
J. Fluid Mech. (2022), vol. 946, A14, doi:10.1017/jfm.2022.595

Wall-cooling effects on pressure fluctuations in
compressible turbulent boundary layers from
subsonic to hypersonic regimes

Peng-Jun-Yi Zhang1, Zhen-Hua Wan1,†, Nan-Sheng Liu1, De-Jun Sun1 and
Xi-Yun Lu1

1Department of Modern Mechanics, University of Science and Technology of China,
Hefei 230027, PR China

(Received 17 December 2021; revised 18 May 2022; accepted 10 July 2022)

Pressure fluctuations play an essential role in the transport of turbulent kinetic energy
and vibrational loading. This study focuses on examining the effect of wall cooling on
pressure fluctuations in compressible turbulent boundary layers by high-fidelity direct
numerical simulations. Pressure fluctuations result from the vorticity mode and the
acoustic mode that are both closely dependent on compressibility. To demonstrate the
effects of wall cooling at various compressibility intensities, three free-stream Mach
numbers are investigated, i.e. M∞ = 0.5, 2.0 and 8.0, with real gas effects being absent
for M∞ = 8.0 due to a low enthalpy inflow. Overall, opposite effects of wall cooling on
pressure fluctuations are found between the subsonic/supersonic cases and the hypersonic
case. Specifically, the pressure fluctuations normalized by wall shear stress p′

rms/τw are
suppressed in the subsonic and supersonic cases, while enhanced in the hypersonic
case near the wall. Importantly, travelling-wave-like alternating positive and negative
structures (APNS), which greatly contribute to pressure fluctuations, are identified within
the viscous sublayer and buffer layer in the hypersonic cases. Furthermore, generating
mechanisms of pressure fluctuations are explored by extending the decomposition based
on the fluctuating pressure equation to compressible turbulent boundary layers. Pressure
fluctuations are decomposed into five components, in which rapid pressure, slow pressure
and compressible pressure are dominant. The suppression of pressure fluctuations in the
subsonic and supersonic cases is due to both rapid pressure and slow pressure being
suppressed by wall cooling. In contrast, wall cooling strengthens compressible pressure for
all Mach numbers, especially in the hypersonic case, resulting in increased wall pressure
fluctuations. Compressible pressure plays a leading role in the hypersonic case, mainly
due to the APNS. Essentially, the main effects of wall cooling can be interpreted by the
suppression of the vorticity mode and the enhancement of the acoustic mode.
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1. Introduction

Shedding light on the physics of pressure fluctuations in a compressible turbulent
boundary layer (TBL) is of great significance for theoretical turbulence modelling, where
the fluctuating pressure is important in redistributing the turbulent kinetic energy (Pope
2000). Besides, it is also important for relevant engineering applications. The fluctuating
pressure on aerodynamic surfaces is responsible for vibrational loading as well. In the
case of high-speed vehicles, surfaces subjected to fluctuating pressure for a long time
would face the risk of structural fatigue (Bull 1996). To advance turbulence modelling
and engineering design, a thorough understanding of the nature of pressure fluctuations is
highly desirable.

To date, extensive efforts have been devoted to investigating TBLs, and some
fundamental understanding of pressure fluctuations has been obtained. Theoretically,
Lilley (1963) extended the work of Phillips (1960) and developed a theory of wall pressure
fluctuations involving the effects of compressibility. They showed that fluctuating pressure
results from fluctuations in both the vorticity mode and the acoustic mode. Typically, the
former component is considered to be dominant within the TBL, whereas the latter is
dominant in the free stream in the form of an eddy Mach wave, but the roles played by
these two modes in various layers of a TBL for different parameters require investigation.
In experiments, directly measuring global pressure fluctuations lacks practice so far. Thus,
existing measurements have focused on pressure fluctuations in the free stream and at
the wall surface. Laufer (1964) provided some important experimental results for the
acoustic fluctuations in the free stream with free-stream Mach number M∞ up to 5.
Kistler & Chen (1963) firstly measured the wall pressure fluctuations beneath supersonic
TBLs over the Mach number range M∞ = 1.33–5. They reported the intensities of
pressure fluctuations, space–time correlations as well as convection speed and found
the major effect of increasing the Mach number is to decrease the length scale of the
pressure field. Then, a large amount of experimental data (Maestrello 1969; Tan, Tran &
Bogdonoff 1987; Beresh et al. 2011) have been obtained, and significant scatter emerged
among these nominally compatible experimental results, especially for the magnitudes
of wall pressure fluctuations. Surface-mounted pressure transducers were used in these
experiments, and thus fluctuating wall pressure signals were obtained in a certain average
sense. As a result, Dolling & Dussauge (1989) and Beresh et al. (2011) have argued that the
reliability of these measurements of the variance and frequency spectra of wall pressure
fluctuations is in doubt. Accurate and global data on fluctuating pressure are desired for
understanding the mechanism of pressure fluctuations and turbulence modelling. Recently,
complementary to experiments, direct numerical simulation (DNS) has become a powerful
tool due to its capability of providing access to physical quantities that are difficult to
obtain experimentally. Nonetheless, it is restricted to relatively low Reynolds numbers.
Bernardini, Pirozzoli & Grasso (2011) took the lead in performing DNS of supersonic
TBLs to study the wall pressure with M∞ = 2, 3, 4. They demonstrated the effects of
varying the Reynolds number and Mach number on the wall pressure signature from a
series of DNSs in the supersonic regime. Duan, Choudhari & Wu (2014) used DNS to
examine the pressure fluctuations generated by a TBL of M∞ = 2.5, with a focus on
pressure fluctuations within the TBL and the acoustics in the near field. Generally, DNS is
regarded as a very suitable method to explore the nature of pressure fluctuations because
it can provide accurate and global data on flow fields. However, detailed DNS studies
focusing on pressure fluctuations covering subsonic to hypersonic regimes are still rare.

In practice, a wall with a temperature lower than that of the adiabatic wall is frequently
encountered due to considerable radiative cooling and internal heat transfer, such as in
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high-speed vehicles and tunnel nozzles. The heat transfer between the TBL flow and the
wall surface can modify the statistical properties of the TBL significantly (Duan, Beekman
& Martín 2010; Chu, Zhuang & Lu 2013; Hadjadj et al. 2015; Zhang, Duan & Choudhari
2018). It is of great practical significance to investigate the wall-cooling effect on the
physics of flow structures, pressure fluctuations and their corresponding modelling. Duan
et al. (2010) performed DNSs of Mach 5 TBLs with wall-to-edge temperature ratios from
1.0 to 5.4. With wall cooling effects, they found compressibility effects are enhanced but
remain insignificant, and the coherency of turbulent structures is also increased. Many
scaling relations that are used to express statistics of adiabatic compressible TBLs also
hold for non-adiabatic cases. Hadjadj et al. (2015) used large-eddy simulation to study the
role of wall temperature in the mean and fluctuating-flow properties of Mach 2 TBLs. An
adiabatic wall case and two cold wall cases were considered, by which compressible skin
friction was found to be higher for cold wall TBLs than adiabatic TBLs. Zhang et al. (2018)
established DNS databases for supersonic and hypersonic TBLs with Mach numbers
ranging from 2.5 to 14 and wall-to-recovery temperature ratios Tw/Tr ranging from 0.18
to 1.0 to gauge the performance of compressibility transformations. Nevertheless, they
paid less attention to the wall-cooling effect on pressure fluctuations. Duan, Choudhari
& Zhang (2016) numerically examined the pressure fluctuations generated by a spatially
developed Mach 5.86 TBL with Tw/Tr = 0.76, thus providing the first-ever comparison of
mean-velocity profiles and surface pressure spectrum with experimental measurements at
hypersonic Mach number. Then, Zhang, Duan & Choudhari (2017) conducted a DNS at a
lower ratio of Tw/Tr = 0.25 with the same Mach number. Combining these two databases,
they showed that near-wall pressure fluctuation intensities and the frequency spectrum
of wall pressure fluctuations are dramatically modified by wall temperature conditions.
However, in supersonic or subsonic regimes, the effect of wall cooling on pressure
fluctuations has rarely been discussed. In order to better understand the mechanism,
a systematic study of the wall-cooling effect in regimes of different Mach number is
required.

To discriminate the generating mechanisms of pressure fluctuations, the pressure
Poisson equation is usually employed in wall-bounded flows, which can provide more
physical insight originating from governing equations. For incompressible flow, the
Poisson equation gives two primary source terms, which contribute to the two major
components of pressure fluctuations, namely the rapid pressure corresponding to the
interactions between mean velocity gradients and turbulence and the slow pressure
corresponding to turbulence–turbulence interactions (Pope 2000). As observed in an
incompressible channel flow, Kim (1989) found that the slow pressure fluctuations are
stronger than the rapid pressure fluctuations throughout the channel except very near
the wall, where they are about the same magnitude. Chang, Piomelli & Blake (1999)
studied the contributions of the two pressure components in wavenumber space, and the
dominating contributions of sources in the buffer region in most of the wavenumber range
were highlighted. Gerolymos, Sénéchal & Vallet (2013) extended the decomposition such
that the pressure is separated into not only rapid and slow parts but also volume and
surface terms. They placed emphasis on the wall echo effects on pressure fluctuations.
Recently, Anantharamu & Mahesh (2020) analysed these two wall pressure fluctuation
sources in combination with spectral proper orthogonal decomposition. Foysi, Sarkar &
Friedrich (2004) extended the Poisson-equation-based method to compressible channel
flow to study the pressure–strain correlation. Very recently, Tang et al. (2020) and
Yu, Xu & Pirozzoli (2020) split the pressure fluctuations in compressible channel
flows and demonstrated the importance of the additional pressure part corresponding to
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compressibility effects at high Mach numbers. Despite this, existing works on pressure
decomposition are primarily focused on turbulent channel flows which are easy to
implement as both streamwise and spanwise directions are considered periodic and
homogeneous, and the patterns of the pressure components in compressible TBLs have
never been reported.

