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ON VARIETIES WITH TRIVIAL TANGENT BUNDLE
IN CHARACTERISTIC p > 0

KIRTI JOSHI

Abstract. In this article, I give a crystalline characterization of abelian

varieties amongst the class of smooth projective varieties with trivial tangent

bundles in characteristic p > 0. Using my characterization, I show that a

smooth, projective, ordinary variety with trivial tangent bundle is an abelian

variety if and only if its second crystalline cohomology is torsion-free. I also

show that a conjecture of KeZheng Li about smooth projective varieties with

trivial tangent bundles in characteristic p > 0 is true for smooth projective

surfaces. I give a new proof of a result by Li and prove a refinement of it.

Based on my characterization of abelian varieties, I propose modifications of

Li’s conjecture, which I expect to be true.

And here I stand, with all my lore,
Poor fool, no wiser than before.

Goethe, Faust part I

§1. Introduction

Let p be a prime, k be a field, W =W (k) be the ring of Witt vectors

of k, and W2(k) =W/(p2W ) be the ring of Witt vectors of length two

of k, and let X be a smooth projective variety over k. For k = C, it is

well known, and elementary to prove, that if X has trivial tangent bundle,

then X is an abelian variety. In [10], it was shown that this is false in

characteristic p > 0. In [18], the authors studied ordinary varieties with

trivial tangent bundle and proved that they have many properties similar

to abelian varieties, including the Serre–Tate theory of canonical liftings.

In Theorem 2.4, I present two equivalent crystalline characterizations of

abelian varieties amongst the class of varieties with trivial tangent bundle.

My characterization is the following: a smooth, projective variety X with

trivial tangent bundle is an abelian variety if and only if it has a smooth
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Picard scheme and satisfies Hodge symmetry in cohomology degree one

(I call such a variety Picard–Hodge Symmetric, see Def. 2.3). Another

equivalent characterization is given in terms of what I call minimally Mazur–

Ogus varieties (see Def. 2.1). A smooth, projective variety is a minimally

Mazur–Ogus variety if H2
cris(X/W ) is torsion-free and Hodge–de Rham

spectral sequence degenerates at E1 in degree one. In Corollary 2.11, I show

that if a smooth projective variety X with trivial tangent bundle lifts to W2

and if the second crystalline cohomology H2
cris(X/W ) of X/W is torsion-

free, then X/k is an abelian variety. In Remark 2.13, I discuss a natural

question raised by Li in his emails to me about weakening the hypothesis

of Theorem 2.4.

In [16, Conjecture 4.1], it is conjectured that if p > 3, then every smooth,

projective variety with trivial tangent bundle is an abelian variety. I show

in Theorem 3.1 that this conjecture is true in dimension two.

In dimension two, the most famous example of a surface in characteristic

p= 2 with trivial tangent bundle and which is not an abelian variety is due

to [10] (Igusa surface for p= 2 has been studied by many authors including

Torsten Ekedahl; for a recent treatment of the Igusa surface for p= 2, see

[4]). Let me note that the Igusa surface of characteristic p= 2 also has

a less well-known cousin in characteristic p= 3 (see Proposition 5.3 for a

construction).

I observe in Theorem 3.6 that if p= 2, then for every g > 2 and for every

1 6 r < g, there is a family of varieties of dimension g with trivial tangent

bundle and which are not abelian varieties. This family is parameterized

by Aord
r [p]×Ag−r where Ag is the moduli stack of abelian varieties of

dimension g and the superscript “ord” stands for the “ordinary locus” and

Aord
r [p] is the moduli stack of ordinary abelian varieties with a point of order

p (and more generally by U>1
r [p]×Ag−r where U>1

r [p] is the stack abelian

varieties of p-rank at least one equipped with a point of order p). For p= 3

one has a slightly weaker result—see Theorem 3.8.

In Remark 3.9, I note that the two conditions, minimally Mazur–Ogus

and Picard–Hodge symmetry in Theorem 2.4, cannot be weakened or

relaxed. In general, the presence of torsion in crystalline cohomology and

nondegeneration of Hodge–de Rham are not correlated conditions.

