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Abstract

We show that under some slight assumptions, the positive sojourn time of a product
of symmetric processes converges towards 1

2 as the number of processes increases.
Monotony properties are then exhibited in the case of symmetric stable processes, and
used, via a recurrence relation, to obtain upper and lower bounds on the moments of the
occupation time (in the first and third quadrants) for two-dimensional Brownian motion.
Explicit values are also given for the second and third moments in the n-dimensional
Brownian case.
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1. Introduction

In this paper, we are interested in the study of the random variables (RVs)

An =
∫ 1

0
1{∏n

i=1 X
(i)
u ≥0} du,

where X(1), . . . , X(n) are independent and identically distributed (i.i.d.) symmetric processes.
The RV An may be interpreted as the time spent by an n-dimensional process (with independent
components) in some symmetric orthants.

When n = 1, the RV A1 has been widely studied for several families of processes. The
most celebrated example is the case of symmetric Lévy processes X(1) = L(1) such that
P(L

(1)
1 = 0) = 0, for which it is known that A1 follows the classic arcsine law (see [7]):

P(A1 ∈ dz) = 1

π
√

z(1 − z)
dz, z ∈ (0, 1).

When n = 2, the RV A2 corresponds to the time spent by a planar symmetric process
X(1) + iX(2) in the first and third quadrant of the complex plane. In the special case of the
planar Brownian motion B(1) + iB(2), a first attempt to find the law of A2 was undertaken by
Ernst and Shepp [6] in which the authors tried to compute the double Laplace transform of A2.
More generally, the study of the sojourn times of planar Brownian motion in a cone has already
attracted much attention. In particular, it was proven by Mountford [13] that if C is a closed
convex cone of magnitude θ with vertex at 0, then there exist two constants κ1 and κ2 such that

κ1t
1/ξ ≤ P

(∫ 1

0
1{(B(1)

u ,B
(2)
u )∈C} du ≤ t

)
≤ κ2t

1/ξ , t ∈ [0, 1], (1)
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70 C. PROFETA

with ξ = (2/π)(2π − θ). The first moments of this RV were computed by Desbois [4]; see
also [2] in the special case θ = π/2. Analogues of (1) for n-dimensional Brownian motion
were obtained by Meyre and Werner [12] and Nakayama [14], in which the exponent ξ was
related to the first eigenvalue of the Laplacian operator −�/2. In addition to these bounds,
the strong arcsine law (see [1]) yields the asymptotics of the sojourn time of an n-dimensional
Brownian motion (B(i), 1 ≤ i ≤ n) in the positive orthant:

1

ln(t)

∫ t

1

n∏
i=1

1{B(i)
u ≥0}

du

u

a.s.−−→ 1

2n
, t → +∞,

where ‘
a.s.−−→’denotes almost sure convergence. Observe that the summation here is logarithmic:

we refer the reader to [3] for a general discussion between summability methods and limits of
occupation times.

In this paper we shall first study the limit of the variables An as the dimension n goes to ∞.

Theorem 1. Let (X(i), i ≥ 1) be i.i.d. symmetric processes.

(i) The strong law of large numbers holds for the sequence (An, n ≥ 1):

1

k

k∑
n=1

An
a.s.−−→ 1

2
, k → +∞.

(ii) Assume that for almost every (a.e.) u ∈ (0, 1), the RVs X
(1)
u have no atoms at 0 and that

for a.e. 0 < u < s < 1,

0 < P(X(1)
u ≥ 0, X(1)

s ≥ 0) < 1
2 . (2)

Then, for any p > 0,

An
LP−→ 1

2 , n → +∞,

where ‘
LP−→’ denotes convergence in LP .

(iii) Assume furthermore that∫ 1

0

∫ 1

0

1

P(X
(1)
u ≤ 0, X

(1)
s ≥ 0)

du ds < +∞. (3)

Then
An

a.s.−−→ 1
2 , n → +∞.

