit volume of Fourier space.

The power (per unit of m) dissipated beyond kmax at fixed m (now considered as the
positive definite magnitude of m) is related to the integral of Idiss(k, m) for all values of k:

Fdiss(m) =
∫ kmax

kmin

4πkω(p)Idiss(k, m; kmax) dk
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Input Output Ωh(κ) Ωv(μ)

p p1, p2

k1 > κ, k2 > κ

k1 > κ, k2 < κ : weight
σ1

σ1 + σ2
k1 < κ, k2 > κ : weight

σ2

σ1 + σ2

|m1| > μ, |m2| > μ

|m1| > μ, |m2| < μ : weight
σ1

σ1 + σ2
|m1| < μ, |m2| > μ : weight

σ2

σ1 + σ2
p, p2 p1 k1 > κ, k2 < κ |m1| > μ, |m2| < μ

p, p1 p2 k1 < κ, k2 > κ |m1| < μ, |m2| > μ

Table 2. All of the non-negligible contributions for κ > 1 are negative (see (b) of figures 2 and 3). The same
holds for μ > 1. Thus, wavenumber p is always an incoming wave in the triads here considered. The table
represents the conditions under which every type of resonance results in the dissipation of energy due to at
least one output beyond the dissipation cutoffs. During the numerical computation of the integrals Ch and Cv ,
these conditions are applied for every point of the kinematic box. In the case of a decay into two waves of which
only one is dissipated, only the fraction of energy of the dissipated wave must be accounted for, multiplying
the contribution by the weight shown in the table.

= N2

g

∫ kmax

kmin

4π|m|−2b+1k−2a+5α
k

|m| (V0A)2α−1Idiss(κ)dk

= 4π
N2

g
(V0A)2k−s

maxCh, with Ch :=
∫ N/f

1
κs−1Idiss(κ)dκ, (5.12)

where we recall that s = 2a − 7 = 0.38, and b = 0. In a similar fashion, we can obtain an
analogous relation for the energy flux dissipated vertically at vertical wavenumbers larger
than mmax:

Gdiss(k) = 4π
N2

g
(V0A)2k−(1+s)mmaxCv, Cv :=

∫ mmax/mmin

1
μ−2Kdiss(μ)dμ,

Kdiss(μ) =
∫

Ωv(κ)

J (k = 1, k1, k2, m = 1) dk1 dk2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(5.13)

where Kdiss(μ) (μ = mmax/m) is the analogue of Idiss(κ) in the vertical direction, i.e. the
collision integral restricted to the triads with output waves beyond the mmax threshold. The
conditions defining Ωv are found in table 2. These integrals are computed numerically.
The computation of Ch is quite straightforward since the kinematic box is expressed
in horizontal wavenumber coordinates. The quantity Idiss(κ) is computed inside a loop
spanning all values of κ , checking the constraint of Ωh(κ) for every point. Note that since
the position of the right boundary depends on m, (5.10a,b), in the computation of Idiss(κ)

we have to impose that k1 > kmaxm1/m (or the same for k2) for point (k1, m1) to be past the
absorbing boundary. For the computation of Cv , on the other hand, at every loop iteration
we have to integrate over all of the kinematic box to compute Kdiss and check point by
point whether m1 or m2 have ‘crossed’ the boundary at mmax (which is independent of k).