The goal of this study is to explore the general effects of wall cooling on pressure
fluctuations in zero-pressure-gradient compressible TBLs at various compressibility
intensities. A series of DNSs of M∞ = 0.5, 2.0 and 8.0 TBLs with quasi-adiabatic wall
and their cooled-wall counterparts have been performed. Because the pressure fluctuations
are closely related to the vorticity mode and acoustic mode, the turbulence statistics, such
as vorticity and dilatation fluctuations, turbulent Mach numbers and the instantaneous flow
structures are compared to show the effects of wall cooling intuitively. The characteristics
of pressure fluctuations versus Mach numbers are also compared with the existing
empirical model. To reveal the mechanisms of modifications on pressure fluctuations
by wall cooling, we extend the method of the pressure decomposition to compressible
TBL flows with the aid of the acoustic radiation feature in the free stream. The pressure
fluctuations are decomposed into five components corresponding to different generating
mechanisms, and their characteristics and contributions of each pressure component are
illustrated in detail.

The remainder of the paper is organized as follows. The numerical methods and
simulation details are outlined in § 2 and the general turbulence statistics of boundary
layers are given in § 3. Section 4 shows the modifications of wall cooling on flow
structures. Then § 5 is focused on a discussion of the pressure fluctuation fields. Section 6
introduces the process of the pressure decomposition and reveals corresponding pressure
components. Finally, the main findings are summarized in § 7.

2. Numerical methods and simulation details

Direct numerical simulations are performed for zero-pressure-gradient TBLs with an
isothermal wall. The three-dimensional Navier–Stokes equations for a compressible,
viscous, perfect heat-conducting gas are solved in a stretched Cartesian coordinate
system by high-order finite-difference methods. The temperature-dependent coefficient
of viscosity μ is calculated using Sutherland’s law. The simulations are based on
the open-source code STREAmS released by Bernardini et al. (2021), which can be
accelerated by graphics processing units. A brief review of the numerical methods
of STREAmS used in the present work is introduced here. The spatial discretization
of the convective terms in the Navier–Stokes equations is based on a hybrid
energy-preserving/shock-capturing scheme in a locally conservative form. In smooth
(shock-free) regions of the flow, the convective flux is approximated by the eighth-order
energy-preserving scheme (Pirozzoli 2010). Otherwise, in the discontinuous regions,
the Lax–Friedrichs flux vector splitting ensures robust shock-capturing capabilities. The
seventh-order weighted essentially non-oscillatory reconstruction (Jiang & Shu 1996)
is utilized to reconstruct the components of positive and negative characteristic fluxes
at interfaces. To determine the switch between the energy-preserving and shock-capturing
discretizations, a modified version of the Ducros shock sensor is used (Ducros et al.
1999). The viscous terms are expanded to Laplacian form to avoid odd–even decoupling
phenomena and are approximated with the sixth-order central finite-difference formulas.
For time integration, the semi-discrete system assembled from the discretization of the
spatial derivatives is advanced in time using a three-stage, third-order Runge–Kutta
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Figure 1. A sketch of the computational model (not to scale). The bottom plane denotes the isothermal wall.
Location xr indicates the streamwise location of the recycling domain. The computational domain is surrounded
by the sponge zone at the top and the tail.

scheme (Spalart, Moser & Rogers 1991). More details of the numerical methods can be
found in Bernardini et al. (2021).

A schematic of the computational model is shown in figure 1. A fully developed
turbulent state is established by the recycling–rescaling procedure (Pirozzoli, Bernardini &
Grasso 2010), which is less noisy than a synthetic inflow like the digital filtering method.
At the upper and outflow boundaries, non-reflecting boundary conditions (Poinsot &
Lele 1992) are imposed based on characteristic decomposition in the direction normal
to the boundary. A similar characteristic wave treatment is also applied at the no-slip
isothermal wall boundary. Uniform grid spacing is used in the spanwise direction, and
hyperbolic sine stretching is applied in the wall-normal direction. The grid spacing is
uniform in the streamwise direction except at the end of the computational domain where
stretching is applied. A sponge zone (Adams 1998) in combination with grid stretching is
added surrounding the computational domain at the top and the tail to further eliminate
reflections. The reference state of the flow in the sponge zone is set as the mean flow.

The computational cases and simulation parameters are listed in table 1. Six DNSs have
been performed in three different Mach number regimes, including three quasi-adiabatic
cases whose isothermal wall temperature Tw is set to the recovery temperature Tr =
T∞(1 + r(γ − 1)M2∞/2) based on a recovery factor of r = 0.89, and three corresponding
cooled-wall counterparts. At the stations selected for analysis, the friction Reynolds
number is chosen as Reτ ≈ 650, which is defined as the ratio between the boundary
layer thickness δ and the wall viscous length scale δv = ν̄w/uτ , where uτ = √

τw/ρ̄w is
the friction velocity, ρ̄w is the mean density at the wall, τw is the mean wall shear stress
and νw is the kinematic viscosity. It is worth noting that the variation of thermodynamic
properties across compressible non-adiabatic boundary layers is large. Thus a single
Reynolds number is not sufficient to characterize the flow (Lele 1994). The choice of
a more appropriate Reynolds number to compare flows at different Mach numbers is a
matter of controversy (Smits & Dussauge 2006). Whereas the near-wall pressure signature
and flow structures we are interested in are subjected to the boundary layer state in the
inner layer, we choose the friction Reynolds number Reτ as a suitable similarity parameter,
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Case M∞ Re∞ Reτ T∞ (K) Tw/Tr Tw/Te δi

M05T100 0.5 9311 650 298.15 1.0 1.04 0.86
M05T025 0.5 1358 659 298.15 0.25 0.26 0.88
M20T100 2.0 26 631 650 220.0 1.0 1.68 0.85
M20T050 2.0 9081 650 220.0 0.5 0.85 0.86
M80T100 8.0 1 186 116 623 51.8 1.0 8.72 0.77
M80T050 8.0 422 782 650 51.8 0.5 4.82 0.80

Table 1. The computation cases and simulation parameters. Here M∞, Re∞ and T∞ are the free-stream Mach
number, Reynolds number and temperature, respectively; Reτ is the friction Reynolds number; Tw/Tr means
the ratio of isothermal wall temperature and recovery temperature; Tw/Te means the ratio of isothermal wall
temperature and boundary edge temperature; and δi is the inlet boundary layer thickness.

Case Nx × Ny × Nz Lx × Ly × Lz �x+ �y+
w �y+

e �z+ Nf tsu∞/δi

M05T100 2400 × 320 × 600 67.1δi × 8.0δi × 10.5δi 9.4 0.76 9.6 5.7 201 260.0
M05T025 2400 × 320 × 600 65.3δi × 8.4δi × 10.2δi 12.9 0.75 10.7 7.7 201 202.7
M20T100 2400 × 320 × 600 67.8δi × 8.2δi × 10.6δi 12.1 0.77 10.5 7.2 210 584.6
M20T050 2400 × 320 × 600 55.7δi × 8.1δi × 8.7δi 9.9 0.76 10.6 6.0 204 589.4
M80T100 3600 × 320 × 400 50.2δi × 7.0δi × 5.1δi 6.2 0.46 11.0 5.5 235 231.1
M80T050 3600 × 320 × 400 48.8δi × 6.8δi × 5.0δi 6.2 0.46 11.4 5.5 306 271.5

Table 2. The spatial and temporal settings of simulations. Here Nx, Ny and Nz are the number of grid points
in the streamwise, wall-normal and spanwise directions, respectively; Lx, Ly and Lz are the lengths of physical
computational domain in the streamwise, wall-normal and spanwise directions, respectively, based on inlet
boundary-layer thickness δi; �x+ and �z+ represent the non-dimensional grid spacings in wall units of
streamwise and spanwise directions; �y+

w and �y+
e represent the wall-normal grid spacings at the wall and

at the boundary edge, respectively; Nf is the number of flow fields for statistics; and tsu∞/δi is the time period
for statistics.

which is the same as in previous works (Bernardini & Pirozzoli 2011; Hadjadj et al. 2015;
Zhang et al. 2017, 2018). The free-stream temperature of the M∞ = 8.0 cases refers to the
condition of nozzle exit of the Sandia Hypersonic Wind Tunnel at Mach 8 (Zhang et al.
2018). The inflow is of low enthalpy such that the real gas effect is absent.