When thinking of symmetric Lévy processes, an interpretation of this result is as follows. The
usual arcsine law essentially explains that, although L(1) is centered, there is a high probability
that it spends more time on one side of the axis than on the other. As the number of Lévy
processes increases, so do the changes of sign of the product, hence, the resulting process
spends a more balanced time on each side of the abscissa axis.

Remark 1. Note that an assumption such as (2) is necessary to obtain the Lp-convergence.
Indeed, let, for instance, (Xi, i ≥ 1) be a family of i.i.d. symmetric RVs admitting a density.
Define the processes

X
(i)
t = tXi (t ≥ 0)
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which do not satisfy the assumption P(X
(1)
u ≥ 0, X

(1)
s ≥ 0) < 1

2 . In this case, the RVs An all
have the same law:

An
d= 1

2 (δ0 + δ1),

where‘
d=’ denotes equality in distribution, and the Lp-convergence of Theorem 1 cannot hold.

Example 1. Assumption (3) is, for instance, satisfied by symmetric α-stable Lévy processes L

with α > 1. Indeed, for 0 < u < s, using the symmetry, independent increments, and scaling
properties, we first deduce that

P(Ls ≤ 0, Lu ≥ 0) = P

((
s

u
− 1

)1/α

L1 ≥ Z1, Z1 ≥ 0

)
,

where Z1 is a symmetric α-stable RV independent from L1. Next, for ν > 0 small enough,
applying Fubini’s theorem:∫ +∞

0
t−ν−1P(t1/αL1 ≥ Z1, Z1 ≥ 0) dt = 1

ν
E[Lνα

1 1{L1≥0}]E[Z−να
1 1{Z1≥0}]

= 1

4ν
E[|L1|να]E[|Z1|−να]

= 1

4α2ν


(ν)


(να) cos(ναπ/2)


(−ν)


(−να) cos(ναπ/2)

= 1

2αν

sin(ναπ/2)

sin(νπ) cos(ναπ/2)
.

Therefore, using the inverse mapping for the Mellin transform (see, for example, [9]), we obtain
the asymptotics

F(t) := P(t1/αL1 ≥ Z1, Z1 ≥ 0) ∼ 1

πα sin(π/α)
t1/α, t → 0+,

hence, by a change of variable∫ 1

0

(∫ 1

0

1

P(Lu ≤ 0, Ls ≥ 0)
du

)
ds = 2

∫ 1

0

(∫ s

0

1

F(s/u − 1)
du

)
ds

=
∫ +∞

0

1

F(t)(t + 1)2 dt < +∞,

which is assumption (3).

The remainder of the paper is organized as follows. We prove Theorem 1 in Section 2, then
study some monotony properties of An when dealing with stable processes in Section 3, and
finally compute the first moments of An and state some bounds on A2 for Brownian motion in
Section 4.

2. Proof of Theorem 1

Proof. (i) Let us first define the centered RVs

A∗
n = An − 1

2
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and observe that these RVs are uncorrelated. Indeed, decomposing Ak+n and using the tower
property of conditional expectations for k ≥ 1,

E[A∗
nA

∗
n+k]

= E[AnAn+k] − 1
4

= E

[
An

∫ 1

0

(
1{∏n

i=1 X
(i)
u ≥0} 1{∏n+k

i=n+1 X
(i)
u ≥0} + 1{∏n

i=1 X
(i)
u ≤0} 1{∏n+k

i=n+1 X
(i)
u ≤0}

)
du

]
− 1

4

= E

[
An

∫ 1

0

(
1{∏n

i=1 X
(i)
u ≥0}

1

2
+ 1{∏n

i=1 X
(i)
u ≤0}

1

2

)
du

]
− 1

4

= 1
2 E[An] − 1

4

= 0.

Now, since the RVs (A∗
n, n ≥ 1) are uniformly bounded by 1, the result will follow from

Theorem 1 of [10] after having checked that

∑
k≥1

1

k
E

[(
1

k

k∑
n=1

A∗
n

)2]
< ∞.

