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CANTORIAN SET THEORY

ALEX OLIVER AND TIMOTHY SMILEY

Abstract. Almost all set theorists pay at least lip service to Cantor’s definition of a set
as a collection of many things into one whole; but empty and singleton sets do not fit with
it. Adapting Dana Scott’s axiomatization of the cumulative theory of types, we present a
‘Cantorian’ system which excludes these anomalous sets. We investigate the consequences
of their omission, examining their claim to a place on grounds of convenience, and asking
whether their absence is an obstacle to the theory’s ability to represent ordered pairs or to
support the arithmetization of analysis or the development of the theory of cardinals and
ordinals.

§1. Introduction. We all know of Cantor’s definition of a set as ‘a collec-
tion M of definite, well-differentiated objects m . . . into a whole’ ([3], p.
282: all references to Cantor are to his 1932 collected works), and the great
majority of set theorists pay at least lip service to it. Once we think about it,
however, we can see that an empty set and singletons do not make sense in
terms of the definition (see Section 2 below). In Ch. 14 of our book Plural
Logic [19, 20] we looked at these anomalous sets, observing that Cantor did
not entertain them and showing that a wide range of arguments in favour
of admitting them are unsound. This encouraged us to become advocates
pro bono publico for those who take seriously the idea of sets as collections,
by developing a theory in which sets must have more than one member, if
they are really to be a collection of many things into one. We called the
result ‘Cantorian set theory’. Since we were concerned to illustrate the use
of plural language in mathematics, we based the theory on an underlying
logic which is plural, in the sense that a term may denote several things at
once, not just one or possibly none. That system may therefore be described
as the hybrid—half singular, half plural—version of the Cantorian theory.
Ever since Zermelo’s 1908 axiomatization [28], however, set theory has been
pursued as a purely singular enterprise, with plural notions never getting a
look in. So the hybrid version needs to be complemented by one conforming
to this singularist style, a task we did not carry out in our book. This article
is therefore devoted to singular Cantorian set theory, which turns out to
present its own issues.

Received December 20, 2016.
2010Mathematics Subject Classification. 03A05, 03B20, 03E30, 03E70, 03E75.
Key words and phrases. arithmetization of analysis, Axiom of Plurality, empty set, level,

ordered pair, singleton, Singular Logic, Cantor, Scott.

c© 2018, Association for Symbolic Logic
1079-8986/18/2404-0001
DOI:10.1017/bsl.2018.10

393

https://doi.org/10.1017/bsl.2018.10 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.10


394 ALEX OLIVER AND TIMOTHY SMILEY

Our own opinion on the matter is very different from Cantor’s idea of
collection into a whole. We think that taking a set to be a separate thing
(Cantor’s ein Ding für sich: pp. 379, 401, 411, 419) over and above its mem-
bers is a classic case of being misled by grammar (see our [20], Ch. 15). This
may well be controversial, but there should be nothing controversial about
the present article. Here we have two aims. One is to develop and expound a
Cantorian system of set theory, restricted to multimembered sets. The other
is to examine the consequences of this restriction. The literature takes for
granted that empty and singleton sets can be defended on grounds of their
convenience. But to our knowledge no one has yet subjected this to critical
scrutiny. We also need to investigate whether the exclusion of the anomalous
sets is any obstacle to the ability of the theory to support the arithmetization
of analysis and the general theory of cardinal and ordinal numbers.
Our vehicle for dealing with the absence of ∅ is the Singular Logic pre-
sented in Section 3, whose salient feature is its avoidance of any existential
commitment—its topic neutrality—achieved through the employment of
empty terms, including empty valuations of variables. Specifically, we take
a paradigm empty term, one which is empty by logical necessity, such as
℩x(x �= x), abbreviated here asO. Our contention is that all the convenience
of expression gained through ∅ can equally well be gained through O. But
O is not a mere shadow of ∅. For example, while ∅ is an additional object,
a subset of every set, O is not even a set—it is, literally, nothing, or, as we
shall frequently say, it is zilch.
In Section 2 we explain why empty and singleton sets do not fit the
conception of sets as collections, and we summarise Cantor’s own opinion
on the matter. In Section 3 we outline our underlying Singular Logic for
Cantorian set theory and briefly explain some of its virtues. Next come
definitions in Sections 4–5, followed by axioms in Section 6. We put the
development of the set theory into the Appendix, but give a précis in Section
7. In Section 8 we discuss how the theory may be strengthened, while the
next three sections address applications: ordered pairs in Section 9, the
arithmetization of analysis in Section 10, and cardinals and ordinals in
Section 11. Finally, in Section 12 we offer an evaluation, comparing our
system with orthodox theories.

§2. The anomalous sets. Tomake the article self-contained,we very briefly
recapitulate material in our book. First of all we explain why our set theory
is aptly called Cantorian set theory.
For Cantor there was no such thing as an empty set. When describing
a putative point-set that turns out not to contain any points, he says that
strictly speaking it does not really exist at all (‘streng genommen als solchen
gar nicht vorhanden ist’, p. 146). Two point-sets with no point in common
do not have an empty intersection; rather they have no intersection (‘sie seien
ohne Zusammenhang’, p. 145; ‘so sind sie ohne Zusammenhang’, p. 146). A
finite set does not have an empty derived set; rather it has no derived set
(‘keine abgeleitete Menge hat’, ‘und hat selbst keine Abgeleitete’, p. 98).
His ‘finite sets’ all contain a first element (p. 145), and every subset of
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a well-ordered set has a least member (p. 444). His cardinal and ordinal
numbers start with 1 (pp. 290, 298); a cardinal or ordinal 0 could only come
by abstraction from an empty set. His definition of � −α for ordinals is
qualified by the assumption that α is less than � (p. 323).
Cantor says very little about singletons except in the paragraph in which
he introduces the cardinal numbers:

A single thing e0, if we subsume it under the concept of a setE0 = (e0),
corresponds to a cardinal number which we call ‘one’ and symbolize
by 1 . . . One can now unite another thing e1withE0, calling the union
set E1, so that E1 = (E0, e1) = (e0, e1). The cardinal number of E1 is
called ‘two’ and symbolized by 2. (pp. 289–90)

The new ( ) notation appears to be a limiting case of his notation for the
union of disjoint sets (p. 282). This presumes the treatment of e0 as a set,
and the equation (E0, e1) = (e0, e1) dictates thatE0 = e0. In short, although
singletons do not fit Cantor’s various explanations of ‘set’ with their plurals
and ‘many’s and ‘together’s (pp. 150, 204, 282, 443), he does accept them,
but only by identifying the singleton E0 with the thing e0 in question. This
enables him to extend his grand plan to derive numbers from sets to cover
1. His solution is to generalize the definition of set to cover the collection of
a single object e0 into—what else?—e0 itself. The number 1 is then obtained
in the regular way by abstraction from individual things regarded as sets.
Alas, Frege presented a decisive argument against the general identifica-
tion of singletons with their only members. Consider any two objects a, b.
The singleton of their pair-set is supposed to have just one member, yet if
it is identical to the pair-set, it has both a and b as members ([10], Section
10, n. 17; [11], p. 219). There is no choice, then, but to take a different line
on singletons once one engages—as Cantor did not—with a full-blown set
theory which deals generally with sets of sets as well as sets of ur-elements.
The modern conception of a singleton as something distinct from its only
member avoids Frege’s reductio, but only by giving up on the idea of sets as
collections. As Erik Stenius observes: ‘does it make sense that a set which
has just been obtained by “collecting” several objects into one whole, can
be collected again into a different one?’ ([24], p. 65). More recently, David
Lewis complains of ‘mysterious singletons’:

Here is a just cause for student protest, if ever there was one. This
time, he has no ‘many’ . . . Rather he has just one single thing, the
element, and he has another single thing, the singleton, and nothing
he was told gives him the slightest guidance about what one thing has
to do with the other. Nor did any of those familiar examples concern
single-membered sets. His introductory lesson just does not apply.
([17], p. 30)

So the line we choose is to do without singletons altogether. We show that
it is sufficient, generally if not always, to use the sole member of the singleton
rather than the singleton itself, and we introduce a notation which smoothly
symbolizes this procedure (see Section 4).
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Cantor’s exclusion of the empty set is entirely consonant with his most
explicit description of a set of things as

a separate, unified thing [ein einheitliches Ding für sich] in which those
things are components or constitutive elements. (p. 379; see also pp.
401, 411 & 419)

Frege, too, thought that if a set is a collection of objects, no objects means
no set:

A class, in the sense in which we have so far used the word, consists
of objects; it is an aggregate, a collective unity, of them; if so, it must
vanish when these objects vanish. If we burn down all the trees of a
wood, we thereby burn down the wood. Thus there can be no empty
class. ([11], p. 212)

When Zermelo put the empty set on the map, with Axiom II of his [28],
he was not dissenting from Frege’s conclusion. In the very act of posit-
ing its existence he dismisses it as ‘not a genuine set’ (eine uneigentliche
Menge). Translators who render ‘uneigentliche’ as ‘improper’, lumping it
with ‘improper subset’ and ‘improper fraction’ as if it were merely a limiting
or degenerate case, fail to capture the force of the adjective. In later letters
to Fraenkel, Zermelo’s dismissive attitude is clear:

[The empty set is] not a genuine set and was introduced by me only
for formal reasons . . . I increasingly doubt the justifiability of [the
empty set]. Perhaps one can dispense with it by restricting the axiom
of separation in a suitable way. Indeed, it serves only the purpose of
formal simplification. (Letters cited by Ebbinghaus [6], p. 135)

Indeed by the time of Zermelo’s more considered 1930 axiomatization, ‘an
arbitrarily chosen ur-element takes the place of the null set’ ([29], p. 403),
and compare [31] where he draws attention to his novel ‘introduction of a
basis of ur-elements instead of the null set’ (p. 441).As to Zermelo’s question
about restricting the axiom of separation, it had already been answered by
Cantor himself, with his crisp and simple formulation: ‘Every sub-multitude
of a set is a set [Jede Teilvielheit einer Menge ist eine Menge]’ (p. 444). This
Cantorian principle emerges as Theorem 18 below, and is picked out in the
Zermelo-style axiomatization of Section 8.
The anomalous status of the empty set and themodern notion of singleton
is therefore hardly news. So it is no surprise that several authors have changed
their notion of collection in an attempt to rescue the anomalous sets. The
story starts with Dedekind’s idea of a set as a container containing its
members like a sack (see Bernstein in [8], p. 836), which accommodates the
empty set as an empty container, and helps explain why {a} is not the same
as a, since the singleton now has the container as an extra component. A
recent proponent of the container conception is Michael Potter:

Now what if we try to make something out of nothing? A container
with nothing in it is still a container, and the empty collection is
correspondingly a collection with no members. ([21], p. 22)
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Herbert Enderton starts by defining a set to be ‘a collection of things
(called its members or elements)’ ([7], p. 1), but then brings in the idea of
an empty container to explain why the singleton of the empty set is distinct
from the empty set itself:

the fact that {∅} �= ∅ is reflected in the fact that a man with an empty
container is better off than a man with nothing. ([7], p. 3)

The problem for the container theory is whether there aremany containers
or one all-purpose container. Enderton’s example is sufficient to show that
there must be many, since {∅} is supposed to be a container with an empty
container as its content. But {∅} �= ∅, so there must be two containers
involved. The trouble is that once many containers are admitted, there is no
reason why there cannot be many empty ones. But extensionality requires
that there be just one empty set.
George Boolos and Richard Jeffrey (now endorsed by John Burgess as
third co-author ofComputability andLogic) notice this problemwith regard-
ing the empty set as an empty container and suggest a different account of
it:

By courtesy, we regard as enumerable the empty set, ∅, which has
no members. (The empty set; there is only one. The terminology is
a bit misleading. It suggests comparison of empty sets with empty
containers. But sets are more aptly compared with contents, and it
should be considered that all empty containers have the same null
content.) ([2], p. 4)

But on their ‘more apt’ comparison of sets with contents, no contents
means no set, making nonsense of their reference to ∅. Ian Stewart, who
does liken empty sets to empty containers, runs into similar trouble when
he tries to explain why ‘there is only one empty set’ by appealing to the fact
that ‘the contents of two empty bags are identical’ ([25], p. 47).
These authors’ confusion of the empty set with nothing (‘the same null
content’, ‘the contents of two empty bags’) is surprisingly common. Thus
John Barrow says that we may

define what we mean by the natural numbers in a simple and precise
way by generating them all from nothing: the empty set . . . it has
enabled us to create all of the numbers from literally nothing, the set
with no members. ([1], pp. 166–167)

The same idea is found in Keith Devlin’s guide to the axiom of
constructibility:

in order to construct the natural numberswe need onlymake one basic
existence assumption: namely that nothing exists! . . . We assumed the
existence of the empty set (i.e., nothing), and took this to be the
number 0. ([5], pp. 11–12)

Sadly Boolos and Jeffrey are no longer with us, but Burgess, Stewart,
Barrow and Devlin need to be told loud and clear: if there is an empty set,
it is something, not nothing.
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§3. Singular Logic. We call the underlying logic set out here ‘Singular
Logic’. It resembles the classical predicate calculuswith identity, description,
function signs and constants, but is shaped by the belief that a systemof logic
should be topic neutral, i.e., applicable to any subject-matter. The classical
system notoriously fails this test, since it makes it logically necessary that
something exists.We return to this and other aspects of topic neutrality after
sketching the syntax and semantics of our system.
The membership predicate ∈ is the only nonlogical primitive. The pred-
icates ‘is a set’ and ‘is an ur-element’ will both be defined in terms of ∈.
This is the language needed for the abstract version of the set theory. Each
applied version will naturally add its own vocabulary of predicates, function
signs and constants concerning the topic it is designed to deal with.

Syntax
We use a, b, c as schematic letters for terms of arbitrary complexity,
including variables standing alone. A, B , C stand for single formulas, and
� for any number (none or one or more) of formulas.

(i) Logical vocabulary

Variables, countably many

Connectives ¬ → ↔ ∧ ∨, plus brackets for punctuation
Universal quantifier ∀
Description operator ℩
Identity, a two-place predicate =

(ii) Nonlogical vocabulary

Membership, a two-place predicate ∈

(iii) Formation rules

Variables are terms.

If x is a variable and A a formula, ℩xA is a term.

If a and b are terms, a = b and a ∈ b are formulas.
If A and B are formulas, so are ¬A, (A → B) etc, with the usual
conventions for omitting brackets.

If x is a variable and A a formula, ∀xA is a formula.

(iv) Scope, free and bound occurrences of terms and formulas

The scope of an occurrence of ∀ or ℩ is defined as the shortest formula
or term in which it occurs. These operators always occur with a
variable attached, as in ∀xA or ℩xA, and an occurrence of x is bound
if it is within the scope of an operator whose attached variable is
x; otherwise it is free. More generally, an occurrence of a term a or
formula A in another term or formula is bound if it is within the
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scope of an operator whose attached variable occurs free in a or A;
otherwise it is free.

Semantics

(i) Individuals

The individuals may be any objects; there may be none or one or
more.

(ii) Valuation and satisfaction

For each variable x, val x is an individual or nothing.

val ∈ is a two-place relation on the individuals.
val satisfies a ∈ b iff val ∈ holds between val a and val b.
val satisfies a = b iff val a is identical to val b.

val satisfies¬A iff it does not satisfyA. It satisfiesA→ B iff it satisfies
B or does not satisfy A. Similarly for the other connectives.

val satisfies ∀xA iff every x-variant (see below) of val satisfies A.
val ℩xA is the individual val′x if a unique x-variant val′ of val satisfies
A; otherwise it is nothing.

(iii) Logical truth and logical consequence

|= C iff every valuation, over no matter what individuals (none or
one or more), satisfies C .

� |= C iff every valuation, over no matter what individuals (none or
one or more), satisfies C if it satisfies every one of � .

Besides the usual logical apparatus of connectives and quantification and
identity, the system features the description operator ℩ as a primitive, pro-
ducing descriptions with these denotation conditions: if A is true for some
unique individual as value of x then ℩xA denotes that individual. If there is
no such individual, the description is empty or, as we shall say, it denotes
zilch. Our use of ‘zilch’ here corresponds to the unjustly neglected use of
‘nothing’ as a necessarily empty term rather than a quantifier.
Singular Logic allows that there might be nothing at all. Our method for
dealing with this possibility is to permit variables, and open terms in general,
to be empty. This has the great advantage of settling the logical status of open
formulas without disturbing modus ponens (see Section 11.1 of our [20]).
Although the semantics of formulas with free variables is thereby affected,
the semantics of variable-binding is unaffected. For example, ∀xA will be
true just in case A is true for every assignment of an individual as value of
x. When we rephrase this in terms of valuations and satisfaction, we must
take care of the case where the operative variable x is empty under the given
valuation. So we need the following clause:

val satisfies ∀xA iff every valuation that differs from val at most in
that x has a value and in what that value may be, satisfies A.
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The valuations on the right-hand side of this biconditional are thus stip-
ulated to assign a value to x even if val x is zilch. In the summary of the
semantics, we used Benson Mates’s [18] label ‘x-variant of val’, now under-
stood as abbreviating ‘valuation that differs from val at most in that x has
a value and in what that value may be’. The clause for the variable-binding
operator ℩ uses the same idea.
We have opted to take the universal quantifier as primitive, using it to
define the existential quantifier in the usual way. Since terms may be empty,
we shall want a way of expressing existence. We use E! to symbolize it, and
defineE!a in the familiarway via identity, matching the equivalence between
‘a exists’ and ‘a is something’.

Existence E!a =df ∃x x = a
In the semantics, we use ‘individual’ in the logical sense to cover any kind
of object, sets included, not as a synonym for ‘ur-element’. We have avoided
singular talk of a domain of individuals, conceived as a set, resorting instead
to plural talk of the individuals themselves. Consequently, in the definitions
of logical truth and consequence we replace singular quantification over
domains—‘over no matter what domain’—with plural quantification over
individuals—‘over no matter what individuals (none or one or more)’. One
reason for this change is that it would be something of an own goal to
develop a set theory that rules out empty and singleton sets, only to find
them reappearing in the semantics as domains. The second reason is topic-
neutrality, now operating at the other extreme of size. We want our logic
to be applicable to reasoning about kinds of things that have so many
instances that they do not form a set. Indeed our set theory is a case in
point, since there is no such thing as the set to which everything belongs.
The reader will also note that in the definition of logical consequence we
use plural language, treating the premises as a number of formulas rather
than a set. Here the use of the plural is not demanded by topic neutrality,
but rather serves to replace redundant and unnatural talk of sets. It also
avoids invoking empty and singleton sets when there are no premises or just
one.
The use of plural quantification in the semantic metalanguage means that
it is expressively richer than the singular object language. It also outstrips
the object language in a quite different direction, as we shall now explain.
For the sake of convenience, we have used ‘valuation’ or val as an umbrella
word covering the assignment of values to items of two different syntactic
categories: terms and predicates. For a term a as argument, val a is an
individual or zilch. It is thus a partial function. For the predicate ∈ as
argument, val ∈ is a two-place relation on the individuals, in the sense that
for any individuals x, y the relation either holds or does not hold between x
(or zilch) and y (or zilch) as arguments. By contrast, standard presentations
of the semantics for the predicate calculus assign set-theoretic extensions to
predicates as their semantic values, e.g., a set of ordered pairs to a two-
place predicate, where the ordered pairs are themselves reduced to plain
sets by one or other familiar method. Unfortunately for everybody, there
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is no such thing as the set of the ordered pairs <x, y> for which x ∈ y.
That is why we reinstate the relations for which the set-theoretic extensions
were at best artificial surrogates, conceiving of them, like Frege’s Begriffe,
as different from objects, and thus not as values of first-order variables (for
more examples of predicates without set-theoretic extensions, see Theorem
39 in the Appendix below). Functions, such as val, are like relations in
this respect. Thus generalizing over valuations involves second- (or higher-)
order quantification in the semantic metalanguage.
The following deductive system for Singular Logic is sound and complete.
The axioms are all the instances of the following schemes, both as they stand
and prefaced by any number of universal quantifications.

1. A where A is tautologous
2. ∀x(A→ B)→ (∀xA→ ∀xB)
3. A→ ∀xA where x is not free in A
4. ∀xA(x) → (E!a → A(a)) where A(a) has free a wherever A(x) has
free x

5. ∀x(x = x)
6. a = b → (A(a)↔ A(b)) where A(b) has free b at zero or more places
where A(a) has free a

7. ¬E!a ∧¬E!b → (A(a)↔ A(b)) whereA(b) has free b at zero or more
places where A(a) has free a

8. a = b → E!a ∧ E!b
9. ∀y(y = ℩xA↔ ∀x(A↔ x = y)) where y does not occur in ℩xA

Rule of inference. From A and A→ B infer B .

The interested reader may consult the Appendix to Ch. 11 of our [20] for
soundness and completeness proofs. It is worth remarking that our proof
of completeness does without set-theoretic machinery, and so there are no
empty or singleton sets needed there either. As already mentioned, we treat
a premise or premises as a formula or formulas rather than a set of them.
Likewise, we define a deduction as a single formula or a sequence of several,
thereby avoiding the need for singletons. We also replace the construction
of a maximal set of formulas with one referring to its members, and instead
of invoking equivalence classes as individuals in the treatment of identity,
we use representative items.
In the same chapter we prove several metatheorems that we take for
granted in what follows, e.g., change of bound variables and extension-
ality (substitutivity of equivalents). Of particular interest is metatheorem 5
(‘Open formulas and schemes’)

� (x) 
 A(x) if and only if � (a) 
 A(a) for all terms a for which � (a)
and A(a) have free a just where � (x) and A(x) have free x

which means that a single theorem featuring a free variable can do duty for a
theoremschemewith infinitelymany instances, and similarly for deducibility.
We make extensive use of open formulas in what follows.
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§4. Initial definitions. Here we comment on initial definitions before dis-
cussing those needed for the theory of levels in the next section. A summary
list of definitions can be found at the beginning of the Appendix. Through-
out, these definitions are to be understood as including the familiar provisos
to prevent unintended capture of variables. As usual, slashed two-place
predicates are convenient shorthand: a /∈ b abbreviates ¬(a ∈ b), etc.
As well as defining ∃ in terms of ∀, we define two more quantifiers:
‘Exactly one’ quantifier ∃1xA(x) =df ∃x∀y(A(y)↔ x = y)
‘Many’ quantifier mxA(x) =df ∃x∃y(x �= y ∧A(x) ∧A(y))
The quantifier ∃1 may be read as ‘there is exactly one’, or simply ‘one’,
while m may be read as ‘there are many’ or simply ‘many’, taking ‘many’
in its weakest sense as equivalent to ‘more than one’, i.e., at least two. The
semantics of ℩means that E!℩xA(x) is equivalent to ∃1xA(x).
We call an n-place predicate F strong at its i-th place if it is necessary that
if Fa1. . . an then ai exists; otherwise it is weak at that place. We think that it
is not for logic to determine the strength of places of primitive nonlogical
predicates. Hence ∈, like any two-place predicate, may be assigned a relation
that holds of zilch at one or both of its places. Since, however, under its
intended meaning ∈ is strong at both places, we shall add a nonlogical
axiom to ensure its strength (Axiom 1(i) in Section 6 below).
As to the sole primitive logical predicate =, we must fix its meaning and
therefore need to make a choice. We opt to make = strong at both places,
so that a = b is satisfied only if both a and b exist. This is embodied in
the definition of E! in Section 3. Since the corresponding notion of weak
identity also proves invaluable, we use = and E! to define a symbol for it:

Weak identity a ≡ b =df a = b ∨ (¬E!a ∧ ¬E!b)
The identities a = b and a ≡ b only differ when a and b are both empty, so
we can move freely between them when either or both terms are nonempty.
For example, if we define a term c by d , the definition on its own only
allows us to infer the weak identity c ≡ d , since no term is guaranteed to be
nonempty. But if we are also given that d exists, we can go on to infer the
strong identity c = d . As we explain in Section 11.4 of our [20], working the
other way round is equally viable, i.e. taking weak identity as primitive and
defining strong identity in terms of it.
We symbolize the paradigm empty term ‘zilch’ by an italic capital O.
Although O may be taken as primitive, we opt to define it as a description:

Zilch O =df ℩x(x �= x)
The description ℩x(x �= x) is necessarily empty on account of the logi-
cally unsatisfiable condition x �= x and the semantics of ℩. Hence E!O and
O = O are both logically false, while O ≡ O is logically true. Also a ≡ O
is equivalent to ¬E!a, and therefore provides another way to express
nonexistence.
We need to emphasize thatO does not denote anything whatever, however
special or recondite. It denotes zilch, that is to say, it denotes nothing. In
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particular, it should not be confused with∅ as this symbol is conventionally
understood, namely as standing for the empty set, which is something, not
nothing. O plays a pivotal role in our set theory, where it is not simply an
empty surrogate for the nonempty ∅. For more on zilch see our [20], pp.
111–114 & 120–128.
The quantifications ∀xA(x) and ∃xA(x) do not decide the case A(O); a
predicate true of everything, or true of something, may or may not be true of
zilch. As a useful supplement to the standard quantifiers, then, we introduce
‘inclusive’ quantifiers ∀O and ∃O to cover the undecided case.
Inclusive quantifiers ∀OxA(x) =df ∀xA(x) ∧ A(O)

∃OxA(x) =df ∃xA(x) ∨A(O)
The quantifierm can be used to define the notion of a set, since in the absence
of the empty set and singletons, sets can be characterised as multimembered
objects. We symbolize ‘a is a set’ byMa, after Cantor’sMenge.