One important point requires particular care. In the previous sections, we relied upon
the leading order of the infrared contribution of (3.7), which is obtained after the second
cancellation where a negative singularity for k1 > 1 cancels exactly with a positive
singularity for k1 < 1. However, since now in (5.11) we consider an integration region
where k1 > κ > 1, the positive singularity due to k1 < 1 is no longer present and thus the
use of (3.7) is not justified. In the integrand of (5.11), whose expression is found in the
supplementary materials (Dematteis & Lvov 2020), the finite point singularity therefore
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Figure 5. Panels (a) and (b) show the integrands of Ch and Cv , respectively, and the areas coloured in red
represent Ch and Cv themselves. Both integrals have a finite point integrable singularity (the exponents βh and
βv are in the interval (0, 1)) at their left boundaries: the insets show the asymptotic power-law scaling of the
singularities.

has exponent −a + 3/2 rather than the −a + 2 resulting after the second cancellation
(leading to (3.7)). Integrating twice according to (5.11), the exponent of the singularity
of the integrand defining Ch in (5.12) is βh = −a + 7/2 � 0.19. Numerical computation
of Idiss(κ) as κ → 1+ confirms this analytical prediction and gives a best least square fit of
Idiss(κ) ∼ −dh(κ − 1)−βh , for κ − 1 � 1, with dh = 127 × 8π, βh = 0.19. An analogous
computation for the integral Cv defined in (5.13) leads to a best-fit scaling of its integrand
of Kdiss(μ) ∼ −dv(μ − 1)−βv , for μ − 1 � 1, with dv � 9.0 × 8π, βv � 0.75. In this
case, an analytical evidence of the exponent is not simply available since the kinematic
box is not expressed in vertical wavenumber coordinates. In figure 5, we show the rapidly
decaying behaviour of the integrands of Ch and Cv . Therefore, Ch and Cv are ‘universal
constants’ which are relatively insensitive to the limits of integration in (5.12) and (5.13).
The figure also shows a closer look to the scaling of the singularities as κ → 1+ and
μ → 1+, with the respective best-fit scalings. Therefore we obtain:

Ch �
∫ N/f

1
κs−1Idiss(κ) � −dhkIR

1−βh

1 − βh
+
∫ N/f

1+kIR

dκκs−1Idiss(κ)

� −8π(16.6 + 54.6 + 10.2) � −8π × 81.4. (5.14)

Here, the three numbers 16.6, 54.6 and 10.2 represent the partial contributions by
the infrared ID interactions, near-collinear interactions and unclassified interactions,
respectively. The ultraviolet contribution is negligible.Then, choosing a value μIR = 1/16
to delimit the infrared region for vertical wavenumbers, we have

Cv �
∫ mmax/mmin

1
μ−2Kdiss(μ) � −dvμIR

1−βv

1 − βv

+
∫ mmax/mmin

1+μIR

dμ μ−2Kdiss(μ)

� −8π(18.0 + 14.0 + 3.1) � −8π × 35.1. (5.15)

Again, the numbers 18.0, 14.0 and 3.1 represents infrared (ID), near-collinear and
unclassified contributions, respectively, with a negligible contribution from the ultraviolet
regions.

Now, we compute the power crossing the kmax boundary, denoted as Ph (horizontal
boundary) and the power crossing the mmax boundary, denoted as Pv (vertical boundary),

915 A129-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

99
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.99


G. Dematteis and Y.V. Lvov

via

Ph =
∫ mmax

mmin

Fdiss(m) dm = Dh(1 − s)−1
(

N
α

)−s

(mmax − mmin)
1−s,

Pv =
∫ (N/α)mmax

(f /α)mmax

Gdiss(k) dk = Dvs−1

[(
f
α

)−s

−
(

N
α

)−s
]

m1−s
max,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.16)

where

Dh = 4π
N2

g
(V0A)2Ch, Dv = 4π

N2

g
(V0A)2Cv (5.17a,b)

Using (5.5), (5.8), (5.16) and (5.17a,b), we obtain

Ph = Γ Ch

1 − s

[
1 −

(
�

2b

)s]
f 1+sN2E2,

Pv = Γ Cv

s

[
1 −

(
f
N

)s]
fN1+sE2,

Γ = 3
4π3

(
3�

2b

)s ρ0b2N1−s
0

g�
, s = 0.38, � = 10 m.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.18)