But this is immediate since developing the square and applying Fubini’s theorem:

∑
k≥1

1

k
E

[(
1

k

k∑
n=1

A∗
n

)2]
=

∑
k≥1

1

k3

k∑
n=1

E[(A∗
n)

2] ≤
∑
k≥1

1

k2 < +∞,

hence, we conclude that

1

k

k∑
n=1

A∗
n

a.s.−−→ 0, k → +∞,

which is Theorem 1(i).

(ii) To prove the Lp-convergence, let us consider, for n ≥ 1, the function Fn : [0, 1]2 → [0, 1]
defined by

Fn(u, s) = P

( n∏
i=1

X(i)
u ≥ 0,

n∏
i=1

X(i)
s ≥ 0

)
.

By symmetry and since there are no atoms at 0, we may decompose Fn+1 as

Fn+1(u, s) = 2P

( n∏
i=1

X(i)
u ≥ 0,

n∏
i=1

X(i)
s ≥ 0

)
P(X(n+1)

u ≥ 0, X(n+1)
s ≥ 0)

+ 2P

( n∏
i=1

X(i)
u ≤ 0,

n∏
i=1

X(i)
s ≥ 0

)
P(X(n+1)

u ≤ 0, X(n+1)
s ≥ 0)

and rewrite this in the form

Fn+1(u, s) = 2Fn(u, s)F1(u, s) + 2
( 1

2 − Fn(u, s)
)( 1

2 − F1(u, s)
)

= 4
(
Fn(u, s) − 1

4

)(
F1(u, s) − 1

4

) + 1
4 .
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In particular, by iteration, we deduce that

Fn+1(u, s) − 1
4 = (

Fn(u, s) − 1
4

)
(4F1(u, s) − 1) = 1

4 (4F1(u, s) − 1)n+1. (4)

Now, for a.e. u 
= s, we have by assumption, −1 < 4F1(u, s)−1 < 1, so we may let n → +∞
to obtain

Fn(u, s) → 1
4 , n → +∞.

Finally, applying the dominated convergence theorem, we have

E

[(
An − 1

2

)2]
= E[A2

n] − 1

4
=

∫ 1

0

∫ 1

0
Fn(u, s) du ds − 1

4
→ 0, n → +∞,

which proves the L2-convergence of Theorem 1, hence, the Lp-convergence for any 0 < p ≤ 2
by Hölder’s inequality. But, since, for any n ∈ N, |An − 1

2 | ≤ 1, we further obtain, for p ≥ 2,

E
[∣∣An − 1

2

∣∣p] ≤ E
[(

An − 1
2

)2] → 0, n → +∞,

which completes the proof of (ii).

(iii) Finally, to obtain the almost sure convergence of (iii), we apply Fubini’s theorem to obtain
the bound, thanks to (4),

+∞∑
n=1

E

[(
An − 1

2

)2]
=

+∞∑
n=1

∫ 1

0

∫ 1

0

(
Fn(u, s) − 1

4

)
du ds

= 1

4

∫ 1

0

∫ 1

0

4F1(u, s) − 1

2 − 4F1(u, s)
du ds

≤ 1

16

∫ 1

0

∫ 1

0

1

P(X
(1)
u ≤ 0, X

(1)
s ≥ 0)

du ds

< +∞.

The almost sure convergence then follows from the usual application of the Bienaymé–Tcheby-
chev inequality and the Borel–Cantelli lemma. �

3. Monotonicity for stable processes

We now assume that (X(i) = L(i))i≥1 are independent symmetric α-stable Lévy processes
with α ∈ (0, 2] defined on a probability space (�, F∞, P). From Theorem 1(ii), we deduce
that for any p > 0,

E[Ap
n ] → ( 1

2

)p
, n → +∞.

When dealing with stable processes, it turns out that the sequence (E[Ap
n ], n ≥ 1) is monotone,

according to the value of p (i.e. to the convexity of the function x �→ xp).