Set Ma =df mx x ∈ a
M is a strong predicate by the definition of m and the strength of ∈. We
symbolize ‘a is an ur-element’ by Ua, and define it in terms of E! andM :

Ur-element Ua =df E!a ∧ ¬Ma
U is thus a strong predicate too. Together, U and M provide a mutually
exclusive and jointly exhaustive classification of the individuals. Next come
familiar definitions of subset ⊆ and proper subset⊂. They mean that⊆ and
⊂ are strong at both places.
Subset a ⊆ b =df Ma ∧ ∀x(x ∈ a → x ∈ b)
Proper subset a ⊂ b =df a ⊆ b ∧ a �= b
The set abstract {x:A(x)} is defined, using the description operator, in an
obvious way:

Set abstraction {x:A(x)} =df ℩z(Mz ∧ ∀x(x ∈ z ↔ A(x))
Like any term, {x:A(x)} may be empty. One cause of emptiness is when
A(x) is satisfied by too few things to form a set (i.e., none or one). But it
may also be satisfied by too many, e.g. {x:Mx} is empty because there is no
set of all sets (for further examples see Theorem 39 in the Appendix).
We also define a second kind of abstract [x:A(x)] which is designed to
provide an acceptable alternative to Cantor’s untenable identification of
singletons with their sole members. If A(x) is satisfied by a unique object,
[x:A(x)] denotes that object. As with the case of O and ∅, [x:A(x)] is not
simply a surrogate for {x:A(x)} but leads a life of its own.
Modified set abstraction [x:A(x)] =df ℩z(z = ℩xA(x) ∨ z = {x:A(x)})
This is used to define the intersection a ∩ b of sets a and b as the object
that is either their sole common member (not its singleton) or the set of their
many common members. If there is no common member, there is no such
thing as a ∩ b, i.e. a ∩ b ≡ O.
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Intersection a ∩ b =df [x:x ∈ a ∧ x ∈ b]
Definitions of other operations are given in the Appendix. It should be
acknowledged that the resulting algebra of sets is decidedly more compli-
cated than the familiar Boolean one. But to our surprise we found that
the entire development in the Appendix makes no use whatever of such an
algebra. We suspect that its omnipresence in the textbooks is more as an
advertisement for the versatility of Boolean algebra than in providing a tool
for serious work.

§5. Levels. In his 1930 article ‘On boundary numbers and domains of
sets’, Zermelo uses a new technique to establish isomorphisms between
models of his set-theoretic axioms. He describes it as the ‘development’ of a
domain:

its decomposition into a well-ordered sequence of separated ‘layers’
where the sets belonging to one layer are always ‘rooted’ in the pre-
ceding layers such that their elements lie in those layers, and they
themselves, in turn, serve as material for subsequent layers ([29],
p. 401)

Corresponding to each exclusive layer (Schicht), there is a cumulative
segment (Abschnitt) or ‘partial domain’, which is the union of all preceding
layers. The segments are none other than the cumulative types now familiar
from presentations of the iterative conception of set.
In ‘Axiomatizing set theory’ Dana Scott picks up on Zermelo’s cumulative
segments, which he calls ‘levels’ (sometimes ‘type levels’ or simply ‘types’),
claiming that the theory of levels provides an ‘intuitive justification’ ([23],
p. 208) for set theory in which ‘the artificial, “ad hoc” axioms have been
completely avoided’ ([23], p. 212), and regretting that Zermelo still did not
give levels the prominence they deserve. In fact, Zermelo did just that in his
draft ‘On the set-theoretic model’ [30], which however was still unpublished
at the time Scott wrote. Scott’s contribution is novel in three respects. He
proceeds entirely in terms of cumulative levels with no recourse to Zermelo’s
exclusive layers; he offers an axiomatization of the theory of levels from
which Zermelo’s original ‘artificial ad hoc’ axioms can be derived as theo-
rems; and he does so without relying on ordinals. Later improvements on
Scott’s ideas were made by John Derrick in unpublished work and Michael
Potter in his book Set Theory and its Philosophy [21]. What we shall call
the Scott/Derrick/Potter theory is our starting point in what follows. Like
them, we operate with a first-order framework, dropping Zermelo’s appeal
to second-order ideas in his 1930 papers.
When empty and singleton sets are omitted, the cumulative hierarchy of
levels can be informally characterized as follows. Levels are sets and they
are well-ordered by ∈. It is convenient to reserve the variables u, v, w for
levels. We say that u is lower than v (v is higher than u) if u ∈ v. The
members of a level are all the ur-elements together with all the members and
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subsets of the lower levels. In short, a level is the accumulation of the lower
levels.
Since the first or lowest level has no lower levels, it is the set of all
ur-elements. In the literature, this first level is generally labelled V0. We,
however, will call it V1 since we think it should properly be indexed with
1 for ‘first’ (Zermelo, as it happens, labelled his first segment P1). This
also enables us to reserve V0 for a more principled use as standing for
zilch.
The hierarchy is cumulative, since a member or subset of any level is also
a member or subset of all higher levels. It is exhaustive, since every object
is located within it: every set is a subset of some level and also a member
of some level, while every ur-element is a member of every level. It is also
infinite: for every level there is a higher one. So if there are any levels at all,
there are infinitely many.
Whether there are any levels, or sets of any kind, depends on the number
of ur-elements. If there are many (i.e., at least two), then levels exist. If there
are none or just one, there are no sets at all. In this respect, our hierarchy
differs sharply from that of Scott/Derrick/Potter. Although they rightly
allow for ur-elements, they also have empty and singleton sets to start the
ball rolling even without any ur-elements.
Our task is to systematize this informal conception of levels by designing
suitable definitions and axioms. Scott’s plan was to take ‘is a level’ to be
primitive and govern it by an axiom ensuring that a level is the accumulation
of the lower ones. But a more attractive option is to find a definition of level
that makes the axiom redundant. The key is the notion of a history. One first
defines accumulation, then history in terms of accumulation, and finally a
level as the accumulation of a history. This is Derrick’s idea, as subsequently
improved on by Potter. We adopt this broad strategy, but in the absence of
empty and singleton sets we have had to rework the whole theory of levels
from scratch. It is by nomeans amatter of inserting an occasional restriction
ormaking otherminor adjustments. There are significant differences at every
point: underlying logic, primitive vocabulary, definitions, axioms, lemmas,
theorems. Consequently, the development presented in the Appendix differs
substantially from Potter’s own, both in global organization and locally
in the strategies required to prove particular theorems. Later we comment
in detail on some of these differences (see especially Section 12 and the
comments on the proofs of Theorems 4 and 6 in the Appendix), but some
brief comparisons are in order here.
Like us, Scott and Potter work with a first-order underlying logic, includ-
ing identity as a logical constant and permitting variables to range over any
objects whatever. Neither, however, pauses to articulate the logical frame-
work, being content to operate in a decidedly informal manner without a
fully specified syntax or semantics. It is clear, though, that both violate topic
neutrality by requiring domains to be nonempty. Scott also rules out empty
terms, while Potter allows that some kinds of term—descriptions but not
constants—may be empty.
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As to vocabulary, both take ∈ as primitive. Scott takes ‘is a level’ as
primitive, while Potter defines it. Scott also presupposes ‘is a set’ as a third
primitive, when he uses a, b, c . . . as restricted variables ranging over sets
in contrast to his unrestricted variables x, y, z . . . which range over all
objects, ur-elements included ([23], p. 207). This notation enables him to
characterize an ur-element x as a non-set (¬∃a x = a), and thus distinguish
it from the empty set. Potter’s second primitive is the predicate U (‘is an ur-
element’, or ‘is an individual’ in his terminology). He uses it to distinguish an
ur-element from the empty set, noting that those who do without a second
primitive ‘are unable to distinguish formally between ∅ and an individual,
since individuals, we may suppose, share with ∅ the property of having no
members’ ([21], p. 60).
In contrast, we can get by with ∈ as our sole primitive, using it to define
both ‘is a set’ and ‘is an ur-element’. Our definitions mean that there are no
individuals besides sets and ur-elements. This was Scott’s assumption. Pot-
ter also allows for ‘ungrounded’ or ‘non-well-founded’ collections which
lie outside the hierarchy of levels and thus are neither ur-elements nor
sets. Consequently, he starts by defining the more general idea of ‘collec-
tion’, characterizing a set as a subcollection of some level. But even his
broader notion of ‘collection’ is not the opposite of ‘ur-element’, since he
also allows for a fourth possible kind of thing that is neither ur-element,
set nor ungrounded collection. He finds no use for them, however, nor for
ungrounded collections, and we have omitted both here. We conjecture that
Potter’s ultra-liberal ontology is partly motivated by a desire to economize
on axioms. For example, by defining sets as grounded collections, he avoids
the need for Scott’s restriction axiom, which ensures that any set is a subset
of some level. Potter would also need an extra axiom to rule out things that
are neither collections nor ur-elements. Yet another axiom would be needed
to ensure that ur-elements do not have members, but Potter opts to forgo it
despite thinking it true.
We now turn to our approach to defining ‘is a level’. We talked of ‘the
lower levels’ when we characterized a level as the accumulation of all the
lower ones. The plural description ‘the lower levels’ covers three cases: (i)
zilch for those lower than the first level V1; (ii) the single level V1 for those
lower than the second levelV2; and (iii) many levels for those lower than any
other level. Since we are operating with a purely singular object language,
we must find a singular replacement for the plural description ‘the lower
levels’. Naturally, Potter’s choice is ‘the set of lower levels’. For him, the set
of levels lower than a level v is a history, and v is the accumulation of this
history. He thereby equates a history with a set in every case: the empty set
for case (i), the singleton {V1} for (ii), and multimembered sets for (iii). We,
however, treat the three cases separately, leaving the first two as they are and
employing a set only in case (iii), to replace the many lower levels with the
set to which they belong. All three cases are covered by the single abstract
[w:w ∈ v], which (i) is empty if no level is lower than v, or (ii) denotes the
single level lower than v if such there be, or (iii) denotes the set of levels
lower than v if there are many such levels.
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The upshot is that we can take over Potter’s definition of accumulation
([21], p. 41) as follows:

Acc function acc a =df {z : (Uz ∨ ∃y(y ∈ a ∧ (z ∈ y ∨ z ⊆ y)))}
By itself, however, acc does not do the whole job. It delivers the right result
for any level higher than V2, for then the relevant a will be the set of all
lower levels. But it will not work for V2 with its sole lower levelV1. We want
V2 to be the accumulation of V1, but the condition y ∈ a picks out the
members of V1, not V1 itself. Since V1 is the set of ur-elements, and nothing
is a member or subset of any ur-element, the result is that acc V1 = {z:Uz}
= V1, not V2. Potter, since he admits singletons, gets the right result with
V2 = acc {V1}. We need to follow a different course, replacing y ∈ a by
y = a in the definition, thereby introducing a second accumulation function
which simplifies to
Accum function accum a =df {z : (Uz ∨ z ∈ a ∨ z ⊆ a)}
V2 can then be defined to give the desired result:

Second level V2 =df accum V1
This leaves V1, which is the accumulation of its history, namely zilch. Again
we use accum to define it:

First level V1 =df accum O

Although we introduced them separately, it is worth remarking that acc can
be defined in terms of accum as follows:

acc a =df {z : (Uz ∨ ∃y(y ∈ a ∧ z ∈ accum y))}
The functions expressed by acc and accummay be partial functions, since if
there is but one ur-element, acc and accum both map it to zilch. They may
also be ‘co-partial’ functions, mapping zilch to {z:Uz} (for more see Section
5.6 of our [20]).
We say that a is an accumulation (symbolized by Aa) if it is of the form
accum x or acc x. Remembering that x may be zilch, we use the inclusive
quantifier ∃O to define it:
Accumulation predicate Aa =df ∃Ox(a = accum x ∨ a = acc x)

Next, in the spirit of Derrick, we need to define ‘a is a history’ (symbolized
by Ha) without appealing to the notion of level:

History Ha =df (a ≡ O ∨Ma) ∧ (a = V1 ∨ ∀y(y ∈ a → (y = V1 ∨ y = V2
→ y = accum a ∩ y) ∧ (y �= V1 ∧ y �= V2 → y = acc a ∩ y))

This definition needs a little explanation. Naturally we deal separately with
the possibility that y is either V1 or V2 by replacing acc by accum for these
exceptional cases. But we also need to bring in the possibility that a is V1.
The problem is the same as before. Any member y of V1 is an ur-element
and is therefore neither V1 nor V2. But no ur-element y is acc a ∩ y, since
the function acc only has sets as values.
It is convenient to reserve the variables h, h1 for histories. If V1 = accum
h, we say that V1 has h has a history; similarly for V2. If v is any level other
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than V1 or V2, and v = acc h, we say that v has h as a history. We want
any level v to have [w:w ∈ v] as its unique history, but uniqueness is liable
to fail if we count an ur-element x as a history. For supposing V1 exists,
V1 = accum O and also V1 = accum x. In order to rule this out, the initial
conjunct in the definition requires that a history, if it exists at all, be a set.
Finally, the definition of ‘a is a level’ (symbolized by Va). It should be no
surprise that the exceptional levelsV1 andV2 are dealt with separately, while
the rest can be characterized as acc x for some history x

Level Va =df a = V1 ∨ a = V2 ∨ ∃x(Hx ∧ a = acc x)
The definitions secure that accumulations and levels are sets, and thatA and
V , likeM , are strong. But H is weak, since the history of V1 is O.
There are three mutually exclusive and jointly exhaustive kinds of level:
the first levelV1, levels next above a level, and limit levels. We define the level
next above a (symbolized by a′) to be the lowest level that is higher than the
level a.

Level next above a ′ =df ℩x(Va ∧ Vx ∧ a ∈ x ∧ ¬ ∃y(Vy ∧ y ∈ x ∧ a ∈ y))

We define ‘a is a limit level’ (symbolized by La) as ‘a is a level that is neither
V1 nor next above any level’.

Limit level La =df Va ∧ a �= V1 ∧ ¬ ∃x a = x′

§6. Axioms. The axioms are all the instances of the following schemes,
both as they stand and prefaced by any number of universal quantifications,
and are to be understood as including the familiar provisos to prevent unin-
tended capture of variables. Recall that we use the variables u, v,w for levels,
so that, e.g., ∀uA(u) is short for ∀x(Vx→ A(x)).

1.Membership (i) x ∈ y → E!x ∧ E!y
(ii) My ∧Mz→ ∀x(x ∈ y ↔ x ∈ z) → y = z
(iii) x /∈ x
(iv) ∃x x ∈ y →My

2. Levels (i) mxUx→ M{x:Ux}
(ii) ∃xMx→ mxUx
(iii) M{x:A(x)} ↔ mxA(x) ∧ ∃u∀x(A(x) → x ∈ u)
(iv) ∀u∃v u ∈ v
(v) ∃xVx→ ∃xLx

The first group govern membership. 1(i) ensures that ∈ is strong at both
places. 1(ii) is extensionality for sets. 1(iii) rules out self-membership, while
1(iv) rules out singletons, i.e., there is no y such that x ∈ y for just one x.
The second group are principles governing levels. Together with other
axioms, 2(i) ensures that if many ur-elements exist, so does the set of them,
i.e., V1 exists. 2(ii) says that unless there are many ur-elements, there are no
sets, and hence no levels. The scheme 2(iii) gives necessary and sufficient
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conditions in terms of levels for {x:A(x)} to be a set, namely that there are
many As and there is some level such that each A is a member of it. The
← half is thus a useful principle of separation from levels. 2(iv) is Potter’s
‘axiom of creation’—for every level there is a higher one—from which it
follows that there are infinitely many levels if there are any at all. 2(v) is a
limit level axiom, which asserts the existence of a limit level if there are any
levels at all.

§7. Development of the theory. We put the detailed development of the
theory of levels into the Appendix. Unsurprisingly, given the definitional
set-up, a recurrent feature of the proofs is the separate treatment of the first
two levelsV1 andV2. We prepare the ground for this by including their main
peculiarities in the last of the opening lemmas.
Some preliminary theorems about accumulations and histories lead to
the well-foundedness of membership on any history (Theorem 6). This is
the first of three foundation principles of increasing generality. It is narrowly
concernedwith subsets of histories, whereas the foundation scheme for levels
(Theorem 12) covers any specifiable property of levels, and foundation for
sets (Theorem 17) covers sets in general. In our development, Theorem 6
is the linchpin: it is used to prove Theorem 12, which in turn is used to
prove Theorem 17. In the Appendix we explain how our proof of Theorem 6
differs substantially from Potter’s as a result of our restriction of separation
from levels to exclude empty and singleton sets.
From Theorem 6 it follows that levels are transitive (Theorem 7) and
hereditary (Theorem 8) sets. Membership between levels is irreflexive
(Axiom 1(iii)), transitive (Theorem 7) and well-founded (Theorem 12), and
levels are comparable under membership (Theorem 13). Hence membership
well-orders the levels. So too does the proper subset relation (Theorem 27).
A level v has [w:w ∈ v] as its unique history (Theorems 10, 11, and 15).
Given many ur-elements, the lowest level of all isV1—the set of ur-elements
(Theorem 28). For any level v, there is a level v′ next above v (Theorem
29), whose members are the ur-elements together with the subsets of v.
Equivalently, v′ is the set of all the members and subsets of v (Theorem
30), or as we shall say, v′ is the power-plus set of v, symbolized by P+(v).
The third kind of level, a limit level, exists whenever there are any levels at
all, i.e., provided there are many individuals (33), and is the union of its
history (34).
How do objects fit into the hierarchy of levels? Every ur-element is a
member of every level (Corollary (ii) of Theorem 1). Every set is a member
of some level (Theorem 23) and also a subset of some level (Theorem 16(i)).
If a set bears either relation to a level, it bears the same relation to every
higher one (Theorem 7 and its Corollary, and Theorem 8). If a set is a
member of a level, it also a subset of it (Corollary of Theorem 7). But not
vice versa. For any set, there is a unique lowest level of which it is a subset—
the level of the set for short (Theorem 16(ii)). For any set, there is a unique
lowest level of which it is a member (Theorem 23): it is not the level of the
set, but the level next above (Theorem 31).
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Looking at matters from the outside, the well-ordering of levels means
that they can be indexed by ordinals, with the cumulative hierarchy of levels
defined by transfinite recursion:

V1 = {x:Ux}
Vα+1 = P+ (Vα) where α is any ordinal
V� = ∪β<αVβ where � is a limit ordinal

The position of items (their ‘height’) within the hierarchy is then measured
by assigning ordinals to them as ranks. Thus α is the rank of a given item
if Vα+1 is the lowest level of which it is a member. In particular, the rank of
an ur-element is 0.
Along the way we prove analogues of several axioms of Zermelo-style
set theory: Foundation or Regularity (Theorem 12), Cantorian Separation
(18), Union (21 and 22), Pairing (24) and Power Set (25). Although these
theorems are recognizably close relatives of the conventional axioms, they
are framed to suit the present context. In Foundation, the usual restriction
to nonempty sets is now redundant. The Separation scheme now follows
Cantor’s requirement that the separated members be many. In the same
vein, Pairing requires that the members of the putative pair be distinct, and
Power Set requires the initial set to have many subsets, which is not true of
pair sets in the absence of empty and singleton subsets.
Towards the end of the Appendix we provide a representation of ordered
pairs as plain sets, which easily generalizes to n-tuples, and prove that it
is adequate (Theorem 38). Finally, we prove a nonexistence Theorem (39),
which means that none of the key predicates E!,M , V , A and H has a set
as its extension.

§8. The Axiom of Plurality and other axioms. The abstract version of the
set theory we are presenting allows for ur-elements but makes no assump-
tions about their number or nature, and is thus as close to being logic as
it is possible to get. All the axioms are true when there are no ur-elements,
and hence nothing at all, or when there is just one ur-element, and hence
no sets. It follows that orthodox set theory cannot be interpreted within the
Cantorian theory, since the former implies that sets exist, whereas the latter
makes no existential claims. Allen Hazen [15] has claimed that reference
to empty and singleton sets can be regarded as a façon de parler for talk
about multimembered sets. But even apart from the vitiating artificiality of
his translation of ∈, evidently this will not work here.
The weakest additional axiom that will guarantee the existence of sets is
the Axiom of Plurality, which asserts the existence of at least two things:

Axiom of Plurality mx x = x

Taken in isolation, this axiom is weaker than the more specific mxUx, but
the two are equivalent in context. Adding the Axiom of Plurality to the
rest secures a transfinite hierarchy of sets, despite its being vastly more
modest than Whitehead and Russell’s axiom of infinity. The reason is that
it works in tandem with the limit level Axiom 2(v) to entail the existence of
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a limit level (Theorem 33), and therefore the existence of the lowest one V�
(Theorem 35). Since V� is a set with all the finite levels among its members,
the Axiom of Plurality and the limit level Axiom 2(v) function together
to yield an unconditional Zermelo-style axiom of infinity. As to the other
axioms of Zermelo set theory, our Axiom 1(ii) is extensionality, while Axiom
2(i) secures the existence of the set of ur-elements provided there are many
of them. As we remarked in the previous section, appropriate analogues
of separation, foundation, union, pairing and power set are derivable as
theorems. For those more familiar with a Zermelo-style axiomatization, it
may be helpful to set down our versions of the standard axioms. On the
right, we indicate their location in the present development.

Extensionality My ∧Mz→ ∀x(x ∈ y ↔ x ∈ z)→ y = z axiom 1(ii)

Ur-elements mxUx →M{x:Ux} axiom 2(i)

Foundation Mx→ ∃y(y ∈ x ∧ x ∩ y ≡ O) theorem 17

Separation Mx ∧ my (y ∈ x ∧ A(y))→M{y:y ∈ x ∧ A(y)} theorem 18
Union Mx ∧ ∀y(y ∈ x →My)→M (∪x) theorem 22

Pairing E!x ∧ E!y ∧ x �= y →M{x, y} theorem 24

Power set my y ⊆ x →M (P(x)) theorem 25

Infinity mx x = x → ∃x (V1 ∈ x ∧ ∀v(v ∈ x → v′ ∈ x)) thms 33, 35, 36

This leaves choice and replacement, which need to be secured by new
axioms. The first may be expressed as: for any set of pairwise disjoint sets,
there is a choice set that has exactly one member in common with each
member of the original set. This is the same as the familiar version, except
that we do not need to add that the pairwise disjoint sets are nonempty.
Formalizing the principle in the current framework requires two departures
from the conventional presentation. First, we express disjointness of sets
using zilch (y∩z ≡ O) not the empty set. Second, we spell out the character
of the choice set directly, rather than take the usual detour via singleton
intersections.