In Theorem 4.1, I show that a smooth, projective, ordinary variety with

trivial tangent bundle is an abelian variety if and only if its second crystalline

cohomology is torsion-free.
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ON VARIETIES WITH TRIVIAL TANGENT BUNDLE IN CHARACTERISTIC P > 0 37

In [16, Theorem 4.2] (also see [15]), it is shown that if p > 2 and X

is ordinary with trivial tangent bundle, then X is an abelian variety. In

Theorem 5.2, I give a new proof of Li’s remarkable theorem [16, Theorem 4.2]

and, in fact, I prove a sharpening of [16, Theorem 4.2] and [18]. I show

that for p= 2, any smooth, projective, ordinary variety with trivial tangent

bundle has a minimal Galois étale cover (see Def. 5.1) by an abelian variety

with a Galois group of exponent p= 2. Li’s approach is based on infinitesimal

group actions, while I use Serre–Tate canonical liftings (of abelian varieties)

and the theory of complex multiplication and its influence on the slopes of

Frobenius (see [20]).

In the light of my characterization (Theorem 2.4), especially because

torsion in the second crystalline cohomology can occur for any prime p, it

seems to me that perhaps the original conjecture of Li (see [16, Conjecture

4.1]) needs to be modified. In fact, there are two distinct versions of Li’s

conjecture which I conjecture. The first version is the fixed characteristic

version which says that there exists an integer n1(p) such that if X is any

variety of dimension less than n1(p) with trivial tangent bundle over an

algebraically closed field of characteristic p > 0, it is an abelian variety (see

Conjecture 6.3).

The fixed dimension version (see Conjecture 6.1), inspired by [17], says

that for any fixed integer, d> 2. There exists an integer n0(d) such that

any smooth, projective variety X/k with dimension d and with trivial

tangent bundle is an abelian variety if p > n0(d). (Clearly, for d= 1, one has

n0(1) = 1; for d= 2, n0(2) = 3 by Theorem 3.1.)

§2. Characterization of abelian varieties

In this section, I give a crystalline characterization of abelian varieties

in the class of smooth, projective varieties with trivial tangent bundle. My

characterization requires the following two definitions.

Definition 2.1. Let X be a smooth, projective variety over an alge-

braically closed field k with char(k) = p > 0. I say that X is a minimally

Mazur–Ogus variety if X satisfies the following two conditions:

(1) H2
cris(X/W ) is torsion-free;

(2) the Hodge to de Rham spectral sequence degenerates at E1 in degree

one.
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Remark 2.2. Conditions underlying Mazur–Ogus varieties were intro-

duced in [19], where a number of their properties are studied; the nomen-

clature, I believe, is due to Torsten Ekedahl. A smooth, projective variety

X is a Mazur–Ogus variety if H∗cris(X/W ) is torsion-free and the Hodge–de

Rham spectral sequence degenerates E1. Also note that for any smooth,

projective variety, H1
cris(X/W ) is canonically identified with the crystalline

cohomology H1
cris(Alb(X)/W ) of the Albanese variety Alb(X) of X, and as

the crystalline cohomology of an abelian variety is always torsion-free, one

sees that H1
cris(X/W ) is always torsion-free or zero (if Alb(X) = 0). Hence,

one considers the torsion-freeness of H2
cris(X/W ) as a minimal hypothesis.

Definition 2.3. Let X be a smooth, projective variety over an alge-

braically closed field k with char(k) = p > 0. I say that X is a Picard–Hodge

symmetric variety if it satisfies the following two conditions:

(1) the Picard scheme of X is smooth;

(2) Hodge symmetry holds for H1
dR(X/k).

The main theorem of this section is the following characterization theorem

alluded to in Section 1.

Theorem 2.4. Let X/k be any smooth, projective variety with trivial

tangent bundle over an algebraically closed field k of char(k) = p > 0. Then

the following are equivalent:

(i) X is a minimally Mazur–Ogus variety,

(ii) X is a Picard–Hodge symmetric variety,

(iii) X is an abelian variety.

Proof. Let us prove (1)⇒ (2)⇒ (3)⇒ (1). Let us begin with (1)⇒ (2).

Assume that X is minimally Mazur–Ogus. The fact that H2
cris(X/W ) is

torsion-free implies that Pic(X) is reduced (see [11, Proposition 5.16, page

632]), and by the universal coefficient theorem for crystalline cohomology

([1, Section 7.6, page 7–34] with A0 = k, A=W ), one sees that

(2.5) H1
cris(X/W )⊗W k

∼−→H1
dR(X/k).