Proposition 1. Let p > 0 be fixed. The sequence

(E[Ap
n ], n ≥ 1) is

{
decreasing if p > 1,

increasing if 0 < p < 1.

As a consequence, for any λ ∈ R and n ≥ 1,

E[eλAn+1 ] ≤ E[eλAn ].
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For symmetric stable Lévy processes, the RVs (An, n ≥ 1) are thus ordered via moment-
generating functions or Laplace transforms.

Proof of Proposition 1. We start the proof with a simple lemma.

Lemma 1. Let n ≥ 1 and (Xi)i≤n be i.i.d. symmetric RVs with common density f and let
(Ai)i≤n be RVs, independent from the (Xi)i≤n and such that P(

∏n
i=1Ai > 0) = 1. Then the

function

t �→ P

( n∏
i=1

(Xi + tAi) ≥ 0

)
is increasing from 1

2 to 1.

Proof. Observe first that by conditioning on the distribution of the sequence (Ai)i≤n,

P

( n∏
i=1

(Xi + tAi) ≥ 0

)
=

∫
R

· · ·
∫

R

P

( n∏
i=1

(Xi + tai) ≥ 0

)
P(A1 ∈ da1, . . . , An ∈ dan),

we need to prove that only the function

n(t) = P

( n∏
i=1

(Xi + tai) ≥ 0

)

is increasing, under the assumption that
∏n

i=1ai > 0. Next, for any n ≥ 1, we have n(0) = 1
2

and limt→+∞ n(t) = 1. We shall prove by induction on n that n is increasing . For n = 1,
the result is clear since in this case a1 > 0. Assume now that n ≥ 2 and that n−1 is increasing
from 1

2 to 1. Since the (Xi) are independent, we may decompose

n(t) = P(Xn + tan ≥ 0)P

(n−1∏
i=1

(Xi + tai) ≥ 0

)
+ P(Xn + tan ≤ 0)P

(n−1∏
i=1

(Xi + tai) ≤ 0

)
.

We now separate two cases.
Case 1. Assume first that an > 0. Then

∏n−1
i=1 ai > 0 and differentiating yields

 ′
n(t) = anf (−tan)n−1(t) + P(Xn + tan ≥ 0) ′

n−1(t)

− anf (−tan)(1 − n−1(t)) − P(Xn + tan ≤ 0) ′
n−1(t)

= anf (−tan)(2n−1(t) − 1) +  ′
n−1(t)(P(Xn + tan ≥ 0) − P(Xn + tan ≤ 0)).

Since n−1(t) ≥ 1
2 and P(Xn + tan ≥ 0) > P(Xn + tan ≤ 0), we deduce from the recursion

hypothesis that  ′
n(t) > 0.

Case 2. Assume now that an < 0. Then
∏n−1

i=1 ai < 0 and we deduce from the symmetry
of X1 and Xn that (with the usual convention that empty products are 1)

n(t) = P(Xn + t (−an) ≤ 0)P

(
(X1 + t (−a1))

n−1∏
i=2

(Xi + tai) ≤ 0

)

+ P(Xn + t (−an) ≥ 0)P

(
(X1 + t (−a1))

n−1∏
i=2

(Xi + tai) ≥ 0

)
.

The result then follows from case 1, since −an > 0 and −∏n−1
i=1 ai > 0. �

https://doi.org/10.1017/jpr.2018.6 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.6


Positive sojourn times of symmetric processes 75

We now return to the proof of Proposition 1. To simplify the notation, we set

P (n)
u =

n∏
i=1

L(i)
u .

Let us consider the function F : R+ → [0, 1] defined by

F(x) = E

[(∫ 1

0
1{(x+Zu)P

(n)
u ≥0} du

)p]
,

where Z is another α-stable Lévy process independent from the (L(i)). We shall prove that F

is increasing on [0, +∞). By the change of variable u = xαs and scaling, we have

F(x) = xαpE

[(∫ 1/xα

0
1{(1+Zs)P

(n)
s ≥0} ds

)p]
.