AxiomofChoice ∀x((Mx∧∀y(y ∈ x →My)∧∀y∀z((y ∈ x∧ z ∈ x∧y �= z)
→ y ∩ z ≡ O))→ ∃y∀z(z ∈ x → ∃1z1(z1 ∈ z ∧ z1 ∈ y)))

As to replacement, the conventional scheme needs only a slight tweak,
to require that there are many members involved, just as the Cantorian
separation scheme involves many members:

Axiom of Replacement ∀x∃1yA(x, y)→ ∀x((Mx∧mz∃y(y ∈ x∧A(y, z)))→
E!{z:∃y(y ∈ x ∧ A(y, z))})

§9. Ordered pairs. Once one has to hand the set of natural numbers N
(see Section 10), the arithmetization of analysis can be carried through
within Cantorian set theory. Playing on the aphorism of Cantor’s nemesis
Kronecker, alles andere ist Mengenwerk. The notion of an ordered pair is
essential to the project. But we cannot adopt Kuratowski’s now standard
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definition of <a, b> as {{a}, {a, b}}, since it needs singletons. Hausdorff’s
([14], p. 32) earlier version uses a pair-set of pair-sets equipped with 1 and 2
as markers, where 1 and 2 are arbitrarily chosen distinct objects which serve
to specify a as first coordinate and b as second: <a, b>=df {{a, 1}, {b, 2}}.
Hausdorff sacrifices generality by requiring that neither a nor b is 1 or 2.
In fact, his definition is adequate when 1 and 2 are allowed back in as
coordinates, but it then requires singletons. In any case the revised definition
is still not truly general, since it cannot accommodate zilch. For example,
<O, b> = {{O, 1}, {b, 2}} = {{1}, {b, 2}} = {{1, 1}, {b, 2}} =<1, b>.
Kuratowski’s definition is likewise deficient, since<a,O>= {{a}, {a,O}}=
{{a}, {a}} = {{a}, {a, a}} = <a, a>.
Allowing a or b in <a, b> to be zilch is highly convenient, since it avoids
the need to establish that a and b are nonempty prior to using the ordered
pair notation. In Section 11 below, we include zilch as a coordinate in
structures regarded as ordered pairs. Zilch also provides for representations
of partial and co-partial functions as sets of ordered pairs, where the first or
‘argument’ coordinate may be zilch in the co-partial case, and the second or
‘value’ coordinate may be zilch in the partial one. These representations are
convenient, since the information that and where a function is partial, for
example, is determined by the set of ordered pairs itself and does not need
a second, extraneous specification (‘on a set X ’).
To give a fully general representation of ordered pairs, we rework
Hausdorff’s technique and use the markers 1 and 2 thrice over. We also
exploit the denotational behaviour of [ ] abstracts as opposed to { } ones
(see Lemma 2 in the Appendix). First, then, we define [a, b] by analogy with
{a, b} as [z:z = a ∨ z = b]. It follows that [a, b] = {a, b} provided E!a and
E!b and a �= b. But [a, O]≡ [O, a]≡ [a, a]≡ a, whereas {a, O} ≡{O, a}
≡{a, a} ≡ O. Next we use [ ] abstracts to define the ordered pair <a, b>
as {{{[a, 1], [a, 2]}, 1} , {{[b, 1], [b, 2]}, 2}}. We then prove (Theorem 38)
that it is adequate for any choice of coordinates a and b—ur-element, set,
or zilch. Singletons are not needed. In particular, none of<a, a>,<a,O>,
<O, a> reduces to {a}. The definition can be naturally generalised to cover
ordered n-tuples by using markers 1, 2, . . . , n, thereby avoiding the conven-
tional identification of n-tuples with iterated ordered pairs, which conflates
different kinds of thing.
The markers 1 and 2 can themselves be coordinates of ordered pairs.
But what are they? One option is to take them to be ur-elements, perhaps
natural numbers, though in truth any pair of ur-elements will do. This
course, however, must use numerals or some other kind of term to pick out
the chosen ur-elements, which means that the language has to be extended.
Also the proofs that ordered pairs exist andhave their so-called characteristic
property will depend on, say, the hypothesis U1 ∧ U2 ∧ 1 �= 2, which is
stronger than the Axiom of Plurality. A better option, the one we adopt, is
to take themarkers to be sets that can already be identified and distinguished
using the resources of the original language. The obvious candidates are the
first two levels, V1 and V2. The relevant proofs then depend only on the
Axiom of Plurality.
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§10. Arithmetization of analysis. With ordered pairs to hand, we can go
on to define the Cartesian product a × b of sets a, b and prove its existence.
Then a typical constructional path will identify (i) the set of integers Z with
a set of infinite equivalence classes ofmembers of N×N under the operation
of subtraction; (ii) the set of rationals Q with a set of infinite equivalence
classes ofmembers of Z×Z- under division,whereZ- comprises the nonzero
integers; (iii) the set of reals R with the set of lower Dedekind sections (i.e.,
infinite subsets of Q); (iv) the set of complex numbers C with R× R. Given
the Axiom of Plurality, the existence of Z and Q can be proved within our
theory by routine applications of Cantorian separation from the power set
of the relevant products, the existence of R by separation from the power
set of Q, and the existence of C follows from the existence of products in
general.
Most authorities think that it is perfectly legitimate to postulate the nat-
ural numbers (or some other number system) as ur-elements. Landau, for
example, opens his classic Foundations of Analysis with ‘We assume [the
set of natural numbers] to be given’ ([16], p. 1). Similarly, when Gödel is
explaining the iterative conception of sets he takes it for granted that sets
are obtained ‘from the integers (or some other well-defined objects)’ ([12],
p. 180). And Paul Cohen agrees that ‘a very reasonable position would be
to accept the integers as primitive entities and then use sets to form higher
entities’ ([4], p. 50).
A minority follow Frege and Principia in constructing a set-theoretical
representation of the natural numbers themselves, nowadays typically using
the finite von Neumann ordinals ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}
and so on, with an axiom of infinity providing for the set to which they
all belong. This particular representation is obviously not available within
our theory. But, as noted in Section 8, once we add the Axiom of Plurality,
it follows that V� exists. We say that a is inductive if (i) V1 ∈ a and (ii)
∀v(v ∈ a → v′ ∈ a), and prove that V� is inductive (Theorem 36). It
follows that there is an inductive setN*, which has as its members just those
things belonging to every inductive set (Theorem 37). N* is none other
than the set of the finite levels, i.e. the history of V�. We define the set of
natural numbers to be N*, with 0 defined as V1 and the successor of v as
v′. Given these definitions, it is straightforward to derive Peano’s axioms as
theorems.

§11. Cardinals and ordinals. It is conventional to define ‘a is a cardinal
number’ as ‘a is the cardinal number of b (card b for short) for some set b’.
Cardinal numbers are thus ascribed to sets and count their members. In the
absence of empty and singleton sets, we tweak the definition by making 0
the number of zilch and 1 the number of any ur-element, keeping the rest as
numbers of members of a set.
We identify the finite cardinals with the natural numbers, taken as ur-
elements or defined. Then card a, where a may be zilch or an ur-element or
a finite set, is defined to be the natural number n if a and [z: z ∈ N∧ z < n]
are equinumerous. But the modified set abstract [z: z ∈ N∧ z < n] denotes
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zilchwhena is zilch and its cardinal number is 0, and it denotes 0when a is an
ur-element and its cardinal number is 1. So we tweak the standard definition
of equinumerosity by adding that every ur-element is equinumerous with
every ur-element and nothing else, and zilch is equinumerous only with
itself.
As to infinite cardinals, we use Scott’s idea [22] to represent them as
equivalence classes of infinite sets under equinumerosity, à la Frege and
Principia but avoiding problems of size. For any infinite set a, there is a
unique lowest level v that has some subset equinumerous with a. So card a
can be defined as the set of sets equinumerous with a whose level is v.
The standard definitions of addition, multiplication etc make use of
representatives whose cardinal numbers are the arguments of the defined
functions. Since these representatives now include zilch and ur-elements, the
definitions require tweaking. First we define a ∈ b as (a = b ∧Ub) ∨ a ∈ b,
and then a � b as [z:z ∈ a ∨ z ∈ b], and redefine ‘a and b are disjoint’ as
¬∃z(z ∈ a ∧ z ∈ b). Then, for example, we can define α + � as card (a � b),
where card a = α and card b = � and a and b are disjoint and may be zilch
or ur-elements or sets.
Similar techniques are used in the treatment of ordinals. They are con-
ventionally ascribed to well-ordered structures, where these are defined to
be ordered pairs consisting of a set and a well-ordering on it. In the absence
of empty and singleton sets, we need to extend the definition to cover zilch
and ur-elements. It is usual to deal with these cases by making the empty
set well-order the empty set as well as any singleton. We replace this arti-
ficiality with one of our own, making zilch well-order both zilch and any
ur-element. The singleton of an ordered pair as the well-ordering of a pair set
will be replaced by the ordered pair itself. We go on to redefine isomorphism
between well-ordered structures to take account of zilch and ur-elements.
Finite ordinals are identified with the natural numbers, and infinite ones
constructed à la Scott. It is a routine matter to extend the definitions
of addition, multiplication etc to take account of the new coordinates in
structures.

§12. Evaluation. Our theory has a small number of simple and trans-
parent axioms. Likewise its underlying logic. Of course, variations can be
obtained by redesigning the definitions or redistributing the content of the
axioms or redividing the labour between underlying logic and definitions
and axioms. To take just two examples, the strength of ∈ may be secured
by the logic rather than by a nonlogical axiom, andM may be redefined so
that extensionality for sets drops out as a theorem.
The theory can serve the needs of ordinary pure and applied mathemat-
ics, providing an auxiliary superstructure of sets for reasoning about any
chosen ur-elements. With the natural numbers taken as ur-elements, it is
also adequate for the arithmetization of analysis and the theory of trans-
finite numbers (Sections 9–11); the interested reader can easily check that
there is no use of the anomalous sets. Alternatively, the natural numbers
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themselves can be represented by sets provided there are at least two things.
They cannot, of course, be represented as pure sets, but we do not see this
as a significant loss (see Section 14.6 of our [20]).
The techniques used to develop and apply the theory are straightforward
to handle and do not introduce any new kind of individual (remember zilch
is, literally, nothing). Where the conventional set theorist has the empty set,
the singleton set, and the multimembered set, we can generally replace the
first with zilch and the second with the sole member of the singleton. That
was how we treated the histories of V1 and V2 in Section 5, and how we
avoided empty and singleton sets as intersections. The [ ] notation allows us
to deal with all three cases in one go, and provides a convenient surrogate
for conventional set abstraction where necessary. We emphasize again that
when we replace the empty set by zilch, we are not identifying the two, which
would be to conflate something with nothing. Although there is sometimes
almost a straight swap, as when x ∩ y = ∅ is replaced by x ∩ y ≡ O, their
behaviour diverges starkly elsewhere. For example, it is standard to take
the empty set to be a subset of every set, whereas zilch is nothing and not
a subset of anything. Similarly, when we replace singletons with their sole
members in certain contexts, we are not misidentifying the two. After all,
{a} is a subset of the pair-set {a, b} in conventional set theory, but a is
never a subset of {a, b} in ours.
Our presentation is designed to facilitate comparison with rival systems.
In particular, one may compare Cantorian set theory with a theory in the
style of Scott/Derrick/Potter, admitting empty and singleton sets. It turns
out that there are pros and cons to either theory with respect to simplic-
ity. As to vocabulary, where we have a single, natural primitive ∈, they
need Mor U as a second primitive (see Section 5). Their definitional set-
up, on the other hand, can be simpler than ours. We distinguished two
accumulation functions, explicitly defined the first two levels, and then
treated them separately in the definitions of history and level. By contrast,
Scott/Derrick/Potter can defineVamore simply as ∃x(Hx∧ a =acc x) with
Ha defined as ∀y(y ∈ a → (y = acc a ∩ y)), where ∩ is given the standard
definition which admits empty and singleton intersections. As to axioms,
their theory replaces the conditional 2(i) by its unconditional consequent,
since {x:Ux} remains a set even when there is but one ur-element or none.
And similarly the conjunct mxA(x) is no longer needed on the right hand
side of the scheme 2(iii). The amended version delivers unrestricted separa-
tion, which makes Axiom 1(iii) redundant. Axiom 1(iv) is not needed, since
they admit singletons. Axiom 2(ii) is also dropped, since the existence of
sets is no longer dependent on there being many ur-elements or even any.
On the other hand, the Scott/Derrick/Potter theory needs extra axioms to
prevent ur-elements from having members, and to ensure that its second
primitive M or U is strong. Our analogues of the traditional Zermelo-
style axioms are sometimes more complex than theirs. Witness the versions
of separation, pairing, power set and replacement discussed in Section 8.
On the other hand, we avoid the complications caused by the empty set
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in the foundation and choice principles and the definition of generalized
intersection.
Abraham Fraenkel argues that ‘if we do not want to state an exception—
and the mathematician, in contrast to the grammarian, abhors exceptions’,
we shall want the axiom of separation to cover the case where the sepa-
rating property is not true of any member of the original set. The axiom
thereby yields the empty set as a subset of the original ([9], p. 23). He has
evidently forgotten that in Cantor’s own formulation of separation—‘every
sub-multitude of a set is a set’—there is no hint of ‘stating an exception’.
Subsequently Fraenkel gives an example of the utility of the empty set itself
in avoiding exceptions:

had we not introduced the null-set, we would not be able to maintain
that the meet of any sequence (or set) of sets is again a set. ([9], p. 27)

As one might expect, however, plugging the exceptions by invoking an
exceptional object only creates further exceptions. Take ∅ as an instance of
Fraenkel’s exceptionless ‘any set of sets’. Trivially, everything is a mem-
ber of every member of an empty set, so the meet of ∅ will be the
universal set. But there is no such thing: his example backfires spectacu-
larly. We think the sanest comment on the whole question of exceptions is
Halmos’s:

There is no profound problem here; it is merely a nuisance to be forced
always to be making qualifications and exceptions just because some
set somewhere along some construction might turn out to be empty.
There is nothing to be done about this; it is just a fact of life. ([13],
pp. 18–19)

In any discussion of inconvenience, the cost must be weighed against the
gain in coherence. Countless authors introduce their subject by repeating
Cantor’s definition of sets as collections. Pace von Neumann, it is simply
not true that they understand a set to be ‘nothing but an object of which one
knows no more and wants to know no more than what follows about it from
the postulates’ ([27], p. 395). Their theories need to cohere with the informal
conception that motivates them. Admitting empty and singleton sets is at
odds with their Cantorian conception, and arguments from convenience do
nothing to remove this tension.

Appendix
For ease of reference we summarise the definitions given so far and also
repeat the set-theoretic axioms. Like the definitions and axioms, the follow-
ing results and proofs are to be understood as including the familiar provisos
to prevent unintended capture of variables.
Our proofs are often longer than those in Potter’s [21]. For the most part,
the difference is only superficial, since it results fromour relatively slower and
more cautious approach to deduction. There is some relative inconvenience
in developing the theory of levels, since we have to deal with the first two
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levels separately from the rest, particularly in the early stages. But now that
we have done the work the reader is spared the trouble.
This inconvenience is not intrinsic to the project of excluding the anoma-
lous sets. It is peculiar to the singular version of Cantorian set theory. The
version based on plural logic which we presented in our [20] does not suffer
this trouble.

Definitions

Existential quantifier ∃xA =df ¬ ∀x¬ A
‘Exactly one’ quantifier ∃1xA(x) =df ∃x∀y(A(y)↔ x = y)
‘Many’ quantifier mxA(x) =df ∃x∃y(x �= y ∧A(x) ∧ A(y))

Existence E!a =df ∃x x = a
Weak identity a≡ b =df a = b ∨ (¬ E!a ∧ ¬ E!b)

Zilch O =df ℩x(x �= x)
Inclusive quantifiers ∀OxA(x) =df ∀xA(x) ∧A(O)

∃OxA(x) =df ∃xA(x) ∨ A(O)

Set Ma =df mx x ∈ a
Ur-element Ua =df E!a ∧¬Ma

Subset a ⊆ b =df Ma∧∀x(x ∈ a → x ∈ b)
Proper subset a ⊂ b =df a ⊆ b ∧ a �= b

Set abstraction {x:A(x)} =df ℩z(Mz ∧ ∀x(x ∈ z ↔ A(x))
[x:A(x)] =df ℩z(z = ℩xA(x) ∨ z = {x:A(x)})

Intersection a ∩ b =df [x: x ∈ a ∧ x ∈ b]

Accumulation accum a =df {z:(Uz ∨ z ∈ a ∨ z ⊆ a)}
acc a =df {z:(Uz ∨ ∃y(y ∈ a ∧ (z ∈ y ∨ z ⊆ y)))}
Aa =df ∃Ox (a = accum x ∨ a = acc x)

First level V1 =df accum O
Second level V2 =df accum V1

History Ha =df (a ≡ O ∨Ma) ∧ (a = V1 ∨ ∀y(y ∈ a →
(y = V1 ∨ y = V2 → y = accum a ∩ y)
∧ (y �= V1 ∧ y �= V2 → y = acc a ∩ y)))

Level Va =df a = V1 ∨ a = V2 ∨ ∃x(Hx ∧ a = acc x)

Level next above a′ =df ℩x(Va ∧ Vx ∧ a ∈ x ∧ ¬ ∃y(Vy ∧y ∈ x ∧ a ∈ y))

Limit level La=df Va ∧ a �= V1 ∧ ¬∃x a = x′
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Axioms

1.Membership (i) x ∈ y → E!x ∧ E!y
(ii) My ∧Mz → ∀x(x ∈ y ↔ x ∈ z) → y = z
(iii) x /∈ x
(iv) ∃x x ∈ y →My

2. Levels (i) mxUx→ M{x:Ux}
(ii) ∃xMx→ mxUx
(iii) M{x:A(x)}↔mxA(x) ∧ ∃u∀x(A(x)→ x ∈ u)
(iv) ∀u∃v u ∈ v
(v) ∃xVx→ ∃xLx

Lemmas

Lemma 1. Extensionality for abstracts
(i) ∀x(A(x)↔ B(x))→ {x:A(x)} ≡ {x:B(x)}
(ii) ∀x(A(x)↔ B(x))→ [x:A(x)] ≡ [x:B(x)]

Proof of (i). Suppose ∀x(A(x) ↔ B(x)). Then ℩z(Mz ∧ ∀x(x ∈ z ↔
A(x)) ≡ ℩z(Mz ∧ ∀x(x ∈ z ↔ B(x)). So by the definition of the abstracts,
{x:A(x)} ≡ {x:B(x)}.

Proof of (ii). Suppose ∀x(A(x) ↔ B(x)). Then ℩y(y = ℩xA(x) ∨ y =
℩z(Mz ∧ ∀x(x ∈ z ↔ A(x)))≡ ℩y(y = ℩xB(x)∨y = ℩z(Mz ∧ ∀x(x ∈ z ↔
B(x))). So by the definition of the abstracts, [x:A(x)] ≡ [x:B(x)].

Lemma 2. [ ] abstracts
(i) ¬∃xA(x)→ [x:A(x)] ≡ O
(ii) ∃1xA(x)→ [x:A(x)] = ℩xA(x)
(iii) mxA(x)→ [x:A(x)] ≡ {x:A(x)}

This lemma spells out the denotation of an abstract [x:A(x)] according to
the number of things—none, one or more—satisfying the formula A(x).

Proof of (i). Suppose ¬∃xA(x). Then ¬E!℩xA(x). Also from ¬∃xA(x)
it follows that ¬mxA(x), whence ¬E!{x:A(x)} by the definitions of
the abstract and M . Hence ¬∃z(z = ℩xA(x) ∨ z = {x:A(x)}), whence
¬E!℩z(z = ℩xA(x) ∨ z = {x:A(x)}). Hence [x:A(x)] ≡ O by the definition
of the abstract.

Proof of (ii). Suppose ∃1xA(x). Then ∃1y y = ℩xA(x). Now, for a
reductio suppose E!{x:A(x)}. Then by the definitions of the abstract
and M , mxA(x). Contradiction. Hence ¬E!{x:A(x)}. Hence by the
strength of identity ∃1z(z = ℩xA(x) ∨ z = {x:A(x)}), whence E!℩z(z =
℩xA(x) ∨ z = {x:A(x)}). Also by the strength of identity (z = ℩xA(x) ∨
z = {x:A(x)}) ↔ z = ℩xA(x). Hence ℩z(z = ℩xA(x) ∨ z = {x:A(x)}) =
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℩z(z = ℩xA(x)) = ℩xA(x), whence [x:A(x)] = ℩xA(x) by the definition of
the abstract.

Proof of (iii). Suppose mxA(x). Then ¬ ∃1xA(x), whence ¬ E!℩xA(x).
Hence by the strength of identity (y = ℩xA(x) ∨ y = {x:A(x)}) ↔
y= {x:A(x)}, whence ℩y(y = ℩xA(x)∨ y= {x:A(x)})≡ ℩y(y = {x:A(x)})
≡ {x:A(x)}. Hence [x:A(x)] ≡ {x:A(x)} by the definition of the abstract.
Lemma 3. Existence E!a ↔ Ua ∨Ma
The→ half means that the individuals divide exhaustively into ur-elements
and sets. The← half expresses the strength of the predicates U andM .

Proof.

1. For the→ half, suppose E!a. Also suppose ¬Ma. Then by definition
Ua, a fortiori Ua ∨Ma.

2. For the← half, suppose Ua ∨Ma. By definition, if Ua then E!a, and
ifMa then mx x ∈ a, whence by Axiom 1(i) E!a again.

Lemma 4. Abstraction and Reduction
(i) a = {x:A(x)} ↔Ma ∧ ∀y(y ∈ a ↔ A(y))
(ii) mxA(x) ∧ a= [x:A(x)]↔Ma ∧ ∀y(y ∈ a ↔ A(y))

Proof of (i).

1. For the → half, suppose a= {x:A(x)}. Then by the definition of the
abstract, a = ℩z(Mz ∧ ∀y(y ∈ z ↔ A(y)), whenceMa ∧ ∀y(y ∈ a ↔
A(y)).

2. For the← half, supposeMa ∧ ∀y(y ∈ a ↔ A(y)). Then by Lemma 3
E!a. For a reductio supposeMx ∧ ∀y(y ∈ x ↔ A(y)) for some x �= a.
Then ∀y(y ∈ x ↔ y ∈ a), whence x = a by Axiom 1(ii). Contradic-
tion. Hence a = ℩z(Mz ∧ ∀y(y ∈ z ↔ A(y))). So a = {x:A(x)} by
the definition of the abstract.

Proof of (ii).

1. For the→ half, supposemxA(x)∧a = [x:A(x)]. Then by Lemma 2(iii)
a = {x:A(x)}, whence by Lemma 4(i),Ma ∧ ∀y(y ∈ a ↔ A(y)).

2. For the←half, supposeMa∧∀y(y ∈ a ↔ A(y)). ThenbyLemma4(i)
a = {x:A(x)}, whence E!{x:A(x)} by the strength of identity. Hence
mxA(x) by the definitions of the abstract andM , whence a= [x:A(x)]
by Lemma 2(iii).

Lemma 5. Membership (i) a ∈ b →Mb
(ii) a= {x:x ∈ a} ↔Ma

Part (ii) allows for movement between different expressions for a set, with
{x:x ∈ a} sometimes being the most convenient form.
Proof of (i). Suppose a ∈ b. Then by Axiom 1(i) E!a. Hence ∃x x ∈ b,
whenceMb by Axiom 1(iv).
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Proof of (ii).
1. For the→ half, suppose a= {x:x ∈ a}. ThenMa by Lemma 4(i).
2. For the← half, supposeMa. Since ∀x(x ∈ a ↔ x ∈ a), it follows that
a = {x:x ∈ a} by Lemma 4(i).