As Hodge to de Rham spectral sequence degenerates at E1 in degree one,

one sees that

(2.6) dim(H1
dR(X/k)) = h0,1 + h1,0.
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As the Picard variety is reduced, one has

(2.7) dim(H1
cris(X/W )⊗W k) = 2h0,1

and the degeneration of the Hodge–de Rham spectral sequence in degree

one means that

(2.8) 2h0,1 = h1,0 + h0,1.

Thus, one sees that

(2.9) h1,0 = h0,1.

Putting all this together, one sees that X is a Picard–Hodge symmetric

variety. Thus, one sees that (1)⇒(2).

Now I prove (2)⇒(3). Suppose that X is a Picard–Hodge symmetric

variety and X has trivial tangent bundle, so H0(X, Ω1
X) has dimension

n= dim(X). As X is a Picard–Hodge symmetric, one sees that

(2.10) h0,1 = h1,0 = dim(X).

Thus, dim(Pic(X)) = dim(X), and by the hypothesis of (2), Pic(X) is

reduced. Hence, the dual of Picard variety is also the Albanese variety:

dual of Pic0(X) = Alb(X) and, in particular,

dim(X) = dim(Pic(X)) = dim(Alb(X)).

Let X →Alb(X) be the Albanese morphism. By [18, Lemma 1.4], one

sees that the Albanese morphism X →Alb(X) is a smooth surjective

morphism with connected fibers and Ω1
X/Alb(X) = 0. So X →Alb(X) is a

finite, surjective étale morphism with connected fibers and, hence, it is an

isomorphism.

Now it remains to prove that (3)⇒(1). This is standard (see [11]).

The following corollary of [6] and Theorem 2.4 is immediate as one has the

degeneration of Hodge–de Rham spectral sequence in dimensions 6 p− 1 for

any p (and hence in dimension one for any p> 2).
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Corollary 2.11. Let X/k be a smooth, projective variety with trivial

tangent bundle. Suppose X satisfies the following:

(1) H2
cris(X/W ) is torsion-free;

(2) X lifts to W2.

Then X is an abelian variety.

Remark 2.12. Let me point out that for the Igusa surface (p=

2, 3), H2
cris(X/W ) is not torsion-free (but Hodge–de Rham degenerates at

E1 in degree one) and Hodge symmetry is true in dimension one, but Pic(X)

is not reduced. See Proposition 5.3 for the construction of the Igusa surfaces

and higher dimensional examples of such varieties.

Remark 2.13. In his recent email to me, KeZheng Li has suggested

that, perhaps, any smooth, projective variety with trivial tangent bundle

and reduced Picard scheme is an abelian variety. This is certainly a natural

expectation. I include some comments on this question.

First, let me point out that there are two important numbers dim(X) =

dimH0(X, Ω1
X) and dim(Pic(X)) = dimH1(X,OX) which must be equal if

this assertion holds. On the other hand, even if Pic(X) is reduced, it seems

difficult to prove that these two numbers are equal without some additional

crystalline torsion-freeness hypothesis. Note that the pull-back of one-forms

on Pic(X) = Alb(X), by X →Alb(X), lands inside the subspace of closed

one-forms H0(X, Z1Ω1
X) and all of the following inclusions

H0(Alb(X), Ω1
Alb(X))⊂H

0(X, Z1Ω1
X)⊂H0(X, Ω1

X)

are strict in general. By [11, Proposition 5.16, page 632], the hypothesis

that H2
cris(X/W ) is torsion-free is equivalent to the reducedness of Pic(X)

and the equality H0(Alb(X), Ω1
Alb(X)) =H0(X, Z1Ω1

X). In particular, the

second inclusion does not become an equality even if we assume H2
cris(X/W )

is torsion-free, and so it is not possible to work with a simpler hypothesis:

Pic(X) is reduced at the moment.

Second, let me point out that the reducedness of the Picard scheme

controls only a part of the crystalline torsion which may arise in this

situation. Torsion arising from the nonreducedness of Pic(X) is of a fairly

mild sort (“divisorial torsion” in the terminology of [11]). But Ekedahl has

shown that the self-product of the Igusa-type surface with itself carries

exotic torsion in H3. It is possible that a similar example (of dimension
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bigger than two) exists in which H2
cris(X/W ) has exotic torsion since there

is a plethora of examples (see Theorem 3.6) in any dimension for p= 2 and

one can probably use deformation theory to provide examples with subtler

torsion behavior.