In figure 6, a graphical interpretation of the computations in the above paragraph is
shown. The physical cutoffs define a rectangular box (figure 6a) within which energy
is transferred through resonant interactions toward high vertical wavenumbers and high
horizontal wavenumbers. If energy is provided by large-scale forcing at low frequency,
for simplicity represented as a mesoscale eddy in the figure, it ends up being dissipated
at high frequencies or high wavenumbers, represented as wave breaking with generation
of turbulent vortices. In k − m, space this inertial box translates into a trapezoid whose
lateral sides are straight lines defined by the dispersion relation. The integrals in (5.16)
quantify the contribution to the dissipated power along the dissipative sides of the box.
In the figure, the red areas quantify how dissipation is distributed along these dissipative
sides of the inertial box.

Equation (5.18) is the main result of our paper. The outgoing power toward large
wavenumbers is the quantity that is modelled by the finescale parametrization formula
of ocean mixing (Polzin et al. 1995) as

Pfs = (1.9 × 107 m2) cosh−1
(

N
f

)
fN2E2, (5.19)

which is in agreement with (5.18) regarding the dependence upon the main physical
parameters, if the lower-order corrections ( f /N)s and cosh−1(N/f ) are neglected. The
predicted intensities can also be compared directly, using the standard parameters of the
GM spectrum (5.6) with N = N0, which yields

Ph � −0.5 × 10−8 W kg−1,

Pv � −1.5 × 10−8 W kg−1.

}
(5.20)

This amounts to a total dissipated power

Ptot = Ph + Pv � −2.0 × 10−8 W kg−1, (5.21)

which is negative since it is lost by the wave system considered. With the same parameters
and the same sign convention, the finescale parametrization formula predicts a total
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Figure 6. (a) The inertial box in σ − m space. (b) The inertial box in k − m space. The low frequency
energy forcing is represented in the picture as a mesoscale eddy, while wave breaking (with generation of
turbulent vortices) represents dissipation at high wavenumbers. The distribution of energy dissipation along
the absorbing boundaries is depicted in the two insets showing Fdiss(m) and Gdiss(k), whose integrals (red
area) give, respectively, Ph and Pv , (5.16). In these two plots, k is in units of m−1, m is in units of m3 kg−1,
Gdiss(k) is in W m kg−1 and Fdiss(m) is in W m−3, so that both integrals give a power per unit mass.

dissipated power

Pfs = −7.9 × 10−10 W kg−1. (5.22)

These two predictions are in qualitative agreement, but with a difference of about an order
of magnitude. (Had we used a factor of 4 in place of 3 in the definition of m�, (5.6),
the fluxes would have to be multiplied by a factor of (4/3)1+s � 1.5, which does not
affect the order of magnitude of the estimate. Here, we use the original choice of m� from
Cairns & Williams (1976) for simplicity. We hope to consider oceanographic implications
of this choice in details in future publications.) We elucidate on possible reasons in the
conclusions. Moreover, the following remarks are important for the sake of clarity.

Above, we have used the terminology dissipated power to indicate the amount of energy
that is absorbed by the boundary sink at small scales. As far as the internal-wave kinetic
equation is concerned, this sink is acting as an actual dissipation term. In the finescale
parametrization picture to which we refer (see Polzin et al. 2014, § 2), this amount of
energy is converted into turbulent kinetic energy at small scales, and therefore roughly
equals the turbulent energy production. In turn, the latter contributes separately both to
diapycnal mixing and to heat production, in proportions that can be quantified by closure
assumptions beyond the scope of the present paper. We stress that the use of the word
dissipation in this paper does not refer to dissipation of energy as heat, but to the role
played by the sink that takes energy out of the wave system considered.