Lemma 6. Subset (i) a ⊆ b →Mb
(ii) Ma ↔ a ⊆ a
(iii) a ⊂ b → ∃x(x /∈ a ∧ x ∈ b)

Proof of (i). Suppose a ⊆ b. ThenMa by the definition of⊆, whencemx
x ∈ a by the definition ofM . Also ∀x(x ∈ a → x ∈ b) by the definition of
⊆. Hence mx x ∈ b, whenceMb by the definition ofM .

Proof of (ii).
1. For the → half suppose Ma. Since ∀x(x ∈ a → x ∈ a), it follows by
the definition of ⊆ that a ⊆ a.
2. For the← half suppose a ⊆ a. ThenMa by the definition of ⊆.

Proof of (iii). Suppose a ⊂ b. Then a ⊆ b and a �= b by the definition of
⊂, whenceMa and ∀x(x ∈ a → x ∈ b) by the definition of ⊆. By Lemma
6(i),Mb. For a reductio suppose that ∀x(x ∈ b → x ∈ a). Then by Axiom
1(ii), a = b. Contradiction. Hence ∃x(x /∈ a ∧ x ∈ b).

Lemma 7. The first two levels

(i) V1 ≡ {z:Uz} ≡ acc O ≡ acc V1
(ii) E!V1 →MV1 ∧ ∀y(y ∈ V1 ↔ Uy)
(iii) Ma→ V1 = {z:Uz}
(iv) V2 ≡ {z:Uz ∨ z ⊆ V1}
(v) E!V2 →MV2 ∧ ∀y(y ∈ V2 ↔ (Uy ∨ y ⊆ V1))
(vi) E!V2 → E!V1
(vii) E!V2 → V1 ∈ V2
(viii) V1 �= V2

Proof of (i).
1. By definition V1 ≡ accumO ≡ {z:Uz ∨ z ∈ O∨ z ⊆ O}. Since ¬ E!O,
it follows by Lemmas 3, 5(i) and 6(i) that ¬ ∃x(x ∈ O ∨ x ⊆ O). Hence
(Uz ∨ z ∈ O ∨ z ⊆ O)↔ Uz, whence V1 ≡ {z:Uz} by Lemma 1(i).
2. By the definition, acc O ≡ {z:(Uz ∨∃y(y ∈ O ∧ (z ∈ y ∨ z ⊆ y)))}.
Since¬∃y y ∈ O, it follows that (Uz∨∃y(y ∈ O ∧ (z ∈ y∨ z ⊆ y)))↔Uz,
whence acc O≡{z:Uz} by Lemma 1(i).
3. By the definition, acc V1≡{z:(Uz ∨ ∃y(y ∈ V1∧ (z ∈ y ∨ z ⊆ y)))}.
If y ∈ V1 thenE!V1 by Axiom 1(i), whenceUy by Lemma 4(i). Hence ¬My
by the definition of U , whence ¬ ∃z(z ∈ y ∨ z ⊆ y) by Lemmas 5(i) and
6(i). Hence (Uz ∨ ∃y(y ∈ V1 ∧ (z ∈ y ∨ z ⊆ y)))} ↔ Uz, It follows that
acc V1≡{z:Uz} by Lemma 1(i).
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Proof of (ii). Suppose E!V1. Then V1 = {z:Uz} by Lemma 7(i). Hence
MV1 ∧ ∀y(y ∈ V1 ↔ Uy) by Lemma 4(i).

Proof of (iii). SupposeMa. ThenE!a byLemma 3, whence ∃xMx. Hence
M{z:Uz} by Axioms 2(i) and 2(ii). Hence E!{z:Uz} by Lemma 3, whence
V1 = {z:Uz} by Lemma 7(i).

Proof of (iv). By definition V2 ≡ accum V1 ≡ {z:(Uz ∨ z ∈ V1 ∨
z ⊆ V1)}. If ¬ E!V1 then ¬∃y y ∈ V1 by Axiom 1(i). If E!V1 then
z ∈ V1 ↔ Uz by Lemma 7(ii). So either way (Uz ∨ z ∈ V1 ∨ z ⊆ V1) ↔
(Uz ∨ z ⊆ V1). Hence V2 ≡{z: Uz ∨ z ⊆ V1} by Lemma 1(i).

Proof of (v). Suppose E!V2. Then V2 = {z:(Uz ∨ z ⊆ V1)} by Lemma
7(iv). HenceMV2 ∧ ∀y(y ∈ V2 ↔ (Uy ∨ y ⊆ V1)) by Lemma 4(i).

Proof of (vi). Suppose E!V2. ThenMV2 by Lemma 7(v), whence V1 =
{z:Uz} by Lemma 7(iii), whence E!V1 by the strength of identity.

Proof of (vii). Suppose E!V2. Then E!V1 by Lemma 7(vi), whenceMV1
by Lemma 7(ii). Hence V1 ⊆ V1 by Lemma 6(ii), whence V1 ∈ V2 by
Lemma 7(v).

Proof of (viii). For a reductio suppose V1 = V2. Then E!V1 and E!V2 by
the strength of identity. Hence V1 ∈ V2 by Lemma 7(vii), whence V1 ∈ V1.
By Lemma 7(ii)UV1, whence ¬MV1 by the definition of U . ButMV1 also
by Lemma 7(ii). Contradiction. Hence V1 �= V2.

Theorems

Theorem 1. Accumulations (i) Ax →Mx
(ii) Ax → ∀z(Uz→ z ∈ x)
(iii) Vx→ Ax

Proof of (i). Suppose Ax. If x = accum y, then x = {z:(Uz ∨ z ∈ y ∨
z ⊆ y)} by the definition of accum, whence Mx by Lemma 4(i). Similarly
for the other case x = acc y.

Proof of (ii). Suppose Ax. If x = accum y, then x = {z:(Uz ∨ z ∈ y
∨ z ⊆ y)} by the definition of accum, whence ∀z(Uz→ z ∈ x) by Lemma
4(i). Similarly for the other case x = acc y.

Proof of (iii). Suppose Vx. Then x = V1 ∨ x = V2 ∨ ∃y x = acc y by
the definition of V, whence Ax by the definitions of A, V1 and V2.
Corollaries. Let Vx. Then (i)Mx and (ii) ∀z(Uz→ z ∈ x).
Proof of (i). Immediate by Theorems 1(i) and (iii).

Proof of (ii). Immediate by Theorem 1(ii) and (iii).
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Recall that we reserve u, v, w for levels, and h, h1 for histories.

Theorem 2. Histories I Let v = acc h, then (i) x ∈ h → x ∈ v
(ii) v �= V1 →Mh∧ h �= V1.

Proof of (i). Suppose x ∈ h. By Axiom 1(i) it follows that E!x, whence
Ux ∨ Mx by Lemma 3. Suppose Ux. Then a fortiori Ux ∨ ∃y(y ∈ h ∧
(x ∈ y ∨ x ⊆ y)). Suppose instead thatMx. Then by Lemma 6(ii), x ⊆ x.
Since x ∈ h, it follows that Ux ∨ ∃y(y ∈ h ∧ (x ∈ y ∨ x ⊆ y)). So either
way Ux ∨ ∃y(y ∈ h ∧ (x ∈ y ∨ x ⊆ y)). By definition, v = acc h =
{x:(Ux ∨ ∃y(y ∈ h ∧ (x ∈ y ∨ x ⊆ y)))}, so x ∈ v by Lemma 4(i).
Proof of (ii). Suppose v �= V1. For a reductio suppose h ≡ O. Then
v = acc h = acc O = V1 by Lemma 7(i). Contradiction. Hence Mh by the
definition of H . For a reductio suppose h = V1. Then v = acc h = acc V1
= V1 by Lemma 7(i). Contradiction. Hence h �= V1.
Theorem 3. Histories II Let h �= V1 and x ∈ h, thenMx.
Proof. Since by hypothesis h �= V1 and x ∈ h, it follows that Ax by the
definitions of H and A, whenceMx by Theorem 1(i).
Theorem 4. Histories III Let h �= V1, x ∈ h, x �= V1 and x �= V2. Then

(i) x = acc h ∩ x
(ii) E! h ∩ x
(iii) mz(z ∈ h ∧ z ∈ x).

Part (iii) of the theoremplays an important role in several subsequent proofs,
where we shall need to infer y ∈ h ∩ x from y ∈ h ∧ y ∈ x, or vice versa,
or to infer that h ∩ x is the set {y: y ∈ h ∧ y ∈ x}. Given our definition of
∩, these inferences may fail, since when there is but one common member
y of h and x, the intersection h ∩ x is y itself (not y’s singleton as per the
orthodox definition of∩). This is the one place that doing without singletons
presents a serious challenge. In order for the inferences to go through, we
need to have established that there are many common members of h and x.
Part (iii) does this, subject to the conditions laid down in the hypothesis. In
step 3 of its proof, Axiom 1(iii) x /∈ x is used for the first time, to argue for
the distinctness of a set from any of its members.

Proof of (i). Since by hypothesis h �= V1 and x ∈ h and x �= V1 and
x �= V2, it follows by the definition of H that x = acc h ∩ x.
Proof of (ii). For a reductio suppose h ∩ x ≡ O. Then by Theorem 4(i)
x = acc O, whence x = V1 by Lemma 7(i). Contradiction. So E! h ∩ x.
Proof of (iii).
1. By Theorem 4(ii) E! h ∩ x, and so by the definition of ∩ and Lemma
2(i), either ∃1z(z ∈ h ∧ z ∈ x) or mz(z ∈ h ∧ z ∈ x). For a reductio
suppose that z1 ∈ h∧z1 ∈ x for some unique z1. Then by the definition
of ∩ and Lemma 2(ii), h ∩ x = z1. Hence by Theorem 4(i) x = acc z1.

2. For a reductio suppose h ∩ z1 ≡ O. Since h �= V1 and z1 ∈ h, it follows
by the definition of H that z1 = accum h ∩ z1 or z1 = acc h ∩ z1.
Suppose z1 = accum h∩z1. Then z1 = accumO = V1 by the definition
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of V1. Suppose z1 = acc h ∩ z1. Then z1 = accO = V1 by Lemma 7(i).
So either way z1 = V1. Hence x = acc z1 = acc V1, whence by Lemma
7(i), x = V1. Contradiction. Hence E! h ∩ z1.

3. Returning to the reductio initiated in step 1, since E! h ∩ z1 it follows
by the definition of ∩ and Lemma 2(i) that z2 ∈ h ∧ z2 ∈ z1 for some
z2. By Axiom 1(iii), z2 �= z1, and by the definition of acc, x = acc z1 =
{z:(Uz ∨ ∃y(y ∈ z1∧ (z ∈ y ∨ z ⊆ y)))}. Since h �= V1 and z2 ∈ h, it
follows by Theorem 3 thatMz2. Hence by Lemma 6(ii), z2 ⊆ z2. Since
z2 ∈ z1 and z2 ⊆ z2, it follows that z2 ∈ x by Lemma 4(i). Hence z1 ∈ h
and z1 ∈ x and z2 ∈ h and z2 ∈ x and z2 �= z1. Contradiction. Hence
mz(z ∈ h ∧ z ∈ x).

Theorem 5. Histories IV Let h �= V1 and x ∈ h, thenH (h ∩x) andVx.
Proof. By hypothesis x ∈ h, whence E!x by Axiom 1(i), and also
V1 = {z:Uz} by Lemmas 5(i) and 7(iii). We consider three cases separately:
(i) x = V1, (ii) x = V2, (iii) x �= V1 and x �= V2.
Case (i) x = V1
Since x = V1 it follows that Vx by the definition of V , and also that x =
{z:Uz}. Hence y ∈ x →Uy by Lemma 4(i). Also y ∈ h →¬Uy by Theorem
3 and the definition of U , whence ¬∃z(z ∈ h ∧ z ∈ x). Hence by Lemma
2(i) and the definition of ∩, h ∩ x ≡ O, whence H (h ∩ x) by the definition
of H .

Case (ii) x = V2
1. Since x = V2 it follows that Vx by the definition of V . Since h �= V1
and x ∈ h, then x = accum h ∩ x by the definition of H .

2. For a reductio suppose that h ∩ x ≡ O. Then x = accum O = V1 by
the definition of V1. But by Lemma 7(viii), V1 �= V2. Contradiction.
Hence E! h ∩ x.

3. Since h∩ x =df [y: y ∈ h ∧y ∈ x], it follows thatE![y: y ∈ h ∧y ∈ x],
whence by Lemma 2(i), y ∈ h ∧ y ∈ x for some y. We shall prove that
there is exactly one such y, namely V1.

4. Since x = V2, it follows by Lemma 7(iv) that x = {z: Uz ∨ z ⊆ V1} =
{z: Uz ∨ z ⊆ {z1:Uz1}}. Since y ∈ x, it follows by Lemma 4(i) that
Uy ∨ y ⊆ {z1:Uz1}. Since y ∈ h, it follows by Theorem 3 and the
definition of U that ¬ Uy. Hence y ⊆ {z1:Uz1}.

5. For a reductio suppose that y ⊂ {z1:Uz1}. Then by Lemma 6(iii),
y1 ∈ {z1:Uz1} and y1 /∈ y for some y1, whence by Lemma 4(i),
Uy1 and y1 /∈ y. By Lemmas 7(ii) and (v), ∀x(Ux → x ∈ V1) and
∀x(Ux → x ∈ V2), whence y �= V1 and y �= V2. Since h �= V1 and
y ∈ h and y �= V1 and y �= V2, it follows that y = acc h ∩ y ={x:(Ux
∨ ∃y(y ∈ h ∩ y ∧ (x ∈ y ∨ x ⊆ y)))} by the definitions of H and
acc. Since Uy1, it follows by Lemma 4(i) that y1 ∈ y. Contradiction.
Hence y �⊂{z1:Uz1}. Since y ⊆ {z1:Uz1}, it follows by the definition of
⊂ that y = {z1:Uz1} = V1, whence V1 = ℩y(y ∈ h ∧ y ∈ x). Hence
∃1y(y ∈ h ∧ y ∈ x), whence by Lemma 2(ii) and the definition of ∩,
h ∩ x = V1. Hence H (h ∩ x) by the definition of H .
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Case (iii) x �= V1 and x �= V2
1. By Theorems 4(i), (ii) and (iii), x = acc h ∩ x, E! h ∩ x, and mz(z ∈ h
∧ z ∈ x). By the definition of ∩ and by Lemma 2(iii), h ∩ x =
{z: z ∈ h ∧ z ∈ x}. HenceM (h ∩ x) by Lemma 4(i), so mz z ∈ h ∩ x
by the definition ofM .

2. Consider an arbitrary z1 such that z1 ∈ h ∩ x. Then z ∈ z1 → ∃y(y ∈
h ∩ x ∧ z ∈ y), a fortiori z ∈ z1 → (Uz ∨ ∃y(y ∈ h ∩x ∧ (z ∈ y ∨ z ⊆
y))). By the definition of acc, x = acc h∩x ={z:(Uz∨ ∃y(y ∈ h∩x ∧
(z ∈ y ∨ z ⊆ y)))}. Hence by Lemma 4(i), z ∈ z1 → z ∈ x. By the
definition of ∩, (h ∩ x) ∩ z1 ≡ [y:y ∈ [y1:y1 ∈ h ∧ y1 ∈ x] ∧ y ∈ z1],
whence (h∩x)∩z1 ≡ [y: y ∈ h ∧ y ∈ x∧y ∈ z1] by Lemmas 1(ii) and
4(ii) and (from step 1) mz(z ∈ h ∧ z ∈ x). Since z ∈ z1 → z ∈ x, it
follows by Lemma 1(ii) that (h ∩x)∩ z1 ≡ [y: y ∈ h ∧ y ∈ z1], whence
(h ∩ x) ∩ z1 ≡ h ∩ z1 by the definition of ∩.

3. Since z1 ∈ h ∩ x, it follows by the definition of ∩ that z1 ∈ [z:z ∈ h
∧ z ∈ x], whence z1 ∈ h by Lemma 4(ii) and (from step 1) mz(z ∈ h ∧
z ∈ x). Suppose z1 = V1 ∨ z1 = V2. Since h �= V1 and z1 ∈ h, then z1 =
accum h ∩ z1 by the definition ofH , whence z1 = accum (h ∩ x) ∩ z1.
Suppose instead that z1 �= V1 ∧ z1 �= V2. Then by the definition of
H it follows that z1 = acc h ∩ z1, whence z1 = acc (h ∩ x) ∩ z1.
Since z1 was arbitrary, we can generalize to get ∀y(y ∈ h ∩ x →
(y = V1 ∨ y = V2 → y = accum (h ∩ x) ∩ y) ∧ (y �= V1 ∧ y �= V2 →
y = acc (h ∩ x) ∩ y)). Hence H (h ∩ x) by the definition of H .

4. Since E! h ∩ x, H (h ∩ x), and x = acc h ∩ x, it follows that Vx by the
definition of V .

Theorem 6. ∈ is well-founded on any history Let x ⊆ h, then ∃y(y ∈ x ∧
x ∩ y ≡ O).
In English: any subset of a history has a member whose intersection with
that subset is zilch.

In the proof we need to deal with two cases separately. When the history
is V1 by itself, we argue that every member of h, and so every member of any
subset x of h, is an ur-element and so does not have any members. It trivially
follows that x has some member with which it shares no members. When
h �= V1, on the other hand, we assume for the sake of a reductio that h has
a subset x that misbehaves, i.e., every member of x shares a member with
x. Then we show that there is a set b consisting precisely of the common
members of the members of x. A contradiction follows.
It is instructive to compare our proof with Potter’s proof of the corre-
sponding theorem (3.6.4) in his [21]. He avoids the need to proceed by cases,
since for him a history is always a set of levels. So instead of h = V1, he has
h ={V1}, which can be dealt with alongside the other possibilities for h. In
broad outline, his reductio resembles ours, but the details are quite differ-
ent. As we shall explain, the principal differences can be traced to Potter’s
adoption of unrestricted separation from levels, which allows for empty and
singleton sets, unlike the restricted version embodied in our Axiom 2(iii).
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Potter first uses unrestricted separation from levels to show that the set b
exists. He argues that there is a level to which the common members of the
members of x all belong, since any member of h and therefore any member
of its subset x is a level.
But we have only the restricted version of separation from levels to work
with and so we need in addition to show there are many common members
of the members of x. Here we employ Axiom 2(ii) for the first time to
infer the existence of many ur-elements from x’s being a set. Since every
member of x is a level, and every ur-element is a member of every level,
it follows that each of the many ur-elements is a member of every member
of x.
The second difference between our proof and Potter’s turns on the nature
of the ensuing contradiction. Potter shows that the set b has each of its
subsets as a member, contrary to his proposition (3.6.1) which implies that
every set has a subset not among its members. But his proof of (3.6.1)makes
essential use of unrestricted separation from levels, which is not available to
us. Hence we follow a different route. We show more specifically that b ∈ b,
contrary to Axiom 1(iii). In fact, the same axiom is needed in the reductio
to show that b ∈ b. For at a crucial point (see step 12 of the proof of the
second case below), we need to infer w ∈ h ∩ v from w ∈ h ∧ w ∈ v, which
relies on Theorem 4(iii) and therefore on Axiom 1(iii).
Our proof, then, depends on the two Axioms 1(iii) and 2(ii), which do
not appear in Potter’s list. We shall see more of these axioms in subsequent
proofs. Potter would, of course, count Axiom 2(ii) as false, since he thinks
that even when there are no ur-elements, there are still the so-called pure
sets. On the other hand, he seems to think Axiom 1(iii) is true. Certainly, he
derives the proposition that no set is a member of itself (3.7.3) even before
he has reached foundation for sets. As to ur-elements, although he does not
include an axiom forcing them to be memberless, he notes that ‘this might
be added for the sake of tidiness’ ([21], p. 30).

Proof. The hypothesis x ⊆ h entails Mx by the definition of ⊆, whence
mzUz by Lemma 3 and Axiom 2(ii). Also from Mx it follows that V1 =
{z:Uz} by Lemma 7(iii), whence E!V1 by the strength of identity. We
consider two cases separately: (i) h = V1 and (ii) h �= V1.
Case (i) h = V1
Since by hypothesis x ⊆ h, it follows that y ∈ x → y ∈ h by the definition
of ⊆. Hence y ∈ x → y ∈ V1, whence y ∈ x → Uy by Lemma 4(i). Hence
y ∈ x → ¬∃z z ∈ y by the definition of U and Axiom 1(iv). Since Mx,
it follows by the definition of M that my y ∈ x, whence ∃y y ∈ x. Hence
∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y)), whence ∃y(y ∈ x ∧ x ∩ y ≡ O) by
Lemma 2(i) and the definition of ∩.
Case (ii) h �= V1
1. Since by hypothesis x ⊆ h, it follows that y ∈ x → y ∈ h, by
the definition of ⊆. Since h �= V1, it follows by Theorem 5 that
y ∈ x → Vy. For a reductio suppose that ¬∃y(y ∈ x ∧ ¬∃z(z ∈ x
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∧ z ∈ y), whence ∀y(y ∈ x → ∃z(z ∈ x ∧ z ∈ y)). Since Mx,
it follows by the definition of M that my y ∈ x, whence ∃y y ∈ x.
Consider an arbitrary level v such that v ∈ x. Then w ∈ x ∧ w ∈ v
for some level w. By the same reasoning applied to w, it follows
from w ∈ x that w1 ∈ x ∧ w1 ∈ w for some level w1. And similarly
w2 ∈ x ∧ w2 ∈ w1 for some level w2. Also since y ∈ x → y ∈ h, it
follows that v ∈ h and w ∈ h.

2. Let b be short for {z:∀y(y ∈ x → z ∈ y)}. We prove that (i) Mb,
(ii) b ⊆ w, (iii) v = acc h ∩ v, (iv)E! h ∩ v, (v)mz(z ∈ h ∧ z ∈ v), and
(vi) ∀y(y ∈ x → b ∈ y).

3. For (i), with a view to using Axiom 2(iii) we shall prove that (ia) mz
∀y(y ∈ x → z ∈ y) and (ib) ∃u∀z(∀y(y ∈ x → z ∈ y)→ z ∈ u).

4. For (ia), since y ∈ x → Vy (from step 1), and Vy→ ∀z(Uz→ z ∈ y)
by Corollary (ii) of Theorem 1, it follows that ∀z(Uz→ ∀y(y ∈ x →
z ∈ y)). Since mzUz, it follows that mz ∀y(y ∈ x → z ∈ y).

5. For (ib), since v ∈ x, it follows that ∀z(∀y(y ∈ x → z ∈ y)→ z ∈ v),
whence ∃u∀z(∀y(y ∈ x → z ∈ y)→ z ∈ u).

6. From (ia) and (ib), it follows thatMb by Axiom 2(iii).
7. For (ii), since w ∈ x, it follows that ∀z(∀y(y ∈ x → z ∈ y) →
z ∈ w). Since Mb, it follows by Lemma 3 that E!b, whence
b = {z:∀y(y ∈ x → z ∈ y)}. Hence by Lemma 4(i), z ∈ b ↔
∀y(y ∈ x → z ∈ y), whence ∀z(z ∈ b → z ∈ w). Hence b ⊆ w by
the definition of ⊆.

8. For (iii), (iv) and (v), we shall first prove (iiia) v �= V1 and (iiib)
v �= V2.

9. For (iiia), for a reductio suppose that v = V1 = {z:Uz}. Since w ∈ v,
it follows by Lemma 4(i) that Uw. But by Corollary (i) of Theorem
1,Mw, whence by the definition of U , ¬ Uw. Contradiction. Hence
v �= V1.

10. For (iiib), for a reductio suppose v = V2. Then v = {z:Uz ∨ z ⊆ V1}
by Lemma 7(iv). Since w ∈ v, it follows by Lemma 4(i) that Uw
∨ w ⊆ V1. Since ¬Uw it follows that w ⊆ V1,whence w1 ∈ V1 by
the definition of ⊆, whence Uw1 by Lemma 4(i). But by Corol-
lary (i) of Theorem 1, Mw1, whence ¬Uw1 by the definition of U .
Contradiction. Hence v �= V2.