Differentiating with respect to x and going back to the original variable, we obtain

F ′(x) = αp

x
E

[(∫ 1

0
1{(x+Zu)P

(n)
u ≥0} du

)p

−
(∫ 1

0
1{(x+Zu)P

(n)
u ≥0} du

)p−1

1{(x+Z1)P
(n)
1 ≥0}

]
.

Applying Fubini’s theorem, we need to prove that∫ 1

0
· · ·

∫ 1

0
P

( p⋂
i=1

{(x + Zui
)P (n)

ui
≥ 0}

)
du1 · · · dup

≥
∫ 1

0
· · ·

∫ 1

0
P

(p−1⋂
i=1

{(x + Zui
)P (n)

ui
≥ 0} ∩ {(x + Z1)P

(n)
1 ≥ 0}

)
du1 · · · dup.

We shall, in fact, simply prove that the inequality holds on the integrands:

P

(p−1⋂
i=1

{(x + Zui
)P (n)

ui
≥ 0} ∩ {(x + Zup)P (n)

up
≥ 0}

)

≥ P

(p−1⋂
i=1

{(x + Zui
)P (n)

ui
≥ 0} ∩ {(x + Z1)P

(n)
1 ≥ 0}

)
, (5)

where we may assume, up to renaming the variables, that 0 ≤ u1 ≤ u2 ≤ · · · ≤ up ≤ 1.
To simplify the notation, let us introduce the measure Q defined for � ∈ F∞ by

Q(�) = P

(
�

∣∣∣∣ p−1⋂
i=1

{(x + Zui
)P (n)

ui
≥ 0}

)
.

Dividing both sides of (5) by P(
⋂p−1

i=1 {(x + Zui
)P

(n)
ui

≥ 0}), we are thus led to prove that the
function

t → Q((x + Zt+up−1)P
(n)
t+up−1

≥ 0) is decreasing on [0, 1 − up−1].
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Applying the Markov property, we may decompose

Q((x + Zt+up−1)P
(n)
t+up−1

≥ 0) = Q

(
(x + Zup−1 + t1/αẐ1)

n∏
i=1

(L(i)
up−1

+ t1/αL̂
(i)
1 ) ≥ 0

)
,

where Ẑ1 and (L̂
(i)
1 ) are independent symmetric α-stable RVs, independent from Z and the

(L(i)). Observe furthermore that, by the definition of Q,

Q

(
(x + Zup−1)

n∏
i=1

L(i)
up−1

> 0

)
= Q((x + Zup−1)P

(n)
up−1

> 0) = 1.

Therefore, applying Lemma 1 with the sequences

(Xi, 1 ≤ i ≤ n) = (L̂
(i)
1 , 1 ≤ i ≤ n), Xn+1 = Ẑ1

and
(Ai, 1 ≤ i ≤ n) = (L(i)

up−1
, 1 ≤ i ≤ n), An+1 = x + Zup−1 ,

we deduce by composition that the function t → Q((x+Zt+up−1)P
(n)
t+up−1

≥ 0) is decreasing on
[0, 1 −up−1] (in fact on [0, +∞)), hence, the function F is increasing on [0, +∞). It remains
then to apply the dominated convergence theorem, upon noting that

E[Ap
n+1] = F(0) ≤ lim

x→+∞ F(x) = E[Ap
n ],

which yields the proof for integer values.
Summing the different moments, we deduce that, for λ ≥ 0 and p ≥ 1,

E[(An+1)
�p�+1eλAn+1 ] ≤ E[(An)

�p�+1eλAn ],
where �p� denotes the integer part of p. Integrating this inequality against λ�p�−p on (0, +∞),
we deduce that

E[Ap
n+1] ≤ E[Ap

n ] (p ≥ 1).