The spatial and temporal settings of simulations are listed in table 2. The grid resolutions
are evaluated at the streamwise station where Reτ ≈ 650. Due to the high-resolution
capability of the hybrid eighth-order energy-preserving and seventh-order weighted
essentially non-oscillatory scheme, the present grid resolutions are sufficient for DNS.
A higher resolution is achieved in the M∞ = 8.0 cases to capture finer turbulent eddies.
The sponge zones are set to span over the last 100 points in the streamwise direction
and the last 30 points in the wall-normal direction. The streamwise size of the sponge
zone Ls

x is about 15.0δi for the M∞ = 0.5 and 2.0 cases and 7.5δi for the M∞ = 8.0
cases. The wall-normal size of the sponge zone Ls

y is about 10.0δi for all cases. To assess
the adequacy of the spanwise domain size, we plot profiles of the two-point spanwise
correlations at y+ = 15 for streamwise velocity fluctuation and pressure fluctuation in
figure 2. All correlations decay to around zero for a large separation, indicating the
two-point correlations are sufficiently decorrelated over the half-length of the spanwise
domain. Hence, the length of the spanwise computational domain is wide enough to
resolve flow structures. All first- and second-order statistics of primary variables are
accumulated every 500 time steps during the computation. The numbers of flow fields
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Figure 2. The profiles of two-point spanwise correlations at y+ = 15 for (a) streamwise velocity fluctuation
and (b) pressure fluctuation. Curves and symbols: − − � − − (red), M05T100; − − � − − (light blue),
M05T025; −·−�−·− (red), M20T100; −·−�−·− (light blue), M20T050; —�— (red), M80T100;
—�— (light blue), M80T050.

stored for other statistics and the pressure decomposition all exceed 200. For the M∞ = 0.5
and M∞ = 2.0 cases, shocklets are not expected at these Mach numbers. Hence the
energy-preserving flux is applied throughout. For the M∞ = 8.0 cases, compressibility
is quite strong, and the hybrid energy-preserving/shock-capturing scheme is utilized with
the threshold value of the modified Ducros shock sensor Θ = 0.15.

In the following, the streamwise (x), wall-normal (y) and spanwise (z) velocity
components are denoted as u, v and w and the density and pressure are denoted as
ρ and p, respectively. Thermodynamics variables are decomposed using the standard
Reynolds decomposition f = f̄ + f ′ and the velocity variables are decomposed using
density-weighted (Farve) representation f = f̃ + f ′′, where f̃ = ρf /ρ̄. Superscript (. . . )+
denotes the variable in wall units, subscript (. . . )w denotes the variable at the wall and
subscript (. . . )∞ denotes the variable in the free stream.

3. General turbulence statistics

Here, before discussing pressure fluctuations, we show the overall effects of wall cooling
on the turbulence statistics of the boundary layers, especially for those quantities that are
related to pressure fluctuations. In the beginning, our results are compared with reference
data to confirm the validity of the present computations. Table 3 lists some general
statistical properties. Although the friction Reynolds numbers Reτ are almost the same,
the semi-local Reynolds numbers Re∗

τ vary in an extensive range among these boundary
layers. Wall cooling would consistently decrease the shape factor H and increase the
friction factor Cf . The Reynolds analogy factors 2Ch/Cf are all close to 1.1, as predicted by
experimental heat-transfer data (Hopkins & Inouye 1971). Note that the root mean squares
of wall pressure fluctuations in wall units are suppressed by wall cooling for the M∞ = 0.5
and 2.0 cases, but enhanced for the M∞ = 8.0 cases which is discussed in detail later.

Figure 3 shows several types of transformed mean-velocity profiles. The van Driest
transformed mean velocity u+

VD is plotted in figure 3(a). The present results are consistent
with the published data of Duan et al. (2011) and Zhang et al. (2018) at a hypersonic Mach
number. As for the wall cooling cases, the van Driest transform fails. The profiles shrink
in the viscous sublayer and overshoot in the log layer, which is in agreement with Zhang
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Case Re∗
τ Reθ Reδ2 H Cf × 103 2Ch/Cf −Bq p′

rms,w/τw

M05T100 683 1773 1714 1.51 3.67 — — 2.56
M05T025 96 283 978 0.33 6.27 1.16 0.100 2.03
M20T100 1293 3054 2010 3.06 2.59 — — 2.88
M20T050 530 1320 1507 1.85 3.62 1.14 0.045 2.60
M80T100 20 696 34 239 3638 22.81 0.48 — — 3.00
M80T050 9446 16 001 2772 17.00 0.72 1.11 0.052 3.41

Table 3. Statistical properties of the boundary layers at the selected station for analysis. The semi-local
Reynolds number is Re∗

τ = (ρ∞τw)1/2δ/μ∞, where δ is the boundary layer thickness; the Reynolds numbers
based on momentum thickness are Reθ = ρ∞u∞θ/μ∞ and Reδ2 = ρ∞u∞θ/μ̄w; H = δ∗/θ is the shape factor;
Cf = 2τw/ρ∞u2∞ is the friction factor; Ch = q̄w/Cpρ∞u∞(Tw − Tr) is the Stanton number, where Cp is the
heat capacity at constant pressure and q̄w is the mean heat flux at the wall; Bq = q̄w/(ρ̄wuτ CpTw) indicates
the non-dimensional wall heat flux; and p′

rms,w/τw is the non-dimensional wall pressure fluctuation intensity in
wall units.

et al. (2017) and Xu et al. (2021). Trettel & Larsson (2016) proposed a transform based
on the semi-local scale y∗ = y/δ∗

ν (Huang, Coleman & Bradshaw 1995) for wall-bounded
flow with heat transfer, where δ∗

ν = μ̄/(ρ̄τw)1/2. This transformation relies on the Mach
invariance of the viscous stress. In figure 3(b) good collapse of u+

TL presents in the
viscous sublayer, but this transformation works less successfully in the log region. By
introducing the semi-local scale, Griffin et al. (2021) generalized the transformation based
on turbulence quasi-equilibrium of Zhang et al. (2012). The transformed profiles of u+

eq all
have a consistent slope of 1/k in the log region but differ in their additive constants of C.
Based on the total stress, Griffin et al. (2021) proposed a new transformation. As shown in
figure 3(d), the transformed mean-velocity profiles of u+

t agree well with the wall law and
the log law. The total-stress-based transformation shows the applicability of appropriately
mapping between the compressible and incompressible mean-velocity profiles of adiabatic
and non-adiabatic boundary layers.

The distributions of streamwise velocity fluctuations and Reynolds shear stresses are
shown in figure 4. Wall cooling enhances the streamwise fluctuating velocity intensities
u′′

rms/uτ and Reynolds stresses ũ′′v′′/u2
τ in wall units. This enhancement is mainly

attributed to the decreased friction velocity uτ due to wall cooling, especially for
case M05T025 with the maximum extent of decrease in uτ . The peak positions of
the wall-cooling cases are shifted outward compared with the quasi-adiabatic cases.
The stronger cooling is implemented, the outer position is shifted too, such as case
M05T025. Referring to Morkovin’s scaling (Morkovin 1962), collapse of density-scaled
profiles is better in figure 4(b). Our results are consistent with the reference data in
both quasi-adiabatic and non-adiabatic cases. The density-scaled Reynolds stresses show
appropriate independence from Mach numbers and wall temperatures. The effects of wall
cooling on v′′

rms/uτ and w′′
rms/uτ (not shown here) are quite similar to that on u′′

rms/uτ ,
namely wall cooling also enhances v′′

rms/uτ and w′′
rms/uτ and causes their peak positions

to shift away from the wall. When plotting in the inner scale, figure 4(c) shows a clear
scatter of peak positions. The density-scaled velocity fluctuations and Reynolds stresses
shrink near the wall. In semi-local scaling, a good collapse of the peak positions is present
in figure 4(d). The scaling ability of the semi-local scaling is consistent with the result of
Huang et al. (1995) for isothermal wall-bounded turbulence.
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Figure 3. Mean-velocity profiles transformed from (a) van Driest and (b) Trettel & Larsson (2016),
transformation based on (c) turbulence quasi-equilibrium and (d) total stress, proposed by Griffin, Fu & Moin
(2021). Curves and symbols: −·−·−, wall law u+ = y+; − − −, log law u+ = log ( y+)/k + C with k = 0.41,
C = 5.2; ©, Duan, Beekman & Martín (2011), Mδ = 7.7, Reτ = 398, Tw/Tr = 1.0; ♦, Zhang et al. (2018),
M∞ = 7.87, Reτ = 480, Tw/Tr = 0.48; − − � − − (red), M05T100; − − � − − (light blue), M05T025;
−·−�−·− (red), M20T100; −·−�−·− (light blue), M20T050; —�— (red), M80T100; —�— (light blue),
M80T050.