11. Since h �= V1 and v ∈ h and v �= V1 and v �= V2, it follows by
Theorems 4(i), (ii), and (iii) that v = acc h ∩ v and E! h ∩ v and
mz(z ∈ h ∧ z ∈ v).

12. For (vi), since E! h ∩ v, it follows that h ∩ v = [z: z ∈ h ∧ z ∈ v]
by the definition of ∩. Since mz(z ∈ h ∧ z ∈ v) and w ∈ h ∧ w ∈ v,
it follows by Lemma 4(ii) that w ∈ h ∩ v. By the definition of acc,
v = acc h ∩ v ={z:(Uz ∨ ∃y(y ∈ h ∩ v ∧ (z ∈ y ∨ z ⊆ y)))}. Since
w ∈ h ∩ v and b ⊆ w, it follows by Lemma 4(i) that b ∈ acc h ∩ v,
whence b ∈ v. Since b ∈ v for arbitrary v ∈ x, we can generalize to
get ∀y(y ∈ x → b ∈ y).

13. We can now proceed to the reductio started in step 1. Since ∀y(y ∈ x
→ z ∈ y) → z ∈ b then in particular ∀y(y ∈ x → b ∈ y) → b ∈ b.
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Since ∀y(y ∈ x → b ∈ y), it follows that b ∈ b, contrary to Axiom
1(iii). Hence ∃y(y ∈ x ∧ ¬ ∃z(z ∈ x ∧ z ∈ y), whence ∃y(y ∈ x
∧x ∩ y ≡ O) by Lemma 2(i) and the definition of ∩.

Theorem 7. Levels are transitive sets Let x ∈ y and y ∈ v, then x ∈ v.
In particular, membership between levels is transitive. It also follows that if
a set is a member of a level, it is a member of all higher levels. The corollary
below tells us that it is a subset of all those levels too, the original included.

Proof. From the hypothesis x ∈ y it follows thatMy by Lemma 5(i),
whence by the definition of U , ¬Uy. SinceMy it follows that V1 ={z:Uz}
by Lemma 7(iii). From the hypothesis y ∈ v it follows that E!v by Axiom
1(i). We tackle three cases separately: (i) v = V1, (ii) v = V2, and (iii) v �= V1
and v �= V2.
Case (i) v = V1
From the hypothesis y ∈ v it follows by Lemma 4(i) that Uy. But also
¬Uy. Hence x ∈ v by the tautology A ∧ ¬A→ B .
Case (ii) v = V2
By the strength of identity, E!V2. Since y ∈ v, it follows by Lemma 7(v)
that Uy ∨y ⊆ V1. Since ¬Uy, it follows that y ⊆ V1. Since x ∈ y, it follows
that x ∈ V1 by the definition of⊆. HenceUx by Lemma 4(i).Hence x ∈ V2
by Lemma 7(v), whence x ∈ v.
Case (iii) v �= V1 and v �= V2
1. By the definition of V , v = acc h for some history h. For a reductio
suppose that h = V1. Then v = acc V1 = V1 by Lemma 7(i). Contra-
diction. Hence h �= V1, whence by the definition of acc, Theorem 5 and
Lemma 1(i), v = {z:(Uz ∨ ∃u(u ∈ h ∧ (z ∈ u ∨ z ⊆ u)))}. Since y ∈ v,
it follows by Lemma 4(i) that Uy ∨ ∃u(u ∈ h ∧ (y ∈ u ∨ y ⊆ u)).
Since ¬Uy, it follows that y ∈ w ∨ y ⊆ w for some w ∈ h. We tackle
three cases separately: (a) w = V1, (b) w = V2, and (c) w �= V1 and
w �= V2.

2. For case (a), for a reductio suppose y ∈ w. Then y ∈ V1, whence by
Lemma 4(i), Uy. Contradiction. Hence y ⊆ w. Since x ∈ y, it follows
by the definition of ⊆ that x ∈ w. Since v = {z:(Uz ∨ ∃u(u ∈ h ∧
(z ∈ u ∨ z ⊆ u)))}, it follows by Lemma 4(i) that x ∈ v.

3. For case (b), suppose y ∈ w. Then y ∈ V2, whenceUy ∨ y ⊆ V1 by the
strength of identity and Lemma7(v). Since¬Uy, it follows that y ⊆ V1.
Since x ∈ y, it follows by the definition of ⊆ that x ∈ V1, whence Ux
by Lemma 4(i). Hence by Corollary (ii) of Theorem 1, x ∈ v. Suppose
instead that y ⊆ w. Since x ∈ y, it follows by the definition of ⊆ that
x ∈ w, whence x ∈ v by Lemma 4(i).

4. For case (c), we deal with two subcases separately: (ci) ∃1u(u ∈ h ∧
(y ∈ u ∨ y ⊆ u)), and (cii) mu(u ∈ h ∧ (y ∈ u ∨ y ⊆ u)).

5. For case (ci), u ∈ h ∧ (y ∈ u ∨ y ⊆ u) for some unique level u, namely
w. From h �= V1,w ∈ h,w �= V1,w �= V2, it follows thatw =acc h∩w,
E! h ∩ w, and mz(z ∈ h ∧ z ∈ w) by Theorems 4(i), 4(ii), and
4(iii). Hence by the definition of acc, w = {z:(Uz ∨ ∃z1(z1 ∈ h ∩ w
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∧ (z ∈ z1∨z ⊆ z1)))}. For a reductio suppose y ∈ w. Then by Lemma
4(i), Uy ∨ ∃z1(z1 ∈ h ∩ w ∧ (y ∈ z1 ∨ y ⊆ z1)). Since My, it follows
that ∃z1(z1 ∈ h ∩w ∧ (y ∈ z1 ∨ y ⊆ z1)) by the definition of U . Since
E! h ∩ w, it follows that h ∩ w = h ∩ w. Since mz(z ∈ h∧ z ∈ w), it
follows by the definition of h ∩ w and Lemma 4(ii) that for some z1,
z1 ∈ h ∧ z1 ∈ w ∧ (y ∈ z1 ∨ y ⊆ z1). Since z1 ∈ h and h �= V1, it
follows by Theorem 5 thatVz1. Since z1 ∈ w, it follows by Axiom 1(iii)
that z1 �= w. But z1 ∈ h ∧ (y ∈ z1 ∨ y ⊆ z1) and Vz1 and z1 �= w are
together contrary to ∃1u(u ∈ h ∧ (y ∈ u ∨ y ⊆ u)). Hence y ⊆ w.
Since x ∈ y, it follows by the definition of ⊆ that x ∈ w, and so by
Lemma 4(i) x ∈ v.

6. For case (cii), let b be short for {u: u ∈ h ∧ (y ∈ u ∨ y ⊆ u)}. Since
v = acc h, it follows by Theorem 2(i) that z ∈ h → z ∈ v. Hence
∀u((u ∈ h ∧ (y ∈ u ∨ y ⊆ u))→ u ∈ v), whence ∃v1∀u(u ∈ h ∧
(y ∈ u ∨ y ⊆ u))→ u ∈ v1). This along with mu(u ∈ h ∧ (y ∈ u
∨ y ⊆ u)) entails Mb by Axiom 2(iii). Hence by Lemma 3 E!b,
whence b ={u: u ∈ h ∧ (y ∈ u ∨ y ⊆ u)}. Hence by Lemma 4(i),
z ∈ b → z ∈ h, whence by the definition of ⊆, b ⊆ h. Hence by Theo-
rem 6, ¬∃z2(z2 ∈ b ∧ z2 ∈ z1) for some z1 ∈ b. Hence by Lemma 4(i),
z1 ∈ h ∧ (y ∈ z1 ∨ y ⊆ z1). We deal with three subcases separately:
(ciiα) z1 = V1, (cii�) z1 = V2, and (cii�) z1 �= V1 ∧ z1 �= V2.

7. In case (ciiα), it follows that x ∈ v by the reasoning in step 2.
8. In case (cii�), it follows that x ∈ v by the reasoning in step 3.
9. In case (cii�), since h �= V1, z1 ∈ h, z1 �= V1 and z1 �= V2, it follows that
z1 = acc h∩z1, E! h∩z1 andmz(z ∈ h∧z ∈ z1) by Theorems 4(i), (ii),
and (iii). For a reductio suppose y ∈ z1. Then y ∈ acc h ∩ z1, whence
by the definition of acc, y ∈ {z:(Uz ∨ ∃z3(z3 ∈ h ∩ z1 ∧ (z ∈ z3 ∨
z ⊆ z3)))}. Since¬Uy, it follows byLemma4(i) thaty ∈ z3∨y ⊆ z3 for
some z3 ∈ h∩z1. SinceE! h∩z1, it follows that h∩z1 = h∩z1, whence
by the definition of ∩ and Lemma 4(ii), z3 ∈ h ∧ z3 ∈ z1. Since
h �= V1 and z3 ∈ h, it follows by Theorem 5 that Vz3. Since Vz3 and
z3 ∈ h ∧ (y ∈ z3 ∨ y ⊆ z3), it follows by Lemma 4(i) that z3 ∈ b. But
z3 ∈ b and z3 ∈ z1 are together contrary to ¬∃z2(z2 ∈ b ∧ z2 ∈ z1).
Hence y /∈ z1, whence y ⊆ z1. Since x ∈ y, it follows by the definition
of ⊆ that x ∈ z1, whence x ∈ v by Lemma 4(i).

Corollary. Let My and y ∈ v, then y ⊆ v.
Proof. Since y ∈ v, it follows that x ∈ y → x ∈ v by Theorem 7, which
together withMy entails y ⊆ v by the definition of ⊆.
Theorem 8. Levels are hereditary sets Let x ⊆ y and y ∈ v, then x ∈ v.
For this sense of ‘hereditary set’, see Tarski [26], p. 177. In particular, if a
set is a subset of a level, it is a member of all higher levels. The proof of
Theorem 8 only differs from the proof of Theorem 7 in half a dozen places,
but to help the reader we give it in full.

Proof. From the hypothesis x ⊆ y it follows that My by Lemma 6(i),
whence by the definition of U , ¬Uy. SinceMy it follows that V1 ={z:Uz}
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by Lemma 7(iii). From the hypothesis y ∈ v it follows that E!v by Axiom
1(i). We tackle three cases separately: (i) v = V1, (ii) v = V2, and (iii) v �= V1
and v �= V2.
Case (i) v = V1
From the hypothesis y ∈ v it follows by Lemma 4(i) that Uy. But also
¬Uy. Hence x ∈ v by the tautology A ∧ ¬A→ B .
Case (ii) v = V2
By the strength of identity, E!V2. Since y ∈ v, it follows by Lemma 7(v)
thatUy ∨ y ⊆ V1. Since ¬Uy, it follows that y ⊆ V1. Since x ⊆ y, it follows
that x ⊆ V1 by the definition of ⊆. Hence x ∈ V2 by Lemma 7(v), whence
x ∈ v.
Case (iii) v �= V1 and v �= V2
1. By the definition of V , v = acc h for some history h. For a reductio
suppose that h = V1. Then v = acc V1 = V1 by Lemma 7(i). Contra-
diction. Hence h �= V1, whence by the definition of acc, Theorem 5 and
Lemma 1(i), v ={z:(Uz ∨ ∃u(u ∈ h ∧ (z ∈ u ∨ z ⊆ u)))}. Since y ∈ v,
it follows by Lemma 4(i) that Uy ∨ ∃u(u ∈ h ∧ (y ∈ u ∨ y ⊆ u)).
Since ¬Uy, it follows that y ∈ w ∨ y ⊆ w for some w ∈ h. We tackle
three cases separately: (a) w = V1, (b) w = V2, and (c) w �= V1 and
w �= V2.

2. For case (a), for a reductio suppose y ∈ w. Then y ∈ V1, whence by
Lemma 4(i), Uy. Contradiction. Hence y ⊆ w. Since x ⊆ y, it follows
by the definition of ⊆ that x ⊆ w. Since v ={z:(Uz ∨ ∃u(u ∈ h ∧
(z ∈ u ∨ z ⊆ u)))}, it follows by Lemma 4(i) that x ∈ v.

3. For case (b), suppose y ∈ w. Then y ∈ V2, whence Uy ∨ y ⊆ V1 by
the strength of identity and Lemma 7(v). Since ¬Uy, it follows that
y ⊆ V1. Since x ⊆ y, it follows by the definition of ⊆ that x ⊆ V1.
Hence by Lemma 7(v), x ∈ V2, whence x ∈ w. So by Lemma 4(i)
x ∈ v. Suppose instead that y ⊆ w. Since x ⊆ y, it follows by the
definition of ⊆ that x ⊆ w, whence x ∈ v by Lemma 4(i).

4. For case (c), we deal with two subcases separately: (ci) ∃1u(u ∈ h ∧
(y ∈ u ∨ y ⊆ u)), and (cii) mu(u ∈ h ∧ (y ∈ u ∨ y ⊆ u)).

5. For case (ci), u ∈ h ∧ (y ∈ u ∨ y ⊆ u) for some unique level u, namely
w. From h �= V1,w ∈ h,w �= V1,w �= V2, it follows thatw =acc h∩w,
E! h ∩ w, and mz(z ∈ h ∧ z ∈ w) by Theorems 4(i), 4(ii), and
4(iii). Hence by the definition of acc, w = {z:(Uz ∨ ∃z1(z1 ∈ h ∩ w
∧ (z ∈ z1∨z ⊆ z1)))}. For a reductio suppose y ∈ w. Then by Lemma
4(i), Uy ∨ ∃z1(z1 ∈ h ∩ w ∧ (y ∈ z1 ∨ y ⊆ z1)). Since My, it follows
that ∃z1(z1 ∈ h ∩ w ∧ (y ∈ z1 ∨ y ⊆ z1)) by the definition of U . Since
E! h ∩ w, it follows that h ∩ w = h ∩ w. Since mz(z ∈ h ∧ z ∈ w), it
follows by the definition of h ∩ w and Lemma 4(ii) that for some z1,
z1 ∈ h ∧ z1 ∈ w ∧ (y ∈ z1 ∨ y ⊆ z1). Since z1 ∈ h and h �= V1, it
follows by Theorem 5 thatVz1. Since z1 ∈ w, it follows by Axiom 1(iii)
that z1 �= w. But z1 ∈ h ∧ (y ∈ z1 ∨ y ⊆ z1) and Vz1 and z1 �= w are
together contrary to ∃1u(u ∈ h ∧ (y ∈ u ∨ y ⊆ u)). Hence y ⊆ w.
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Since x ⊆ y, it follows by the definition of ⊆ that x ⊆ w, and so by
Lemma 4(i) x ∈ v.

6. For case (cii), let b be short for {u: u ∈ h ∧ (y ∈ u∨y ⊆ u)}. Since v =
acc h, it follows by Theorem 2 that z ∈ h → z ∈ v. Hence ∀u((u ∈ h ∧
(y ∈ u ∨ y ⊆ u))→ u ∈ v), so ∃v1∀u(u ∈ h ∧ (y ∈ u ∨ y ⊆ u))
→ u ∈ v1). This together with mu(u ∈ h ∧ (y ∈ u ∨ y ⊆ u)) entails
Mb by Axiom 2(iii). Hence by Lemma 3 E!b, whence b = {u: u ∈ h ∧
(y ∈ u ∨ y ⊆ u)}. Hence by Lemma 4(i), z ∈ b → z ∈ h, whence by
the definition of⊆, b ⊆ h. Hence by Theorem 6,¬∃z2(z2 ∈ b∧z2 ∈ z1)
for some z1 ∈ b. Hence by Lemma 4(i), z1 ∈ h ∧ (y ∈ z1 ∨ y ⊆ z1).
We deal with three subcases separately: (ciiα) z1 = V1, (ciiβ) z1 = V2,
and (cii�) z1 �= V1 ∧ z1 �= V2.

7. In case (ciiα), it follows that x ∈ v by the reasoning in step 2.
8. In case (cii�), it follows that x ∈ v by the reasoning in step 3.
9. In case (cii�), since h �= V1, z1 ∈ h, z1 �= V1 and z1 �= V2, it follows that
z1 = acc h∩z1, E! h∩z1 andmz(z ∈ h∧z ∈ z1) by Theorems 4(i), (ii),
and (iii). For a reductio suppose y ∈ z1. Then y ∈ acc h ∩ z1, whence
by the definition of acc, y ∈ {z:(Uz ∨ ∃z3(z3 ∈ h ∩ z1 ∧ (z ∈ z3 ∨
z ⊆ z3)))}. Since ¬Uy, we have by Lemma 4(i) that y ∈ z3 ∨y ⊆ z3 for
some z3 ∈ h ∩ z1. Since E! h ∩ z1, it follows that h ∩ z1 = h ∩ z1,
whence by the definition of ∩ and Lemma 4(ii), z3 ∈ h ∧ z3 ∈ z1. Since
h �= V1 and z3 ∈ h, it follows by Theorem 5 that Vz3. Since Vz3 and
z3 ∈ h ∧ (y ∈ z3 ∨ y ⊆ z3), it follows by Lemma 4(i) that z3 ∈ b. But
z3 ∈ b and z3 ∈ z1 are together contrary to ¬ ∃z2(z2 ∈ b ∧ z2 ∈ z1).
Hence y /∈ z1, whence y ⊆ z1. Since x ⊆ y, it follows by the definition
of ⊆ that x ⊆ z1, whence x ∈ v by Lemma 4(i).

Theorem 9. Lower levels I
(i) ¬∃w w ∈ V1 and [w:w ∈ V1] ≡ O.
(ii) Let E!V2, then ∃1w w ∈ V2 and [w:w ∈ V2] = ℩w(w ∈ V2) = V1.
(iii) Let E!v and v �= V1 and v �= V2, then mw w ∈ v and [w:w ∈ v] =
{w:w ∈ v}.
The parts cover the three cases for the number of lower levels: (i) V1 has
none; (ii) V2 has V1 as its sole lower level; (iii) any other level has many
lower levels. Modified set abstraction is used to express each case as an
identity.

Proof of (i). For a reductio suppose that w ∈ V1 for some level w. Then
by Corollary (i) of Theorem 1, Mw, and by Axiom 1(i), E!V1. Hence by
Lemma 7(ii), Uw, whence ¬Mw by the definition of U . Contradiction.
Hence ¬∃w w ∈ V1,whence by Lemma 2(i), [w:w ∈ V1] ≡ O.
Proof of (ii).
1. It follows from the hypothesis E!V2 that V2 = {z:Uz ∨ z ⊆ V1} by
Lemma 7(iv), and that E!V1 by Lemma 7(vi). Hence by Lemma 7(i),
V1 ={z:Uz}. By Lemma 7(vii), V1 ∈ V2, and by the definition of V ,
V (V1).

2. For a reductio suppose w �= V1 ∧ w ∈ V2 for some level w. Then by
Axiom 1(iii), w �= V2. Also by Lemma 4(i), Uw ∨ w ⊆ V1. Since
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Vw, it follows by Corollary (i) of Theorem 1 that Mw, whence by
the definition of U , ¬ Uw. Hence w ⊆ V1. Since w �= V1, it follows
by the definition of ⊂ that w ⊂ V1, whence w ⊂{z:Uz}. Hence by
Lemma 6(iii), x /∈ w ∧ x ∈ {z:Uz} for some x, whence by Lemma
4(i), x /∈ w ∧ Ux, contrary to Corollary (ii) of Theorem 1. Hence
¬ ∃w(w �= V1 ∧ w ∈ V2).

3. Since V (V1) and V1 ∈ V2 and ¬∃w(w �= V1 ∧ w ∈ V2), it follows
that ∃1w w ∈ V2 and ℩w(w ∈ V2) = V1, whence [w:w ∈ V2] =
℩w(w ∈ V2) = V1 by Lemma 2(ii).

Proof of (iii).
1. Since by hypothesis E!v and v �= V1 and v �= V2, it follows by the
definition of V that v = acc h for some history h. By the definition of
acc, v = acc h = {z:(Uz ∨ ∃y(y ∈ h ∧ (z ∈ y ∨ z ⊆ y)))}. Hence by
Lemma 4(i), z ∈ v↔(Uz ∨ ∃y(y ∈ h ∧ (z ∈ y ∨ z ⊆ y))).

2. By Theorem 2(ii),Mh ∧ h �= V1. Hence my y ∈ h by the definition of
M , whencemy(y ∈ h ∧Vy) by Theorem 5, and somw w ∈ h. Consider
an arbitrary level u ∈ h. By Corollary (i) of Theorem 1,Mu. Hence by
Lemma 6(ii), u ⊆ u, whence u ∈ v by z ∈ v↔(Uz ∨ ∃y(y ∈ h ∧ (z ∈ y
∨ z ⊆ y))). Hence mw w ∈ v, whence by Lemma 2(iii), [w:w ∈ v] ≡
{w:w ∈ v}. Since ∀w(w ∈ v → w ∈ v), by existential generalization
∃v1∀w(w ∈ v → w ∈ v1). Hence by Axiom 2(iii), M{w:w ∈ v},
whence E!{w:w ∈ v} by Lemma 3. Hence [w:w ∈ v]={w:w ∈ v}.

Theorem 10. Lower levels II
(i) Let v = V1 or v = V2, then v = accum [w:w ∈ v].
(ii) Let E!v and v �= V1 and v �= V2, then v = acc [w:w ∈ v].
Proof of (i). Suppose v = V1. Then by Theorem 9(i) [w:w ∈ v] ≡ O,
whence v = accum [w:w ∈ v] by the definition of V1. Suppose instead that
v = V2. Then E!V2 by the strength of identity, whence by Theorem 9(ii)
[w:w ∈ v] = V1. Hence v = accum [w:w ∈ v] by the definition of V2.
Proof of (ii).
1. Since by hypothesis E!v and v �= V1 and v �= V2, it follows that
[w:w ∈ v] = {w:w ∈ v} by Theorem 9(iii), whence by Lemma 4(i)
y ∈ {w:w ∈ v}↔ (y ∈ v ∧ Vy). It also follows from the hypothesis by
the definition of V that v = acc h for some history h. By the definition
of acc, v = acc h = {z:(Uz ∨ ∃y(y ∈ h∧ (z ∈ y ∨ z ⊆ y)))}. Hence by
Lemma 4(i), z ∈ v↔(Uz ∨ ∃y(y ∈ h∧ (z ∈ y ∨ z ⊆ y))).

2. We shall prove that acc {w:w ∈ v} = {z:(Uz ∨ ∃y(y ∈{w:w ∈ v} ∧
(z ∈ y ∨ z ⊆ y)))}. With a view to using Axiom 2(iii), we first prove
(a) mz(Uz ∨ ∃y(y ∈{w:w ∈ v} ∧ (z ∈ y ∨ z ⊆ y))) and (b) ∃u∀z((Uz
∨ ∃y(y ∈{w:w ∈ v} ∧ (z ∈ y ∨ z ⊆ y)))→ z ∈ u).

3. For (a), by hypothesis E!v. HenceMv by Corollary (i) of Theorem 1,
whence ∃xMx. Hence mzUz by Axiom 2(ii), a fortiori mz(Uz ∨
∃y(y ∈{w:w ∈ v} ∧ (z ∈ y ∨ z ⊆ y))).

4. For (b), consider an arbitrary z such that Uz ∨ ∃y(y ∈{w:w ∈ v}
∧ (z ∈ y ∨ z ⊆ y)). We consider the three possibilities for z and

https://doi.org/10.1017/bsl.2018.10 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.10


432 ALEX OLIVER AND TIMOTHY SMILEY

deduce z ∈ v in each case. First, suppose Uz. Then by Corollary (ii) of
Theorem 1, z ∈ v. Second, suppose z ∈ y for some y ∈ {w:w ∈ v}.
Then y ∈ v, whence z ∈ v by Theorem 7. Third, suppose z ⊆ y for
some y ∈ {w:w ∈ v}. Then y ∈ v, whence z ∈ v by Theorem 8. Since
z was arbitrary, we can generalize to get ∀z((Uz ∨ ∃y(y ∈{w:w ∈ v}
∧ (z ∈ y ∨ z ⊆ y)))→ z ∈ v), whence ∃u∀z((Uz ∨ ∃y(y ∈{w:w ∈ v}
∧ (z ∈ y ∨ z ⊆ y)))→ z ∈ u).