Next, by symmetry

E[eλ(1−An+1)] ≤ E[eλ(1−An)] ⇐⇒ E[e−λAn+1 ] ≤ E[e−λAn ],
hence, for 0 < p < 1,∫ +∞

0
λ−p−1(1 − E[e−λAn ]) dλ ≤

∫ +∞

0
λ−p−1(1 − E[e−λAn+1 ]) dλ,

which is exactly E[Ap
n ] ≤ E[Ap

n+1] (0 < p < 1). �
Remark 2. Below we provide an example of a process satisfying assumption (2), but for which
the sequence (E[A2

n], n ≥ 1) is not decreasing. Take, for instance,

X
(1)
t = Bt 1{t≤1/2} −Bt−1/2 1{t>1/2} and X

(2)
t = Wt 1{t≤1/2} −Wt−1/2 1{t>1/2},

where B and W are two independent Brownian motions started from 0. Then

A1 = 1

2
and A2 = 2

∫ 1/2

0
1{BtWt≥0} dt

d=
∫ 1

0
1{BuWu≥0} du,

hence (see the next section for the value of E[A2
2]),

E[A2
1] = 1

4
< E[A2

2] = 3

8
− 1

2π2 .
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4. A study of moments in the Brownian case

4.1. Second and third moments

The first three moments are easy to compute in the Brownian case. Indeed, from (4), the
second moment of An is equal to

E[A2
n] = 1

4
+ 1

2

∫ 1

0

(∫ s

0
(4F1(u, s) − 1)n du

)
ds,

where, from Bingham and Doney [2], the quadrant probability is given by, for 0 ≤ u ≤ s,

F1(u, s) = 1

4
+ 1

2π
arcsin

(√
u

s

)
.

After some changes of variables and successive integration by parts, we deduce that

E[A2
n] = 1

4
+ 1

8πn

∫ π

0
tn sin(t) dt

= 1

4
+ (−1)�n/2�+1 n!(n − 2�n/2� − 1)

8πn
+ 1

8

�n/2�∑
k=0

(−1)k
n!

(n − 2k)!π
−2k.

By symmetry, since E[(1 − An)
3] = E[A3

n], we further obtain

E[A3
n] = 3

2 E[A2
n] − 1

4 .

In Table 1 we provide the first values of the second and third moments, in which the decreasing
property may be observed.

4.2. Higher moments for two Brownian motions

Obtaining the explicit values of higher moments seems a difficult task as outlined in the
literature; see [2], [4], and [6]. We propose here a method to obtain lower and upper bounds on
these moments. Recall the moments of the arcsine distribution:

E[Ap
1 ] = 1

22p

(
p

2p

)
= (2p)!

22p(p!)2 = 
(p + 1/2)√
π
(p + 1)

∼ 1√
πp

, p → +∞.

Table 1: First values of the second and third moments.

n Second moment E[A2
n] Third moment E[A3

n]
1

3

8
� 0.375

5

16
� 0.3125

2
3

8
− 1

2π2 � 0.3243
5

16
− 3

4π2 � 0.2365

3
3

8
− 3

4π2 � 0.299
5

16
− 9

8π2 � 0.1985

4
3

8
− 3

2π2 + 6

π4 � 0.2846
5

16
− 9

4π2 + 9

π4 � 0.1769

5
3

8
− 5

2π2 + 15

π4 � 0.2757
5

16
− 15

4π2 + 45

2π4 � 0.1635
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Upper bound
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Figure 1: Monte Carlo simulation of E[Ap
2 ] for 1 ≤ p ≤ 500.

Proposition 2. For any p ≥ 1, we have

E[Ap
2 ] ≤ 1

2p + 1

8

π2 3F2

[
1/2, 1/2, 1

p + 3/2, 3/2
; 1

]
+ 1

π2

p−1∑
k=0

2

(p − k)2 E[Ak
1]

E[Ap
2 ] ≥ 1

2p + 1

8

π2 3F2

[
1/2, 1/2, 1

p + 3/2, 3/2
; 1

]
+ 1

π2

p−1∑
k=0

2

(p − k)2 E[Ak
2],

where 3F2 denotes the usual generalized hypergeometric function; see [8, Section 9.1]. Note
that both bounds are the same when p is equal to 1 and 2. Asymptotically, we further obtain

6

π2p
≤ E[Ap

2 ] ≤ 1

3
√

πp
(p → +∞).