So relaxing the conditions in Theorem 2.4 seems a bit too optimistic

(to me) and, at any rate, requires a fuller understanding of the crystalline

cohomology of varieties with trivial tangent bundles (which I do not

possess).

It is possible to provide alternate formulations of Theorem 2.4, but I have

chosen ones which are easiest to deal with in practice.

§3. Surfaces with trivial tangent bundle

Let X/k be a smooth projective variety over an algebraically closed field

of characteristic p > 0. The main theorem of this section is the following.

This was conjectured by KeZheng Li in [16, Conjecture 4.1].

Theorem 3.1. Let X/k be a smooth projective surface over an alge-

braically closed field of characteristic p > 3 and assume that the tangent

bundle TX of X is trivial. Then X is an abelian surface.

Proof. As TX =OX ⊕OX , one sees that Ω1
X =OX ⊕OX and so Ω2

X =

OX . Thus, c1(X) = 0, and also as TX is trivial, one sees that c2(X) = 0. Now

it is immediate by the adjunction formula (see [9, Chap V, Proposition 1.5])

that X is a minimal surface of Kodaira dimension κ(X) = 0.

By Noether’s formula 12χ(OX) = c2
1 + c2 (see [9]), one sees that

(3.2) χ(OX) = 0.

This means

(3.3) χ(OX) = 0 = h0 − h0,1 + h0,2;

as KX =OX by Serre duality, one sees that H2(OX) =H0(OX) and, hence,

that

(3.4) h0,1 = 2.

Next, c2 = 0 gives

(3.5) c2 = b0 − b1 + b2 − b3 + b4 = 2− 2b1 + b2 = 0.
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Thus, one sees that b1 6= 0 and one has b2 6= 0 because X is projective (the

Chern class of any ample class is nonzero in H2
ét(X,Q`)). Now b1 is even

as b1 is the Tate module of the Albanese variety of X (which is reduced by

definition). Thus, one has b1 > 2.

Then by [3, page 25], one sees that there are exactly two possibilities for

the pair (b1, b2): either (b1, b2) = (4, 6) or (b1, b2) = (2, 2). If one is in the

first case, by classification of [3, page 25], X is an abelian surface.

If not, one is in the second case. In this case, one has b1 = 2, so q = 1 and

h1(OX) = 2. Thus, one sees that Pic(X) is nonreduced, and at any rate the

surface X is hyperelliptic and as p > 3, classification (see [3, page 37]) shows

that the order of KX must be one of 2, 3, 4, 6 which is at any rate > 1. On

the other hand, one has KX =OX . Thus, X cannot be hyperelliptic.

So one sees that the second case cannot occur and X is an abelian surface

as asserted.

By a family of varieties with trivial tangent bundle, I mean a proper, flat

1-morphism of stacks f :X →M , with M being a Deligne–Mumford stack

(over schemes over k) such that f is schematic and for every morphism of

stacks Spec(k′)→M with k′ ⊃ k a field, the fiber product X ×M Spec(k′)

is a geometrically connected, smooth, projective scheme over k′ with trivial

tangent bundle.

The construction of Igusa surface ([10]) leads to the following (for another

variant of this construction, see Proposition 5.3). For g > 1, let Ag be moduli

stack of abelian varieties of dimension g over k (see [7, 8]). Let Aord
g [p]

be the stack of ordinary abelian varieties with a point of order p and let

Ag be the moduli stack of abelian varieties of dimension g over k; more

generally, let U>1
g [p] be the stack of moduli of abelian varieties of dimension

g parameterizing abelian varieties with a point of order p. These stacks come

equipped with morphisms U>1
g [p]→Ag and Aord

g [p]→Ag which forget the

point of order p (in each of the two cases). The images of these morphisms

are open and dense substacks of Ag parameterizing abelian varieties of p-

rank at least one and ordinary abelian varieties, respectively.

Theorem 3.6. Let k be an algebraically closed field of characteristic

p= 2. Then for every g > 2 and for any 1 6 r < g, there exists a family,

parameterized by U>1
r [p]×Ag−r of smooth, projective varieties of dimension

g over k which are not abelian varieties and with trivial tangent bundles.