Figure 5 plots relations between the mean velocity and the mean temperature in
combination with two temperature–velocity scalings. For case M20T050, the wall
temperature is near the edge temperature. Thus, the gradient of temperature throughout
the boundary layer is relatively small. Walz’s equation (Walz 1969), written as

T̄
T∞

= Tw

T∞
+ Tr − Tw

T∞

(
ū

U∞

)
+ T∞ − Tr

T∞

(
ū

U∞

)2

, (3.1)

provides an accurate prediction for the quasi-adiabatic cases. Nevertheless, it results in
a deviation for the wall-cooling cases. A largely improved prediction is provided by the
generalized Reynolds analogy of Zhang et al. (2014), which is given by

T̄
T∞

= Tw

T∞
+ Trg − Tw

T∞

(
ū

U∞

)
+ T∞ − Trg

T∞

(
ū

U∞

)2

, (3.2)
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Figure 4. Distributions of (a) velocity fluctuations in the outer scaling and density-scaled velocity fluctuations
in (b) the outer scaling, (c) the inner scaling and (d) semi-local scaling. Curves and symbols: ©, Pirozzoli
& Bernardini (2011), M∞ = 2.0, Reτ = 497, Tw/Tr = 1.0; �, Zhang et al. (2018), M∞ = 7.87, Reτ = 480,
Tw/Tr = 0.48; − − � − − (red), M05T100; − − � − − (light blue), M05T025; −·−�−·− (red), M20T100;
−·−�−·− (light blue), M20T050; —�— (red), M80T100; —�— (light blue), M80T050.

where Trg = T∞ + rgU2∞/(2Cp) with the general recovery factor rg = 2Cp(Tw −
T∞)/U2∞ − 2 Prqw /(U∞τw). This scaling shows a good coincidence with DNS data for
both the quasi-adiabatic and wall-cooling cases.

The thermodynamic variables density ρ and temperature T are coupled with pressure
by the ideal gas equation of state. Wall-normal distributions of mean density ρ̄/ρ∞
and mean temperature T̄/T∞ are plotted in figure 6. Due to the strong wall cooling
in case M05T025, the near-wall ρ̄/ρ∞ is high. The location of the lowest ρ̄/ρ∞ is
located at y+ ≈ 70 for case M20T050, where the highest T̄/T∞ is also achieved. The
strong aerodynamic heating in the M∞ = 8.0 cases leads to relatively high T̄/T∞
and low ρ̄/ρ∞ within the boundary layers. The highest T̄/T∞ for case M80T050 is
located at y+ ≈ 7, which is much closer to the wall than that for case M20T050.
Figure 7 shows the profiles of the fluctuation intensity of density and temperature. The
gradient of mean thermodynamic properties induced by wall cooling strongly stimulates
the density and temperature fluctuations across the boundary layer for case M05T025.
For case M20T050, the gradient of mean thermodynamic properties is relatively small
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Figure 5. Relations between the mean velocity and the mean temperature: (a) M∞ = 0.5 and M∞ = 2.0;
(b) M∞ = 8.0. Curves and symbols: −·−·−, equation of Walz (1969); − − − (red), modified strong Reynolds
analogy of Zhang et al. (2014); � (red), M05T100; � (light blue), M05T025; � (red), M20T100; � (light blue),
M20T050; � (red), M80T100; � (light blue), M80T050.
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Figure 6. Wall-normal distributions of (a) mean density and (b) mean temperature. Curves and symbols: − −
� − − (red), M05T100; − − � − − (light blue), M05T025; −·−�−·− (red), M20T100; −·−�−·− (light
blue), M20T050; —�— (red), M80T100; —�— (light blue), M80T050.

compared with its quasi-adiabatic counterpart. The suppression of density fluctuations
is observed in the off-wall range of y+ > 8. For the hypersonic cases, the local peaks
of the density fluctuation intensity ρrms/ρ̄ emerge at the wall, which also indicates the
local peaks of the pressure fluctuation intensity at the boundary condition of an isothermal
wall. The magnitudes of ρrms/ρ̄ and Trms/T̄ are so large across the boundary layer that
they cannot be negligible. Near the boundary edge where the turbulent–non-turbulent
interface is located, the density fluctuation intensities ρrms/ρ̄ show their largest magnitude
and attenuate beyond this location. The behaviour of the temperature fluctuation intensity
Trms/T̄ is very similar to that of the density fluctuation intensity ρrms/ρ̄ except in the
near-wall region because of different types of boundary condition.
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Figure 7. Wall-normal distributions of the root-mean-square fluctuations of (a) density and (b) temperature.
Curves and symbols: − − � − − (red), M05T100; − − � − − (light blue), M05T025; −·−�−·− (red),
M20T100; −·−�−·− (light blue), M20T050; —�— (red), M80T100; —�— (light blue), M80T050.

To indicate the significance of compressibility effects, the turbulent Mach number,
defined as

Mt =
√

u′′
i u′′

i

c̄
, (3.3)

is depicted in figure 8(a), with c representing the local sound speed. Wall cooling reduces
c, which raises the turbulent Mach number Mt for all three Mach number regimes,
thereby increasing compressibility. Mach number Mt reaches its maximum in the buffer
layer, and the locations of peak values shift outward due to the wall-cooling effects,
mimicking the behaviours of velocity fluctuation (see figure 4). For cases M80T100 and
M80T050, the magnitudes of Mt in the buffer layer and log layer have locally exceeded
0.3; thus compressibility effects cannot be disregarded (Smits & Dussauge 2006) and eddy
shocklets are expected to emerge. The fluctuating Mach number Mrms, namely the root
mean square of the local Mach number, is shown in figure 8(b). Wall cooling modifies
Mrms slightly for the M∞ = 0.5 and M∞ = 2.0 cases, while it enhances Mrms in the buffer
layer and log layer and mildly suppresses Mrms at the edge of boundary layers. Two peak
values are observed in the buffer layer and the log layer as well. Maximum values are
present in the buffer layer for the M∞ = 0.5 and 2.0 cases, while maximum values are
present at the edge of boundary layers where strong temperature and density fluctuations
exist for the M∞ = 8.0 cases.

Figure 9 plots the non-dimensional vorticity fluctuation intensity ω+
rms and dilatation

fluctuation intensity θ+
rms normalized in wall units, which are reflections of the vorticity

mode and the acoustic mode, respectively. The profiles of ω+
rms show appropriate Mach

number independence for the quasi-adiabatic cases. Wall cooling restrains vorticity
fluctuations in most regions, except very near the wall, where the vorticity fluctuation
of case M80T050 is enhanced. As illustrated in figure 9(b), θ+

rms increases as the Mach
number increases. Maximum dilatational fluctuations are found at the wall. Wall cooling
stimulates θ+

rms for the M∞ = 8.0 cases strongly and θ+
rms for the M∞ = 0.5 cases away

from the wall. On the contrary, wall cooling suppresses θ+
rms in the M∞ = 2.0 cases.
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Figure 8. Wall-normal distributions of (a) the turbulent Mach number and (b) the fluctuating Mach number.
Curves and symbols: − − � − − (red), M05T100; − − � − − (light blue), M05T025; −·−�−·− (red),
M20T100; −·−�−·− (light blue), M20T050; —�— (red), M80T100; —�— (light blue), M80T050.
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Figure 9. Wall-normal distributions of the root-mean-square fluctuations of (a) vorticity and (b) dilatation.
Curves and symbols: − − � − − (red), M05T100; − − � − − (light blue), M05T025; −·−�−·− (red),
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4. Flow structures

Pressure fluctuations are intimately related to flow structures, and then the general
modification of wall cooling on the flow structures is revealed in the wall-parallel planes.
To compensate for the streamwise growth of the boundary layer, we obtain slices by
interpolation with a constant y∗ or y/δ (Pirozzoli & Bernardini 2011). Figure 10 shows
the instantaneous streamwise velocity fluctuations

√
ρu′′/√τw at the semi-local scaled

x∗–z∗ plane of y∗ = 15, near the peak location of turbulence production. Referring to
Patel et al. (2015), the velocity fluctuations are scaled by the local density ρ instead of
the averaged density ρ̄ to better account for the modulation of the streak magnitude. Flow
structures here can represent the inner-layer turbulence regeneration cycle. The typical
streaky pattern of different scales is observed with alternating stripes of enhanced and
reduced momentum. These structures are related to the ‘sweep’ and ‘ejection’ events,
namely wall-ward and outward motions. For the quasi-adiabatic cases, at approximately

946 A14-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

59
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.595


P.-J.-Y. Zhang, Z.-H. Wan, N.-S. Liu, D.-J. Sun and X.-Y. Lu

–1000

1000

800

600

400

200

0
–500 500 1000

(x – xref)
∗

z∗

1000

800

600

400

200

0

z∗

1000

800

600

400

200

0

1000

800

600

400

200

0

1000

800

600

400

200

0

1000

800

600

400

200

0

z∗

0 –1000 –500 500 1000

(x – xref)
∗

0

–1000 –500 500 10000 –1000 –500 500 10000

–1000 –500 500 10000 –1000 –500 500 10000

(e)

(b)(a)

(c) (d )

( f )

Figure 10. Instantaneous streamwise fluctuating velocity
√

ρu′′/√τw in the wall-parallel plane at y∗ = 15 for
cases (a) M05T100, (b) M05T025, (c) M20T100, (d) M20T050, (e) M80T100 and ( f ) M80T050. In each
case, xref is where Reτ ≈ 650. Contour levels are shown in the range −6 � √

ρu′′/√τw � 6, from blue to red
colourmap.

the same friction Reynolds number Reτ , finer-scale structures are found in high-speed
boundary layers, i.e. in figures 10(c) and 10(e). At the semi-local scale, the streaky
structures behave similarly across the quasi-adiabatic cases and the wall-cooling cases. The
spanwise spacings of the near-wall streaks are approximately equivalent with λ∗z ≈ 100 for
all cases, which is in accordance with Huang, Duan & Choudhari (2022).

