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1. Introduction

Let p be a prime number, let Zp be the ring of p-adic integers, let Qp be the field of
p-adic numbers, let Q̄p be a fixed algebraic closure of Qp and let Cp be the completion
of Q̄p with respect to the p-adic valuation. Denote by O(T ) the orbit of an element
T ∈ Cp with respect to the Galois group G = Galcont(Cp/Qp). In this paper we study
the p-adic analytic continuation around O(T ) of functions defined by limits of sequences
of restricted power series with p-adic integer coefficients. We also provide applications
to generating elements for some closed subfields of Cp. Generating elements are quite
useful in the study of Cp and its closed subfields. It is a non-trivial fact that Cp has a
generating element over Qp, that is, there exists an element T of Cp (which is necessarily
transcendental over Qp) for which the ring Qp[T ] is dense in Cp (see [4, Theorem 1]). This
means that Cp can be viewed as the completion of the ring of polynomials in one variable
over Qp with respect to a suitable absolute value. In order to better understand how this
absolute value works on this polynomial ring, one usually makes use of so-called satu-
rated distinguished chains associated with the given generating element T . Generating
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elements and distinguished chains have been intensively studied in various contexts. For
more on these topics the reader is referred to [2,4,5,11,12,15–25,28]. Here we restrict
ourselves to explaining the basic reason why these two entirely different topics, concerned
with generating elements and, respectively, distinguished chains, connect naturally with
each other. Let us consider the simple case of a finite field extension K of Qp. Oversim-
plifying things, we could say that one of the two topics mentioned above, namely, the
one concerning generating elements, aims at producing (explicitly, if possible) generating
elements T of K over Qp. In this case the condition simply means that K is obtained by
adjoining T to Qp. Then 1, T, . . . , T [K:Qp]−1 form a basis of K over Qp and each element α

of K can be uniquely written as a linear combination α =
∑

0�j�[K:Qp] cjT
j with coeffi-

cients in Qp. This does not immediately enable one to compute the p-adic valuation of α.
Now, if T comes equipped with an associated saturated distinguished chain, then one can
replace the above basis {1, T, . . . , T [K:Qp]−1} by a more convenient basis defined in terms
of the given saturated distinguished chain, which enables one to compute the valuation
of any element of K (see, for example, [23, Remark 4.7]). This explains the relationship
between generating elements and saturated distinguished chains. It also shows that for
papers such as the present one and others, where applications to generating elements are
presented, a natural further problem that arises would be to investigate the saturated
distinguished chains associated with those generating elements. Returning to the content
of this paper, § 2 contains notation and some basic results. In § 3 we consider a sequence
{fn}n�1 of restricted power series with p-adic integer coefficients. If Tn is a sequence in
Cp that converges to an element T that is a p-adic integral element of Cp, and such that
fn(Tn) converges to f(T ), then f defines a G-equivariant continuous function on O(T )
that has a unique G-equivariant analytic continuation around O(T ) (see Theorem 3.1).
For an application, in Corollary 3.4 we show that Z̃p[T ] ∩ Q̄p is a Zp-module of finite
rank, where Z̃p[T ] is the topological closure of Zp[T ] in Cp. In the final section we present
some applications to generating elements for Cp and for some classes of closed subfields
of Cp (see Theorems 4.1, 4.3 and 4.5 and Corollaries 4.2, 4.4 and 4.6).

2. Background material

Let p be a prime number and let Qp be the field of p-adic numbers endowed with the
p-adic absolute value | · |, normalized such that |p| = 1/p. Also, we denote by vp the
p-adic valuation. Let Q̄p be a fixed algebraic closure of Qp and denote by the same
symbol | · | the unique extension of | · | to Q̄p. Furthermore, denote by (Cp, | · |) the
completion of (Q̄p, | · |) (see [6, 7]) and by OCp

the ring of integers of Cp. Consider
the Galois group G = Gal(Q̄p/Qp) endowed with the Krull topology. The group G is
canonically isomorphic with the group Galcont(Cp/Qp) of all continuous automorphisms
of Cp over Qp (see, for example, [3, p. 17]). We shall identify these two groups. For any
T ∈ Cp denote by O(T ) = {σ(T ) : σ ∈ G} the orbit of T and let Q̃p[T ] be the topological
closure of the ring Qp[T ] in Cp.