5. From (a) and (b) it follows that M{z:(Uz ∨ ∃y(y ∈{w:w ∈ v} ∧
(z ∈ y ∨ z ⊆ y)))} by Axiom 2(iii), whence by the definition of
acc and Lemma 3, acc {w:w ∈ v} = {z:(Uz ∨ ∃y(y ∈{w:w ∈ v} ∧
(z ∈ y ∨ z ⊆ y)))}.

6. By Lemma 4(i), M (acc {w:w ∈ v}) and z ∈ acc {w:w ∈ v} ↔ (Uz
∨ ∃y(y ∈ {w:w ∈ v} ∧ (z ∈ y ∨ z ⊆ y))). We go onto prove z ∈ v↔
z ∈ acc {w:w ∈ v}.

7. For the→half, suppose z ∈ v. ThenUz∨∃y(y ∈ h ∧ (z ∈ y ∨ z ⊆ y)).
By Theorems 2(i) and (ii), and Theorem 5, y ∈ h → (y ∈ v ∧ Vy).
Hence y ∈ h → y ∈{w:w ∈ v}, whence Uz ∨ ∃y(y ∈ {w:w ∈ v} ∧
(z ∈ y ∨ z ⊆ y)). Hence z ∈ acc {w:w ∈ v}.

8. For the ← half, suppose z ∈ acc {w:w ∈ v}. It follows that
Uz ∨ ∃y(y ∈ {w:w ∈ v} ∧ (z ∈ y ∨ z ⊆ y)). By the reasoning in
step 4, it follows that z ∈ v for each of the three possibilities for z.

9. Since Mv and M (acc {w:w ∈ v}) and z ∈ v ↔ z ∈ acc {w:w ∈ v},
then by Axiom 1(ii), v = acc {w:w ∈ v}, whence v = acc [w:w ∈ v].

Theorem 11. Lower levels III H [w:w ∈ v]
Theorems 10 and 11 together ensure that any level v has [w:w ∈ v] as a
history.

Proof.

By Corollary (i) of Theorem 1, Mv, whence E!v by Lemma 3. It also
follows fromMv by Lemma 7(iii) thatV1 ={z:Uz}, whenceMV1 by Lemma
4(i). We tackle three cases separately: (i) v = V1, (ii) v = V2, and (iii) v �= V1
and v �= V2.
Case (i) v = V1
By Theorem 9(i), [w:w ∈ v] ≡ O. Since ¬ E!O, it follows by Lemma 3
and Axiom 1(iv) that ¬ ∃x x ∈ O. Hence H [w:w ∈ v] by the definition
of H .

Case (ii) v = V2
By Theorem 9(ii), [w:w ∈ v] = V1, which together with MV1 entails
H [w:w ∈ v] by the definition ofH .
Case (iii) v �= V1 and v �= V2
1. By Theorem 9(iii), mw w ∈ v and [w:w ∈ v] = {w:w ∈ v}, whence
by Lemma 4(i), M [w:w ∈ v] and mw1 w1 ∈ [w:w ∈ v]. Consider an
arbitrary level u ∈ [w:w ∈ v]. We prove that (a) u = V1 ∨ u = V2
→ u = accum [w:w ∈ v]∩u, and (b) u �= V1 ∧ u �= V2 → u = acc
[w:w ∈ v] ∩ u.
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2. For (a), we prove: (ai) u = V1 → u = accum [w:w ∈ v]∩u, and (aii)
u = V2 → u = accum [w:w ∈ v] ∩ u.

3. For (ai), suppose u = V1.Then u = accum O by the definition of V1.
By Lemma 4(i), Corollary (i) of Theorem 1 and the definition of U ,
w1 ∈ {w:w ∈ v}→¬Uw1. Also by Lemma 4(i),w1 ∈ u →Uw1. Hence
¬∃w1(w1 ∈{w:w ∈ v} ∧ w1 ∈ u), whence by Lemma 2(i), [w1: w1 ∈
{w:w ∈ v} ∧w1 ∈ u]≡ O. Hence {w:w ∈ v} ∩ u ≡ O by the definition
of ∩. So u = accum {w:w ∈ v} ∩ u, whence u = accum [w:w ∈ v] ∩ u.

4. For (aii): suppose u = V2. Then u = accum V1 by the definition of
V2. Since E!v and v �= V1 and v �= V2, it follows by the definition of
V that v = acc h for some history h. By Theorem 2(ii)Mh ∧ h �= V1,
whence my y ∈ h by the definition of M . Hence w1 ∈ h for some
level w1 by Theorem 5. By Corollary (ii) of Theorem 1, Uz→ z ∈ w1,
whence by Lemma 4(i), z ∈ V1 → z ∈ w1. SinceMV1, it follows that
V1 ⊆ w1 by the definition of ⊆. By the definition of acc and Lemma
4(i), z ∈ v ↔(Uz ∨ ∃y(y ∈ h ∧ (z ∈ y ∨ z ⊆ y))). Hence V1 ∈ v,
whence V1 ∈ {w:w ∈ v} by Lemma 4(i) and the definition of V . Since
by hypothesis u = V2, it follows by the strength of identity that E!V2.
Hence V1 = ℩w(w ∈ u) by Theorem 9(ii). Since V1 ∈ {w:w ∈ v},
it follows that V1 = ℩w1(w1 ∈ {w:w ∈ v} ∧ w1 ∈ u). Hence by
the strength of identity, E!℩w1(w1 ∈ {w:w ∈ v} ∧ w1 ∈ u), whence
∃1w1(w1 ∈ {w:w ∈ v} ∧ w1 ∈ u). Hence {w:w ∈ v} ∩ u = V1 by
Lemma 2(ii) and the definition of ∩. Hence u = accum {w:w ∈ v} ∩ u,
whence u = accum [w:w ∈ v] ∩ u.

5. By (ai) and (aii), u = V1 ∨ u = V2 → u = accum [w:w ∈ v] ∩ u.
6. For (b), suppose u �= V1 ∧ u �= V2. Since u ∈ {w:w ∈ v}, it follows by
Lemma4(i) that u ∈ v. Hence by Theorem 7,w1 ∈ u → w1 ∈ v, whence
(w1 ∈ v∧w1 ∈ u)↔ w1 ∈ u. Hence by Lemma 4(i), (w1 ∈ {w:w ∈ v}
∧ w1 ∈ u)↔ w1 ∈ u, whence by Lemma 1(ii), [w1: w1 ∈ {w:w ∈ v} ∧
w1 ∈ u]≡ [w1:w1 ∈ u]. SinceE!u and u �= V1 and u �= V2, it follows by
Theorem 9(iii) that [w1:w1 ∈ u] = {w1:w1 ∈ u}, whenceE![w1:w1 ∈ u]
by the strength of identity. Hence [w1: w1 ∈ {w:w ∈ v} ∧ w1 ∈ u] =
[w1:w1 ∈ u], whence {w:w ∈ v} ∩ u = [w1:w1 ∈ u] by the definition of
∩. By Theorem 10(ii), u = acc [w1:w1 ∈ u]. So u = acc{w:w ∈ v} ∩ u,
whence u = acc [w:w ∈ v] ∩ u.

7. (a) and (b) hold for any u ∈ [w:w ∈ v]. Since [w:w ∈ v]={w:w ∈ v},
it follows by Lemma 4(i) that y ∈ {w:w ∈ v} → Vy. So we can
generalize to get ∀y(y ∈ [w:w ∈ v] → (y = V1 ∨ y = V2 → y =
accum [w:w ∈ v]∩ y)∧ (y �= V1 ∧ y �= V2 → y =acc [w:w ∈ v]∩ y)),
which together withM [w:w ∈ v] entails H [w:w ∈ v] by the definition
of H .

Theorem 12. Foundation for levels

Let ∃uA(u), then ∃v(A(v) ∧ ¬∃w(w ∈ v ∧A(w))).

In English: let some level satisfy a condition; then there is a lowest level
satisfying the condition.
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Proof. By hypothesis A(u) for some level u. We tackle three cases sep-
arately: (i) ¬∃w(w ∈ u ∧ A(w)) then (ii) ∃1w(w ∈ u ∧ A(w)) and (iii)
mw (w ∈ u ∧A(w)).
Case (i) ¬∃w(w ∈ u ∧ A(w))
It follows immediately that ∃v(A(v)∧ ¬∃w(w ∈ v ∧A(w))).
Case (ii) ∃1w(w ∈ u ∧ A(w))
By hypothesis w1 ∈ u ∧ A(w1) for some unique level w1. For a reductio
suppose that w2 ∈ w1 and A(w2) for some level w2. Since w2 ∈ w1 and
w1 ∈ u, it follows by Theorem 7 that w2 ∈ u. Since w2 ∈ w1, it follows
by Axiom 1(iii) that w2 �= w1. But w1 ∈ u,A(w1), w2 ∈ u, A(w2), and
w2 �= w1 are together contrary to ∃1w(w ∈ u ∧ A(w)). If follows that
A(w1) ∧ ¬ ∃w(w ∈ w1 ∧ A(w)), whence ∃v(A(v)∧¬ ∃w(w ∈ v ∧A(w))).
Case (iii) mw (w ∈ u ∧A(w))
1. Since mw (w ∈ u ∧ A(w)) and ∀w((w ∈ u ∧ A(w))→ w ∈ u), it
follows byAxiom 2(iii) thatM{w:w ∈ u∧A(w)} . Hence by Lemma 3,
E!{w:w ∈ u∧A(w)}, whence {w:w ∈ u∧A(w)}= {w:w ∈ u∧A(w)}.
Hence by Lemma 4(i), w1 ∈ {w:w ∈ u ∧A(w)} ↔ (w1 ∈ u ∧A(w1)).

2. Since mw (w ∈ u ∧ A(w)), it follows that mw w ∈ u, which together
with ∀w(w ∈ u → w ∈ u) entails M{w:w ∈ u} by Axiom 2(iii).
Hence by Lemma 3, E!{w:w ∈ u}, whence {w:w ∈ u} = {w:w ∈ u}.
Hence by Lemma 4(i), w1 ∈{w:w ∈ u} ↔ w1 ∈ u.

3. Since M{w:w ∈ u ∧ A(w)} and (w1 ∈ u ∧ A(w1)) → w1 ∈ u, it
follows that {w:w ∈ u ∧A(w)} ⊆ {w:w ∈ u} by the definition of ⊆.

4. Since mw w ∈ u, it follows by Theorems 9(i) and (ii) that u �= V1 and
u �= V2, whence by Theorem 9(iii), [w:w ∈ u] = {w:w ∈ u}. Hence by
Theorem 11,H{w:w ∈ u}.

5. Since {w:w ∈ u ∧ A(w)} ⊆ {w:w ∈ u} and H{w:w ∈ u}, it follows
by Theorem 6 that for some level w2, w2 ∈{w: w ∈ u ∧ A(w)} ∧
¬∃z(z ∈{w: w ∈ u ∧ A(w)} ∧ z ∈ w2), whence w2 ∈ u ∧ A(w2).

6. For a reductio suppose that w3 ∈ w2 and A(w3) for some level w3.
Since w3 ∈ w2 and w2 ∈ u, it follows by Theorem 7 that w3 ∈ u.
Since w3 ∈ u and A(w3), it follows that w3 ∈{w:w ∈ u ∧ A(w)}.
But w3 ∈{w:w ∈ u ∧ A(w)} and w3 ∈ w2 are together contrary to
¬∃z(z ∈{w: w ∈ u ∧ A(w)} ∧ z ∈ w2). It follows that A(w2) ∧
¬ ∃w(w ∈ w2 ∧A(w)), whence ∃v(A(v) ∧ ¬∃w(w ∈ v ∧ A(w))).

Theorem 13. Comparability of levels v ∈ w ∨ v = w ∨ w ∈ v
Proof.

1. For a reductio suppose for some v, ∃w(v /∈ w ∧ v �= w ∧ w /∈ v). So for
some v1, ∃w(v1 /∈ w ∧ v1 �= w ∧ w /∈ v1) ∧ ¬∃v2(v2 ∈ v1 ∧ ∃w(v2 /∈ w
∧ v2 �= w ∧ w /∈ v2)) by Theorem 12. Hence ∀v2(v2 ∈ v1 → ∀w(v2 ∈ w
∨ v2 = w ∨ w ∈ v2)).

2. Since for some w, (v1 /∈ w ∧ v1 �= w ∧ w /∈ v1), it follows by Theorem
12 that for some w1, (v1 /∈ w1 ∧ v1 �= w1 ∧ w1 /∈ v1) ∧ ¬∃w2(w2 ∈ w1
∧ (v1 /∈ w2 ∧ v1 �= w2 ∧ w2 /∈ v1)). So ∀w2(w2 ∈ w1 → (v1 ∈ w2
∨ v1 = w2 ∨ w2 ∈ v1)). We shall prove ∀w3(w3 ∈ v1 ↔ w3 ∈ w1).
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3. For the → half, suppose w3 ∈ v1. Since w1 /∈ v1, then w3 �= w1.
For a reductio suppose w1 ∈ w3. Then from w3 ∈ v1 it follows
that w1 ∈ v1 by Theorem 7. Contradiction. It follows that w1 /∈ w3.
Since ∀v2(v2 ∈ v1 → ∀w(v2 ∈ w ∨ v2 = w ∨ w ∈ v2)) and w3 ∈ v1 and
w3 �= w1 and w1 /∈ w3, it follows that w3 ∈ w1.

4. For the← half, suppose w3 ∈ w1. Since v1 /∈ w1, then w3 �= v1. For a
reductio suppose v1 ∈ w3. Then fromw3 ∈ w1 it follows that v1 ∈ w1 by
Theorem 7. Contradiction. So v1 /∈ w3. Since ∀w2(w2 ∈ w1 → (v1 ∈ w2
∨ v1 = w2∨w2 ∈ v1)) andw3 ∈ w1 andw3 �= v1 and v1 /∈ w3, it follows
that w3 ∈ v1.

5. Since ∀w3(w3 ∈ v1 ↔ w3 ∈ w1), then by Lemma 1(ii) [w:w ∈ v1] ≡
[w:w ∈ w1]. We shall show (a) v1 �= V1 ∧ w1 �= V1, and (b) v1 �= V2
∧ w1 �= V2.

6. For (a), for a reductio suppose v1 = V1. By Theorem 9(i), [w:w ∈ v1]
≡ O, whence [w:w ∈ w1] ≡ O. By Theorems 10(i) and (ii), w1 =
accum [w:w ∈ w1] or w1 = acc [w:w ∈ w1], whence w1 = accum O or
w1 = acc O. For a reductio suppose w1 = accum O. Then w1 = v1 by
the definition ofV1. Contradiction. Hencew1 = accO, whencew1 = v1
by Lemma 7(i). Contradiction. Hence v1 �= V1. By similar reasoning,
w1 �= V1.

7. For (b), for a reductio suppose v1 = V2. Then E!V2 by the strength
of identity, whence V1 ∈ v1 by Lemma 7(vii), and also [w:w ∈ v1]
= ℩w(w ∈ v1) = V1 by Theorem 9(ii). Since ∀w3(w3 ∈ v1 ↔ w3 ∈ w1),
it follows that V1 ∈ w1. Hence by Theorems 10(i) and (ii), w1 =
accum [w:w ∈ w1] or w1 = acc [w:w ∈ w1]. Since [w:w ∈ v1] ≡
[w:w ∈ w1], it follows that w1 = accum V1 or w1 = acc V1. For a
reductio suppose w1 = accum V1. Then w1 = v1 by the definition of
V2. Contradiction. Hence w1 = acc V1. Thenw1 = V1 by Lemma 7(i).
ButV1 ∈ w1 andw1 = V1 are together contrary to Axiom 1(iii). Hence
v1 �= V2. By similar reasoning, w1 �= V2.

8. We can now proceed to the reductio initiated in step 1. From (a) and
(b) it follows that v1 = acc [w:w ∈ v1] and w1 = acc [w:w ∈ w1]
by Theorem 10(ii). Since [w:w ∈ v1] ≡ [w:w ∈ w1], it follows that
v1 = acc [w:w ∈ v1]= acc [w:w ∈ w1] = w1. Contradiction. Hence
v ∈ w ∨ v = w ∨ w ∈ v.

Theorem 14. The lowest level principle
Let ∃uA(u), then ∃1v(A(v) ∧ ¬∃w(w ∈ v ∧A(w))).
In English: let some level satisfy a condition; then there is a unique lowest
level satisfying the condition.

Proof. Since by hypothesis ∃uA(u), it follows by Theorem 12 that A(v) ∧
¬∃w(w ∈ v ∧ A(w)) for some level v. For a reductio suppose that A(v1) ∧
¬∃w(w ∈ v1 ∧ A(w)) for some level v1 �= v. Then by Theorem 13 it follows
that v ∈ v1∨v1 ∈ v. But if v ∈ v1 then v ∈ v1∧A(v), contrary to ¬∃w(w ∈ v1
∧ A(w)). Similarly, if v1 ∈ v then v1 ∈ v ∧ A(v1), contrary to ¬∃w(w ∈ v
∧A(w)). Contradiction. Hence ∃1v(A(v) ∧ ¬∃w(w ∈ v ∧ A(w))).
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Theorem 15. Uniqueness of histories

(i) Let V1 = accum h, then h ≡ [w:w ∈ V1].
(ii) Let V2 = accum h, then h = [w:w ∈ V2].
(iii) Let v �= V1 and v �= V2 and v = acc h, then h = [w:w ∈ v].
Proof of (i).

1. Since by hypothesis V1 = accum h, it follows that E!V1 by the strength
of identity, whence z ∈ V1 → Uz by Lemma 7(ii).

2. For a reductio suppose h �≡ [w:w ∈ V1]. Then h �≡ O by Theorem 9(i),
whenceMh by the definition ofH . Hence h ⊆ h by Lemma 6(ii). By the
definition of accum, V1 = accum h = {z:Uz ∨ z ∈ h ∨ z ⊆ h}, whence
h ∈ V1 by Lemma 4(i). Hence Uh, whence ¬ Mh by the definition of
U . Contradiction. Hence h ≡ [w:w ∈ V1].

Proof of (ii).

1. Since by hypothesis V2 = accum h, it follows that E!V2 by the strength
of identity. By Theorem 9(ii), [w:w ∈ V2]= V1, whence E!V1 by the
strength of identity. HenceMV1 by Lemma 7(ii).

2. For a reductio suppose h ≡ O. Then by the definition of V1, V2 =
accum h = accum O = V1, contrary to Lemma 7(viii). Hence h �≡ O,
whence Mh by the definition of H . Hence h ⊆ h by Lemma 6(ii). By
the definition of accum, V2 = accum h = {z:Uz ∨ z ∈ h ∨ z ⊆ h},
whence h ∈ V2 by Lemma 4(i). Hence by Lemma 7(v), Uh ∨ h ⊆ V1.
SinceMh, it follows that ¬Uh by the definition of U , whence h ⊆ V1.
Hence z ∈ h → Uz by the definition of ⊆ and Lemma 7(ii).

3. For a reductio suppose h �= [w:w ∈ V2]. Then h �= V1, whence h ⊂ V1
by the definition of ⊂. Hence for some z1, z1 /∈ h ∧ z1 ∈ V1 by Lemma
6(iii). By Lemma 7(vii) V1 ∈ V2, whence UV1 ∨ V1 ∈ h ∨ V1 ⊆ h by
Lemma 4(i). SinceMV1, it follows that ¬UV1 by the definition of U .
Hence V1 ∈ h ∨ V1 ⊆ h. For a subordinate reductio suppose V1 ∈ h.
ThenUV1, whence¬MV1 by the definition ofU . Contradiction. Hence
V1 ⊆ h, whence z ∈ V1 → z ∈ h by the definition of⊆. Contradiction.
Hence h = [w:w ∈ V2].

Proof of (iii).

1. Since by hypothesis v �= V1 and v = acc h, it follows by Theorem
2(ii) thatMh ∧ h �= V1, whence E!h by Lemma 3.

2. For a reductio supposeh �= {w:w ∈ v}. ThenbyTheorem14, there is
a unique level v1 such that for some history h1, v1 �= V1 ∧ v1 �= V2 ∧
v1 = acc h1 ∧ h1 �= {w:w ∈ v1}, and ¬∃w1(w1 ∈ v1 ∧ ∃x(Hx
∧ w1 �= V1 ∧ w1 �= V2 ∧ w1 = acc x ∧ x �= {w:w ∈ w1}). Hence
Mh1∧h1 �= V1 by Theorem 2(ii). By the definition of acc, v1 = acc h1
= {z:(Uz ∨ ∃y(y ∈ h1 ∧ (z ∈ y ∨ z ⊆ y)))}, whence by Lemma
4(i), z ∈ v1 ↔ (Uz ∨ ∃y(y ∈ h1 ∧ (z ∈ y ∨ z ⊆ y))). We shall prove
that w2 ∈ h1 ↔ w2 ∈ v1.

3. The→ half is immediate by Theorem 2(i).
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4. For the← half, suppose w2 ∈ v1. Then E!w2 by Axiom 1(i). For a
reductio suppose w3 ∈ h1 → w3 ∈ w2. We tackle three cases sepa-
rately, deriving a contradiction for each: (i) w2 = V1, (ii) w2 = V2,
and (iii) w2 �= V1 and w2 �= V2.

5. For case (i), sinceMh1, it follows by the definition ofM that x ∈ h1
for some x. Since h1 �= V1, it follows by Theorem 5 that Vx. By
supposition w3 ∈ h1 → w3 ∈ w2, whence x ∈ V1. But by Theorem
9(i) ¬ ∃w w ∈ V1. Contradiction.

6. For case (ii), sinceMh1, it follows by the definition ofM that x ∈ h1
and y ∈ h1, for some x, y where x �= y. Since h1 �= V1, it follows
by Theorem 5 that Vx and Vy. By supposition w3 ∈ h1 → w3 ∈ w2,
and so x ∈ V2 and y ∈ V2. But by Theorem 9(ii), ∃1w w ∈ V2.
Contradiction.

7. For case (iii), byTheorems 9(iii) and10(ii),w2 =acc {w4 :w4 ∈ w2},
whence w2 ={z:(Uz ∨ ∃y(y ∈ {w4 :w4 ∈ w2} ∧ (z ∈ y ∨ z ⊆ y)))}
by the definition of acc. So z ∈ w2 ↔ (Uz ∨ ∃w(w ∈ w2 ∧ (z ∈ w
∨ z ⊆ w))) by Lemma 4(i). Since h1 �= V1, it follows by Theorem 5
that y ∈ h1 → Vy. Since (from step 2) z ∈ v1 → (Uz ∨ ∃y(y ∈ h1 ∧
(z ∈ y ∨ z ⊆ y))) and (by supposition) w3 ∈ h1 → w3 ∈ w2, it
follows that z ∈ v1 →(Uz ∨ ∃w(w ∈ w2 ∧ (z ∈ w ∨ z ⊆ w))),
whence z ∈ v1 → z ∈ w2. But w2 ∈ v1, so w2 ∈ w2, contrary to
Axiom 1(iii).

8. Since each case leads to a contradiction, it follows that w5 ∈ h1 ∧
w5 /∈ w2 for some w5, whence by Theorem 13 w2 = w5 ∨ w2 ∈ w5.
Suppose w2 = w5. Since w5 ∈ h1, it follows that w2 ∈ h1.

9. Taking the other alternative, supposew2 ∈ w5.We tackle three cases
separately: (a)w5 = V1, (b)w5 = V2 and (c)w5 �= V1 andw5 �= V2.

10. For case (a), by Theorem 9(i) ¬ ∃w w ∈ V1, whence w2 /∈ w5. But
also w2 ∈ w5. By the tautology A∧¬A→ B it follows that w2 ∈ h1.