Figure 11 depicts the instantaneous streamwise velocity u′′/u∞ in the outer layer at
the x–z plane of y/δ = 0.15. When the outer scaling is employed, the main effect of
wall cooling is to increase the size of streaks and the streamwise coherence of turbulent
structures, in agreement with Duan et al. (2010) and Hadjadj et al. (2015). The effect of
wall cooling is more visible for case M05T025, causing streaks to become thicker and
longer than for the quasi-adiabatic counterpart. However, for the M∞ = 2.0 and 8.0 cases,
the difference between the quasi-adiabatic and wall-cooling cases is less obvious, due to
their relatively lower non-dimensional wall-heat flux −Bq.

As seen in figure 9(b), strong dilatational motions are stimulated near the wall for
case M80T050. To show these motions directly, figure 12 shows instantaneous fields of
the normalized dilatation fluctuation θ ′+ and pressure fluctuation p′+ at the semi-local
scaled x∗–z∗ plane of y∗ = 5 for the M∞ = 8.0 cases. Notably, travelling-wave-like
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Figure 11. Instantaneous streamwise fluctuating velocity u′′/u∞ in the wall-parallel plane at y/δ = 0.15 for
cases (a) M05T100, (b) M05T025, (c) M20T100, (d) M20T050, (e) M80T100 and ( f ) M80T050. In each
case, xref is where Reτ ≈ 650. Contour levels are shown in the range −0.2 � u′′/u∞ � 0.2, from blue to red
colourmap.

alternating positive and negative structures (APNS) emerge, accompanied by low-speed
streaks indicated by shading, which are marked by dashed boxes. These structures show
a spotty form on a fine scale. They are well organized as wavelike alternating patterns
along the streamwise direction, which have been reported in high-speed wall-bounded
turbulent flows, such as in channel flows (Yu, Xu & Pirozzoli 2019; Tang et al. 2020) and
boundary layers (Duan et al. 2010; Xu et al. 2021). Comparing figure 12(a) with 12(b), it
is found that wall cooling enhances the compressibility and contributes to the prevalence
of the APNS. For the pressure fluctuation p′, among large-scale pressure structures, the
small-scale APNS are also notable for their local amplitude extremes. Coleman, Kim
& Moser (1995) interpreted that due to the large positive correlation between velocity
fluctuations u′ and temperature fluctuations T ′ near the wall, the low-speed streaks tend
to be the coldest in particular. The significant dilatational perturbations are concentrated
within the cold low-speed streaks, whose lower local sound speed causes the cold streaks to
act as ‘acoustic wave guides’. They demonstrated that the acoustic waveguide phenomenon
is a dynamically insignificant passive effect in the channel flow of Mach number M = 3
with isothermal cooled wall, and that acoustic stabilization is not significant in the streaks.
However, these perturbations are dominant near the wall in the present high-speed cases
of M∞ = 8.0. In our previous work (Tang et al. 2020), the APNS in the M = 3.83
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Figure 12. Instantaneous fields of the normalized (a,b) dilatation fluctuation θ ′+ and (c,d) pressure fluctuation
p′+ in the wall-parallel plane at y∗ = 5 for (a,c) M80T100 and (b,d) M80T050. In each case, xref is where
Reτ ≈ 650. The shading indicates the position of low-speed streaks where u′′ < 0. Some typical APNS are
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channel flow with cooled walls can be intimately related to the least-stable linear stability
eigenmode, which mode has the same form as the coherent structure of the APNS extracted
by dynamic mode decomposition. In boundary layers, the dynamics of the APNS seems
to be similar to that of channel flows. The APNS can affect the behaviour and statistics of
the pressure fluctuation significantly, which is further discussed below.

5. Pressure fluctuations

In this section, we focus on investigating the pressure fluctuations, including their
distributions and their relations with the Mach number at the wall and in the free
stream. Figure 13 shows the profiles of the normalized pressure fluctuation intensity
p′

rms/τw along the wall-normal direction. As shown in figure 13(a), for the quasi-adiabatic
cases, the distributions of normalized pressure fluctuation intensity p′

rms/τw with different
Mach numbers exhibit a similar behaviour in that p′

rms/τw grows from the wall pressure
fluctuation intensity ( p′

rms/τw)w and reaches the maximum value at about y/δ = 0.04
indicated by the dashed line, and decays rapidly within the boundary layer to a flat
platform. Then the decay speed becomes slow in the free stream where pressure
fluctuations purely consist of acoustic waves. The platform of case M05T100 is reasonably
low, demonstrating that the combination of the non-reflecting boundary condition and
the sponge zone eliminates non-physical reflection properly and efficiently; otherwise,
pressure fluctuation would be overshot. The magnitude of p′

rms/τw in free stream increases
as the Mach number M∞ increases. As shown by Lilley (1963), pressure fluctuations
in supersonic boundary layers result from fluctuations in both the vorticity mode and
the acoustic mode. The vorticity mode is dominant in general within boundary layers,
while the acoustic mode plays the leading role in the free stream and only matters at
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Figure 13. Distributions of normalized pressure fluctuation intensity p′
rms/τw as a function of wall-normal

distance in the outer scaling for (a) the quasi-adiabatic cases; (b) the wall-cooling cases and (c) in the inner
scaling; (d) in the semi-local scaling. The dashed lines indicate the peak location of the quasi-adiabatic cases
and the shading indicates the envelope of pressure fluctuations of the quasi-adiabatic cases. Curves and
symbols: ♦, Bernardini & Pirozzoli (2011), M∞ = 4.0, Reτ = 506, Tw/Tr = 1.0; ©, Zhang et al. (2017),
M∞ = 5.86, Reτ = 450, Tw/Tr = 0.25; − − � − − (red), M05T100; − − � − − (light blue), M05T025;
−·−�−·− (red), M20T100; −·−�−·− (light blue), M20T050; —�— (red), M80T100; —�— (light blue),
M80T050.

high Mach numbers in the form of eddy Mach waves, which contributes to the wall
pressure to a certain degree. As compared with the quasi-adiabatic cases, the profiles
of the wall-cooling cases are quite different, as shown in figure 13(b). The profiles do
not follow the envelope of profiles of the quasi-adiabatic cases indicated by the shading.
Wall cooling shows opposite effects at different Mach numbers. For case M05T025, wall
cooling strongly suppresses the wall pressure fluctuation intensity ( p′

rms/τw)w and shifts
the peak position far outward to y/δ = 0.24. This change of the peak position recalls the
similar trend of Reynolds stresses in figure 4, which is relevant to the source of pressure
fluctuations in the fluctuating pressure equations that are discussed in the following. For
case M20T050, similar effects are observed in that the wall pressure fluctuation intensity
( p′

rms/τw)w is suppressed, and the peak position is shifted outward to y/δ = 0.07 but to a
slighter degree. However, for case M80T050, wall cooling significantly enhances the wall
pressure fluctuation intensity ( p′

rms/τw)w up to 3.41 instead of suppressing it, and thus
( p′

rms/τw)w becomes the maximum value. This enhancing effect has also been reported by
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Zhang et al. (2017) in cooled hypersonic boundary layers with M∞ = 5.86 and Tw/Tr =
0.25. Indeed, the high value of the pressure fluctuation intensity p′

rms/τw near the wall
is a consequence of the observed APNS in figure 12. Away from the wall, the pressure
fluctuation intensity p′

rms/τw first decreases and then increases, reaching a peak at the
original peak position of case M80T100. The peak value is also decreased compared to
that in case M80T100, and its position is also shifted outward. Finally, p′

rms/τw gradually
decays similar to case M80T100. Different from all other cases, in this condition, the
acoustic mode does not only dominate in the free stream but also matters near the wall
leading to the maximum ( p′

rms/τw)w. Figure 13(c) shows the distributions of p′
rms/τw in

the inner scaling. The modification of ( p′
rms/τw)w and the shift of peak positions can be

highlighted clearly. The increasing trend of ( p′
rms/τw)w with an increase of Mach number

M∞ is observed for both the quasi-adiabatic and wall-cooling cases. Generally, the effects
of wall cooling play an important role in the near-wall region and show little influence
away from the wall. In the semi-local scaling, the peak positions seem to collapse well
at about y∗ = 30, showing the good scaling capability of the semi-local scale for both
Reynolds stresses and pressure fluctuations.