In particular, there is a family parameterized by Aord
r [p]×Ag−r of smooth,
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projective varieties of dimension g over k which are not abelian varieties

and with trivial tangent bundles.

Proof. First, let me recall the following version of Igusa’s construction

(see [10]). For additional variants of Igusa’s construction, see Proposi-

tion 5.3. Let B1 be an abelian variety of dimension r over k with p-rank at

least one (note p= 2) and let t ∈B1[2](k) be a nontrivial two-torsion point.

Let B2 be any abelian variety over k of dimension g − r. Then consider

the Igusa action on A=B1 ×B2→B1 ×B2 given by (x, y) 7→ (x+ t,−y).

Then this gives an action of Z/2 on A which is fixed-point-free and

(3.7) H0(A, Ω1
A)Z/2 =H0(A, Ω1

A),

as Z/2 acts by translation on the first factor and so acts trivially on one-

forms of B1, and on the second factor, the action on the space of one-forms

of B2 is by −1 = 1 and hence is trivial on the space of one-forms on the

second factor as well. Let X be the quotient of A by this Z/2 action. Then

TX is trivial (as H0(X, TX) =H0(A, TA)). On the other hand, by Igusa,

Alb(X) =B1/〈t〉 and so X is not an abelian variety and Pic(X) is not

reduced.

Now one simply has to note that one can carry out Igusa’s construction

on the universal abelian scheme over the moduli stack of abelian schemes

(of the above sort).

For p= 3, the result is a little weaker; by simply taking products with an

abelian variety, one gets the following.

Theorem 3.8. Let p= 3 and k be an algebraically closed field of

characteristic p. Then for every g > 2 and every integer 1 6 r 6 g − 1, there

exists a family parameterized by U>1
r [p] of smooth, projective varieties of

dimension g over k which are not abelian varieties and with trivial tangent

bundle.

Proof. This is immediate from Proposition 5.3 which will be proved

later. In the notation of that proposition, take N = g, n= g − r, and A

to be an abelian variety of dimension r equipped with a point of order p

and for 1 6 i6 n= g − r, let Ai = E, where E is the elliptic curve with

automorphism of order three described in the proof of Proposition 5.3.

Remark 3.9. Note that for the Igusa surface, one has dimH0(X, Ω1
X) =

dimH1(X,OX), so Hodge symmetry holds and Hodge–de Rham does
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degenerate at E1, but Pic(X) is not reduced and H2
cris(X/W ) has torsion.

Varieties X, constructed as in Theorem 3.6 from ordinary abelian varieties,

have the property that they are ordinary with trivial tangent bundle; one

has lifting to W2 (by [12, Theorem 9.1] of V. B. Mehta) and hence Hodge–de

Rham degenerates in dimension < p (by [6]), but H2
cris(X/W ) is not torsion-

free. Thus, these varieties are neither Picard–Hodge symmetric nor are they

minimally Mazur–Ogus.

§4. Ordinary varieties with trivial tangent bundle

I give a proof of the following theorem.

Theorem 4.1. Let X be a smooth, projective variety with trivial tangent

bundle. Then the following are equivalent:

(1) X is ordinary and minimally Mazur–Ogus,

(1′) X is ordinary and Picard–Hodge symmetric,

(2) X is Frobenius split and minimally Mazur–Ogus,

(2′) X is Frobenius split and Picard–Hodge symmetric,

(3) X is ordinary and H2
cris(X/W ) is torsion-free,

(3′) X is Frobenius split and H2
cris(X/W ) is torsion-free,

(4) X is an ordinary abelian variety.

Proof. The equivalences (1)⇐⇒ (1′) and (2)⇐⇒ (2′) are clear from the

proof of Theorem 2.4. The equivalence (3)⇐⇒ (3′) is [18, Lemma 1.1].