11. For case (b), since w2 ∈ w5, it follows that w2 ∈ V2. Hence by
Theorem 9(ii), w2 = V1. Since w5 ∈ h1, it follows that V2 ∈ h1.
Since h1 �= V1, it follows by the reasoning in steps 1–5 of case (ii) of
Theorem 5 that V1 ∈ h1, whence w2 ∈ h1.

12. For case (c), since h1 �= V1 and w5 ∈ h1 and w5 �= V1 and w5 �= V2,
it follows by Theorems 4(i), (ii), (iii), and 5 that w5 = acc h1 ∩ w5
andE!(h1∩w5),mz(z ∈ h1∧z ∈ w5) andH (h1∩w5). Sincew5 ∈ h1
and v1 = acc h1, it follows by Theorem 2(i) that w5 ∈ v1, and so
¬∃x(Hx ∧w5 �= V1∧w5 �= V2∧w5 = acc x ∧ x �= {w:w ∈ w5}) by
step 2. Since E!(h1∩w5) andH (h1∩w5) and w5 �= V1 andw5 �= V2
and w5 = acc (h1 ∩ w5), it follows that h1 ∩ w5 = {w:w ∈ w5}.
Since w2 ∈ w5, it follows by Lemma 4(i) that w2 ∈ (h1 ∩ w5).
Since mz(z ∈ h1 ∧ z ∈ w5) it follows by the definition of ∩ and
Lemma 2(iii) that (h1 ∩ w5) = {z: z ∈ h1 ∧ z ∈ w5}. It follows that
w2 ∈ {z: z ∈ h1 ∧ z ∈ w5}, whence by Lemma 4(i) w2 ∈ h1.

13. We cannowproceed to the reductio initiated in step 2. SinceE!v1 and
v1 �= V1 and v1 �= V2, it follows by Theorem 9(iii) that [w:w ∈ v1] =
{w:w ∈ v1}. HenceM{w:w ∈ v1} by Lemma 4(i). Sincew2 ∈ h1 ↔
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w2 ∈ v1, it follows that w2 ∈ h1 ↔ w2 ∈{w:w ∈ v1} by Lemma
4(i). Since h1 �= V1, it follows by Theorem 5 that x ∈ h1→Vx. Also
x ∈{w:w ∈ v1} →VxbyLemma4(i). Sox ∈ h1 ↔ x ∈{w:w ∈ v1}.
Since Mh1 and M{w:w ∈ v1} and x ∈ h1 ↔ x ∈{w:w ∈ v1}, it
follows by Axiom 1(ii) that h1 = {w:w ∈ v1}. Contradiction. Hence
h = {w:w ∈ v}. Since v = acc h, it follows that E!v by the strength
of identity, whence by Theorem 9(iii) that h = [w:w ∈ v].

We define V*(a) to be the lowest level v such that a ⊆ v (for short, the level
of a). In symbols, V*(a) =df ℩v(a ⊆ v ∧ ¬ ∃w(w ∈ v ∧ a ⊆ w)).
Theorem 16. Sets and levels I LetMx. Then (i) ∃u x ⊆ u

(ii) E!V *(x).
Proof of (i). By Lemma 5(ii), M{z:z ∈ x}. It follows by Axiom 2(iii)
that ∃u∀z(z ∈ x → z ∈ u), whence ∃u x ⊆ u by the definition of ⊆.
Proof of (ii). By Theorem 16(i), ∃u x⊆ u. Hence by Theorem 14,
∃1v(x ⊆ v∧¬ ∃w(w ∈ v ∧ x ⊆ w)), whence E!℩v(x ⊆ v∧¬ ∃w(w ∈ v
∧ x ⊆ w)). Hence E!V *(x) by the definition of V *(x).
Theorem 17. Foundation for sets LetMx, then ∃y(y ∈ x ∧ x∩y ≡ O).
This is our version of the familiar foundation or regularity axiom, but for
us it goes without saying that the set x is nonempty.

Proof.

1. Suppose Uy ∧ y ∈ x for some y. Then ¬My by the definition of U .
So by Axiom 1(iv) ¬∃z z ∈ y. Hence ¬∃z(z ∈ x ∧ z ∈ y), whence
x ∩ y ≡ O by Lemma 2(i) and the definition of ∩. Hence ∃y(y ∈ x ∧
x ∩ y ≡ O).

2. Suppose instead that z ∈ x → ¬Uz. It follows by the definition of U
and Axiom 1(i) that z ∈ x → Mz. Since Mx then my y ∈ x by the
definition of M , whence ∃y(My ∧ y ∈ x). Hence by Theorem 16(ii),
∃y(E!V *(y) ∧ y ∈ x), whence ∃u∃y(u = V *(y) ∧ y ∈ x) by the
definition of V *(y). Hence by Theorem 14, there is a unique level v1
such that for some y, v1 = V *(y) ∧ y ∈ x, and ¬ ∃w(w ∈ v1∧∃z(w =
V *(z) ∧ z ∈ x)).

3. For a reductio suppose that z1 ∈ x ∧ z1 ∈ y for some z1. Since z ∈ x →
Mz, it follows that Mz1, whence E!V *(z1) by Theorem 16(ii). Since
y ⊆ V *(y) by the definition of V *(y), it follows by the definition of
⊆ that z1 ∈ V *(y). We tackle three cases separately—(i) V *(y) = V1,
(ii) V *(y) = V2 and (iii) V *(y) �= V1 and V *(y) �= V2—proving in
each case that V *(z1) ∈ V *(y).

4. In case (i), V *(y) = V1. Then E!V1 by the strength of identity, whence
Uz1 by Lemma 7(ii). Hence by the definition of U , ¬Mz1. But also
Mz1. Hence V *(z1) ∈ V *(y) by the tautology A∧¬A→ B .

5. In case (ii), V *(y) = V2. Hence E!V2 by the strength of identity,
whence E!V1 by Lemma 7(vi). Since z1 ∈ V *(y), it follows by Lemma
7(v) thatUz1∨z1 ⊆ V1. SinceMz1, it follows by the definition ofU that
z1 ⊆ V1. By the definitions of V and V *(z1), V (V1) and V (V *(z1)),
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whence by Theorem 13, V1 ∈ V *(z1) ∨ V1 = V *(z1) ∨ V *(z1) ∈ V1.
By the definition of V *(z1), ¬∃w(w ∈ V *(z1)∧ z1 ⊆ w). SinceV (V1)
and z1 ⊆ V1, it follows that V1 /∈ V *(z1), whence V1 = V *(z1)∨
V *(z1) ∈ V1. For a reductio suppose V *(z1) ∈ V1. Then by Lemma
7(ii) and the definition of U , ¬M (V *(z1)). But since V (V *(z1)), it
follows by Corollary (i) of Theorem 1 thatM (V *(z1)). Contradiction.
Hence V1 = V *(z1), whence V *(z1) ∈ V *(y) by Lemma 7(vii).

6. In case (iii), V *(y) �= V1 and V *(y) �= V2. Hence [w:w ∈ V *(y)]
= {w:w ∈ V *(y)} by Theorem 9(iii). Since z1 ∈ V *(y), it follows
that z1 ∈ acc {w:w ∈ V *(y)} by Theorem 10(ii). By the definition
of acc, acc {w:w ∈ V *(y)} = {x:(Ux ∨ ∃y1(y1 ∈{w:w ∈ V *(y)} ∧
(x ∈ y1 ∨ x ⊆ y1)))}, whence Uz1 ∨ ∃y1(y1 ∈ {w:w ∈ V *(y)} ∧
(z1 ∈ y1 ∨ z1 ⊆ y1)) by Lemma 4(i). Since Mz1, it follows that ¬Uz1
by the definition of U . Hence by Lemma 4(i), z1 ∈ v ∨ z1 ⊆ v for some
level v ∈ V *(y), whence z1 ⊆ v by the Corollary of Theorem 7. By
Theorem 13,V *(z1) ∈ v∨V *(z1) = v ∨ v ∈ V *(z1). By the definition
of V *(z1), ¬∃w(w ∈ V *(z1)∧ z1 ⊆ w). Since z1 ⊆ v, it follows that
v /∈ V *(z1), whence V *(z1) ∈ v ∨ V *(z1) = v. Suppose V *(z1) ∈ v.
Then from v ∈ V *(y), it follows that V *(z1) ∈ V *(y) by Theorem
7. Suppose V *(z1) = v. Then from v ∈ V *(y), it again follows that
V *(z1) ∈ V *(y).

7. Wecannowgoonto the reductiobegun instep3.FromV *(z1) ∈ V *(y)
and V *(y) = v1 it follows that V *(z1) ∈ v1. However, V *(z1) ∈ v1
and z1 ∈ x are together contrary to ¬∃w(w ∈ v1 ∧ ∃z(w = V *(z) ∧
z ∈ x)) by the definition of V *(z). Hence ¬ ∃z(z ∈ x ∧ z ∈ y),
whence x ∩ y ≡ O by Lemma 2(i) and the definition of ∩. Hence
∃y(y ∈ x ∧ x ∩ y ≡ O).

We now turn to various operations, starting with a separation scheme, which
follows Cantor’s requirement that the separated members are many.

Theorem 18. Cantorian Separation
LetMx and my(y ∈ x ∧ A(y)), thenM{y:y ∈ x ∧ A(y)}.

Proof. By Theorem 16(i), ∃u x ⊆ u, whence ∃u∀y(y ∈ x → y ∈ u) by
the definition of ⊆. Hence ∃u∀y((y ∈ x ∧A(y))→ y ∈ u), which together
with my(y ∈ x ∧A(y)) entailsM{y:y ∈ x ∧ A(y)} by Axiom 2(iii).
Theorem 19. Intersection Let mz(z ∈ x ∧ z ∈ y), thenM (x ∩ y).
Proof. Since mz(z ∈ x ∧ z ∈ y), a fortiori mz z ∈ x, whenceMx by the
definition ofM . Hence by Theorem 18,M{z: z ∈ x ∧ z ∈ y}, whence by
Lemma 3, E!{z: z ∈ x ∧ z ∈ y}. Hence by Lemma 2(iii), [z: z ∈ x ∧ z ∈ y]
= {z: z ∈ x ∧ z ∈ y}, whence x ∩ y = {z: z ∈ x ∧ z ∈ y} by the definition
of ∩. HenceM (x ∩ y) by Lemma 4(i).
We define the intersection of a set of sets a to be the thing that is either
the sole common member of each member of a or the set of the common
members of the members of a. In symbols, whereMa and ∀y(y ∈ a →My),
∩a =df [z:∀y(y ∈ a → z ∈ y)].
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Theorem 20. Generalized Intersection

LetMx and ∀y(y ∈ x →My) andmz(∀y(y ∈ x → z ∈ y)), thenM (∩x).
Proof.

1. Since by hypothesisMx, it follows thatmz z ∈ x by the definition ofM ,
whence z1 ∈ x for some z1. Since by hypothesis ∀y(y ∈ x →My), it fol-
lows thatMz1. Since ∀y(y ∈ x → z ∈ y)→ z ∈ z1 and mz(∀y(y ∈ x
→ z ∈ y)), it follows that mz(z ∈ z1 ∧∀y(y ∈ x → z ∈ y)). Hence by
Theorem 18,M{z:z ∈ z1 ∧ ∀y(y ∈ x → z ∈ y)}, whence by Lemma
3, E!{z:z ∈ z1 ∧ ∀y(y ∈ x → z ∈ y)}.

2. Since (z ∈ z1 ∧∀y(y ∈ x → z ∈ y)) ↔ ∀y(y ∈ x → z ∈ y), it follows
that M{z:∀y(y ∈ x → z ∈ y)} and E!{z:∀y(y ∈ x → z ∈ y)} by
Lemma 1(i). Hence by Lemma 2(iii), [z:∀y(y ∈ x → z ∈ y)] =
{z:∀y(y ∈ x → z ∈ y)}, whence ∩x = {z:∀y(y ∈ x → z ∈ y)} by the
definition of ∩. HenceM (∩x) by Lemma 4(i).

We define the union of sets a and b to be the set of those things that are
each members of a or of b. In symbols, where Ma and Mb, a ∪ b =df
{z: z ∈ a ∨ z ∈ b}.
Theorem 21. Union LetMx andMy, thenM (x ∪ y).
Proof.

1. With a view to using Axiom 2(iii) we shall prove (i)mz(z ∈ x ∨ z ∈ y)
and (ii) ∃u∀z((z ∈ x ∨ z ∈ y)→ z ∈ u).

2. For (i), since Mx, it follows that mz z ∈ x by the definition of M ; a
fortiori mz(z ∈ x ∨ z ∈ y).

3. For (ii), sinceMx andMy, it follows by Theorem 16(i) that x ⊆ v and
y ⊆ w for some levels v andw. By Theorem 13, v ∈ w∨v = w ∨w ∈ v.
Suppose v ∈ w, then from x ⊆ v it follows that x ∈ w by Theorem
8, whence x ⊆ w by the Corollary of Theorem 7. Since y ⊆ w too,
it follows that ∀z((z ∈ x ∨ z ∈ y) → z ∈ w) by the definition of ⊆,
whence ∃u∀z((z ∈ x ∨ z ∈ y) → z ∈ u)). Suppose w ∈ v, then by
similar reasoning x ⊆ v and y ⊆ v, whence ∃u∀z((z ∈ x ∨ z ∈ y) →
z ∈ u)). Suppose v = w, then again both x ⊆ v and y ⊆ v, whence
∃u∀z((z ∈ x ∨ z ∈ y) → z ∈ u)) by similar reasoning. In each case,
then, ∃u∀z((z ∈ x ∨ z ∈ y)→ z ∈ u)).

4. From (i) and (ii), it follows thatM{z: z ∈ x ∨ z ∈ y} by Axiom 2(iii),
whenceM (x ∪ y) by the definition of x ∪ y.

Where a is a set of sets, we define the union of a to be the set of those things
that are each members of some member of a. In symbols, where Ma and
∀y(y ∈ a→My), ∪a =df {z: ∃y(y ∈ a ∧ z ∈ y)}.
Theorem 22. Generalized union LetMx and ∀y(y ∈ x →My), then
M (∪x).
Proof.

1. With a view to using Axiom 2(iii) we prove (i) mz(∃y(y ∈ x ∧ z ∈ y))
and (ii) ∃u∀z(∃y(y ∈ x ∧ z ∈ y)→ z ∈ u).

2. For (i), since Mx it follows that mz z ∈ x by the definition of M ,
whence z1 ∈ x for some z1. From the hypothesis ∀y(y ∈ x →My) it
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follows thatMz1, so mz z ∈ z1 by the definition ofM . Since ∀z(z ∈ z1
→ ∃y(y ∈ x ∧ z ∈ y)), it follows that mz(∃y(y ∈ x ∧ z ∈ y)).

3. For (ii), sinceMx it follows by Theorem 16(i) that x ⊆ v for some level
v. Hence ∀z(∃y(y ∈ x∧z ∈ y)→ ∃y(y ∈ v∧z ∈ y)) by the definition
of ⊆, whence ∀z(∃y(y ∈ x ∧ z ∈ y) → z ∈ v) by Theorem 7. Hence
∃u∀z(∃y(y ∈ x ∧ z ∈ y)→ z ∈ u).

4. From (i) and (ii) it follows thatM{z: ∃y(y ∈ x ∧ z ∈ y)} by Axiom
2(iii), whenceM (∪x) by the definition of ∪x.

Theorem 23. Sets and levels II LetMx, then ∃1v(x ∈ v ∧ ¬ ∃w(w ∈ v
∧ x ∈ w)).
This means that for any set there is a unique lowest level of which it is a
member.

Proof. By Theorem 16(i) x ⊆ u1 for some level u1. By Axiom 2(iv)
u1 ∈ u2 for some level u2. Since x ⊆ u1 and u1 ∈ u2, it follows that x ∈ u2 by
Theorem 8, whence ∃u x ∈ u. Hence ∃1v(x ∈ v ∧ ¬ ∃w(w ∈ v ∧ x ∈ w))
by Theorem 14.

The putative pair set {a, b} is defined as {z: z = a ∨ z = b}.
Theorem 24. Pairing Let E!x and E!y and x �= y, thenM{x, y}.
Our pairs are proper pairs—they have two members. Hence the condition
x �= y.
Proof.

1. Since E!x and E!y and x �= y, it follows that mz(z = x ∨ z = y). By
Lemma 3, it follows from E!x and E!y that either (i) Ux ∧ Uy or (ii)
Mx ∧ My or (iii) Mx ∧ Uy or (iv) Ux ∧ My. With a view to using
Axiom 2(iii) we prove ∃u∀z(z = x ∨ z = y)→ z ∈ u) for each case.

2. For case (i), from Ux ∧ Uy ∧ x �= y it follows that mz1Uz1. Hence by
Axiom 2(i)M{z1:Uz1}, whence V1 = {z1:Uz1} by Lemma 7(iii). Since
(z = x ∨ z = y) → Uz, it follows that (z = x ∨ z = y) → z ∈ V1
by Lemma 4(i). So ∃u∀z(z = x ∨ z = y) → z ∈ u) by the definition
of V .

3. For case (ii), fromMx ∧My it follows by Theorem 23 that x ∈ v and
y ∈ w for some levels v, w. By Theorem 13, v ∈ w ∨ v = w ∨ w ∈ v.
Suppose v ∈ w, then by Theorem 7x ∈ w. Also y ∈ w, so ∃u∀z((z = x
∨ z = y) → z ∈ u). Suppose v = w, then x ∈ v and y ∈ v, whence
∃u∀z((z = x ∨ z = y) → z ∈ u). Suppose w ∈ v, then by Theorem
7, y ∈ v. Also x ∈ v, so ∃u∀z((z = x ∨ z = y) → z ∈ u). From
v ∈ w ∨ v = w ∨ w ∈ v, then, it follows that ∃u∀z((z = x ∨ z = y)→
z ∈ u).

4. For case (iii), fromMx, it follows by Theorem 23 that x ∈ v for some
level v. By Corollary (ii) of Theorem 1 it follows from Uy that y ∈ v.
Hence ∃u∀z((z = x ∨ z = y)→ z ∈ u).

5. For case (iv), ∃u∀z(z = x ∨ z = y) → x ∈ u) is proved by the same
reasoning as in step 4.
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6. Since mz(z = x ∨ z = y) and ∃u∀z(z = x ∨ z = y) → z ∈ u), it
follows by Axiom 2(iii) thatM{z: z = x ∨ z = y}, whenceM{x, y}
by the definition of {x, y}.

We define the power set of a as the set, if any, of the subsets of a. In symbols,
P(a) =df{y:y ⊆ a}.
Theorem 25. Power set Let my y ⊆ x, thenM (P(x)).
The hypothesis is necessary, since a pair set has only itself as a subset, and
therefore has no power set.

Proof. From the hypothesis my y ⊆ x it follows that z ⊆ x for some z,
whenceMx by Lemma 6(i). Hence by Theorem 23, x ∈ v for some level v,
whence y ⊆ x → y ∈ v by Theorem 8. Hence ∃u(∀y(y ⊆ x → y ∈ u).
From my y ⊆ x and ∃u(∀y(y ⊆ x → y ∈ u), it follows thatM{y:y ⊆ x}
by Axiom 2(iii), whenceM (P(x)) by the definition of P(x).

We define the power-plus set of a to be the set, if any, of the members and
subsets of a. In symbols, P+(a) =df {y: y ∈ a ∨ y ⊆ a}.
Theorem 26. Power-plus set LetMx, thenM (P+(x)).

Proof. From the hypothesisMx it follows that my y ∈ x by the definition
of M ; a fortiori my(y ∈ x ∨ y ⊆ x). Also from Mx it follows that x ∈ v
for some level v by Theorem 23. So y ∈ x → y ∈ v by Theorem 7, and
y ⊆ x → y ∈ v by Theorem 8. Hence ∃u(∀y((y ∈ x ∨ y ⊆ x) → y ∈ u)).
From my(y ∈ x ∨ y ⊆ x) and ∃u(∀y(y ∈ x ∨ y ⊆ x)→ y ∈ u)), it follows
that M{y:y ∈ x ∨ y ⊆ x} by Axiom 2(iii), whence M (P+(x)) by the
definition of P+(x).

We now turn to further results about the structure and composition of levels.

Theorem 27. Membership and proper subset among levels: v ∈ w ↔ v⊂w.
Sincemembership well-orders levels, and this theorem says that membership
and proper subset are equivalent among levels, so proper subset well-orders
levels too.

Proof.

1. For the → half, suppose v ∈ w. By Corollary (i) of Theorem 1 Mv,
whence v ⊆ w by the Corollary of Theorem 7. By Axiom 1(iii) v /∈ v,
hence v �= w. So v ⊂ w by the definition of ⊂.

2. For the← half, suppose v ⊂ w, then v ⊆ w and v �= w by the definition
of ⊂, whence by Theorem 13 v ∈ w ∨ w ∈ v. For a reductio suppose
w ∈ v. Since v ⊆ w, it follows by the definition of ⊆ that w ∈ w,
contrary to Axiom 1(iii). Hence w /∈ v, whence v ∈ w.

Theorem 28. The lowest level (i) mzUz↔ V1 = ℩v(¬∃w w ∈ v)
(ii) ∃xVx↔ E!V1

Proof of (i).
1. For the→ half, suppose mzUz. Then by Axiom 2(i)M{z:Uz}. Hence
V1 = {z:Uz} by Lemma 7(iii), whence E!V1 by the strength of identity.
Hence ∃u u = u by the definition ofV , whence ∃1v(v = v∧¬∃w(w ∈ v
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∧w = w)) by Theorem 14. Hence E!℩v(¬∃w w ∈ v). By Theorem 9(i),
¬∃w w ∈ V1. Hence V1 = ℩v(¬ ∃w w ∈ v).

2. For the ← half, suppose V1 = ℩v(¬ ∃w w ∈ v). Then E!V1 by the
strength of identity, So by Lemma 7(ii), ∃xMx. So by Axiom 2(ii)
mzUz.

Proof of (ii).
1. For the→half, suppose∃xVx. Then∃xMxbyCorollary (i) of Theorem
1, whencemzUz by Axiom 2(ii). HenceE!V1 by Theorem 28(i) and the
strength of identity.

2. For the← half, suppose E!V1. Then ∃xVx by the definition of V .
Theorem 29. Levels next above I E!u ↔ E!u′
Proof.

1. For the → half, suppose E!u. By Axiom 2(iv) ∃u1 u ∈ u1. Hence by
Theorem 14 ∃1v(u ∈ v ∧ ¬∃w(w ∈ v ∧ u ∈ w)), whence E!℩v(u ∈ v ∧
¬∃w(w ∈ v ∧ u ∈ w)). Hence E!u′ by the definition of u′.

2. For the← half, supposeE!u′, then u ∈ u′ by the definition of u′. Hence
E!u by Axiom 1(i).

Theorem 30. Levels next above II (i) u′ ={x:Ux ∨ x ⊆ u}
(ii) u′ = P+(u)

Proof of (i). By Corollary (i) of Theorem 1,Mu. HenceE!u by Lemma 3,
whence E!u′ by Theorem 29. By the definition of u′, u ∈ u′ andVu′. SoMu′
by Corollary (i) of Theorem 1. We tackle three cases separately: (i) u′ = V1,
(ii) u′ = V2 and (ii) u′ �= V1 and u′ �= V2.
Case (i) u′ = V1
Since u ∈ u′, it follows that u ∈ V1. But u /∈ V1 by Theorem 9(i). Hence
u′ ={x:Ux ∨x ⊆ u} by the tautology A∧¬ A→ B .
Case (ii) u′ = V2
By the strength of identity E!V2. Hence ℩w(w ∈ V2) = V1 by Theorem
9(ii). Since u ∈ V2, it follows that u = V1, whence (Ux ∨ x ⊆ V1) ↔ (Ux
∨ x ⊆ u). By Lemma 7(iv) u′ = V2 = {x:Ux ∨ x ⊆ V1}, whence by Lemma
1(i) u′ = {x:Ux ∨ x ⊆ u}.
Case (iii) u′ �= V1 and u′ �= V2
1. We first prove w ⊆ u ↔ w ∈ u′. For the → half, suppose w ⊆ u.
From w ⊆ u and u ∈ u′ it follows by Theorem 8 that w ∈ u′. For the
← half, suppose w ∈ u′, then u /∈ w by the definition of u′. Hence
w ∈ u ∨ w = u by Theorem 13. By Corollary (i) of Theorem 1,Mw.
Suppose w ∈ u, then w ⊆ u by the Corollary of Theorem 7. Suppose
w = u, then w ⊆ u by Lemma 6(ii).