Figure 14 shows the distributions of the pressure fluctuation intensity versus Mach
number M∞ at the wall and in the free stream. The wall pressure fluctuation intensity
is normalized by the free-stream dynamic pressure ( p′

rms/q∞)w in figure 14(a) with data
from measurements, simulations and theoretical predictions. The simulation data collected
here are all from boundary layers with a moderate friction Reynolds number. The solid
grey squares indicate the measurement results of Beresh et al. (2011). From light to dark
colours, the squares denote the uncorrected data obtained from the original signal, the
corrected data handled with Corcos corrections and noise cancellation and the extended
data further corrected based on an estimation of the high frequencies that are not captured
by sensors. As shown in figure 14(a), the correction and extension can efficiently improve
the results. The original empirical model proposed by Laganelli et al. (1983) is extended
from an incompressible theory to compressible states through a transformation function.
The model takes the wall temperature Tw/Tr and free-stream Mach number M∞ into
account, written as

( p′
rms/q∞)w = σ[

0.5 + (Tw/Tr)
(
0.5 + 0.09M2∞

) + 0.04M2∞
]φ , (5.1)

where the two parameters are σ = 0.006 and φ = 0.64, respectively. The original model
indicated by the black dashed line seems to accord with the uncorrected or corrected
measurement data better but deviates from the extended measurement and simulation data.
This is probably because the Laganelli model is based on fitting measurements, and much
of the historical data may be biased low. Thus, the value of σ has been argued in the
range 0.008 � σ � 0.01 (Schewe 1983; Bull 1996; Goody & Simpson 2000; Beresh et al.
2011). Ritos et al. (2019) suggested σ = 0.008 shown by yellow dashed line according to
their implicit large-eddy simulation results with Mach number 2.25 � M∞ � 8.0 shown
by squares. The model shows good agreement with numerical data but underestimates the
pressure fluctuation intensity in the lower-Mach-number range M∞ � 2.0. Combining all
the numerical quasi-adiabatic data in figure 14(a), a modified relation is suggested with
σ = 0.01 and φ = 0.75 by linear fitting, indicated by the red dashed line. The present
model can well predict ( p′

rms/q∞)w in the whole range of Mach number according to the
numerical data. Specifically, the main improvement is achieved in for lower Mach number.
The predictions of the wall-cooling cases with Tw/Tr = 0.5 and 0.25 are also shown by
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Figure 14. Distributions of pressure fluctuation intensity as a function of Mach number: (a) wall pressure
fluctuation intensity normalized by the free-stream dynamic pressure q∞; (b) pressure fluctuation intensity in
the free stream. Curves and symbols: − − −, theory by Laganelli, Martellucci & Shaw (1983); − − − (orange),
modification by Ritos, Drikakis & Kokkinakis (2019); − − − (red), present model, Tw/Tr = 1.0; − − − (light
blue), present model, Tw/Tr < 1.0; —, the linear relation ( p′

rms/τw)∞ = 0.12M∞ + 0.08; � (red), DNS by
Schlatter & Örlü (2010); ♦ (red), DNS by Bernardini & Pirozzoli (2011) and Bernardini et al. (2011); © (red),
DNS by Duan et al. (2011, 2014); © (light blue), DNS by Zhang et al. (2017); � (red), implicit large-eddy
simulation by Ritos et al. (2019); �, experiments by Beresh et al. (2011), colours from light to dark indicate
uncorrected, corrected and extended results, respectively; �, experiments by Laufer (1964); � (red), M05T100;
�, M05T025 (light blue); � (red), M20T100; � (light blue), M20T050; � (red), M80T100; � (light blue),
M80T050. Red symbols and filled symbols indicate adiabatic or quasi-adiabatic cases, blue symbols indicate
wall-cooling cases.

the blue dashed lines. Although the model gives reasonable ( p′
rms/q∞)w values of cases

M20T050 and M80T050, for Tw/Tr = 0.25 the model overestimates the value of case
M05T025 and underestimates the value of case M6Tw025 of Zhang et al. (2017). The
Laganelli model has not taken into account the presence of APNS at high Mach numbers.
Thus, the important contribution of the acoustic mode is missed. There is a limitation
of applicability for the Lagenelli model in the highly cooled and high-Mach-number
cases.

Figure 14(b) shows the pressure fluctuation intensity in the free stream normalized by the
wall shear stress ( p′

rms/τw)∞. The increasing trend of ( p′
rms/τw)∞ versus Mach number

is consistent with the experimental data reported by Laufer (1964). Although all four
walls of the rectangular test section radiated to the measurement location, Laufer (1964)
obtained the contribution to the acoustic fluctuations from a single wall by assuming
equal contribution from each wall, no correlation between the four acoustic fields and no
reflections from opposite walls. Phillips (1960) illustrated that in the supersonic regime,
sound is radiated as eddy Mach waves. As the Mach number increases, this mechanism
to generate pressure fluctuations becomes increasingly dominant, which leads to the
increasing trend of ( p′

rms/τw)∞. Wall cooling enhances ( p′
rms/τw)∞ at M∞ = 0.5 but

suppresses it at M∞ = 8.0, and shows little influence at M∞ = 2.0. Even when the
subsonic cases are taken into account, the distributions of ( p′

rms/τw)∞ appear to show
a linear relation versus Mach number M∞ with ( p′

rms/τw)∞ = 0.12M∞ + 0.08.
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6. Decomposition of pressure fluctuations

In this section, we attempt to provide more physical insights into the effect of wall cooling
through the decomposition of pressure fluctuations. We extend the pressure decomposition
approach utilized in wall-bounded flows (Foysi et al. 2004; Gerolymos et al. 2013; Tang
et al. 2020; Yu et al. 2020) to compressible TBLs. The contribution and interaction of
each component are introduced, and the characteristics in wavenumber space are further
discussed.

6.1. Decomposition method for fluctuating pressure
The equations for pressure decomposition are deduced based on the Favre decomposition
of velocity and the Reynolds decomposition of thermodynamic variables. The present
governing equations for mass and momentum in a Cartesian coordinate system are written
as

∂ρ

∂t
+ ∂ρuj

∂xj
= 0, (6.1)

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
, (6.2)

where τij indicates the viscous stress tensor. Taking the divergence of the momentum
equation (6.2), we obtain the pressure equation, namely

∂2p
∂xi∂xi

= − ∂2

∂xi∂xj

(
ρuiuj − τij

) − ∂

∂xi

∂ρui

∂t
. (6.3)

By subtracting the average of (6.3) from itself and combining with the continuity
equation (6.1), we get the equation for pressure fluctuation:

∂2p′

∂xi∂xi
= ∂2

∂xi∂xj
τ ′

ij − ∂2

∂xi∂xj

(
2ρũiu′′

j + ρ′ũiũj

)
− ∂2

∂xi∂xj

(
ρu′′

i u′′
j − ρu′′

i u′′
j

)
+ ∂2ρ′

∂t2
.

(6.4)

Following Pope (2000), we introduce a harmonic pressure component ph accounting for
the contribution of boundary conditions. Then the pressure fluctuation is split according to
the source terms on the right-hand side of (6.4) being p′ = pr + ps + pτ + pc + ph, which
satisfy

∂2pr

∂xi∂xi
= −2

∂ ũi

∂xj

∂ρu′′
j

∂xi
, (6.5a)

∂2ps

∂xi∂xi
= − ∂2

∂xi∂xj

(
ρu′′

i u′′
j − ρu′′

i u′′
j

)
, (6.5b)

∂2pτ

∂xi∂xi
=

∂2τ ′
ij

∂xi∂xj
, (6.5c)

∂2pc

∂xi∂xi
= ∂2ρ′

∂t2
− ∂2

∂xi∂xj

(
2ρũiu′′

j + ρ′ũiũj

)
+ 2

∂ ũi

∂xj

∂ρu′′
j

∂xi
, (6.5d)

∂2ph

∂xi∂xi
= 0. (6.5e)
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Figure 15. A schematic for pressure decompositions. A subdomain of the velocity field of case M80T100 is
shown.

The pressure components pr and ps are so-called rapid pressure and slow pressure
just as in incompressible flows, induced by linear mean flow–turbulence interactions
and nonlinear turbulence–turbulence interactions, respectively. The viscous pressure pτ

accounts for the contribution of the viscous stress. The compressible pressure pc is
the result of compressibility which can principally represent the essential nature of
compressibility effects on the pressure statistics (Sarkar 1992; Foysi et al. 2004; Tang
et al. 2020).

With the obtained DNS data, the right-hand side of (6.5) can be calculated. The pressure
equations are solved in a subdomain of the computational domain as shown in figure 15.
The subdomain is chosen to cover the selected station for analysis. Boundary conditions
for each pressure component should be specified in the streamwise direction, on the wall
and in the far field, which are listed in table 4. Here ∂p/∂y = 0 is applied for all pressure
components in the streamwise direction and on the wall except for the harmonic pressure
ph, which is intended to account for the contribution of boundary conditions. Note that
vortex waves and entropy waves are evanescent, and the acoustic mode dominates in the
free stream (Duan et al. 2016; Zhang et al. 2017). In the far field where acoustic waves
are dominant, the nature of propagation of acoustic waves all involves in compressible
pressure pc that with p = c2

0ρ
′ in the free stream, the first term in (6.5d) consists of

the wave equation which governs the acoustic wave radiation, and thus the condition
pc = p′ is applied for pc with other components set to 0. The periodic boundary condition
is applied in the spanwise direction. The equations are solved by the Fourier–Galerkin
method in the periodic spanwise direction and by a second-order central difference scheme
in the streamwise and wall-normal directions. The grid for pressure decomposition is the
same as that of the DNS computation but truncated in the streamwise and wall-normal
directions. In the wall-normal direction, the subdomain spans over 280 points. In the
streamwise direction, the subdomain spans over 800 points for the M∞ = 0.5 and 2.0
cases, and 1200 points for the M∞ = 8.0 cases. The upper plane of the subdomain is
within the physical computational domain. The wall-normal location of the upper plane
exceeds 3δ, where acoustic waves play a dominant role. The streamwise length of the
subdomain is set wide so that the harmonic pressure ph is very weak in the region
away from the streamwise boundary. The sensitivity check of pressure components to the
subdomain size is discussed in the Appendix. It has been shown that the current subdomain
size is large enough such that the pressure component is independent of the subdomain
size.
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Boundary condition pr ps pτ pc ph

Streamwise ∂pr/∂x = 0 ∂ps/∂x = 0 ∂pτ /∂x = 0 ∂pc/∂x = 0 ∂ph/∂x = ∂p′/∂x
Wall ∂pr/∂y = 0 ∂ps/∂y = 0 ∂pτ /∂y = 0 ∂pc/∂y = 0 ∂ph/∂y = ∂p′/∂y
Far field pr = 0 ps = 0 pτ = 0 pc = p′ ph = 0

Table 4. Boundary conditions of the fluctuating pressure equations for each pressure component.