The equivalence (1) ⇐⇒ (2) is immediate from [18, Lemma 1.1] as X is

ordinary if and only if X is Frobenius split. Now (2) =⇒ (3) is clear from

Definition 2.1 and by [18]. Now to prove (3) =⇒ (4). This is immediate from

Theorem 2.4, provided one proves that Hodge–de Rham spectral sequence

degenerates at E1 in degree 6 1. In other words, one has to show that the

hypothesis of (3) implies that X is minimally Mazur–Ogus. This is proved

as follows. Any smooth, projective variety with trivial tangent bundle is

ordinary if and only if it is Frobenius split (see [18, Lemma 1.1]). A result

of Mehta (see [12, Theorem 9.1]) says that a Frobenius split variety X

lifts to W2 and hence Hodge–de Rham degenerates in dimension 6 p− 1

by [6, Corollaire 2.4]. Hence, one has degeneration in dimension one for

any p> 2. Hence, the hypothesis of (3) implies that X is Mazur–Ogus. So

the assertion (3) =⇒ (4) follows from Theorem 2.4. Now (4) =⇒ (1) is

standard (see [11]).
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Corollary 4.2. Let X be a smooth, projective, ordinary variety with

trivial tangent bundle. Then X is an (ordinary) abelian variety if and only

if H2
cris(X/W ) is torsion-free.

§5. New proof of Li’s theorem

In this section, I give a new proof of Li’s theorem (see [15, 16]) and prove

the following refinement.

Definition 5.1. Let X be a smooth, projective variety with trivial

tangent bundle and suppose A→X is Galois an étale cover by an abelian

variety. I say that A→X is a minimal Galois étale cover of X if whenever

there exists a factorization of A→X into étale morphisms A→A′→X

with A′ an abelian variety and A′→X Galois, then the morphism A→A′

is an isomorphism.

Theorem 5.2. Let k be an algebraically closed field of characteristic

p > 0. Let X/k be a smooth, projective, ordinary variety with trivial tangent

bundle.

(1) Either X is an abelian variety or

(2) p= 2 and X has a minimal Galois étale cover by an abelian variety

with Galois group of exponent p (i.e., every element is of order p).

Proof. Let X be as in the statement of the theorem and suppose X

is not an abelian variety. By [18], there exists an ordinary abelian variety

A/k and a finite, Galois étale morphism A→X with Galois group G of

order a power of p which acts freely on X. By passing to a quotient of G if

needed, one may assume that A→X is a minimal Galois étale cover of X.

In particular, A carries fixed-point-free automorphisms σ :A→A of order

d= pm, a power of p. If d= 1 for every element of G, then this is already the

case (1), so there is nothing to do; if d= 2 for every element of G, then one

is in the case (2), so again there is nothing to prove. So assume d= pm > 3

for some element σ ∈G.

Then, by [14, Lemma 3.3] (the proof given there is characteristic-free, and

the argument is sketched below for convenience), there are abelian varieties

A1, A2 such that A is isogenous to A1 ×A2 and that σ|A1 is a translation,

and σ|A2 is an automorphism (possibly with fixed points) of order a power of

d. Indeed, write σ = tx ◦ σ′ where tx is a translation, σ′ an automorphism of

order a power of d and one may take A1 to be the connected component of

ker(1− σ′) and A2 = image(1− σ′). As A is ordinary, so are A1 and A2.
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One assumes, without loss of generality, that σ′ is a homomorphism of

A2. Now (A2, σ
′) admits a canonical Serre–Tate lifting to W (k) (see [18,

Theorem 1(2) of Appendix]), and, in particular, a lifting (B2, σ
′) of (A2, σ

′)

to complex numbers exists. So starting with X, one has arrived at an abelian

varietyB2 overW (k) and an automorphism σ′ :B2→B2 of finite order, with

possibly finitely many fixed points. Replacing B2 by a subabelian variety

if needed, one may assume that σ′ is not a translation on any subvariety

of B2.

Now I proceed by an algebraic variant of [2, Proposition 13.2.5 and

Theorem 13.3.2]. This is done as follows. Let Φd(X) be the d-cyclotomic

polynomial. So Φd(X)|(Xd − 1) and Φd(X) is irreducible and the primitive

dth roots of unity are its only roots. Let f be the endomorphism σ′d−1
Φd(σ′) of

B2, i.e., consider the polynomial

f(X) =
Xd − 1

Φd(X)
∈ Z[X]

and consider the endomorphism f := f(σ′) :B2→B2. Consider the subva-

riety

B3 = f(B2)⊂B2.

Then B3 is an abelian variety annihilated by Φd(σ
′) and hence is naturally a

Z[ζd]-module. Moreover,B3 has good ordinary reduction at p, denoted asA3,

and, in particular, H1
dR(B3/W ) =H1

cris(A3/W ) is a Z[ζd]⊗Zp W (k)-module

which is finitely generated and Z[ζd]-torsion-free and, hence, projective of

rank k = 2 dim(B3)/φ(d). Now every finitely generated projective module

over Z[ζd] of rank k is a direct sum of ideals I1 ⊕ I2 ⊕ · · · ⊕ Ik of Z[ζd].