In particular, this implies that the RV A2 cannot follow a beta distribution (hence, nei-
ther a generalized arcsine distribution). Indeed, otherwise the beta distribution would be
β( 1

2 + 4/(π2 − 4), 1
2 + 4/(π2 − 4)), since then

E[β] = 1

2
, E[β2] = 3

8
− 1

2π2 , E[β3] = 5

16
− 3

4π2 .

But, as p → +∞, we would have

E[βp] = O

(
1

p1/2+4/(π2−4)

)
,

which would contradict the lower bound since 1
2 + 4/(π2 − 4) > 1. Numerical computations

are shown in Figure 1, in which it is seen that the lower bound is clearly the better one.

Proof. Let B and W be two independent Brownian motions and define

Mp(x) =
∫ +∞

0
e−t/2E

[(∫ t

0
1{(x+Bu)Wu>0} du

)p]
dt

so that

E[Ap
2 ] = Mp(0)

2p+1p! .
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Applying first the Markov property at the stopping time Tx = inf{u ≥ 0, x + Bu = 0} and
Fubini’s theorem, we deduce that

E

[(∫ t

0
1{(x+Bu)Wu>0} du

)p]
= E

[(∫ t

0
1{Wu>0} du

)p

1{Tx>t}
]

+ E

[(∫ Tx

0
1{Wu>0} du +

∫ t

Tx

1{(x+Bu)Wu>0} du

)p

1{Tx≤t}
]

= tpE[Ap
1 ]P(Tx > t)

+
p∑

k=0

(
p

k

)
E

[(∫ Tx

0
1{Wu>0} du

)p−k(∫ t−Tx

0
1{B̂s (WTx +Ŵs )>0} du

)k

1{Tx≤t}
]
,

where B̂ and Ŵ are two independent Brownian motions, independent from B and W . We now
take the Laplace transform of both sides. Applying the Fubini–Tonelli theorem and a change
of variable, we obtain

Mp(x) = E[Ap
1 ]

∫ +∞

0
e−t/2tpP(Tx > t) dt

+
p∑

k=0

(
p

k

)
E

[
e−Tx/2

(∫ Tx

0
1{Wu>0} du

)p−k

Mk(WTx )

]
= Rp−1(x) + E[e−Tx/2Mp(WTx )],

where, by scaling, Rp−1 is defined by

Rp−1(x) = E[Ap
1 ]

∫ +∞

0
e−t/2tpP(Tx > t) dt

+
p−1∑
k=0

(
p

k

)
E

[
e−Tx/2T

p−k
x

(∫ 1

0
1{Wu>0} du

)p−k

Mk(
√

TxW1)

]
.

Thus, we obtain the relation, since E[e−Tx/2] = e−|x|,

Mp(x) − Mp(0) = Rp−1(x) − (1 − e−|x|)Mp(0) + E[e−Tx/2(Mp(WTx ) − Mp(0))]. (6)

The expectation on the right-hand side may be computed as

E[e−Tx/2(Mp(WTx ) − Mn(0))]
= 2

∫ +∞

0

x√
2πt3

e−x2/2t−t/2 dt

∫ +∞

0

1√
2πt

e−z2/2t (Mp(z) − Mp(0)) dz

= 2
∫ +∞

0

x

π

K1(
√

x2 + z2)√
x2 + z2

(Mp(z) − Mp(0)) dz,

where Kν denotes the modified Bessel function of the second kind of order ν. Integrating (6)
with respect to K0(x)(dx/x), we deduce from [5, Equation (33)] and [8, Equation (9)],∫ +∞