6.2. Analysis of pressure components
Because the harmonic pressure ph plays a minor role in the Reynolds-stress budgets
(Mansour, Kim & Moin 1988) and it only matters near the streamwise boundary in the
present cases, we concentrate on analysing the rapid pressure pr, slow pressure ps, viscous
pressure pτ and compressible pressure pc, which are raised by corresponding source terms.
The solved normalized pressure components for case M05T100 are shown in figure 16.
For the rapid pressure p+

r , fine-scale structures are observed in the wall plane, and the
structures become larger in the outer layer, as shown in the spanwise and streamwise
planes, which are reminiscent of large-scale streaks. The slow pressure p+

s has amplitude
of the same order of magnitude as the rapid pressure p+

r while the scale of it is finer than p+
r

away from the wall, which has also been reported by Gerolymos et al. (2013) and Yu et al.
(2020), and it is a reflection of the vortex structure. The amplitudes of the viscous pressure
p+
τ and compressible pressure p+

c are an order of magnitude lower than those of p+
r and p+

s .
The viscous pressure p+

τ matters only in the vicinity of the wall where the viscous stress
plays an important role. The compressible pressure p+

c shows a large-scale pattern in the
whole domain. The patterns within the boundary layer probably correspond to travelling
wavepackets induced by a large-scale organization such as packets of hairpin (Adrian,
Meinhart & Tomkins 2000). The radiating acoustic waves in the free stream are accurately
captured by pc. The wavelengths of acoustic waves are large, which is in accordance with
Gloerfelt & Berland (2013).

To illustrate the effect of compressibility on pressure components, we show the
instantaneous fields of normalized pressure components for case M80T050 in figure 17.
The overall behaviours of pressure components p+

r and p+
s are similar to that for case

M05T100 to a certain degree, but the APNS leave significant imprints on p+
r . Components

p+
r and p+

s have comparable amplitudes. Component p+
τ is mainly distributed near the wall.

Some near-wall negative-value regions of p+
τ are induced in the vicinity of the APNS. The

amplitude of p+
τ is much lower than that of p+

r , p+
s and p+

c , indicating the contribution
of viscosity to pressure fluctuations is relatively weak. Away from the boundary layer, pr,
ps and pτ are evanescent and damp quickly. The compressible pressure pc is primarily
enhanced in case M80T050 with much higher amplitudes than that for other components,
which is consistent with a cooling channel flow with M = 3.83 (Tang et al. 2020). The
high-amplitude extreme values of p+

c are present near the wall, corresponding to the
APNS. Outside the boundary layer, pc is occupied by the dominating eddy Mach waves.
The acoustic radiation is quite different between the boundary layers at low and high Mach
numbers. The acoustic waves in case M80T050 have a wider range of scales than those in
case M05T100.

The intensities of pressure fluctuation p′ and its components are compared in figure 18
to quantitatively illustrate the contribution of each pressure component. The results of
case M05T100 are shown in figure 18(a) in comparison with the reference data from
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Figure 16. The instantaneous fields of normalized pressure components solved by (6.5) for case M05T100:
(a) rapid pressure p+

r , (b) slow pressure p+
s , (c) viscous pressure p+

τ and (d) compressible pressure p+
c . The

spanwise plane, streamwise plane and wall plane are shown.

the incompressible channel flow with Reτ = 550 (Hoyas & Jiménez 2008) denoted by
circles. These data all are obtained in wall-bounded turbulence, despite the flows and
their Reynolds numbers being different. For an appropriate comparison, we show the
pressure fluctuations normalized by p′

rms,w in the outer scaling. The slow pressure ps
fluctuations are larger than the rapid pressure pr fluctuations throughout the boundary
layer except very near the wall, which is consistent with the result in channel flow reported
by Kim (1989). The fluctuating intensities of pτ and pc are very weak in this case. The
viscous pressure pτ works only very near the wall. The fluctuating intensities of p′ as
well as its three components pr, ps and pτ agree well with the reference data, except
that the expected difference is present in the vicinity of the boundary edge where the
turbulent–non-turbulent interface exits in a boundary layer but not in a channel. These
results confirm the rationality of the present pressure decomposition method in a boundary
layer. The wall-cooling effect on the M∞ = 0.5 cases is shown in figure 18(b). Both
the rapid pressure fluctuation and the slow pressure fluctuation are suppressed by wall
cooling, implying that the restraint of the vorticity mode leads to the restraint of both linear
mean flow–turbulence interactions and nonlinear turbulence–turbulence interactions. The
peak positions of p+

r,rms and p+
s,rms are shifted outward just like p′+

rms. Meanwhile, the
compressible pressure fluctuation is enhanced mainly due to the increase of the density
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Figure 17. The instantaneous fields of normalized pressure components solved by (6.5) for case M80T050:
(a) rapid pressure p+

r , (b) slow pressure p+
s , (c) viscous pressure p+

τ and (d) compressible pressure p+
c . The

spanwise plane, streamwise plane and wall plane are shown. Some typical APNS are marked by dashed boxes.

fluctuation (see figure 7). For the M∞ = 2.0 cases shown in figure 18(c), a notable feature
is that wall cooling has an effect on pressure fluctuations mainly within the log layer of
y+ < 100, with little effect on pressure fluctuations in the wake. Definitely, the range of
wall cooling effects is strongly related to the degree of wall cooling. The suppression
of p+

r,rms, p+
s,rms and p+

τ,rms causes the decrease of p′+
rms. The fluctuating intensity of pc is

strongly enhanced by wall cooling throughout the boundary layer for the M∞ = 8.0 cases,
as seen in figure 18(d), which is similar to the behaviour in channel flows (Tang et al.
2020; Yu et al. 2020). The rapid pressure fluctuation is enhanced in the viscous sublayer
and buffer layer as well, while the slow pressure fluctuation is influenced weakly and
suppressed in the buffer layer and the log layer. The viscous pressure fluctuation is also
strengthened.

Focusing on the contribution of each pressure component to the wall pressure
fluctuation, figure 19 exhibits the probability density functions (p.d.f.s) of the wall pressure
fluctuation and its components in wall units. For the M∞ = 0.5 cases, wall cooling
suppresses both tails of wall pressure fluctuation p′+

w and its components p+
r,w, p+

s,w and
p+
τ,w, but lifts the tails of p+

c,w. The p.d.f.s of p′+
w , p+

r,w and p+
s,w are sightly skewed

negatively. The effect of wall cooling for the M∞ = 2.0 cases is similar to that for
the M∞ = 0.5 cases, but the skewness of the p.d.f.s is relatively lower. For the
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Figure 18. The intensities of pressure fluctuation p′ and its components by the decomposition p′ = pr + ps +
pτ + pc + ph in wall units for (a) case M05T100 in comparison with the reference incompressible channel
flow (Hoyas & Jiménez 2008), Reτ = 550, denoted by circles and the values are normalized by p′

rms,w; and
for cases (b) M05T100 and M05T025, (c) M20T100 and M20T050 and (d) M80T100 and M80T050. The red
symbols and solid lines indicate the quasi-adiabatic cases and the blue symbols and dashed lines indicate the
wall-cooling cases. The grey shading demarcates the boundary layer in four parts: viscous sublayer, buffer
layer, log layer and wake.

M∞ = 8.0 cases, wall cooling lifts the tails of p′+
w and all the components, especially

p+
c,w. The near-wall APNS with high amplitude result in both tails of p+

c,w falling slowly,
indicating extremely positive and negative pressure fluctuations are more likely to occur
in p+

c,w. The APNS play a leading role in the enhancement of the wall pressure fluctuation
for case M80T050. The p.d.f.s of p′+

w and p+
c,w are skewed positively. On the contrary, the

p.d.f. of p+
τ,w is strongly skewed negatively, corresponding to the negative-value region

induced by APNS in figure 17(c).
In order to illustrate the contributions of pressure components from the perspective of

energy, figure 20 shows the interactions between each pressure fluctuation component.
The interactions between the harmonic pressure ph and any other pressure component
are negligibly weak, thus they are not shown here. For the M∞ = 0.5 and 2.0 cases as
seen in figures 20(a) and 20(b), all interactions are very weak. As a result, the pressure
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Figure 19. The p.d.f.s of the wall pressure fluctuation and its components in wall units, for cases (a) M05T100
and M05T025, (b) M20T100 and M20T050 and (c) M80T100 and M80T050. The red symbols and solid lines
indicate the quasi-adiabatic cases and the blue symbols and dashed lines indicate the wall-cooling cases.

fluctuation energy spectra can be approximately reconstructed by the sums of all the
pressure component fluctuation energy spectra. However, for the M∞ = 8.0 cases, the
conditions change. In the quasi-adiabatic case, all interactions are negligible; however, in
the wall-cooling case, prps

+, prpc
+ and pspc

+ are significant in the viscous sublayer and
buffer layer. The positive correlation between ps and pc, as well as the negative correlations
between pr and ps/pc, are found here.