Using this, one sees that, up to isogeny, one may factor B3 into product

of k abelian varieties B3,1, . . . , B3,k each of dimension φ(d)/2 (over C, this

is proved by an analytic argument, attributed to an unpublished result of

S. Roan in [2, Theorem 13.2.5]). Each of these varieties has (possibly up to

isogeny) Z[ζd] ↪→ End(B3,i) and as 2 dim(B3,i) = φ(d), so each has complex

multiplication by Z[ζd]. Fix one of these abelian varieties, say, B3,1. Then by

a basic result [13, Theorem 3.1, page 8], B3,1 is isotypic with a simple abelian

variety factor B with complex multiplication by a CM subfield of Q(ζd).

Further, B has good ordinary reduction at p (by virtue of its construction

from B3,1 which has ordinary reduction at p).

On the other hand, note that p is totally ramified in the cyclotomic field

Q(ζd) as d= pm > 3, so p is also totally ramified in the CM subfield for B.
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Hence, one sees, by [20] or [5, Propositions 3.7.1.6 and 4.2.6], that the special

fiber of B at p is isoclinic of positive slope (equal to half). So it cannot be

ordinary. This is a contradiction.

Thus, d= pm 6 2 and if X is not an abelian variety, then one is in case

(2). This completes the proof.

If A is an abelian variety, then A acts on itself by translations. In

particular, translation by a nontrivial point of order p is an automorphism

of A of order p. In what follows, I say that an automorphism ρ :A→A is a

nontrivial automorphism if ρ is not a pure translation. Before proceeding,

let me point out the following variant of [10].

Proposition 5.3. For every algebraically closed field k of characteristic

p= 2 or p= 3, and for every n> 1 and every integer N > n, there exists a

smooth, projective variety X/k, of dim(X) =N , with trivial tangent bundle

and a minimal Galois étale cover with G= (Z/p)n.

Proof. Let A, A1, A2, . . . , An be abelian varieties over k satisfying the

following conditions:

(1) let ρi :Ai→Ai, for 1 6 i6 n, be a nontrivial automorphism of order

p, such that for every i the subspace of ρi-invariant one-forms

H0(Ai, Ω
1
Ai

)〈ρi〉 =H0(Ai, Ω
1
Ai

);

(2) one has dim(A) + dim(A1) + · · ·+ dim(An) =N ;

(3) suppose A has p-rank at least one.

For p= 2, any abelian varieties A, A1, . . . , An satisfying the last two

conditions satisfy the first with the automorphism ρi :Ai→Ai being ρi(x) =

−x for all x ∈Ai for 1 6 i6 n. The condition on invariant forms is trivially

satisfied as −1 = +1 because p= 2.

For p= 3, consider an elliptic curve E/k with a nontrivial automorphism

of order p= 3. Let Ai = E for 1 6 i6 n. The condition on invariants is

trivially satisfied as Z/p= Z/3 operates unipotently on H0(E, Ω1
E). As any

unipotent action has a nonzero subspace of invariants and as H0(E, Ω1
E) is

one-dimensional, all one-forms are invariant under this nontrivial automor-

phism of order three.

Taking p= 3, N = 2, and n= 1 and let A= E′ be any ordinary elliptic

curve and A1 = E be an elliptic curve with an automorphism of order p= 3

(any such elliptic curve is supersingular and one can take E to be the curve

y2 = x3 − x with the automorphism ρ(x, y) = (x+ 1, y)). This, as above,
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gives a smooth projective surface X which is the p= 3 variant of Igusa

surface for p= 2 which is described in [10], [4]. By construction, X is the

quotient of E′ × E by the fixed-point-free automorphism group generated by

(z, w) 7→ (z + t, ρ(w)) for z, t ∈ E′ with t being a generator of E′[3](k)' Z/3
and w ∈ E.