2. Since E!u′ and u′ �= V1 and u′ �= V2, it follows by Theorem 10(ii) that
u′ =acc [w:w ∈ u′]. whence u′ =acc {w:w ∈ u′} byTheorem9(iii). By
the definition of acc, acc {w:w ∈ u′} = {x:(Ux ∨∃y(y ∈{w:w ∈ u′}
∧ (x ∈ y ∨ x ⊆ y)))}. Hence x ∈ u′↔ (Ux ∨ ∃w1(w1 ∈ u′ ∧
(x ∈ w1 ∨ x ⊆ w1))) by Lemma 4(i). We next prove x ∈ u′↔ (Ux
∨ x ⊆ u).
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3. For the→ half, suppose x ∈ u′, then E!x by Axiom 1(i), whenceUx ∨
Mx by Lemma 3. Suppose Ux, a fortiori Ux ∨ ∃w1(w1 ∈ u′ ∧x ⊆ w1).
Suppose instead Mx. Since x ∈ u′, it follows that Ux ∨ ∃w1(w1 ∈ u′
∧ (x ∈ w1 ∨ x ⊆ w1)), whence Ux ∨ ∃w1(w1 ∈ u′ ∧ x ⊆ w1) by the
Corollary of Theorem 7. Since w ⊆ u ↔ w ∈ u′, it follows that Ux
∨ ∃w1(w1 ⊆ u ∧ x ⊆ w1). So Ux ∨ x ⊆ u by the definition of ⊆.

4. For the← half, suppose Ux, then x ∈ u′. Suppose instead that x ⊆ u,
then u ⊆ u by Lemma 6(ii), whence Ux ∨ ∃w1(w1 ⊆ u ∧ x ⊆ w1).
Since w ⊆ u ↔ w ∈ u′, it follows that Ux ∨ ∃w1(w1 ∈ u′ ∧ x ⊆ w1),
whence x ∈ u′.

5. Since x ∈ u′ ↔(Ux ∨ x ⊆ u), it follows by Lemma 1(i) that {x:x ∈ u′}
≡ {x:Ux ∨x ⊆ u}. Since Mu′, it follows by Lemma 5(ii) that u′ =
{x:x ∈ u′}, whence u′ ={x:Ux ∨ x ⊆ u}.

Proof of (ii).
1. By Corollary (i) of Theorem 1,Mu. Hence by Theorem 26M (P+(u)),
whence E!P+(u) by Lemma 3. So P+(u) = {x:x ∈ u ∨ x ⊆ u} by the
definition ofP+(u), whence x ∈ P+(u)↔ (x ∈ u∨x ⊆ u) by Lemma
4(i). We shall prove x ∈ P+(u) ↔ (Ux ∨ x ⊆ u).

2. For the → half, suppose x ∈ P+(u), then x ∈ u ∨ x ⊆ u. Suppose
x ∈ u, then byAxiom1(i)E!x, whence byLemma3Ux∨Mx. Suppose
Ux, a fortiori Ux ∨ x ⊆ u. Suppose Mx, then by the Corollary of
Theorem 7 x ⊆ u, a fortiori Ux ∨ x ⊆ u. Suppose instead that x ⊆ u,
then again Ux ∨ x ⊆ u.

3. For the ← half, suppose Ux, then by Corollary (ii) of Theorem 1,
x ∈ u, a fortiori x ∈ u ∨ x ⊆ u. Hence x ∈ P+(u). Suppose instead
that x ⊆ u, a fortiori x ∈ u ∨ x ⊆ u, whence x ∈ P+(u).

4. Since x ∈ P+(u)↔ (Ux ∨ x ⊆ u), it follows by Lemma 1(i) that
{x:x ∈ P+(u)} ≡ {x:Ux ∨ x ⊆ u}. Since M (P+(u)), it follows by
Lemma 5(ii) that P+(u) = {x:x ∈ P+(u)}, whence P+(u) = {x:Ux
∨ x ⊆ u}, and so u′ = P+(u) by Theorem 30(i).

Theorem 31. Sets and levels III
LetMx, then (V *(x))′ = ℩v(x ∈ v ∧ ¬∃w(w ∈ v ∧ x ∈ w)).
This means that the level next above the level of a set is the lowest level of
which the set is a member.

Proof.

1. Since by hypothesisMx, it follows that ¬Ux by the definition ofU . By
Theorem 16(ii) E!V *(x). Also V (V *(x)) by the definition of V *(x),
whence by Theorem 29 E!(V *(x))′. By Theorem 30(i) (V *(x))′ =
{x:Ux ∨ x ⊆ V *(x)}, so by Lemma 4(i) x ⊆ V *(x)→ x ∈ (V *(x))′.
Since x ⊆ V *(x) by the definition of V *(x), then x ∈ (V *(x))′.

2. For a reductio suppose that x ∈ w for some w ∈ (V *(x))′. By the def-
inition of (V *(x))′ we have that ¬∃w1(w1 ∈ (V *(x))′ ∧V *(x) ∈ w1).
Hence V *(x) /∈ w, whence by Theorem 13V *(x) = w ∨ w ∈ V *(x).
Suppose V *(x) = w, then x ∈ V *(x). Now suppose instead that
w ∈ V *(x), then x ∈ V *(x) by Theorem 7. We tackle three cases
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separately, deducing a contradiction in each case: (i) V *(x) = V1, (ii)
V *(x) = V2, and (iii) V *(x) �= V1 and V *(x) �= V2.

3. For case (i), by Lemma 7(ii), x ∈ V *(x) ↔ Ux. Since x ∈ V *(x), it
follows that Ux. Contradiction.

4. For case (ii), by Lemma 7(vi) and the definition of V , V (V1). Also
by Lemma 7(v), x ∈ V *(x) ↔ (Ux ∨ x ⊆ V1). Since x ∈ V *(x)
and ¬ Ux, it follows that x ⊆ V1. Since by Lemma 7(vii) V1 ∈ V2,
it also follows that V1 ∈ V *(x). But by the definition of V *(x),
¬ ∃w1(w1 ∈ V *(x) ∧ x ⊆ w1). Contradiction.

5. For case (iii), by Theorem 9(iii), [w:w ∈ V *(x)] = {w:w ∈ V *(x)},
whence by Theorem 10(ii), V *(x) = acc {w:w ∈ V *(x)}. By its
definition, acc {w:w ∈ V *(x)} = {z:(Uz ∨ ∃y(y ∈ {w:w ∈ V *(x)}
∧ (z ∈ y ∨ z ⊆ y)))}. Since x ∈ V *(x), it now follows that Ux
∨ ∃y(y ∈{w:w ∈ V *(x)} ∧ (x ∈ y ∨ x ⊆ y)) by Lemma 4(i). Since
¬Ux, it now follows that ∃y(y ∈ {w:w ∈ V *(x)} ∧ (x ∈ y ∨ x ⊆ y)),
whence ∃w1(w1 ∈ V *(x)∧ (x ∈ w1 ∨ x ⊆ w1)) by Lemma 4(i). Since
Mx, it follows by the Corollary of Theorem 7 that ∃w1(w1 ∈ V *(x) ∧
x ⊆ w1). But by the definition ofV *(x),¬∃w1(w1 ∈ V *(x)∧x ⊆ w1).
Contradiction.

6. Since each case is contradictory, it follows that ¬∃w (w ∈ (V *(x))′
∧ x ∈ w). Then by Theorem 23 ∃1v(x ∈ v∧ ¬∃w(w ∈ v ∧ x ∈ w)),
whence E!℩v(x ∈ v∧¬∃w(w ∈ v ∧ x ∈ w)). Since x ∈ (V *(x))′
and ¬ ∃w(w ∈ (V *(x))′ ∧ x ∈ w), it follows finally that (V *(x))′ =
℩v(x ∈ v ∧ ¬∃w(w ∈ v ∧ x ∈ w)).

Theorem 32. Levels next above III Let mx x ⊆ u, then P+(u) =
V1 ∪ P(u).
Theorems 30(ii) and 32 jointly entail that u′ = V1 ∪ P(u), provided u has
many subsets. The condition is necessary, since when there are exactly two
ur-elements, V1 has itself as its only subset, and hence its power set does not
exist.
Proof.

1. Since mx x ⊆ u, it follows that M (P(u)) by Theorem 25, whence
by Lemma 3 E!P(u). Hence P(u) = {y:y ⊆ u} by the definition of
P(u), whence by Lemma 4(i) z ∈ P(u) ↔ z ⊆ u. By Corollary (i) of
Theorem 1Mu, and so by Theorem 26,M (P+(u)). Hence by Lemma
7(iii)V1 = {z:Uz}, whenceMV1 and z ∈ V1 ↔Uz by Lemma 4(i). By
Theorems 30(i) and (ii) and Lemma 4(i), z ∈ P+(u)↔ (Uz ∨ z ⊆ u),
whence z ∈ P+(u)↔ (z ∈ V1 ∨ z ∈ P(u)).

2. SinceMV1 andM (P(u)), it follows by Theorem 21 thatM (V1∪P(u)),
whenceE!(V1∪P(u)) by Lemma 3. By the definition of∪, V1∪P(u)) =
{z: z ∈ V1∨z ∈ P(u)}. Hence z ∈ (V1∪P(u))↔ (z ∈ V1∨z ∈ P(u))
by Lemma 4(i). Since z ∈ P+(u) ↔ (z ∈ V1 ∨ z ∈ P(u)), it follows
that z ∈ P+(u)↔ z ∈ (V1 ∪ P(u)).

3. Since M (P+(u)) and M (V1 ∪ P(u)) and z ∈ P+(u) ↔ z ∈ (V1 ∪
P(u)), it follows by Axiom 1(ii) that P+(u) = V1 ∪ P(u).
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Theorem 33. Limit levels I ∃uLu↔ mx x = x
Proof.

1. For the→ half, suppose ∃uLu. Then ∃xMx byCorollary (i) of Theorem
1. Hence mxUx by Axiom 2(ii), whence mx x = x.

2. For the ← half, suppose mx x = x. If ¬∃xMx then ∀xUx by Lemma
3, whence mxUx. If ∃xMx then mxUx by Axiom 2(ii). Hence either
way mxUx, whence by Axiom 2(i)M{x:Ux}. Hence E!V1 by Lemma
7(iii) and the strength of identity. Hence ∃xVx by the definition of V ,
whence ∃uLu by Axiom 2(v) and the definition of L.

Theorem 34. Limit levels II Let Lu, then u = ∪{w:w ∈ u}.
A limit level is the union of its history.
Proof.

1. By Corollary (i) of Theorem 1, Mu, whence E!u by Lemma 3. Since
Lu, it follows that u �= V1 by the definition ofL. For a reductio suppose
u = V2. Then E!V2 by the strength of identity, whence V2 = {z:Uz
∨ z ⊆ V1} and E!V1 by Lemmas 7(iv) and (vi). By Theorem 30(i),
V ′
1 = {z:Uz ∨ z ⊆ V1}, whence V2 = V ′

1. Hence by the definition of
V , ∃u1V2 = u′1, whence ¬LV2 by the definition of L. Contradiction.
Hence u �= V2. Since E!u and u �= V1 and u �= V2, it follows by
Theorem 9(iii) that mw w ∈ u and [w:w ∈ u] = {w:w ∈ u}. We shall
prove z ∈ u ↔ ∃w(w ∈ u ∧ z ∈ w).

2. For the → half, suppose z ∈ u. By Axiom 1(i) and Lemma 3 Uz
∨ Mz. Suppose Uz. Then ∀v z ∈ v by Corollary (ii) of Theorem
1. Since ∃w w ∈ u, it follows that ∃w(w ∈ u ∧ z ∈ w). Suppose
instead that Mz. By Theorem 16(ii) E!V *(z), whence V (V *(z)) by
the definition of V *(z). Hence E!(V *(z))′ by Theorem 29, and then
∃u1 (V *(z))′ = u′1 by the definitionof (V *(z))′ . Sou �= (V *(z))′ by the
definition of L, whence by Theorem 13 u ∈ (V *(z))′ ∨ (V *(z))′ ∈ u.
For a reductio suppose u ∈ (V *(z))′. Since z ∈ u, it follows that
∃w(w ∈ (V *(z))′ ∧ z ∈ w)). But (V *(z))′ = ℩v(z ∈ v ∧ ¬ ∃w(w ∈ v
∧z ∈ w)) by Theorem 31. Contradiction. Hence (V *(z))′ ∈ u, whence
∃w(w ∈ u ∧ z ∈ w).

3. For the← half, suppose ∃w(w ∈ u∧z ∈ w). Then z ∈ u by Theorem 7.
4. Since [w:w ∈ u] = {w:w ∈ u}, it follows that M{w:w ∈ u} by
Lemma 4(i). Also by Lemma 4(i), ∀y(y ∈{w:w ∈ u} →Vy), whence
∀y(y ∈{w:w ∈ u}→My) by Corollary (i) of Theorem 1. Hence
M (∪{w:w ∈ u}) by Theorem 22. Hence E!∪{w:w ∈ u} by Lemma 3,
whence ∪{w:w ∈ u} = {z: ∃y(y ∈{w:w ∈ u} ∧ z ∈ y)} by the defi-
nition of ∪{w:w ∈ u}. Hence z ∈ ∪{w:w ∈ u} ↔ ∃y(y ∈{w:w ∈ u}
∧ z ∈ y) by Lemma 4(i), so z ∈ ∪{w:w ∈ u} ↔ ∃w(w ∈ u ∧ z ∈ w)
by Lemma 4(i) again. Since z ∈ u ↔ ∃w(w ∈ u ∧ z ∈ w), it follows
that z ∈ u ↔ z ∈ ∪{w:w ∈ u}. Since Mu and M (∪{w:w ∈ u})
and z ∈ u ↔ z ∈ ∪{w:w ∈ u}, it follows by Axiom 1(ii) that
u = ∪{w:w ∈ u}.
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We define V� to be the lowest limit level, or in symbols, V� =df ℩v(Lv ∧
¬ ∃w(w ∈ v ∧ Lw)).
Theorem 35. The lowest limit level E!V� ↔ ∃uLu
Proof.

1. For the→ half, suppose E!V�. Then ∃uLu by the definition of V�.
2. For the← half, suppose ∃uLu. Then ∃1v(Lv ∧ ¬ ∃w(w ∈ v ∧ Lw)) by
Theorem14.HenceE! ℩v(Lv∧¬∃w(w ∈ v∧Lw)),whenceE!V� by the
definition of V�.

We define a to be inductive if (i) V1 belongs to a and (ii) the level next
above any level that belongs to a also belongs to a. In symbols, Ia =df
V1 ∈ a ∧ ∀v(v ∈ a → v′ ∈ a).
Theorem 36. V� is inductive Let E!V�, then I (V�).

Proof.

1. From the hypothesisE!V� it follows by the definition ofV� thatV (V�)
whence MV� by Corollary (i) of Theorem 1. Hence E!V1 by Lemma
7(iii) and the strength of identity, whence V (V1) by the definition
of V .

2. By Theorem 13, V1 ∈ V� ∨ V1 = V� ∨ V� ∈ V1. But V1 �= V� by
the definitions of L and V� , and V� /∈ V1 by Theorem 9(i). Hence
V1 ∈ V� .

3. Consider an arbitrary u ∈ V�. ThenE!u by Axiom 1(i). HenceE!u′ by
Theorem 29, so Vu′ by the definition of u′. Hence u′ ∈ V� ∨ u′ = V�
∨ V� ∈ u′ by Theorem 13. Since ∃x u′ = x′ it follows that u′ �= V�
by the definitions of L and V�. Also V� /∈ u′ by the definition of
u′. Hence u′ ∈ V�. Since u was arbitrary we can generalize to get
∀v(v ∈ V� → v′ ∈ V�). Hence I (V�) by the definition of I .

We define N* to be the set of the members common to every inductive set.
In symbols, N* =df {x: ∀y(Iy→ x ∈ y)}. N* represents the set of natural
numbers.

Theorem 37. N* is inductive Let mx x = x, then I (N*).

Proof.

1. Since by hypothesis mx x = x it follows that E!V� by Theorems 33
and 35, whence M (V�) by the definition of V� and Corollary (i) of
Theorem 1, and also I (V�) by Theorem 36. By the definition of I , Iy
→ (V1 ∈ y ∧ V ′

1 ∈ y), whence V1 ∈ V� ∧ V ′
1 ∈ V� . Hence E!V1 and

E!V ′
1 by Axiom 1(i). By the reasoning in step 1 of the proof of Theorem

34, V ′
1 = V2. Hence V1 �= V ′

1 by Lemma 7(viii), whence mx(x ∈ V� ∧
∀y(Iy→ x ∈ y)).

2. Since M (V�) and mx(x ∈ V� ∧ ∀y(Iy→x ∈ y)), it follows that
M{x: x ∈ V� ∧ ∀y(Iy→x ∈ y)} by Theorem 18. Since I (V�) it
follows that (x ∈ V� ∧ ∀y(Iy→x ∈ y))↔ ∀y(Iy→ x ∈ y), whence
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M{x:∀y(Iy→x ∈ y)} by Lemma 1(i). Hence E!N* by Lemma 3 and
the definition of N*, whence N*={x:∀y(Iy→ x ∈ y)}.

3. By the definition of I it follows that ∀y(Iy→ V1 ∈ y), whenceV1 ∈N*
by Lemma 4(i). Consider an arbitrary u ∈ N*. Then ∀y(Iy→ u ∈ y)
by Lemma 4(i). By the definition of I it follows that ∀y(Iy→ ∀v(v ∈ y
→ v′ ∈ y)). Hence ∀y(Iy→ u′ ∈ y), whence u′ ∈ N* by Lemma 4(i).
Since u was arbitrary we can generalize to get ∀v(v ∈ N*→ v′ ∈ N*).
Hence I (N*) by the definition of I .

We define [a, b] as [z:z = a ∨ z = b] and use this shorthand in the following
definition of the ordered pair

<a, b> =df {{{[a, V1], [a, V2]}, V1}, {{[b, V1], [b, V2]}, V2}}
Theorem 38. Ordered pairs
Let mx x = x, then (i) E!<x, y> and also (ii) <x, y> = < w, z> ↔
(x ≡ w ∧ y ≡ z).
(i) ensures the existence of ordered pairs, while (ii) says that they have their
so-called characteristic property. Here we supply sketches for the interested
reader to develop into full-dress proofs.

The proof of (i) is by repeated application of pairing (Theorem 24), having
established on each occasion that the members of the next putative pair exist
and are distinct. At the start it is shown that E![x, V1] and E![x, V2] and
[x, V1] �=[x, V2], and similarly for y. Four cases for each of x and y need to
be tackled here, which between them exhaust the possibilities: zilch, V1, V2,
anything else.

By definition an ordered pair<a, b> is of the form {a*, b*}, where a* codes
coordinate a, and b* codes b. The markers V1 and V2 serve to distinguish
the two. The proof of the→ half of (ii) proceeds by showing that different
coordinates have different codes, i.e. a*= b*→ a ≡ b. Four cases for
a*= b* need to be tackled here, which correspond to the four possibilities
for a and b: zilch, V1, V2, anything else. Supposing <x, y> = < w, z>,
it follows that x* �= y* and w* �= z* which in turn entail x*= w* and
y* = z*. Since a*= b*→ a ≡ b, it follows that x ≡ w ∧ y ≡ z. The
proof of the← half proceeds by showing that different items code different
coordinates, i.e. a ≡ b → a*= b*. Supposing x ≡ w ∧ y ≡ z, it follows
that {x*, y*} ≡ {w*, z*}, i.e. <x, y> ≡ <w, z>, so <x, y>=<w, z>
by (i).

Theorem 39. Nonexistence (i) ¬E!{x:E!x}
(ii) ¬E!{x:Mx}
(iii) ¬E!{x:Vx}
(iv) ¬E!{x:Ax}
(v) ¬E!{x:Hx}

This theorem means that there are no sets corresponding to the predicates
E!,M , V , A and H . By Corollary (ii) of Theorem 1, every ur-element is a
member of every level, and by Theorem 23, every set is a member of some
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level. But it follows from (i) that there can be no all-encompassing level. A
level is, in Scott’s phrase, never more than a partial universe.

Proof of (i). For a reductio suppose E!{x:E!x}. Then {x:E!x}
={x:E!x}, whence by Lemma 4(i) {x:E!x} ∈ {x:E!x}, contrary to Axiom
1(iii). Hence ¬E!{x:E!x}.
Proof of (ii). For a reductio suppose E!{x:Mx}. Then {x:Mx} =
{x:Mx}, whence M{x:Mx} by Lemma 4(i). Hence also by Lemma 4(i)
{x:Mx} ∈ {x:Mx}, contrary to Axiom 1(iii). Hence ¬E!{x:Mx}.
Proof of (iii). For a reductio supposeE!{x:Vx}. Then {x:Vx}= {x:Vx},
whence M{x:Vx} by Lemma 4(i), whence by Theorem 16(i) {x:Vx} ⊆ v
for some level v. Hence by the definition of ⊆, y ∈{x:Vx} → y ∈ v, whence
by Lemma 4(i) v ∈ v, contrary to Axiom 1(iii). Hence ¬E!{x:Vx}.
Proof of (iv).
1. For a reductio suppose E!{x:Ax}. Then {x:Ax} = {x:Ax}, whence
M{x:Ax} by Lemma 4(i). Hence by Theorem 16(i), {x:Ax} ⊆ v for
some level v. By Axiom 2(iv) it follows that v ∈ w for some level w,
whence by Axiom 1(iii), v �= w. Hence mxVx.

2. SinceVx→ Ax by Theorem 1(iii), it follows thatmx(Ax∧Vx), whence
by Theorem 18,M{x:Ax∧Vx}.

3. Since Vx→ Ax, it follows thatAx∧Vx↔ Vx, whence by Lemma 1(i),
M{x:Vx}. HenceE!{x:Vx} by Lemma 3, contrary to Theorem 39(iii).
Hence ¬E!{x:Ax}.

Proof of (v).
1. For a reductio suppose E!{x:Hx}. Then {x:Hx} = {x:Hx}. Hence
M{x:Hx} by Lemma 4(i), whence by Theorem 16(i) {x:Hx} ⊆ v, for
some level v. Hence by the definition of ⊆, y ∈ {x:Hx} → y ∈ v,
whence by Lemma 4(i)Hy→ y ∈ v.

2. Consider an arbitrary level u. By Axiom 2(iv), u ∈ v and v ∈ w for
some levels v, w. Hence u ∈ w by Theorem 7. By Axiom 1(iii), u �= v,
whence mw1(w1 ∈ w). Hence by Theorems 9(i), (ii), (iii), [w1:w1 ∈ w]
={w1:w1 ∈ w}, whence by Lemma 4(i), u ∈ [w1:w1 ∈ w] and by the
strength of identity E![w1:w1 ∈ w]. By Theorem 11, H [w1:w1 ∈ w].
Hence ∃y(Hy ∧ u ∈ y). Since u was arbitrary, we can generalize to get
∀u1∃y(Hy ∧ u1 ∈ y).

3. Since Hy → y ∈ v, it follows that ∀u1∃y(y ∈ v ∧ u1 ∈ y), whence
∀u1 u1 ∈ v by Theorem 7. Hence v ∈ v, contrary to Axiom 1(iii),
whence ¬E!{x:Hx}.
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