Finally, we introduce the characteristics of pressure fluctuations and their components in
wavenumber space. Figure 21 depicts the pre-multiplied streamwise wavenumber spectra
kxE+ of pressure fluctuation p′ and its three important components pr, ps and pc for the
M∞ = 0.5 cases. For the quasi-adiabatic case, structures with a wide range of wavelengths
contribute to kxE+

p′p′ in the buffer layer and log layer. The peak position is located in
the buffer layer with λ+x ≈ 250. In the wake, the contributing scale becomes larger.
The distribution of kxE+

prpr
seems to have a trapezoid shape in that the contributed

wavelength overall becomes longer in the outer layer. The distribution of kxE+
psps

is
similar to that of kxE+

p′p′ and a similar peak position to that of kxE+
p′p′ is also found.

The dominant wavelengths in kxE+
pcpc

indicate that structures with wavelengths ∼ δ are
prevalent throughout the boundary layer in pc. As illustrated in figure 21(b), wall cooling
increases the contributed wavelengths for all pressure fluctuations. The peak positions of
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Figure 20. The interactions of pressure fluctuation components prps, prpc, prpτ , pspc, pspτ and pτ pc in wall
units, for cases (a) M05T100 and M05T025, (b) M20T100 and M20T050 and (c) M80T100 and M80T050. The
red symbols and solid lines indicate the quasi-adiabatic cases and the blue symbols and dashed lines indicate
the wall-cooling cases. The grey shading demarcates the boundary layer in four parts: the viscous sublayer,
buffer layer, log layer and wake.

kxE+
p′p′ and kxE+

psps
are shifted outward up to the wake. The contributed wavelength, ∼ 3δ,

enhances the large-scale structures in pc.
Figure 22(a) shows that the distributions of the spectra of case M20T100 are similar

to those of case M05T100, but the magnitude of kxE+
pcpc

becomes much larger than in
case M05T100. Overall, wall cooling still increases the contributed wavelengths. For
pc, wall cooling boosts the structures with wavelengths of the order of ∼ δ throughout
the boundary layer, while structures with relatively shorter wavelengths are also boosted
within the buffer layer and viscous sublayer.

As shown in figure 23, wall cooling increases pressure fluctuations near the wall in the
hypersonic regime (M∞ = 8.0) due to an increasing contribution with a wavelength of
about λ+x = 100, which corresponds to the stimulated APNS. The peak of wall pressure
fluctuation spectra at λ+x = 100 is also reported in a channel flow (Yu et al. 2020) with a
nominal Mach number M0 = 8.0. The APNS influence the distribution of kxE+

prpr
greatly

and change the peak positions to the viscous sublayer, and the influence on the distribution
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Figure 21. The pre-multiplied streamwise wavenumber spectra kxE+ of pressure fluctuation p′ and its
components pr , ps and pc for the M∞ = 0.5 cases: (a) M05T100 and (b) M05T025. The dashed lines from
bottom to top indicate where y+ = 5, y+ = 30 and y/δ = 0.15, respectively.
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Figure 22. The pre-multiplied streamwise wavenumber spectra kxE+ of pressure fluctuation p′ and its
components pr , ps and pc for the M∞ = 2.0 cases: (a) M20T100 and (b) M20T050. The dashed lines from
bottom to top indicate where y+ = 5, y+ = 30 and y/δ = 0.15, respectively.

of kxE+
psps

is relatively weak. In case M80T100, the contribution of long wavelengths
λ+x ∼ δ and the contribution of short wavelengths λ+x ∼ 100 are comparable for kxE+

pcpc
.

Nonetheless, in case M80T050, the contribution of short wavelengths λ+x ∼ 100 definitely
dominates. Combining with the fine scale of APNS, this implies that the contributions of
the APNS are mainly reflected by compressible pressure pc.

7. Summary and conclusions

The effect of wall cooling on pressure fluctuations in compressible TBLs with
a friction Reynolds number of Reτ ≈ 650 has been investigated based on DNS.
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Figure 23. The pre-multiplied streamwise wavenumber spectra kxE+ of pressure fluctuation p′ and its
components pr , ps and pc for the M∞ = 8.0 cases: (a) M80T100 and (b) M80T050. The dashed lines from
bottom to top indicate where y+ = 5, y+ = 30 and y/δ = 0.15, respectively.

Three quasi-adiabatic boundary layers (Tw/Tr = 1.0) with Mach numbers of M∞ = 0.5,
2.0 and 8.0 are considered. Their wall-cooling counterparts have wall temperatures of
Tw/Tr = 0.25, 0.5 and 0.5 from low to high Mach number, respectively.

For all Mach number regimes, wall cooling largely changes the mean-velocity
distributions and shifts the peaks of Reynolds stress outward. It increases the coherency of
the turbulent structures and suppresses vorticity fluctuations. Meanwhile, it strengthens the
turbulent Mach numbers and enhances the compressibility. In general, in the M∞ = 0.5
and 2.0 cases, wall cooling suppresses the pressure fluctuations normalized by wall
shear stress p′

rms/τw. On the contrary, in the M∞ = 8.0 case, it increases the normalized
pressure fluctuations near the wall, resulting in a greater acoustic load. Particularly,
the travelling-wave-like APNS are highly stimulated in the wall-cooling case at M∞ =
8.0, and these structures significantly contribute to pressure fluctuations. For the wall
pressure fluctuations, the Laganelli model is assessed based on the present data. Some
modifications of model coefficients have been proposed to obtain a more consistent
comparison. Moreover, an approximately linear dependence of free-stream pressure
fluctuations on Mach numbers is found.

The way of pressure decomposition based on the Poisson equation is extended to the
boundary layer flow. The pressure fluctuations are decomposed into five components
according to the source terms and boundary conditions. The components of rapid pressure
pr, slow pressure ps and compressible pressure pc are dominant in the overall pressure
fluctuations. Wall cooling suppresses both linear mean flow–turbulence interactions (pr)
and nonlinear turbulence–turbulence interactions (ps) for the M∞ = 0.5 and 2.0 cases,
which causes the suppression of the overall pressure fluctuations p′

rms/τw. It boosts the
compressible pressures (pc) that mainly respond to large-scale wavepacket-like structures
with wavelength λx ∼ δ. For the M∞ = 8.0 cases, wall cooling greatly enhances the
compressible pressure pc, and the APNS have a characteristic wavelength of about λ+x =
100 for case M80T050 consistent with the peak value wavelength of pc. These structures
are mainly reflected by the compressible pressure pc and originate from dilatational
motions. Generally, for the M∞ = 0.5 and 2.0 cases, the vorticity mode plays a leading
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Figure 24. Check of sensitivity of pressure components to the subdomain size for case M80T050, based on
a comparison between a large subdomain and a small subdomain: (a) spanwise distributions of instantaneous
wall pressure components; (b) wall-normal distributions of pressure fluctuations for each pressure component.
The dashed lines indicate the large subdomain spanning over 1200 points (Lx/δi = 16.7) in the streamwise
direction, and the triangle symbols indicate the small subdomain spanning over 1000 points (Lx/δi = 13.9) in
the streamwise direction.

role within the boundary layer. The acoustic mode is only important in the free stream,
whereas in the wall-cooling case of M∞ = 8.0, it is essential in both the near-wall region
and the free stream, which should be considered when modelling high-Mach-number
wall-bounded turbulence and engineering design. Additionally, it should be mentioned
that the present form of pressure decomposition can further be extended to other external
flows, such as jets and wakes.

The present work is focused on zero-pressure-gradient TBLs. Studies are still needed
to address the influence of the pressure gradient and the surface curvature on the pressure
fluctuations with or without wall cooling. Additionally, it should be emphasized that real
gas effects were not considered in the present hypersonic cases. For non-equilibrium
high-enthalpy flows, the effect of wall temperature on pressure fluctuations deserves to
be studied in the future.
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Wall-cooling effects on pressure fluctuations

Appendix: Check of sensitivity of pressure components to the size of the subdomain

The streamwise size of the subdomain should be wide enough so that the harmonic
pressure ph is relatively weak in the region far from the streamwise boundary; thus, original
pressure fluctuation p′ mainly consists of pressure components pr, ps, pτ and pc which
are generated by source terms, allowing a comparison of pressure components between
boundary layer and channel flow. Due to the streamwise length of the subdomain for case
M80T050 being the shortest one, this case is taken as an example. The check of sensitivity
of pressure components to the subdomain size based on a comparison between a large
subdomain and a small subdomain is shown in figure 24. Both spanwise distributions
of instantaneous wall pressure components and wall-normal distributions of statistical
pressure fluctuations show good convergence under both subdomains. Therefore, the
pressure components are independent of the subdomain size, suggesting that the present
subdomain size is large enough.
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