By Galois theory in Cp, as developed by Tate [29], Sen [27] and Ax [8], the closed
subgroups of the Galois group G are in one-to-one correspondence with the closed
subfields of Cp. For any closed subgroup H of G denote by Fix(H) = {T ∈ Cp :
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σ(T ) = T for all σ ∈ H}. Then Fix(H) is a closed subfield of Cp. We define
H(T ) = {σ ∈ G: σ(T ) = T}. We then have that H(T ) is a closed subgroup of G. Also,
we have that Fix(H(T )) = Q̃p[T ]. For any ε > 0, H(T, ε) := {σ ∈ G: |σ(T ) − T | < ε}
is an open subgroup of G of finite index and [G : H(T, ε)] = N(T, ε) is the number
of open balls of radius ε that cover O(T ). Moreover, when T is transcendental, the set
{|σ(T ) − T | : σ ∈ G} is a strictly decreasing sequence {εn}n�1 with limit zero. This
sequence is called the fundamental sequence associated with the orbit of T (see [24]).

The map σ � σ(T ) from G to O(T ) is continuous and it defines a homeomorphism
from G/H(T ) (endowed with the quotient topology) to O(T ) (endowed with the induced
topology from Cp) (see [2, Remark 3.2 and Theorem 3.5]). In such a way O(T ) is a closed
compact and totally disconnected subspace of Cp and the group G acts continuously on
O(T ): if σ ∈ G and τ(T ) ∈ O(T ), then σ � τ(T ) := (στ)(T ).

Definition 2.1. Let Qp ⊆ K be a closed subfield of Cp. An element x of Cp is
said to be a generating element (or a generic element) for K provided that Q̃p[x] = K.
(See [2,11].)

Definition 2.2. The radius of convergence of a power series f(X) =
∑

n�0 anXn ∈
Cp[[X]] is the extended real number 0 � rf � ∞ defined by rf = sup{r � 0: |an|rn → 0}.

By Hadamard’s formula, one has rf = 1/lim sup |an|1/n (see [26, p. 283]).

Definition 2.3. A power series f ∈ Zp[[X]], f(X) =
∑

n�0 anXn with an ∈ Zp,
is called a restricted power series if limn→∞ an = 0. Denote by Zp{X} the ring of all
restricted power series with p-adic integer coefficients (see [26, p. 233]).

In the case of a power series f ∈ Zp[[X]] we have rf � 1 and f is convergent on
{z ∈ Cp : |z| = 1} if and only if f ∈ Zp{X}.

Definition 2.4. A subset D ⊆ Cp is G-equivariant provided that σ(x) ∈ D for any
x ∈ D and any σ ∈ G. (An example is D = O(x), where x ∈ Cp.)

Definition 2.5. An analytic function f defined on a G-equivariant subset D of Cp is
G-equivariant if f(σ(x)) = σ(f(x)) for any x ∈ D and any σ ∈ G.

We now recall the following result.

Theorem 2.6 (Alexandru and Zaharescu [1, Theorem 10]). Let T be a tran-
scendental element of OCp . Then, for any sequence {Tn}n∈N in Cp with limn→∞ Tn = T

and any sequence of polynomials {Pn(X)}n∈N in Zp[X] such that limn→∞ Pn(Tn) = 0,
one has limn→∞ P ′

n(Tn) = 0.