Thus, for any p= 2, 3, one has abelian varieties satisfying all the three

conditions. Let t ∈A[p] with t 6= 0 be a point on A of order p. Let G= (Z/p)n
and consider its elements as vectors (g, g2, . . . , gn−1) with entries in Z/p,
and let G operate on

B =A×A1 ×A2 × · · · ×An

as follows:

(1, g2, . . . , gn) · (x, x1, . . . , xn) = (x+ t, ρ1(x1), ρg22 (x2), . . . , ρgnn (xn)),

and with the usual convention ρ0
i = 1 (note the asymmetry in my notation

and construction—this is intended to include Igusa surfaces for n= 1,

N = 2). Then G acts free of fixed points and the quotient X =B/G is a

smooth, projective variety with trivial tangent bundle with minimal étale

cover with Galois group G and dim(X) =N .

Remark 5.4. Let me give an example of an abelian variety A

in characteristic p > 3 with dim(A)> 1 and a nontrivial automorphism

ρ :A→A of order p, which shows that the condition on space of invariants

is not satisfied in general. Let A be the Jacobian of the hyperelliptic curve

y2 = xp − x. Then the automorphism (x, y) 7→ (x+ 1, y) of y2 = xp − x is

an automorphism of order p of this curve (and hence of A). Using a

standard basis for computing forms, one checks that the subspace of

invariant forms is not of dimension equal to dim(A). For example, for

p= 5, this curve has genus g = 2 and the standard basis for H0(A, Ω1
A)

is dx
y ,

xdx
y . The action of the automorphism (x, y) 7→ (x+ 1, y) is then given

by {dxy ,
xdx
y } 7→ {

dx
y ,

(x+1)dx
y } which is unipotent and its space of invariants

is one-dimensional (and not equal to g = 2). More generally, if 〈u〉 is the

group of automorphisms generated by a unipotent linear map u : V → V ,

where V is a finite-dimensional vector space V over an algebraically closed

field k (of characteristic p > 0), then space of u invariants V 〈u〉 = V if and

only u= 1.
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§6. Variants of Li’s conjecture

In [16, Conjecture 4.1], it was conjectured that for p > 3, every smooth,

projective variety with trivial tangent bundle is an abelian variety. Let

me remark that the construction in Proposition 5.3 also works for p > 3,

except for the fact that I do not know how to construct abelian varieties

satisfying the hypothesis on invariant forms in condition (1) above. But

it is possible that abelian varieties satisfying conditions (1)–(3) in the

proof of Proposition 5.3 might exist for sufficiently large p. Hence, in the

light of this remark and Theorem 2.4, it seems to me that perhaps the

conjecture of [16, Conjecture 4.1] needs to be modified. In fact, I propose

two separate conjectures, depending on whether one fixes the characteristic

or one fixes the dimension. Both the conjectures should be true. The fixed

dimension version is inspired by [17]. I note that Conjecture 6.1 replaces

[16, Conjecture 4.1].

Conjecture 6.1. (Fixed dimension version) Let d be a fixed positive

integer. Let k be an algebraically closed field of characteristic p > 0. Then

there exists a positive integer n0(d) satisfying the following property: if p >

n0(d) and if X is a smooth projective variety over k with trivial tangent

bundle of dimension d, then X is an abelian variety.

Note that for d= 1, n0(d) = 1; for d= 2, one has n0(d) = 3 (by Theo-

rem 3.1).

Before I state the fixed characteristic version, let us make the following

elementary observation.

Lemma 6.2. Let p be a fixed prime number. Let k be an algebraically

closed field of characteristic p > 0. Then there exists a positive integer n1(p)

satisfying the following property: if X is a smooth projective variety over

k with trivial tangent bundle of dimension less than n1(p), then X is an

abelian variety.

Proof. Suppose, for a given p, there exists a smooth, projective variety Z

with trivial tangent bundle which is not an abelian variety. Then for every

integer n> dim(Z), there exists a variety Y of this sort with dim(Y ) = n.

Indeed, one may simply take Y = Z × En−dim(Z) for any elliptic curve E. So

take a variety Z with the above properties of the smallest dimension and let

n1(p) = dim(Z). If no such variety Z exists, one can simply take n1(p) = 0.

Then every smooth projective variety X of dimension dim(X)< n1(p) is an

abelian variety by construction.
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For p= 2, 3, n1(p) = 2 by Theorem 3.1. The following is the fixed

characteristic version of the conjecture.

Conjecture 6.3. (Fixed characteristic version) Let p be any fixed

prime number. The number n1(p) constructed in Lemma 6.2 has the property

that n1(p) > 4 for p> 5.
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