The energy fluxes at the boundaries, (5.12) and (5.13), show a non-trivial dependence
on the variables k and m. In non-isotropic systems, rather than one single stationary
state, it is common to have a family of stationary states (Nazarenko 2011, § 9.2.5) whose
energy fluxes depend on k and m in different ways. The generalized KZ spectrum (that
is the PR spectrum, for internal waves) is only one among the members of the family.
Then, the locality conditions imply that for the internal waves only one solution is
physically meaningful, i.e. (a, b) = (3.69, 0). Indeed, since the solution is stationary,
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for any enclosed region in k − m space (contained in the inertial range where no sources
or sinks are present), the incoming energy flux must be equal to the outgoing energy
flux (and opposite in sign). Equivalently, as long as both ends of a boundary are fixed,
the total outgoing flux through the boundary must be independent of the path of the
boundary in k − m space. For instance, one could show that the flux through the dissipative
boundary equals the flux through the forcing boundary (respectively, the red and the black
boundaries in figure 6).

Finally, we acknowledge the fact that the solutions with b = 0 are known in the literature
as no flux solutions to the Fokker–Planck (diffusive) approximation to the kinetic equation
(3.1). How this approximation is achieved is shown for instance in Lvov et al. (2010)
by use of a straightforward leading-order approximation of the infrared ID interactions.
An exact leading-order balance makes the infrared flux apparently vanish, whose trace
in this paper is found in the two exact cancellations in the infrared region. However, our
computations leading to (3.7) show how the next leading-order terms carry a small but
non-zero flux toward high horizontal wavenumbers. Moreover, a net energy flux is indeed
due to interactions outside the infrared region, such as the collinear interactions. Therefore,
there is no mathematical contradiction in having b = 0 and a non-zero downscale
energy flux. Indeed, the considerations in the present paper go way beyond the diffusive
approximation to the internal-wave kinetic equation, where the concept of no flux solutions
was concocted.

6. Discussion and conclusions

This paper is focused on the specific case of a scale-invariant field of internal waves in the
ocean with vertically homogeneous (b = 0) wave action. For such a case we have found
that

(a) There necessarily exists a stationary state for 3 < a < 4 dictated by the opposite
signs of the infrared and ultraviolet resonant singularities;

(b) The dominant contributions to the integrand of the kinetic equation are coming from
ID and near-collinear resonances;

(c) Both near-collinear and extreme scale-separated resonances are subject to
subtractive cancellation between differing triad types;

(d) Both types of resonances balance to zero for a � 3.69 independently, cf. figure 4(a);
(e) The contribution from the unclassified resonances is negligible, although it balances

to zero at a � 3.69, too;
(f) We point out an important role played by collinear resonances, and we find a

modified PR spectrum, (4.5), from a balance of the largest collinear contributions.
Curiously, this solution is precisely in the middle of the interval of values of the
exponent for which the collision integral is convergent (Zakharov et al. 1992). With
the help of this analytical result, we explained how the exponent 3.69 appears
concerning the near-collinear region. It is a result of a shift of the balance of the
modified PR spectrum due to the negative contribution from the subleading collinear
triads.

(g) By considering the sign of the integrand of the kinetic equation we can visualize a
downscale flux of energy in the horizontal wavenumber space, see figure 2.

(h) Modifying the scale-invariant spectrum (3.9) to include natural physical boundaries
in Fourier space, we numerically calculate the value of the spectral flux of energy
towards high horizontal and vertical wavenumbers. This quantitative estimate might
be useful for a direct estimate of turbulent energy mixing in the ocean.
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(i) Our results compare favourably with the finescale parametrization formula of Polzin
et al. (1995), being consistent within the range of an order of magnitude and
reproducing similar scalings in the relevant parameters.

Our results are obtained for a scale-invariant internal-wave field with vertically
homogeneous wave action profile. This profile is close to the scale-invariant limit of
the GM spectrum, yet it is a strong idealization of the actual internal-wave spectrum.
Generalizing the evaluations presented in this paper for more realistic ocean internal-wave
spectra, including the presence of background rotation and spatial inhomogeneity, is a
subject of current research.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.99.
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