3. On p-adic analytic continuation

Let T be a transcendental element of OCp . For any positive integer n, let Pn ∈ Zp[X]
be a polynomial with p-adic integer coefficients such that the sequence {Pn(T )}n�1 is
convergent. Define

u(T ) = lim
n→∞

Pn(T ) ∈ Z̃p[T ] ⊆ Cp.
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As a consequence of Theorem 2.6, we have a well-defined element

u(k)(T ) := lim
n→∞

P (k)
n (T )

for any k � 1. Indeed, let us define Qn = Pn+1−Pn ∈ Zp[X]. One has limn→∞ Qn(T ) = 0
so limn→∞ Q′

n(T ) = 0 and by this we have that the sequence {P ′
n(T )} is convergent to

an element u′(T ) ∈ Z̃p[T ]. The same is true for any k � 1. In what follows we will see
that the element u = u(T ) defines, in a natural way, a G-equivariant analytic function
u : B[O(T ), |p|1+ε] → Cp, where, for any ε > 0,

B[O(T ), |p|1+ε] := {z ∈ Cp : dist(z, O(T )) � |p|1+ε}.

One has a more general result.

Theorem 3.1. Let T be an integral transcendental element of Cp and let {Tn}n�1 be
a sequence of elements of Cp such that Tn converges to T . Let {fn}n�1 be a sequence
of power series of Zp[[X]] such that for n large enough fn(Tn) exists and converges to
f = f(T ) ∈ Cp. Then f defines a G-equivariant continuous function on O(T ) that has a
unique G-equivariant analytic continuation to B[O(T ), |p|1+ε] for any ε > 0.

Proof. For the sake of simplicity we suppose that |Tn| = |T | and that fn(Tn) exists
for any n � 1. For the case in which |T | = 1 the existence and convergence of fn(Tn)
means that fn ∈ Zp{X}. Let us see that fn(T ) is a convergent sequence with limit f(T ).
Indeed, let us write fn in the form

fn(X) =
∑
k�0

a
(n)
k Xk, a

(n)
k ∈ Zp. (3.1)

From (3.1) one has

|fn(Tn) − fn(T )| =
∣∣∣∣
∑
k�0

a
(n)
k (T k

n − T k)
∣∣∣∣ � |Tn − T |, (3.2)

which converges to zero as n tends to infinity. Since limn→∞ fn(Tn) = f(T ), we also have
limn→∞ fn(T ) = f(T ).

Fix now an ε > 0 and define gn = fn+1 − fn ∈ Zp[[X]]. To show that the sequence
{fn(z)}n∈N is uniformly convergent on B[T, |p|1+ε], it is enough to prove that the
sequence {gn(z)}n∈N converges uniformly to zero. We write gn as a Taylor series about T ,

gn(z) =
∑
k�0

(z − T )k

k!
g(k)

n (T ). (3.3)

We have that

vp(k!) =
[
k

p

]
+

[
k

p2

]
+ · · · <

k

p − 1
,

so

vp

(
(z − T )k

k!

)
> k(1 + ε) − k

p − 1
= k

(
1 + ε − 1

p − 1

)
� kε.
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From this inequality and (3.3) one obtains

|gn(z)| � sup
k�0

{|p|kε|g(k)
n (T )|}. (3.4)

By the p-adic Weierstrass preparation theorem, we can decompose gn in the form

gn = Pn · hn, (3.5)

where Pn ∈ Zp[X] and hn ∈ 1 + XZp[[X]]. Moreover, hn converges on B[0, |T |], which is
the closed ball of centre 0 and radius |T |, has no zeros on this ball and ‖hn‖B[0,|T |] =
|hn(x)| = 1 for any x ∈ B[0, |T |] (see also [9, Propositions 5.1.4.3 and 5.1.3.1]). Since
limn→∞ gn(T ) = 0, by the above decomposition one has that limn→∞ Pn(T ) = 0. From
Theorem 2.6, limn→∞ P ′

n(T ) = 0 so limn→∞ g′
n(T ) = 0. By repeating this argument, we

have that
lim

n→∞
|g(k)

n (T )| = 0 for any k � 0. (3.6)