0

K1(
√

x2 + z2)√
x2 + z2

K0(x) dx = π

2z
K0(z) and

∫ +∞

0
(1 − e−x)K0(x)

dx

x
= π2

8
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that∫ +∞

0
(Mp(x) − Mp(0))K0(x)

dx

x

=
∫ +∞

0
(Rp−1(x) − (1 − e−|x|)Mp(0))K0(x)

dx

x
+

∫ +∞

0
K0(z)(Mp(z) − Mp(0))

dz

z
;

hence,

Mp(0) = 8

π2

∫ +∞

0
Rp−1(x)K0(x)

dx

x
. (7)

Remark 3. Note that we might have used the Kontorovitch–Lebedev transform (see, for
example, [11]) to obtain a recurrence relation between Mp(x) and Rp−1(x):

Mp(x) = 2

π2

∫ +∞

0

cosh(πγ /2)

cosh(πγ /2) − 1
Kiγ (x)

(∫ +∞

0
Kiγ (z)Rp−1(z)

dz

z

)
γ sinh(πγ ) dγ

but this leads to quite complicated calculations, even for p = 3.

Rather, we shall obtain bounds on Rp−1. Substituting the expression of Rp−1 into (7), we
first need to compute∫ +∞

0

(∫ +∞

0
e−t/2tpP(Tx > t) dt

)
K0(x)

dx

x

=
∫ +∞

0
e−t/2tp dt

∫ +∞

t

1

4s
es/4K0

(
s

4

)
ds

=
∫ +∞

1

du

4u

∫ +∞

0
e−t (2−u)/4K0

(
ut

4

)
dt

= 2p−1√π
(
(p + 1))2


(p + 3/2)

∫ +∞

1
2F1

[
p + 1, 1/2
p + 3/2

; 1 − u

]
du

u
(see [8, p. 700])

= 2p−1√π
(
(p + 1))2


(p + 3/2)

∫ 1

0
2F1

[
p + 1, 1/2
p + 3/2

; 1 − 1

x

]
dx

x

= 2p−1√π
(
(p + 1))2


(p + 3/2)

∫ 1

0
2F1

[
1/2, 1/2
p + 3/2

; 1 − x

]
dx√
x

(using Pfaff’s formula)

= 2p
√

π
(
(p + 1))2


(p + 3/2) 3F2

[
1/2, 1/2, 1

p + 3/2, 3/2
; 1

]
(see [8, p. 813]).

Next, from Section 3 and the proof of monotony of the moments, we deduce that

Mk(0) ≤ Mk(
√

TxW1) ≤ Mk(+∞);
hence, returning to the expression of Rp−1, it remains to compute∫ +∞

0
E[e−Tx/2T

p−k
x ]K0(x)

dx

x
=

∫ +∞

0
K0(x)

dx

x

∫ +∞

0

x√
2πt3

tp−ke−t/2e−x2/2t dt

= 4p−k−1
∫ +∞

0
tp−k−1e−tK0(t) dt

=
√

π

4
2p−k (
(p − k))2


(p − k + 1/2)
.
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Therefore, we obtain the lower bound

E[Ap
2 ] = 1

2p+1p!
8

π2

∫ +∞

0
Rp−1(x)K0(x)

dx

x

≥ E[Ap
1 ]

2p!
8

π2

√
π

(
(p + 1))2


(p + 3/2) 3F2

[
1/2, 1/2, 1

p + 3/2, 3/2
; 1

]

+
p−1∑
k=0

√
π2−k (
(p − k))2


(p − k + 1/2)

(
p

k

)
E[Ap−k

1 ]2k+1k! E[Ak
2].

Then, using the explicit value of the moments of the arcsine distribution, we finally obtain,
after some simplifications,

E[Ap
2 ] ≥ 1

2p + 1

8

π2 3F2

[
1/2, 1/2, 1

p + 3/2, 3/2
; 1

]
+ 1

π2

p−1∑
k=0

2

(p − k)2 E[Ak
2],

which is the announced result. The computations for the upper bound are similar. �
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