Now, let us consider an arbitrary δ > 0. There exists k1(δ) ∈ N such that |p|kε < δ for
any k � k1(δ), which means that |p|kε|g(k)

n (T )| < δ for any k � k1(δ) and any n ∈ N.
From (3.6) there exists n(δ) ∈ N such that |p|kε|g(k)

n (T )| < δ for any 0 � k < k1(δ) and
any n � n(δ). It is easy to see that one has |p|kε|g(k)

n (T )| < δ for any k � 0 and any
n � n(δ). By (3.4), we have that |gn(z)| � δ for any n � n(δ) and any z ∈ B[T, |p|1+ε].
It is clear that

|fm(z) − fn(z)| � δ for any m, n � n(δ) and any z ∈ B[T, |p|1+ε].

This means that the sequence {fn}n�1 is Cauchy in the sup norm, which is the same as
the Gauss norm in this case. Since the ring of analytic functions defined on B[T, |p|1+ε]
is complete with respect to this norm (see [10, pp. 13–22] and [26, pp. 339–350]), one
obtains that f(z) = limn→∞ fn(z) is analytic and G-equivariant on B[O(T ), |p|1+ε]. In
fact, fn has the following expansion about T :

fn(z) =
∑
k�0

Dkfn(T )(z − T )k, z ∈ B[T, |p|1+ε],

with Dkfn(T ) ∈ Z̃p[T ], where for a formal power series F (z) =
∑

Ajz
j , DkF (z) is the

kth Hasse derivative of F , defined by

DkF (z) =
∑
j�k

Aj

(
j

k

)
zj−k.

The G-equivariant analytic function f , which is defined above, has the following expan-
sion about T :

f(z) =
∑
k�0

Dkf(T )(z − T )k, z ∈ B[T, |p|1+ε],

with Dkf(T ) ∈ Z̃p[T ]. Because T is transcendental and all the points of O(T ) are limit
points (see [2, Theorem 3.5]), the uniqueness of analytic continuation results by the
identity theorem. The proof of the theorem is now complete. �
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Corollary 3.2. Let T be a transcendental element of OCp
. For any positive integer n

let Pn ∈ Zp[X] be a polynomial with p-adic integer coefficients such that the limit u =
u(T ) := limn→∞ Pn(T ) exists in Cp. Then u defines a G-equivariant continuous function
on O(T ) that has a unique G-equivariant analytic continuation to B[O(T ), |p|1+ε] for any
ε > 0.

From the proof of Theorem 3.1 one has that f(T ) is in Z̃p[T ] but it does not have a
representation as a series in T with coefficients in Zp. Let now α ∈ Q̄p ∩ B[T, |p|1+ε]. By
expanding f about α one has

f(z) =
∑
k�0

Dkf(α)(z − α)k.

In particular, for z = T we obtain

f(T ) =
∑
k�0

Dkf(α)(T − α)k,

where Dkf(α) ∈ Zp[α], so f(T ) can be represented as a convergent power series in T −α

with coefficients in Zp[α]. Moreover, if |T | < |p|, then |T | < |p|1+ε for ε small enough
and we can choose α = 0 to obtain

f(T ) =
∑
k�0

Dkf(0)T k ∈ Zp[[T ]].

Corollary 3.3. Let T be a transcendental element of Cp such that |T | < |p|. Then,

Z̃p[T ] =
{ ∑

n�0

anTn : an ∈ Zp

}
.

An interesting application of Theorem 3.1 is the following result.

Corollary 3.4. Let T be a transcendental element of OCp . Then Z̃p[T ] ∩ Q̄p is a
Zp-module of finite rank.

Proof. Let u ∈ Z̃p[T ] ∩ Q̄p. By Theorem 3.1, u = u(T ) has an analytic continuation
on B[T, |p|1+ε] for any ε > 0. Let P be the minimal polynomial of u over Qp (or Zp) and
let α ∈ Q̄p be an algebraic element such that |T − α| < |p|1+ε. By our hypothesis, T is
transcendental, so it is a limit point of O(T )∩B[T, |p|1+ε] (see [2, Theorem 3.5]). Because
u is G-equivariant and P (u(T )) = 0, by the identity theorem one has that P (u(z)) = 0
for any z ∈ B[T, |p|1+ε]. In particular, P (u(α)) = 0, and so deg P � [Qp(α) : Qp]
because u(α) ∈ Qp(α). The degrees of algebraic elements u(T ) from Z̃p[T ] are bounded
by [Qp(α) : Qp] so we have that Z̃p[T ] ∩ Q̄p is included in a finite extension of Qp and
the corollary is proved. �

Remark 3.5. It is not sure that one can choose α ∈ Qur
p such that |T − α| < |p|1+ε,

where Qur
p is the maximal unramified extension of Qp in Q̄p. By this, the fact that the

differential is zero on Z̃p[T ] ∩ Q̄p is non-trivial.
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Indeed, let u ∈ Z̃p[T ] ∩ Q̄p. By the proof of Corollary 3.4, we have that P (u(z)) = 0
for any z ∈ B[T, |p|1+ε], where P is the minimal polynomial of u over Qp. One obtains
that P ′(u(z)) · u′(z) = 0 and, for z = T , one has P ′(u(T )) · u′(T ) = 0 so P ′(u(T )) = 0
or u′(T ) = 0. Because u is G-equivariant and P ∈ Zp[X], the functions u′ and P ′(u) are
G-equivariant. But T is transcendental, so it is a limit point of O(T ) ∩ B[T, |p|1+ε] and
by the identity theorem we have u′ = 0 or P ′(u) = 0. We cannot have P ′(u) = 0 and by
this it is clear that u is constant, so it is in Qp.

4. Applications to generating elements

As we know from the previous section, if T is a transcendental element of OCp
and

{fn}n�1 is a sequence of power series from Zp[[X]] such that for any n � 1 one has that
fn(T ) exists and the sequence {fn(T )}n�1 is convergent to f = f(T ) ∈ Cp, then f defines
a G-equivariant continuous function on O(T ) that has a unique G-equivariant analytic
continuation to B[O(T ), |p|1+ε] for any ε > 0. One has the following result.

Theorem 4.1. Let T be a transcendental element of OCp
and let {fn}n�1 be a

sequence of power series from Zp[[X]] such that fn(T ) exists for any n � 1 and such
that the sequence {fn(T )}n�1 is convergent. Let f : B[O(T ), |p|1+ε] → Cp be the ana-
lytic function defined by the sequence {fn(T )}n�1 with limit x := f(T ) ∈ Q̃p[T ], where
ε is a positive real number. If f is not a constant function, then the extension of fields
Q̃p[x] ⊆ Q̃p[T ] is finite. Moreover, if T is a generating element for Cp, then x is also a
generating element for Cp.

Proof. For the closed subgroup of G, H(T ) = {σ ∈ G: σ(T ) = T}, one has
Fix(H(T )) = Q̃p[T ]. To prove that the extension of fields Q̃p[x] ⊆ Q̃p[T ] is finite it
is enough to prove that [H(x) : H(T )] < ∞. Let us denote by Sx,T a system of rep-
resentatives on the left for H(x)/H(T ). Let us suppose that |Sx,T | = ∞. Then there
exists an infinite sequence of distinct elements σn ∈ Sx,T , n � 1, such that σn ∈ H(x)
and σn converges to σ ∈ H(x). For any n � 1, define Tn = σn(T ). One has that
Ti �= Tj for any i, j � 1, i �= j. Let F : B[O(T ), |p|1+ε] → Cp be the analytic function
defined by F (z) = f(z) − x, z ∈ B[O(T ), |p|1+ε]. Because f is G-equivariant, one has
that F (Tn) = f(Tn) − x = σn(f(T )) − x = f(T ) − x = 0 for any n � 1. By the identity
theorem, one has F = 0. This means that f is constant, which contradicts our assump-
tion on f . For the last part of the theorem, let T be a generating element for Cp. By
the Artin–Schreier theorem (see [13,14]), we must have Q̃p[x] = Cp or Q̃p[x] is really
closed. Since Qp is not an ordered field we obtain Q̃p[x] = Cp. The proof of the theorem
is complete. �

Corollary 4.2. Let T be an integral transcendental element of Cp and let x be a
transcendental element of Z̃p[T ] such that the extension of fields Qp ⊂ Q̃p[x] is normal.
Then, for any transcendental element y of Z̃p[T ], the extension of fields

Q̃p[x] ∩ Q̃p[y] ⊂ Q̃p[T ]

is finite.
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Proof. By the previous results, the extensions of fields

Q̃p[x] ⊂ Q̃p[T ] and Q̃p[y] ⊂ Q̃p[T ]

are finite. It is clear that H(T ) � H(x) and H(T ) � H(y). Moreover, Fix(H(T )) = Q̃p[T ],
Fix(H(x)) = Q̃p[x] and Fix(H(y)) = Q̃p[y]. By Galois theory one has that [H(x) :
H(T )] < ∞ and [H(y) : H(T )] < ∞. Because H(x) is a normal subgroup of G, one has
that H(x) · H(y) = {στ : σ ∈ H(X), τ ∈ H(y)} is a subgroup of G and, moreover, we
have

Fix(H(x) · H(y)) ⊆ Q̃p[x] ∩ Q̃p[y].

It is clear that Galcont(Cp/Q̃p[x, y]) = H(x) ∩ H(y). By using an isomorphism theorem,
we have that

H(y)
H(x) ∩ H(y)


 H(x) · H(y)
H(x)

. (4.1)

Since the extension of fields Q̃p[y] ⊂ Q̃p[x, y] is finite, one has that H(y)/H(x) ∩ H(y)
is finite. Through use of (4.1), we obtain that the extension of fields Fix(H(x) · H(y)) ⊂
Q̃p[x] is finite, so the extension of fields Q̃p[x] ∩ Q̃p[y] ⊂ Q̃p[x] is finite. �

Theorem 4.3. Let K = Q̃p[T ] be a closed subfield of Cp. Then the set

{L ⊂ Cp : L is a closed subfield of Cp, L ⊂ K and [K : L] < ∞}

is at most countable.

Proof. Let L = Q̃p[u] ⊂ K = Q̃p[T ] and n = [K : L]. Let GK = H(T ) = {σ ∈
G: σ(x) = x for any x ∈ K} and GL = H(u) = {σ ∈ G: σ(x) = x for any x ∈ L}. By
Galois theory (see [8]) we have Fix(GK) = K, Fix(GL) = L and [GL : GK ] = n = [K : L].
Let us fix S ⊂ G a system of representatives for the left cosets of G/GK such that S

contains the identity e of G. There exists (and it is unique) SL = {σ1 = e, . . . , σn} ⊂ S

such that GL =
⋃n

i=1 σiGK with GL and L well determined by SL. The idea of the proof is
to give an injective map from the set of the finite subsets of S of the form SL into another
set that is at most countable. First of all let us see that the map S → O(T ) such that
σ → σ(T ) is injective. Indeed, if σ(T ) = τ(T ), then σ ≡ τ (mod GK) so σ = τ . By this,
one obtains that the map SL → {σ1(T ) = T, . . . , σn(T )} ⊂ O(T ) is also injective. Now,
let us see that each σi ∈ SL, 1 � i � n, gives a permutation πi of (σ1(T ), . . . , σn(T ))
in the following way. For any 1 � j � n one has σiσj ∈ GL =

⋃n
m=1 σmGK . There

then exists a unique element σi(j) ∈ SL, 1 � i(j) � n, such that σiσj ∈ σi(j)GK . The
permutation πi of (σ1(T ), . . . , σn(T )) will be (σi(1)(T ), . . . , σi(n)(T )). It is easy to see
that the map σi → πi is injective. Define εL = min{|σi(T ) − T | : 2 � i � n, σi ∈
SL} > 0 and H(T, εL) = {σ ∈ G: |σ(T ) − T | < εL}. From the background material
we have that εL is an element of the fundamental sequence associated with O(T ) and
H(T, εL) is an open subgroup of G of finite index. One considers the finite partition
of the orbit of T with open balls of radius εL. In any such open ball there exists at
most one element of {σ1(T ), . . . , σn(T )}. Define s = [G : H(T, εL)], which is in fact the
number of disjoint open balls of radius εL that cover O(T ). One has that s � n. We
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can consider, via an ordered cover, that the first n balls are B(σi(T ), εL), 1 � i � n,
and the others, which exist only in the case s > n, are B(σj(T ), εL), n + 1 � j � s.
Now we associate with each permutation πi of (σ1(T ), . . . , σn(T )) the permutation π̄i

of the ordered set {B(σ1(T ), εL), . . . , B(σn(T ), εL), . . . , B(σs(T ), εL)} that permutes the
elements B(σi(T ), εL) as πi permutes (σ1(T ), . . . , σn(T )) and π̄i fixes the other balls, if
it is the case in which s > n. For any ε > 0, which is an element of the fundamental
sequence {εn}n�1 associated with the orbit of T , we have a unique finite cover of O(T )
with N(T, ε) open balls of radius ε so one has a finite number of permutations of the set
of these balls. By this, when ε runs over the fundamental sequence {εn}n�1, the union
of the sets of considered permutations is at most countable. In such a way, an injective
map Φ is defined from the set of finite subsets of S, which are in the form SL, to the set
of permutations of finite coverings of O(T ), in the form {B(τ1(T ), ε), . . . , B(τs(T ), ε)}
with ε > 0 an element of the fundamental sequence {εn}n�1. The proof of the theorem
is finished. �

Corollary 4.4. Let Qp ⊆ K be a subfield of Q̄p. Then the set of subfields of K of
finite index, which contain Qp, is at most countable.

Proof. The closed subfields of Cp are in one-to-one correspondence with the subfields
of Q̄p that contain Qp via the maps K → K̃ and K̃ → K̃ ∩ Q̄p (see [11]). By this and
Theorem 4.3, the proof is done. �

Theorem 4.5. Let T be an integral transcendental element of Cp and let x and y be
transcendental elements of Z̃p[T ]. There then exists a generating element of Q̃p[x, y] that
can be written as a linear combination of x and y with coefficients in Zp. To be more
precise, there exists a ∈ Zp such that Q̃p[x, y] = ˜Qp[x + ay].

Proof. It is easy to see that there exists an uncountable set of elements a ∈ Zp for
which x+ay is transcendental. For any a in this set one has that [Q̃p[T ] : ˜Qp[x + ay]] < ∞.
By this and Theorem 4.3, it follows that there exist two different elements a, b ∈ Zp

such that ˜Qp[x + ay] = ˜Qp[x + by]. It results that x, y ∈ ˜Qp[x + ay], and so we have that
Q̃p[x, y] = ˜Qp[x + ay]. �

Corollary 4.6. Let εL be defined as in the proof of Theorem 4.3 and let FixH(T, εL) =
Qp(α). Then, K = Q̃p[u, α] = L(α).

Proof. We have L ⊂ L(α) ⊂ K. Let σ ∈ GL be such that σ(α) = α. Then
|σ(T ) − T | < εL and by this one has σ ≡ e(mod GK), so σ ∈ GK . It is easy to see
that Galcont(Cp/L(α)) = Galcont(Cp/K), so K = L(α) = Q̃p[u, α]. �

https://doi.org/10.1017/S0013091514000376 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091514000376


10 V. Alexandru, M. Vâjâitu and A. Zaharescu
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